1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2008 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #include <linux/module.h>
30 #include <linux/types.h>
31 #include <linux/init.h>
32 #include <linux/pci.h>
33 #include <linux/vmalloc.h>
34 #include <linux/pagemap.h>
35 #include <linux/delay.h>
36 #include <linux/netdevice.h>
37 #include <linux/tcp.h>
38 #include <linux/ipv6.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/cpu.h>
45 #include <linux/smp.h>
46 #include <linux/pm_qos_params.h>
50 #define DRV_VERSION "0.3.3.3-k6"
51 char e1000e_driver_name[] = "e1000e";
52 const char e1000e_driver_version[] = DRV_VERSION;
54 static const struct e1000_info *e1000_info_tbl[] = {
55 [board_82571] = &e1000_82571_info,
56 [board_82572] = &e1000_82572_info,
57 [board_82573] = &e1000_82573_info,
58 [board_82574] = &e1000_82574_info,
59 [board_80003es2lan] = &e1000_es2_info,
60 [board_ich8lan] = &e1000_ich8_info,
61 [board_ich9lan] = &e1000_ich9_info,
62 [board_ich10lan] = &e1000_ich10_info,
67 * e1000_get_hw_dev_name - return device name string
68 * used by hardware layer to print debugging information
70 char *e1000e_get_hw_dev_name(struct e1000_hw *hw)
72 return hw->adapter->netdev->name;
77 * e1000_desc_unused - calculate if we have unused descriptors
79 static int e1000_desc_unused(struct e1000_ring *ring)
81 if (ring->next_to_clean > ring->next_to_use)
82 return ring->next_to_clean - ring->next_to_use - 1;
84 return ring->count + ring->next_to_clean - ring->next_to_use - 1;
88 * e1000_receive_skb - helper function to handle Rx indications
89 * @adapter: board private structure
90 * @status: descriptor status field as written by hardware
91 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
92 * @skb: pointer to sk_buff to be indicated to stack
94 static void e1000_receive_skb(struct e1000_adapter *adapter,
95 struct net_device *netdev,
97 u8 status, __le16 vlan)
99 skb->protocol = eth_type_trans(skb, netdev);
101 if (adapter->vlgrp && (status & E1000_RXD_STAT_VP))
102 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
105 napi_gro_receive(&adapter->napi, skb);
109 * e1000_rx_checksum - Receive Checksum Offload for 82543
110 * @adapter: board private structure
111 * @status_err: receive descriptor status and error fields
112 * @csum: receive descriptor csum field
113 * @sk_buff: socket buffer with received data
115 static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
116 u32 csum, struct sk_buff *skb)
118 u16 status = (u16)status_err;
119 u8 errors = (u8)(status_err >> 24);
120 skb->ip_summed = CHECKSUM_NONE;
122 /* Ignore Checksum bit is set */
123 if (status & E1000_RXD_STAT_IXSM)
125 /* TCP/UDP checksum error bit is set */
126 if (errors & E1000_RXD_ERR_TCPE) {
127 /* let the stack verify checksum errors */
128 adapter->hw_csum_err++;
132 /* TCP/UDP Checksum has not been calculated */
133 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
136 /* It must be a TCP or UDP packet with a valid checksum */
137 if (status & E1000_RXD_STAT_TCPCS) {
138 /* TCP checksum is good */
139 skb->ip_summed = CHECKSUM_UNNECESSARY;
142 * IP fragment with UDP payload
143 * Hardware complements the payload checksum, so we undo it
144 * and then put the value in host order for further stack use.
146 __sum16 sum = (__force __sum16)htons(csum);
147 skb->csum = csum_unfold(~sum);
148 skb->ip_summed = CHECKSUM_COMPLETE;
150 adapter->hw_csum_good++;
154 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
155 * @adapter: address of board private structure
157 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
160 struct net_device *netdev = adapter->netdev;
161 struct pci_dev *pdev = adapter->pdev;
162 struct e1000_ring *rx_ring = adapter->rx_ring;
163 struct e1000_rx_desc *rx_desc;
164 struct e1000_buffer *buffer_info;
167 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
169 i = rx_ring->next_to_use;
170 buffer_info = &rx_ring->buffer_info[i];
172 while (cleaned_count--) {
173 skb = buffer_info->skb;
179 skb = netdev_alloc_skb(netdev, bufsz);
181 /* Better luck next round */
182 adapter->alloc_rx_buff_failed++;
187 * Make buffer alignment 2 beyond a 16 byte boundary
188 * this will result in a 16 byte aligned IP header after
189 * the 14 byte MAC header is removed
191 skb_reserve(skb, NET_IP_ALIGN);
193 buffer_info->skb = skb;
195 buffer_info->dma = pci_map_single(pdev, skb->data,
196 adapter->rx_buffer_len,
198 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
199 dev_err(&pdev->dev, "RX DMA map failed\n");
200 adapter->rx_dma_failed++;
204 rx_desc = E1000_RX_DESC(*rx_ring, i);
205 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
208 if (i == rx_ring->count)
210 buffer_info = &rx_ring->buffer_info[i];
213 if (rx_ring->next_to_use != i) {
214 rx_ring->next_to_use = i;
216 i = (rx_ring->count - 1);
219 * Force memory writes to complete before letting h/w
220 * know there are new descriptors to fetch. (Only
221 * applicable for weak-ordered memory model archs,
225 writel(i, adapter->hw.hw_addr + rx_ring->tail);
230 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
231 * @adapter: address of board private structure
233 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
236 struct net_device *netdev = adapter->netdev;
237 struct pci_dev *pdev = adapter->pdev;
238 union e1000_rx_desc_packet_split *rx_desc;
239 struct e1000_ring *rx_ring = adapter->rx_ring;
240 struct e1000_buffer *buffer_info;
241 struct e1000_ps_page *ps_page;
245 i = rx_ring->next_to_use;
246 buffer_info = &rx_ring->buffer_info[i];
248 while (cleaned_count--) {
249 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
251 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
252 ps_page = &buffer_info->ps_pages[j];
253 if (j >= adapter->rx_ps_pages) {
254 /* all unused desc entries get hw null ptr */
255 rx_desc->read.buffer_addr[j+1] = ~cpu_to_le64(0);
258 if (!ps_page->page) {
259 ps_page->page = alloc_page(GFP_ATOMIC);
260 if (!ps_page->page) {
261 adapter->alloc_rx_buff_failed++;
264 ps_page->dma = pci_map_page(pdev,
268 if (pci_dma_mapping_error(pdev, ps_page->dma)) {
269 dev_err(&adapter->pdev->dev,
270 "RX DMA page map failed\n");
271 adapter->rx_dma_failed++;
276 * Refresh the desc even if buffer_addrs
277 * didn't change because each write-back
280 rx_desc->read.buffer_addr[j+1] =
281 cpu_to_le64(ps_page->dma);
284 skb = netdev_alloc_skb(netdev,
285 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
288 adapter->alloc_rx_buff_failed++;
293 * Make buffer alignment 2 beyond a 16 byte boundary
294 * this will result in a 16 byte aligned IP header after
295 * the 14 byte MAC header is removed
297 skb_reserve(skb, NET_IP_ALIGN);
299 buffer_info->skb = skb;
300 buffer_info->dma = pci_map_single(pdev, skb->data,
301 adapter->rx_ps_bsize0,
303 if (pci_dma_mapping_error(pdev, buffer_info->dma)) {
304 dev_err(&pdev->dev, "RX DMA map failed\n");
305 adapter->rx_dma_failed++;
307 dev_kfree_skb_any(skb);
308 buffer_info->skb = NULL;
312 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
315 if (i == rx_ring->count)
317 buffer_info = &rx_ring->buffer_info[i];
321 if (rx_ring->next_to_use != i) {
322 rx_ring->next_to_use = i;
325 i = (rx_ring->count - 1);
328 * Force memory writes to complete before letting h/w
329 * know there are new descriptors to fetch. (Only
330 * applicable for weak-ordered memory model archs,
335 * Hardware increments by 16 bytes, but packet split
336 * descriptors are 32 bytes...so we increment tail
339 writel(i<<1, adapter->hw.hw_addr + rx_ring->tail);
344 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
345 * @adapter: address of board private structure
346 * @cleaned_count: number of buffers to allocate this pass
349 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
352 struct net_device *netdev = adapter->netdev;
353 struct pci_dev *pdev = adapter->pdev;
354 struct e1000_rx_desc *rx_desc;
355 struct e1000_ring *rx_ring = adapter->rx_ring;
356 struct e1000_buffer *buffer_info;
359 unsigned int bufsz = 256 -
360 16 /* for skb_reserve */ -
363 i = rx_ring->next_to_use;
364 buffer_info = &rx_ring->buffer_info[i];
366 while (cleaned_count--) {
367 skb = buffer_info->skb;
373 skb = netdev_alloc_skb(netdev, bufsz);
374 if (unlikely(!skb)) {
375 /* Better luck next round */
376 adapter->alloc_rx_buff_failed++;
380 /* Make buffer alignment 2 beyond a 16 byte boundary
381 * this will result in a 16 byte aligned IP header after
382 * the 14 byte MAC header is removed
384 skb_reserve(skb, NET_IP_ALIGN);
386 buffer_info->skb = skb;
388 /* allocate a new page if necessary */
389 if (!buffer_info->page) {
390 buffer_info->page = alloc_page(GFP_ATOMIC);
391 if (unlikely(!buffer_info->page)) {
392 adapter->alloc_rx_buff_failed++;
397 if (!buffer_info->dma)
398 buffer_info->dma = pci_map_page(pdev,
399 buffer_info->page, 0,
403 rx_desc = E1000_RX_DESC(*rx_ring, i);
404 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
406 if (unlikely(++i == rx_ring->count))
408 buffer_info = &rx_ring->buffer_info[i];
411 if (likely(rx_ring->next_to_use != i)) {
412 rx_ring->next_to_use = i;
413 if (unlikely(i-- == 0))
414 i = (rx_ring->count - 1);
416 /* Force memory writes to complete before letting h/w
417 * know there are new descriptors to fetch. (Only
418 * applicable for weak-ordered memory model archs,
421 writel(i, adapter->hw.hw_addr + rx_ring->tail);
426 * e1000_clean_rx_irq - Send received data up the network stack; legacy
427 * @adapter: board private structure
429 * the return value indicates whether actual cleaning was done, there
430 * is no guarantee that everything was cleaned
432 static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
433 int *work_done, int work_to_do)
435 struct net_device *netdev = adapter->netdev;
436 struct pci_dev *pdev = adapter->pdev;
437 struct e1000_ring *rx_ring = adapter->rx_ring;
438 struct e1000_rx_desc *rx_desc, *next_rxd;
439 struct e1000_buffer *buffer_info, *next_buffer;
442 int cleaned_count = 0;
444 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
446 i = rx_ring->next_to_clean;
447 rx_desc = E1000_RX_DESC(*rx_ring, i);
448 buffer_info = &rx_ring->buffer_info[i];
450 while (rx_desc->status & E1000_RXD_STAT_DD) {
454 if (*work_done >= work_to_do)
458 status = rx_desc->status;
459 skb = buffer_info->skb;
460 buffer_info->skb = NULL;
462 prefetch(skb->data - NET_IP_ALIGN);
465 if (i == rx_ring->count)
467 next_rxd = E1000_RX_DESC(*rx_ring, i);
470 next_buffer = &rx_ring->buffer_info[i];
474 pci_unmap_single(pdev,
476 adapter->rx_buffer_len,
478 buffer_info->dma = 0;
480 length = le16_to_cpu(rx_desc->length);
482 /* !EOP means multiple descriptors were used to store a single
483 * packet, also make sure the frame isn't just CRC only */
484 if (!(status & E1000_RXD_STAT_EOP) || (length <= 4)) {
485 /* All receives must fit into a single buffer */
486 e_dbg("%s: Receive packet consumed multiple buffers\n",
489 buffer_info->skb = skb;
493 if (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK) {
495 buffer_info->skb = skb;
499 /* adjust length to remove Ethernet CRC */
500 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
503 total_rx_bytes += length;
507 * code added for copybreak, this should improve
508 * performance for small packets with large amounts
509 * of reassembly being done in the stack
511 if (length < copybreak) {
512 struct sk_buff *new_skb =
513 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
515 skb_reserve(new_skb, NET_IP_ALIGN);
516 skb_copy_to_linear_data_offset(new_skb,
522 /* save the skb in buffer_info as good */
523 buffer_info->skb = skb;
526 /* else just continue with the old one */
528 /* end copybreak code */
529 skb_put(skb, length);
531 /* Receive Checksum Offload */
532 e1000_rx_checksum(adapter,
534 ((u32)(rx_desc->errors) << 24),
535 le16_to_cpu(rx_desc->csum), skb);
537 e1000_receive_skb(adapter, netdev, skb,status,rx_desc->special);
542 /* return some buffers to hardware, one at a time is too slow */
543 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
544 adapter->alloc_rx_buf(adapter, cleaned_count);
548 /* use prefetched values */
550 buffer_info = next_buffer;
552 rx_ring->next_to_clean = i;
554 cleaned_count = e1000_desc_unused(rx_ring);
556 adapter->alloc_rx_buf(adapter, cleaned_count);
558 adapter->total_rx_bytes += total_rx_bytes;
559 adapter->total_rx_packets += total_rx_packets;
560 adapter->net_stats.rx_bytes += total_rx_bytes;
561 adapter->net_stats.rx_packets += total_rx_packets;
565 static void e1000_put_txbuf(struct e1000_adapter *adapter,
566 struct e1000_buffer *buffer_info)
568 if (buffer_info->dma) {
569 pci_unmap_page(adapter->pdev, buffer_info->dma,
570 buffer_info->length, PCI_DMA_TODEVICE);
571 buffer_info->dma = 0;
573 if (buffer_info->skb) {
574 dev_kfree_skb_any(buffer_info->skb);
575 buffer_info->skb = NULL;
579 static void e1000_print_tx_hang(struct e1000_adapter *adapter)
581 struct e1000_ring *tx_ring = adapter->tx_ring;
582 unsigned int i = tx_ring->next_to_clean;
583 unsigned int eop = tx_ring->buffer_info[i].next_to_watch;
584 struct e1000_tx_desc *eop_desc = E1000_TX_DESC(*tx_ring, eop);
586 /* detected Tx unit hang */
587 e_err("Detected Tx Unit Hang:\n"
590 " next_to_use <%x>\n"
591 " next_to_clean <%x>\n"
592 "buffer_info[next_to_clean]:\n"
593 " time_stamp <%lx>\n"
594 " next_to_watch <%x>\n"
596 " next_to_watch.status <%x>\n",
597 readl(adapter->hw.hw_addr + tx_ring->head),
598 readl(adapter->hw.hw_addr + tx_ring->tail),
599 tx_ring->next_to_use,
600 tx_ring->next_to_clean,
601 tx_ring->buffer_info[eop].time_stamp,
604 eop_desc->upper.fields.status);
608 * e1000_clean_tx_irq - Reclaim resources after transmit completes
609 * @adapter: board private structure
611 * the return value indicates whether actual cleaning was done, there
612 * is no guarantee that everything was cleaned
614 static bool e1000_clean_tx_irq(struct e1000_adapter *adapter)
616 struct net_device *netdev = adapter->netdev;
617 struct e1000_hw *hw = &adapter->hw;
618 struct e1000_ring *tx_ring = adapter->tx_ring;
619 struct e1000_tx_desc *tx_desc, *eop_desc;
620 struct e1000_buffer *buffer_info;
622 unsigned int count = 0;
624 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
626 i = tx_ring->next_to_clean;
627 eop = tx_ring->buffer_info[i].next_to_watch;
628 eop_desc = E1000_TX_DESC(*tx_ring, eop);
630 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
631 for (cleaned = 0; !cleaned; ) {
632 tx_desc = E1000_TX_DESC(*tx_ring, i);
633 buffer_info = &tx_ring->buffer_info[i];
634 cleaned = (i == eop);
637 struct sk_buff *skb = buffer_info->skb;
638 unsigned int segs, bytecount;
639 segs = skb_shinfo(skb)->gso_segs ?: 1;
640 /* multiply data chunks by size of headers */
641 bytecount = ((segs - 1) * skb_headlen(skb)) +
643 total_tx_packets += segs;
644 total_tx_bytes += bytecount;
647 e1000_put_txbuf(adapter, buffer_info);
648 tx_desc->upper.data = 0;
651 if (i == tx_ring->count)
655 eop = tx_ring->buffer_info[i].next_to_watch;
656 eop_desc = E1000_TX_DESC(*tx_ring, eop);
657 #define E1000_TX_WEIGHT 64
658 /* weight of a sort for tx, to avoid endless transmit cleanup */
659 if (count++ == E1000_TX_WEIGHT)
663 tx_ring->next_to_clean = i;
665 #define TX_WAKE_THRESHOLD 32
666 if (cleaned && netif_carrier_ok(netdev) &&
667 e1000_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD) {
668 /* Make sure that anybody stopping the queue after this
669 * sees the new next_to_clean.
673 if (netif_queue_stopped(netdev) &&
674 !(test_bit(__E1000_DOWN, &adapter->state))) {
675 netif_wake_queue(netdev);
676 ++adapter->restart_queue;
680 if (adapter->detect_tx_hung) {
682 * Detect a transmit hang in hardware, this serializes the
683 * check with the clearing of time_stamp and movement of i
685 adapter->detect_tx_hung = 0;
686 if (tx_ring->buffer_info[eop].dma &&
687 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp
688 + (adapter->tx_timeout_factor * HZ))
689 && !(er32(STATUS) & E1000_STATUS_TXOFF)) {
690 e1000_print_tx_hang(adapter);
691 netif_stop_queue(netdev);
694 adapter->total_tx_bytes += total_tx_bytes;
695 adapter->total_tx_packets += total_tx_packets;
696 adapter->net_stats.tx_bytes += total_tx_bytes;
697 adapter->net_stats.tx_packets += total_tx_packets;
702 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
703 * @adapter: board private structure
705 * the return value indicates whether actual cleaning was done, there
706 * is no guarantee that everything was cleaned
708 static bool e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
709 int *work_done, int work_to_do)
711 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
712 struct net_device *netdev = adapter->netdev;
713 struct pci_dev *pdev = adapter->pdev;
714 struct e1000_ring *rx_ring = adapter->rx_ring;
715 struct e1000_buffer *buffer_info, *next_buffer;
716 struct e1000_ps_page *ps_page;
720 int cleaned_count = 0;
722 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
724 i = rx_ring->next_to_clean;
725 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
726 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
727 buffer_info = &rx_ring->buffer_info[i];
729 while (staterr & E1000_RXD_STAT_DD) {
730 if (*work_done >= work_to_do)
733 skb = buffer_info->skb;
735 /* in the packet split case this is header only */
736 prefetch(skb->data - NET_IP_ALIGN);
739 if (i == rx_ring->count)
741 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
744 next_buffer = &rx_ring->buffer_info[i];
748 pci_unmap_single(pdev, buffer_info->dma,
749 adapter->rx_ps_bsize0,
751 buffer_info->dma = 0;
753 if (!(staterr & E1000_RXD_STAT_EOP)) {
754 e_dbg("%s: Packet Split buffers didn't pick up the "
755 "full packet\n", netdev->name);
756 dev_kfree_skb_irq(skb);
760 if (staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK) {
761 dev_kfree_skb_irq(skb);
765 length = le16_to_cpu(rx_desc->wb.middle.length0);
768 e_dbg("%s: Last part of the packet spanning multiple "
769 "descriptors\n", netdev->name);
770 dev_kfree_skb_irq(skb);
775 skb_put(skb, length);
779 * this looks ugly, but it seems compiler issues make it
780 * more efficient than reusing j
782 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
785 * page alloc/put takes too long and effects small packet
786 * throughput, so unsplit small packets and save the alloc/put
787 * only valid in softirq (napi) context to call kmap_*
789 if (l1 && (l1 <= copybreak) &&
790 ((length + l1) <= adapter->rx_ps_bsize0)) {
793 ps_page = &buffer_info->ps_pages[0];
796 * there is no documentation about how to call
797 * kmap_atomic, so we can't hold the mapping
800 pci_dma_sync_single_for_cpu(pdev, ps_page->dma,
801 PAGE_SIZE, PCI_DMA_FROMDEVICE);
802 vaddr = kmap_atomic(ps_page->page, KM_SKB_DATA_SOFTIRQ);
803 memcpy(skb_tail_pointer(skb), vaddr, l1);
804 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
805 pci_dma_sync_single_for_device(pdev, ps_page->dma,
806 PAGE_SIZE, PCI_DMA_FROMDEVICE);
809 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
817 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
818 length = le16_to_cpu(rx_desc->wb.upper.length[j]);
822 ps_page = &buffer_info->ps_pages[j];
823 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
826 skb_fill_page_desc(skb, j, ps_page->page, 0, length);
827 ps_page->page = NULL;
829 skb->data_len += length;
830 skb->truesize += length;
833 /* strip the ethernet crc, problem is we're using pages now so
834 * this whole operation can get a little cpu intensive
836 if (!(adapter->flags2 & FLAG2_CRC_STRIPPING))
837 pskb_trim(skb, skb->len - 4);
840 total_rx_bytes += skb->len;
843 e1000_rx_checksum(adapter, staterr, le16_to_cpu(
844 rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
846 if (rx_desc->wb.upper.header_status &
847 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP))
848 adapter->rx_hdr_split++;
850 e1000_receive_skb(adapter, netdev, skb,
851 staterr, rx_desc->wb.middle.vlan);
854 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
855 buffer_info->skb = NULL;
857 /* return some buffers to hardware, one at a time is too slow */
858 if (cleaned_count >= E1000_RX_BUFFER_WRITE) {
859 adapter->alloc_rx_buf(adapter, cleaned_count);
863 /* use prefetched values */
865 buffer_info = next_buffer;
867 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
869 rx_ring->next_to_clean = i;
871 cleaned_count = e1000_desc_unused(rx_ring);
873 adapter->alloc_rx_buf(adapter, cleaned_count);
875 adapter->total_rx_bytes += total_rx_bytes;
876 adapter->total_rx_packets += total_rx_packets;
877 adapter->net_stats.rx_bytes += total_rx_bytes;
878 adapter->net_stats.rx_packets += total_rx_packets;
883 * e1000_consume_page - helper function
885 static void e1000_consume_page(struct e1000_buffer *bi, struct sk_buff *skb,
890 skb->data_len += length;
891 skb->truesize += length;
895 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
896 * @adapter: board private structure
898 * the return value indicates whether actual cleaning was done, there
899 * is no guarantee that everything was cleaned
902 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
903 int *work_done, int work_to_do)
905 struct net_device *netdev = adapter->netdev;
906 struct pci_dev *pdev = adapter->pdev;
907 struct e1000_ring *rx_ring = adapter->rx_ring;
908 struct e1000_rx_desc *rx_desc, *next_rxd;
909 struct e1000_buffer *buffer_info, *next_buffer;
912 int cleaned_count = 0;
913 bool cleaned = false;
914 unsigned int total_rx_bytes=0, total_rx_packets=0;
916 i = rx_ring->next_to_clean;
917 rx_desc = E1000_RX_DESC(*rx_ring, i);
918 buffer_info = &rx_ring->buffer_info[i];
920 while (rx_desc->status & E1000_RXD_STAT_DD) {
924 if (*work_done >= work_to_do)
928 status = rx_desc->status;
929 skb = buffer_info->skb;
930 buffer_info->skb = NULL;
933 if (i == rx_ring->count)
935 next_rxd = E1000_RX_DESC(*rx_ring, i);
938 next_buffer = &rx_ring->buffer_info[i];
942 pci_unmap_page(pdev, buffer_info->dma, PAGE_SIZE,
944 buffer_info->dma = 0;
946 length = le16_to_cpu(rx_desc->length);
948 /* errors is only valid for DD + EOP descriptors */
949 if (unlikely((status & E1000_RXD_STAT_EOP) &&
950 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
951 /* recycle both page and skb */
952 buffer_info->skb = skb;
953 /* an error means any chain goes out the window
955 if (rx_ring->rx_skb_top)
956 dev_kfree_skb(rx_ring->rx_skb_top);
957 rx_ring->rx_skb_top = NULL;
961 #define rxtop rx_ring->rx_skb_top
962 if (!(status & E1000_RXD_STAT_EOP)) {
963 /* this descriptor is only the beginning (or middle) */
965 /* this is the beginning of a chain */
967 skb_fill_page_desc(rxtop, 0, buffer_info->page,
970 /* this is the middle of a chain */
971 skb_fill_page_desc(rxtop,
972 skb_shinfo(rxtop)->nr_frags,
973 buffer_info->page, 0, length);
974 /* re-use the skb, only consumed the page */
975 buffer_info->skb = skb;
977 e1000_consume_page(buffer_info, rxtop, length);
981 /* end of the chain */
982 skb_fill_page_desc(rxtop,
983 skb_shinfo(rxtop)->nr_frags,
984 buffer_info->page, 0, length);
985 /* re-use the current skb, we only consumed the
987 buffer_info->skb = skb;
990 e1000_consume_page(buffer_info, skb, length);
992 /* no chain, got EOP, this buf is the packet
993 * copybreak to save the put_page/alloc_page */
994 if (length <= copybreak &&
995 skb_tailroom(skb) >= length) {
997 vaddr = kmap_atomic(buffer_info->page,
998 KM_SKB_DATA_SOFTIRQ);
999 memcpy(skb_tail_pointer(skb), vaddr,
1001 kunmap_atomic(vaddr,
1002 KM_SKB_DATA_SOFTIRQ);
1003 /* re-use the page, so don't erase
1004 * buffer_info->page */
1005 skb_put(skb, length);
1007 skb_fill_page_desc(skb, 0,
1008 buffer_info->page, 0,
1010 e1000_consume_page(buffer_info, skb,
1016 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1017 e1000_rx_checksum(adapter,
1019 ((u32)(rx_desc->errors) << 24),
1020 le16_to_cpu(rx_desc->csum), skb);
1022 /* probably a little skewed due to removing CRC */
1023 total_rx_bytes += skb->len;
1026 /* eth type trans needs skb->data to point to something */
1027 if (!pskb_may_pull(skb, ETH_HLEN)) {
1028 e_err("pskb_may_pull failed.\n");
1033 e1000_receive_skb(adapter, netdev, skb, status,
1037 rx_desc->status = 0;
1039 /* return some buffers to hardware, one at a time is too slow */
1040 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
1041 adapter->alloc_rx_buf(adapter, cleaned_count);
1045 /* use prefetched values */
1047 buffer_info = next_buffer;
1049 rx_ring->next_to_clean = i;
1051 cleaned_count = e1000_desc_unused(rx_ring);
1053 adapter->alloc_rx_buf(adapter, cleaned_count);
1055 adapter->total_rx_bytes += total_rx_bytes;
1056 adapter->total_rx_packets += total_rx_packets;
1057 adapter->net_stats.rx_bytes += total_rx_bytes;
1058 adapter->net_stats.rx_packets += total_rx_packets;
1063 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1064 * @adapter: board private structure
1066 static void e1000_clean_rx_ring(struct e1000_adapter *adapter)
1068 struct e1000_ring *rx_ring = adapter->rx_ring;
1069 struct e1000_buffer *buffer_info;
1070 struct e1000_ps_page *ps_page;
1071 struct pci_dev *pdev = adapter->pdev;
1074 /* Free all the Rx ring sk_buffs */
1075 for (i = 0; i < rx_ring->count; i++) {
1076 buffer_info = &rx_ring->buffer_info[i];
1077 if (buffer_info->dma) {
1078 if (adapter->clean_rx == e1000_clean_rx_irq)
1079 pci_unmap_single(pdev, buffer_info->dma,
1080 adapter->rx_buffer_len,
1081 PCI_DMA_FROMDEVICE);
1082 else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq)
1083 pci_unmap_page(pdev, buffer_info->dma,
1085 PCI_DMA_FROMDEVICE);
1086 else if (adapter->clean_rx == e1000_clean_rx_irq_ps)
1087 pci_unmap_single(pdev, buffer_info->dma,
1088 adapter->rx_ps_bsize0,
1089 PCI_DMA_FROMDEVICE);
1090 buffer_info->dma = 0;
1093 if (buffer_info->page) {
1094 put_page(buffer_info->page);
1095 buffer_info->page = NULL;
1098 if (buffer_info->skb) {
1099 dev_kfree_skb(buffer_info->skb);
1100 buffer_info->skb = NULL;
1103 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
1104 ps_page = &buffer_info->ps_pages[j];
1107 pci_unmap_page(pdev, ps_page->dma, PAGE_SIZE,
1108 PCI_DMA_FROMDEVICE);
1110 put_page(ps_page->page);
1111 ps_page->page = NULL;
1115 /* there also may be some cached data from a chained receive */
1116 if (rx_ring->rx_skb_top) {
1117 dev_kfree_skb(rx_ring->rx_skb_top);
1118 rx_ring->rx_skb_top = NULL;
1121 /* Zero out the descriptor ring */
1122 memset(rx_ring->desc, 0, rx_ring->size);
1124 rx_ring->next_to_clean = 0;
1125 rx_ring->next_to_use = 0;
1127 writel(0, adapter->hw.hw_addr + rx_ring->head);
1128 writel(0, adapter->hw.hw_addr + rx_ring->tail);
1131 static void e1000e_downshift_workaround(struct work_struct *work)
1133 struct e1000_adapter *adapter = container_of(work,
1134 struct e1000_adapter, downshift_task);
1136 e1000e_gig_downshift_workaround_ich8lan(&adapter->hw);
1140 * e1000_intr_msi - Interrupt Handler
1141 * @irq: interrupt number
1142 * @data: pointer to a network interface device structure
1144 static irqreturn_t e1000_intr_msi(int irq, void *data)
1146 struct net_device *netdev = data;
1147 struct e1000_adapter *adapter = netdev_priv(netdev);
1148 struct e1000_hw *hw = &adapter->hw;
1149 u32 icr = er32(ICR);
1152 * read ICR disables interrupts using IAM
1155 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1156 hw->mac.get_link_status = 1;
1158 * ICH8 workaround-- Call gig speed drop workaround on cable
1159 * disconnect (LSC) before accessing any PHY registers
1161 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1162 (!(er32(STATUS) & E1000_STATUS_LU)))
1163 schedule_work(&adapter->downshift_task);
1166 * 80003ES2LAN workaround-- For packet buffer work-around on
1167 * link down event; disable receives here in the ISR and reset
1168 * adapter in watchdog
1170 if (netif_carrier_ok(netdev) &&
1171 adapter->flags & FLAG_RX_NEEDS_RESTART) {
1172 /* disable receives */
1173 u32 rctl = er32(RCTL);
1174 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1175 adapter->flags |= FLAG_RX_RESTART_NOW;
1177 /* guard against interrupt when we're going down */
1178 if (!test_bit(__E1000_DOWN, &adapter->state))
1179 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1182 if (netif_rx_schedule_prep(&adapter->napi)) {
1183 adapter->total_tx_bytes = 0;
1184 adapter->total_tx_packets = 0;
1185 adapter->total_rx_bytes = 0;
1186 adapter->total_rx_packets = 0;
1187 __netif_rx_schedule(&adapter->napi);
1194 * e1000_intr - Interrupt Handler
1195 * @irq: interrupt number
1196 * @data: pointer to a network interface device structure
1198 static irqreturn_t e1000_intr(int irq, void *data)
1200 struct net_device *netdev = data;
1201 struct e1000_adapter *adapter = netdev_priv(netdev);
1202 struct e1000_hw *hw = &adapter->hw;
1203 u32 rctl, icr = er32(ICR);
1206 return IRQ_NONE; /* Not our interrupt */
1209 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1210 * not set, then the adapter didn't send an interrupt
1212 if (!(icr & E1000_ICR_INT_ASSERTED))
1216 * Interrupt Auto-Mask...upon reading ICR,
1217 * interrupts are masked. No need for the
1221 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
1222 hw->mac.get_link_status = 1;
1224 * ICH8 workaround-- Call gig speed drop workaround on cable
1225 * disconnect (LSC) before accessing any PHY registers
1227 if ((adapter->flags & FLAG_LSC_GIG_SPEED_DROP) &&
1228 (!(er32(STATUS) & E1000_STATUS_LU)))
1229 schedule_work(&adapter->downshift_task);
1232 * 80003ES2LAN workaround--
1233 * For packet buffer work-around on link down event;
1234 * disable receives here in the ISR and
1235 * reset adapter in watchdog
1237 if (netif_carrier_ok(netdev) &&
1238 (adapter->flags & FLAG_RX_NEEDS_RESTART)) {
1239 /* disable receives */
1241 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1242 adapter->flags |= FLAG_RX_RESTART_NOW;
1244 /* guard against interrupt when we're going down */
1245 if (!test_bit(__E1000_DOWN, &adapter->state))
1246 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1249 if (netif_rx_schedule_prep(&adapter->napi)) {
1250 adapter->total_tx_bytes = 0;
1251 adapter->total_tx_packets = 0;
1252 adapter->total_rx_bytes = 0;
1253 adapter->total_rx_packets = 0;
1254 __netif_rx_schedule(&adapter->napi);
1260 static irqreturn_t e1000_msix_other(int irq, void *data)
1262 struct net_device *netdev = data;
1263 struct e1000_adapter *adapter = netdev_priv(netdev);
1264 struct e1000_hw *hw = &adapter->hw;
1265 u32 icr = er32(ICR);
1267 if (!(icr & E1000_ICR_INT_ASSERTED)) {
1268 ew32(IMS, E1000_IMS_OTHER);
1272 if (icr & adapter->eiac_mask)
1273 ew32(ICS, (icr & adapter->eiac_mask));
1275 if (icr & E1000_ICR_OTHER) {
1276 if (!(icr & E1000_ICR_LSC))
1277 goto no_link_interrupt;
1278 hw->mac.get_link_status = 1;
1279 /* guard against interrupt when we're going down */
1280 if (!test_bit(__E1000_DOWN, &adapter->state))
1281 mod_timer(&adapter->watchdog_timer, jiffies + 1);
1285 ew32(IMS, E1000_IMS_LSC | E1000_IMS_OTHER);
1291 static irqreturn_t e1000_intr_msix_tx(int irq, void *data)
1293 struct net_device *netdev = data;
1294 struct e1000_adapter *adapter = netdev_priv(netdev);
1295 struct e1000_hw *hw = &adapter->hw;
1296 struct e1000_ring *tx_ring = adapter->tx_ring;
1299 adapter->total_tx_bytes = 0;
1300 adapter->total_tx_packets = 0;
1302 if (!e1000_clean_tx_irq(adapter))
1303 /* Ring was not completely cleaned, so fire another interrupt */
1304 ew32(ICS, tx_ring->ims_val);
1309 static irqreturn_t e1000_intr_msix_rx(int irq, void *data)
1311 struct net_device *netdev = data;
1312 struct e1000_adapter *adapter = netdev_priv(netdev);
1314 /* Write the ITR value calculated at the end of the
1315 * previous interrupt.
1317 if (adapter->rx_ring->set_itr) {
1318 writel(1000000000 / (adapter->rx_ring->itr_val * 256),
1319 adapter->hw.hw_addr + adapter->rx_ring->itr_register);
1320 adapter->rx_ring->set_itr = 0;
1323 if (netif_rx_schedule_prep(&adapter->napi)) {
1324 adapter->total_rx_bytes = 0;
1325 adapter->total_rx_packets = 0;
1326 __netif_rx_schedule(&adapter->napi);
1332 * e1000_configure_msix - Configure MSI-X hardware
1334 * e1000_configure_msix sets up the hardware to properly
1335 * generate MSI-X interrupts.
1337 static void e1000_configure_msix(struct e1000_adapter *adapter)
1339 struct e1000_hw *hw = &adapter->hw;
1340 struct e1000_ring *rx_ring = adapter->rx_ring;
1341 struct e1000_ring *tx_ring = adapter->tx_ring;
1343 u32 ctrl_ext, ivar = 0;
1345 adapter->eiac_mask = 0;
1347 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1348 if (hw->mac.type == e1000_82574) {
1349 u32 rfctl = er32(RFCTL);
1350 rfctl |= E1000_RFCTL_ACK_DIS;
1354 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1355 /* Configure Rx vector */
1356 rx_ring->ims_val = E1000_IMS_RXQ0;
1357 adapter->eiac_mask |= rx_ring->ims_val;
1358 if (rx_ring->itr_val)
1359 writel(1000000000 / (rx_ring->itr_val * 256),
1360 hw->hw_addr + rx_ring->itr_register);
1362 writel(1, hw->hw_addr + rx_ring->itr_register);
1363 ivar = E1000_IVAR_INT_ALLOC_VALID | vector;
1365 /* Configure Tx vector */
1366 tx_ring->ims_val = E1000_IMS_TXQ0;
1368 if (tx_ring->itr_val)
1369 writel(1000000000 / (tx_ring->itr_val * 256),
1370 hw->hw_addr + tx_ring->itr_register);
1372 writel(1, hw->hw_addr + tx_ring->itr_register);
1373 adapter->eiac_mask |= tx_ring->ims_val;
1374 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 8);
1376 /* set vector for Other Causes, e.g. link changes */
1378 ivar |= ((E1000_IVAR_INT_ALLOC_VALID | vector) << 16);
1379 if (rx_ring->itr_val)
1380 writel(1000000000 / (rx_ring->itr_val * 256),
1381 hw->hw_addr + E1000_EITR_82574(vector));
1383 writel(1, hw->hw_addr + E1000_EITR_82574(vector));
1385 /* Cause Tx interrupts on every write back */
1390 /* enable MSI-X PBA support */
1391 ctrl_ext = er32(CTRL_EXT);
1392 ctrl_ext |= E1000_CTRL_EXT_PBA_CLR;
1394 /* Auto-Mask Other interrupts upon ICR read */
1395 #define E1000_EIAC_MASK_82574 0x01F00000
1396 ew32(IAM, ~E1000_EIAC_MASK_82574 | E1000_IMS_OTHER);
1397 ctrl_ext |= E1000_CTRL_EXT_EIAME;
1398 ew32(CTRL_EXT, ctrl_ext);
1402 void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter)
1404 if (adapter->msix_entries) {
1405 pci_disable_msix(adapter->pdev);
1406 kfree(adapter->msix_entries);
1407 adapter->msix_entries = NULL;
1408 } else if (adapter->flags & FLAG_MSI_ENABLED) {
1409 pci_disable_msi(adapter->pdev);
1410 adapter->flags &= ~FLAG_MSI_ENABLED;
1417 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1419 * Attempt to configure interrupts using the best available
1420 * capabilities of the hardware and kernel.
1422 void e1000e_set_interrupt_capability(struct e1000_adapter *adapter)
1428 switch (adapter->int_mode) {
1429 case E1000E_INT_MODE_MSIX:
1430 if (adapter->flags & FLAG_HAS_MSIX) {
1431 numvecs = 3; /* RxQ0, TxQ0 and other */
1432 adapter->msix_entries = kcalloc(numvecs,
1433 sizeof(struct msix_entry),
1435 if (adapter->msix_entries) {
1436 for (i = 0; i < numvecs; i++)
1437 adapter->msix_entries[i].entry = i;
1439 err = pci_enable_msix(adapter->pdev,
1440 adapter->msix_entries,
1445 /* MSI-X failed, so fall through and try MSI */
1446 e_err("Failed to initialize MSI-X interrupts. "
1447 "Falling back to MSI interrupts.\n");
1448 e1000e_reset_interrupt_capability(adapter);
1450 adapter->int_mode = E1000E_INT_MODE_MSI;
1452 case E1000E_INT_MODE_MSI:
1453 if (!pci_enable_msi(adapter->pdev)) {
1454 adapter->flags |= FLAG_MSI_ENABLED;
1456 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1457 e_err("Failed to initialize MSI interrupts. Falling "
1458 "back to legacy interrupts.\n");
1461 case E1000E_INT_MODE_LEGACY:
1462 /* Don't do anything; this is the system default */
1470 * e1000_request_msix - Initialize MSI-X interrupts
1472 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1475 static int e1000_request_msix(struct e1000_adapter *adapter)
1477 struct net_device *netdev = adapter->netdev;
1478 int err = 0, vector = 0;
1480 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1481 sprintf(adapter->rx_ring->name, "%s-rx-0", netdev->name);
1483 memcpy(adapter->rx_ring->name, netdev->name, IFNAMSIZ);
1484 err = request_irq(adapter->msix_entries[vector].vector,
1485 &e1000_intr_msix_rx, 0, adapter->rx_ring->name,
1489 adapter->rx_ring->itr_register = E1000_EITR_82574(vector);
1490 adapter->rx_ring->itr_val = adapter->itr;
1493 if (strlen(netdev->name) < (IFNAMSIZ - 5))
1494 sprintf(adapter->tx_ring->name, "%s-tx-0", netdev->name);
1496 memcpy(adapter->tx_ring->name, netdev->name, IFNAMSIZ);
1497 err = request_irq(adapter->msix_entries[vector].vector,
1498 &e1000_intr_msix_tx, 0, adapter->tx_ring->name,
1502 adapter->tx_ring->itr_register = E1000_EITR_82574(vector);
1503 adapter->tx_ring->itr_val = adapter->itr;
1506 err = request_irq(adapter->msix_entries[vector].vector,
1507 &e1000_msix_other, 0, netdev->name, netdev);
1511 e1000_configure_msix(adapter);
1518 * e1000_request_irq - initialize interrupts
1520 * Attempts to configure interrupts using the best available
1521 * capabilities of the hardware and kernel.
1523 static int e1000_request_irq(struct e1000_adapter *adapter)
1525 struct net_device *netdev = adapter->netdev;
1528 if (adapter->msix_entries) {
1529 err = e1000_request_msix(adapter);
1532 /* fall back to MSI */
1533 e1000e_reset_interrupt_capability(adapter);
1534 adapter->int_mode = E1000E_INT_MODE_MSI;
1535 e1000e_set_interrupt_capability(adapter);
1537 if (adapter->flags & FLAG_MSI_ENABLED) {
1538 err = request_irq(adapter->pdev->irq, &e1000_intr_msi, 0,
1539 netdev->name, netdev);
1543 /* fall back to legacy interrupt */
1544 e1000e_reset_interrupt_capability(adapter);
1545 adapter->int_mode = E1000E_INT_MODE_LEGACY;
1548 err = request_irq(adapter->pdev->irq, &e1000_intr, IRQF_SHARED,
1549 netdev->name, netdev);
1551 e_err("Unable to allocate interrupt, Error: %d\n", err);
1556 static void e1000_free_irq(struct e1000_adapter *adapter)
1558 struct net_device *netdev = adapter->netdev;
1560 if (adapter->msix_entries) {
1563 free_irq(adapter->msix_entries[vector].vector, netdev);
1566 free_irq(adapter->msix_entries[vector].vector, netdev);
1569 /* Other Causes interrupt vector */
1570 free_irq(adapter->msix_entries[vector].vector, netdev);
1574 free_irq(adapter->pdev->irq, netdev);
1578 * e1000_irq_disable - Mask off interrupt generation on the NIC
1580 static void e1000_irq_disable(struct e1000_adapter *adapter)
1582 struct e1000_hw *hw = &adapter->hw;
1585 if (adapter->msix_entries)
1586 ew32(EIAC_82574, 0);
1588 synchronize_irq(adapter->pdev->irq);
1592 * e1000_irq_enable - Enable default interrupt generation settings
1594 static void e1000_irq_enable(struct e1000_adapter *adapter)
1596 struct e1000_hw *hw = &adapter->hw;
1598 if (adapter->msix_entries) {
1599 ew32(EIAC_82574, adapter->eiac_mask & E1000_EIAC_MASK_82574);
1600 ew32(IMS, adapter->eiac_mask | E1000_IMS_OTHER | E1000_IMS_LSC);
1602 ew32(IMS, IMS_ENABLE_MASK);
1608 * e1000_get_hw_control - get control of the h/w from f/w
1609 * @adapter: address of board private structure
1611 * e1000_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1612 * For ASF and Pass Through versions of f/w this means that
1613 * the driver is loaded. For AMT version (only with 82573)
1614 * of the f/w this means that the network i/f is open.
1616 static void e1000_get_hw_control(struct e1000_adapter *adapter)
1618 struct e1000_hw *hw = &adapter->hw;
1622 /* Let firmware know the driver has taken over */
1623 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1625 ew32(SWSM, swsm | E1000_SWSM_DRV_LOAD);
1626 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1627 ctrl_ext = er32(CTRL_EXT);
1628 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1633 * e1000_release_hw_control - release control of the h/w to f/w
1634 * @adapter: address of board private structure
1636 * e1000_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
1637 * For ASF and Pass Through versions of f/w this means that the
1638 * driver is no longer loaded. For AMT version (only with 82573) i
1639 * of the f/w this means that the network i/f is closed.
1642 static void e1000_release_hw_control(struct e1000_adapter *adapter)
1644 struct e1000_hw *hw = &adapter->hw;
1648 /* Let firmware taken over control of h/w */
1649 if (adapter->flags & FLAG_HAS_SWSM_ON_LOAD) {
1651 ew32(SWSM, swsm & ~E1000_SWSM_DRV_LOAD);
1652 } else if (adapter->flags & FLAG_HAS_CTRLEXT_ON_LOAD) {
1653 ctrl_ext = er32(CTRL_EXT);
1654 ew32(CTRL_EXT, ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1659 * @e1000_alloc_ring - allocate memory for a ring structure
1661 static int e1000_alloc_ring_dma(struct e1000_adapter *adapter,
1662 struct e1000_ring *ring)
1664 struct pci_dev *pdev = adapter->pdev;
1666 ring->desc = dma_alloc_coherent(&pdev->dev, ring->size, &ring->dma,
1675 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
1676 * @adapter: board private structure
1678 * Return 0 on success, negative on failure
1680 int e1000e_setup_tx_resources(struct e1000_adapter *adapter)
1682 struct e1000_ring *tx_ring = adapter->tx_ring;
1683 int err = -ENOMEM, size;
1685 size = sizeof(struct e1000_buffer) * tx_ring->count;
1686 tx_ring->buffer_info = vmalloc(size);
1687 if (!tx_ring->buffer_info)
1689 memset(tx_ring->buffer_info, 0, size);
1691 /* round up to nearest 4K */
1692 tx_ring->size = tx_ring->count * sizeof(struct e1000_tx_desc);
1693 tx_ring->size = ALIGN(tx_ring->size, 4096);
1695 err = e1000_alloc_ring_dma(adapter, tx_ring);
1699 tx_ring->next_to_use = 0;
1700 tx_ring->next_to_clean = 0;
1701 spin_lock_init(&adapter->tx_queue_lock);
1705 vfree(tx_ring->buffer_info);
1706 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1711 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
1712 * @adapter: board private structure
1714 * Returns 0 on success, negative on failure
1716 int e1000e_setup_rx_resources(struct e1000_adapter *adapter)
1718 struct e1000_ring *rx_ring = adapter->rx_ring;
1719 struct e1000_buffer *buffer_info;
1720 int i, size, desc_len, err = -ENOMEM;
1722 size = sizeof(struct e1000_buffer) * rx_ring->count;
1723 rx_ring->buffer_info = vmalloc(size);
1724 if (!rx_ring->buffer_info)
1726 memset(rx_ring->buffer_info, 0, size);
1728 for (i = 0; i < rx_ring->count; i++) {
1729 buffer_info = &rx_ring->buffer_info[i];
1730 buffer_info->ps_pages = kcalloc(PS_PAGE_BUFFERS,
1731 sizeof(struct e1000_ps_page),
1733 if (!buffer_info->ps_pages)
1737 desc_len = sizeof(union e1000_rx_desc_packet_split);
1739 /* Round up to nearest 4K */
1740 rx_ring->size = rx_ring->count * desc_len;
1741 rx_ring->size = ALIGN(rx_ring->size, 4096);
1743 err = e1000_alloc_ring_dma(adapter, rx_ring);
1747 rx_ring->next_to_clean = 0;
1748 rx_ring->next_to_use = 0;
1749 rx_ring->rx_skb_top = NULL;
1754 for (i = 0; i < rx_ring->count; i++) {
1755 buffer_info = &rx_ring->buffer_info[i];
1756 kfree(buffer_info->ps_pages);
1759 vfree(rx_ring->buffer_info);
1760 e_err("Unable to allocate memory for the transmit descriptor ring\n");
1765 * e1000_clean_tx_ring - Free Tx Buffers
1766 * @adapter: board private structure
1768 static void e1000_clean_tx_ring(struct e1000_adapter *adapter)
1770 struct e1000_ring *tx_ring = adapter->tx_ring;
1771 struct e1000_buffer *buffer_info;
1775 for (i = 0; i < tx_ring->count; i++) {
1776 buffer_info = &tx_ring->buffer_info[i];
1777 e1000_put_txbuf(adapter, buffer_info);
1780 size = sizeof(struct e1000_buffer) * tx_ring->count;
1781 memset(tx_ring->buffer_info, 0, size);
1783 memset(tx_ring->desc, 0, tx_ring->size);
1785 tx_ring->next_to_use = 0;
1786 tx_ring->next_to_clean = 0;
1788 writel(0, adapter->hw.hw_addr + tx_ring->head);
1789 writel(0, adapter->hw.hw_addr + tx_ring->tail);
1793 * e1000e_free_tx_resources - Free Tx Resources per Queue
1794 * @adapter: board private structure
1796 * Free all transmit software resources
1798 void e1000e_free_tx_resources(struct e1000_adapter *adapter)
1800 struct pci_dev *pdev = adapter->pdev;
1801 struct e1000_ring *tx_ring = adapter->tx_ring;
1803 e1000_clean_tx_ring(adapter);
1805 vfree(tx_ring->buffer_info);
1806 tx_ring->buffer_info = NULL;
1808 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1810 tx_ring->desc = NULL;
1814 * e1000e_free_rx_resources - Free Rx Resources
1815 * @adapter: board private structure
1817 * Free all receive software resources
1820 void e1000e_free_rx_resources(struct e1000_adapter *adapter)
1822 struct pci_dev *pdev = adapter->pdev;
1823 struct e1000_ring *rx_ring = adapter->rx_ring;
1826 e1000_clean_rx_ring(adapter);
1828 for (i = 0; i < rx_ring->count; i++) {
1829 kfree(rx_ring->buffer_info[i].ps_pages);
1832 vfree(rx_ring->buffer_info);
1833 rx_ring->buffer_info = NULL;
1835 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
1837 rx_ring->desc = NULL;
1841 * e1000_update_itr - update the dynamic ITR value based on statistics
1842 * @adapter: pointer to adapter
1843 * @itr_setting: current adapter->itr
1844 * @packets: the number of packets during this measurement interval
1845 * @bytes: the number of bytes during this measurement interval
1847 * Stores a new ITR value based on packets and byte
1848 * counts during the last interrupt. The advantage of per interrupt
1849 * computation is faster updates and more accurate ITR for the current
1850 * traffic pattern. Constants in this function were computed
1851 * based on theoretical maximum wire speed and thresholds were set based
1852 * on testing data as well as attempting to minimize response time
1853 * while increasing bulk throughput. This functionality is controlled
1854 * by the InterruptThrottleRate module parameter.
1856 static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
1857 u16 itr_setting, int packets,
1860 unsigned int retval = itr_setting;
1863 goto update_itr_done;
1865 switch (itr_setting) {
1866 case lowest_latency:
1867 /* handle TSO and jumbo frames */
1868 if (bytes/packets > 8000)
1869 retval = bulk_latency;
1870 else if ((packets < 5) && (bytes > 512)) {
1871 retval = low_latency;
1874 case low_latency: /* 50 usec aka 20000 ints/s */
1875 if (bytes > 10000) {
1876 /* this if handles the TSO accounting */
1877 if (bytes/packets > 8000) {
1878 retval = bulk_latency;
1879 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
1880 retval = bulk_latency;
1881 } else if ((packets > 35)) {
1882 retval = lowest_latency;
1884 } else if (bytes/packets > 2000) {
1885 retval = bulk_latency;
1886 } else if (packets <= 2 && bytes < 512) {
1887 retval = lowest_latency;
1890 case bulk_latency: /* 250 usec aka 4000 ints/s */
1891 if (bytes > 25000) {
1893 retval = low_latency;
1895 } else if (bytes < 6000) {
1896 retval = low_latency;
1905 static void e1000_set_itr(struct e1000_adapter *adapter)
1907 struct e1000_hw *hw = &adapter->hw;
1909 u32 new_itr = adapter->itr;
1911 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
1912 if (adapter->link_speed != SPEED_1000) {
1918 adapter->tx_itr = e1000_update_itr(adapter,
1920 adapter->total_tx_packets,
1921 adapter->total_tx_bytes);
1922 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1923 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
1924 adapter->tx_itr = low_latency;
1926 adapter->rx_itr = e1000_update_itr(adapter,
1928 adapter->total_rx_packets,
1929 adapter->total_rx_bytes);
1930 /* conservative mode (itr 3) eliminates the lowest_latency setting */
1931 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
1932 adapter->rx_itr = low_latency;
1934 current_itr = max(adapter->rx_itr, adapter->tx_itr);
1936 switch (current_itr) {
1937 /* counts and packets in update_itr are dependent on these numbers */
1938 case lowest_latency:
1942 new_itr = 20000; /* aka hwitr = ~200 */
1952 if (new_itr != adapter->itr) {
1954 * this attempts to bias the interrupt rate towards Bulk
1955 * by adding intermediate steps when interrupt rate is
1958 new_itr = new_itr > adapter->itr ?
1959 min(adapter->itr + (new_itr >> 2), new_itr) :
1961 adapter->itr = new_itr;
1962 adapter->rx_ring->itr_val = new_itr;
1963 if (adapter->msix_entries)
1964 adapter->rx_ring->set_itr = 1;
1966 ew32(ITR, 1000000000 / (new_itr * 256));
1971 * e1000_alloc_queues - Allocate memory for all rings
1972 * @adapter: board private structure to initialize
1974 static int __devinit e1000_alloc_queues(struct e1000_adapter *adapter)
1976 adapter->tx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1977 if (!adapter->tx_ring)
1980 adapter->rx_ring = kzalloc(sizeof(struct e1000_ring), GFP_KERNEL);
1981 if (!adapter->rx_ring)
1986 e_err("Unable to allocate memory for queues\n");
1987 kfree(adapter->rx_ring);
1988 kfree(adapter->tx_ring);
1993 * e1000_clean - NAPI Rx polling callback
1994 * @napi: struct associated with this polling callback
1995 * @budget: amount of packets driver is allowed to process this poll
1997 static int e1000_clean(struct napi_struct *napi, int budget)
1999 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter, napi);
2000 struct e1000_hw *hw = &adapter->hw;
2001 struct net_device *poll_dev = adapter->netdev;
2002 int tx_cleaned = 0, work_done = 0;
2004 adapter = netdev_priv(poll_dev);
2006 if (adapter->msix_entries &&
2007 !(adapter->rx_ring->ims_val & adapter->tx_ring->ims_val))
2011 * e1000_clean is called per-cpu. This lock protects
2012 * tx_ring from being cleaned by multiple cpus
2013 * simultaneously. A failure obtaining the lock means
2014 * tx_ring is currently being cleaned anyway.
2016 if (spin_trylock(&adapter->tx_queue_lock)) {
2017 tx_cleaned = e1000_clean_tx_irq(adapter);
2018 spin_unlock(&adapter->tx_queue_lock);
2022 adapter->clean_rx(adapter, &work_done, budget);
2027 /* If budget not fully consumed, exit the polling mode */
2028 if (work_done < budget) {
2029 if (adapter->itr_setting & 3)
2030 e1000_set_itr(adapter);
2031 netif_rx_complete(napi);
2032 if (adapter->msix_entries)
2033 ew32(IMS, adapter->rx_ring->ims_val);
2035 e1000_irq_enable(adapter);
2041 static void e1000_vlan_rx_add_vid(struct net_device *netdev, u16 vid)
2043 struct e1000_adapter *adapter = netdev_priv(netdev);
2044 struct e1000_hw *hw = &adapter->hw;
2047 /* don't update vlan cookie if already programmed */
2048 if ((adapter->hw.mng_cookie.status &
2049 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2050 (vid == adapter->mng_vlan_id))
2052 /* add VID to filter table */
2053 index = (vid >> 5) & 0x7F;
2054 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2055 vfta |= (1 << (vid & 0x1F));
2056 e1000e_write_vfta(hw, index, vfta);
2059 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, u16 vid)
2061 struct e1000_adapter *adapter = netdev_priv(netdev);
2062 struct e1000_hw *hw = &adapter->hw;
2065 if (!test_bit(__E1000_DOWN, &adapter->state))
2066 e1000_irq_disable(adapter);
2067 vlan_group_set_device(adapter->vlgrp, vid, NULL);
2069 if (!test_bit(__E1000_DOWN, &adapter->state))
2070 e1000_irq_enable(adapter);
2072 if ((adapter->hw.mng_cookie.status &
2073 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
2074 (vid == adapter->mng_vlan_id)) {
2075 /* release control to f/w */
2076 e1000_release_hw_control(adapter);
2080 /* remove VID from filter table */
2081 index = (vid >> 5) & 0x7F;
2082 vfta = E1000_READ_REG_ARRAY(hw, E1000_VFTA, index);
2083 vfta &= ~(1 << (vid & 0x1F));
2084 e1000e_write_vfta(hw, index, vfta);
2087 static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2089 struct net_device *netdev = adapter->netdev;
2090 u16 vid = adapter->hw.mng_cookie.vlan_id;
2091 u16 old_vid = adapter->mng_vlan_id;
2093 if (!adapter->vlgrp)
2096 if (!vlan_group_get_device(adapter->vlgrp, vid)) {
2097 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2098 if (adapter->hw.mng_cookie.status &
2099 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
2100 e1000_vlan_rx_add_vid(netdev, vid);
2101 adapter->mng_vlan_id = vid;
2104 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
2106 !vlan_group_get_device(adapter->vlgrp, old_vid))
2107 e1000_vlan_rx_kill_vid(netdev, old_vid);
2109 adapter->mng_vlan_id = vid;
2114 static void e1000_vlan_rx_register(struct net_device *netdev,
2115 struct vlan_group *grp)
2117 struct e1000_adapter *adapter = netdev_priv(netdev);
2118 struct e1000_hw *hw = &adapter->hw;
2121 if (!test_bit(__E1000_DOWN, &adapter->state))
2122 e1000_irq_disable(adapter);
2123 adapter->vlgrp = grp;
2126 /* enable VLAN tag insert/strip */
2128 ctrl |= E1000_CTRL_VME;
2131 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2132 /* enable VLAN receive filtering */
2134 rctl &= ~E1000_RCTL_CFIEN;
2136 e1000_update_mng_vlan(adapter);
2139 /* disable VLAN tag insert/strip */
2141 ctrl &= ~E1000_CTRL_VME;
2144 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER) {
2145 if (adapter->mng_vlan_id !=
2146 (u16)E1000_MNG_VLAN_NONE) {
2147 e1000_vlan_rx_kill_vid(netdev,
2148 adapter->mng_vlan_id);
2149 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
2154 if (!test_bit(__E1000_DOWN, &adapter->state))
2155 e1000_irq_enable(adapter);
2158 static void e1000_restore_vlan(struct e1000_adapter *adapter)
2162 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
2164 if (!adapter->vlgrp)
2167 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
2168 if (!vlan_group_get_device(adapter->vlgrp, vid))
2170 e1000_vlan_rx_add_vid(adapter->netdev, vid);
2174 static void e1000_init_manageability(struct e1000_adapter *adapter)
2176 struct e1000_hw *hw = &adapter->hw;
2179 if (!(adapter->flags & FLAG_MNG_PT_ENABLED))
2185 * enable receiving management packets to the host. this will probably
2186 * generate destination unreachable messages from the host OS, but
2187 * the packets will be handled on SMBUS
2189 manc |= E1000_MANC_EN_MNG2HOST;
2190 manc2h = er32(MANC2H);
2191 #define E1000_MNG2HOST_PORT_623 (1 << 5)
2192 #define E1000_MNG2HOST_PORT_664 (1 << 6)
2193 manc2h |= E1000_MNG2HOST_PORT_623;
2194 manc2h |= E1000_MNG2HOST_PORT_664;
2195 ew32(MANC2H, manc2h);
2200 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
2201 * @adapter: board private structure
2203 * Configure the Tx unit of the MAC after a reset.
2205 static void e1000_configure_tx(struct e1000_adapter *adapter)
2207 struct e1000_hw *hw = &adapter->hw;
2208 struct e1000_ring *tx_ring = adapter->tx_ring;
2210 u32 tdlen, tctl, tipg, tarc;
2213 /* Setup the HW Tx Head and Tail descriptor pointers */
2214 tdba = tx_ring->dma;
2215 tdlen = tx_ring->count * sizeof(struct e1000_tx_desc);
2216 ew32(TDBAL, (tdba & DMA_32BIT_MASK));
2217 ew32(TDBAH, (tdba >> 32));
2221 tx_ring->head = E1000_TDH;
2222 tx_ring->tail = E1000_TDT;
2224 /* Set the default values for the Tx Inter Packet Gap timer */
2225 tipg = DEFAULT_82543_TIPG_IPGT_COPPER; /* 8 */
2226 ipgr1 = DEFAULT_82543_TIPG_IPGR1; /* 8 */
2227 ipgr2 = DEFAULT_82543_TIPG_IPGR2; /* 6 */
2229 if (adapter->flags & FLAG_TIPG_MEDIUM_FOR_80003ESLAN)
2230 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2; /* 7 */
2232 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
2233 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
2236 /* Set the Tx Interrupt Delay register */
2237 ew32(TIDV, adapter->tx_int_delay);
2238 /* Tx irq moderation */
2239 ew32(TADV, adapter->tx_abs_int_delay);
2241 /* Program the Transmit Control Register */
2243 tctl &= ~E1000_TCTL_CT;
2244 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2245 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2247 if (adapter->flags & FLAG_TARC_SPEED_MODE_BIT) {
2248 tarc = er32(TARC(0));
2250 * set the speed mode bit, we'll clear it if we're not at
2251 * gigabit link later
2253 #define SPEED_MODE_BIT (1 << 21)
2254 tarc |= SPEED_MODE_BIT;
2255 ew32(TARC(0), tarc);
2258 /* errata: program both queues to unweighted RR */
2259 if (adapter->flags & FLAG_TARC_SET_BIT_ZERO) {
2260 tarc = er32(TARC(0));
2262 ew32(TARC(0), tarc);
2263 tarc = er32(TARC(1));
2265 ew32(TARC(1), tarc);
2268 e1000e_config_collision_dist(hw);
2270 /* Setup Transmit Descriptor Settings for eop descriptor */
2271 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
2273 /* only set IDE if we are delaying interrupts using the timers */
2274 if (adapter->tx_int_delay)
2275 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
2277 /* enable Report Status bit */
2278 adapter->txd_cmd |= E1000_TXD_CMD_RS;
2282 adapter->tx_queue_len = adapter->netdev->tx_queue_len;
2286 * e1000_setup_rctl - configure the receive control registers
2287 * @adapter: Board private structure
2289 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2290 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2291 static void e1000_setup_rctl(struct e1000_adapter *adapter)
2293 struct e1000_hw *hw = &adapter->hw;
2298 /* Program MC offset vector base */
2300 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
2301 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
2302 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
2303 (adapter->hw.mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
2305 /* Do not Store bad packets */
2306 rctl &= ~E1000_RCTL_SBP;
2308 /* Enable Long Packet receive */
2309 if (adapter->netdev->mtu <= ETH_DATA_LEN)
2310 rctl &= ~E1000_RCTL_LPE;
2312 rctl |= E1000_RCTL_LPE;
2314 /* Some systems expect that the CRC is included in SMBUS traffic. The
2315 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2316 * host memory when this is enabled
2318 if (adapter->flags2 & FLAG2_CRC_STRIPPING)
2319 rctl |= E1000_RCTL_SECRC;
2321 /* Setup buffer sizes */
2322 rctl &= ~E1000_RCTL_SZ_4096;
2323 rctl |= E1000_RCTL_BSEX;
2324 switch (adapter->rx_buffer_len) {
2326 rctl |= E1000_RCTL_SZ_256;
2327 rctl &= ~E1000_RCTL_BSEX;
2330 rctl |= E1000_RCTL_SZ_512;
2331 rctl &= ~E1000_RCTL_BSEX;
2334 rctl |= E1000_RCTL_SZ_1024;
2335 rctl &= ~E1000_RCTL_BSEX;
2339 rctl |= E1000_RCTL_SZ_2048;
2340 rctl &= ~E1000_RCTL_BSEX;
2343 rctl |= E1000_RCTL_SZ_4096;
2346 rctl |= E1000_RCTL_SZ_8192;
2349 rctl |= E1000_RCTL_SZ_16384;
2354 * 82571 and greater support packet-split where the protocol
2355 * header is placed in skb->data and the packet data is
2356 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2357 * In the case of a non-split, skb->data is linearly filled,
2358 * followed by the page buffers. Therefore, skb->data is
2359 * sized to hold the largest protocol header.
2361 * allocations using alloc_page take too long for regular MTU
2362 * so only enable packet split for jumbo frames
2364 * Using pages when the page size is greater than 16k wastes
2365 * a lot of memory, since we allocate 3 pages at all times
2368 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
2369 if (!(adapter->flags & FLAG_IS_ICH) && (pages <= 3) &&
2370 (PAGE_SIZE <= 16384) && (rctl & E1000_RCTL_LPE))
2371 adapter->rx_ps_pages = pages;
2373 adapter->rx_ps_pages = 0;
2375 if (adapter->rx_ps_pages) {
2376 /* Configure extra packet-split registers */
2377 rfctl = er32(RFCTL);
2378 rfctl |= E1000_RFCTL_EXTEN;
2380 * disable packet split support for IPv6 extension headers,
2381 * because some malformed IPv6 headers can hang the Rx
2383 rfctl |= (E1000_RFCTL_IPV6_EX_DIS |
2384 E1000_RFCTL_NEW_IPV6_EXT_DIS);
2388 /* Enable Packet split descriptors */
2389 rctl |= E1000_RCTL_DTYP_PS;
2391 psrctl |= adapter->rx_ps_bsize0 >>
2392 E1000_PSRCTL_BSIZE0_SHIFT;
2394 switch (adapter->rx_ps_pages) {
2396 psrctl |= PAGE_SIZE <<
2397 E1000_PSRCTL_BSIZE3_SHIFT;
2399 psrctl |= PAGE_SIZE <<
2400 E1000_PSRCTL_BSIZE2_SHIFT;
2402 psrctl |= PAGE_SIZE >>
2403 E1000_PSRCTL_BSIZE1_SHIFT;
2407 ew32(PSRCTL, psrctl);
2411 /* just started the receive unit, no need to restart */
2412 adapter->flags &= ~FLAG_RX_RESTART_NOW;
2416 * e1000_configure_rx - Configure Receive Unit after Reset
2417 * @adapter: board private structure
2419 * Configure the Rx unit of the MAC after a reset.
2421 static void e1000_configure_rx(struct e1000_adapter *adapter)
2423 struct e1000_hw *hw = &adapter->hw;
2424 struct e1000_ring *rx_ring = adapter->rx_ring;
2426 u32 rdlen, rctl, rxcsum, ctrl_ext;
2428 if (adapter->rx_ps_pages) {
2429 /* this is a 32 byte descriptor */
2430 rdlen = rx_ring->count *
2431 sizeof(union e1000_rx_desc_packet_split);
2432 adapter->clean_rx = e1000_clean_rx_irq_ps;
2433 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
2434 } else if (adapter->netdev->mtu > ETH_FRAME_LEN + ETH_FCS_LEN) {
2435 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2436 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
2437 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
2439 rdlen = rx_ring->count * sizeof(struct e1000_rx_desc);
2440 adapter->clean_rx = e1000_clean_rx_irq;
2441 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
2444 /* disable receives while setting up the descriptors */
2446 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2450 /* set the Receive Delay Timer Register */
2451 ew32(RDTR, adapter->rx_int_delay);
2453 /* irq moderation */
2454 ew32(RADV, adapter->rx_abs_int_delay);
2455 if (adapter->itr_setting != 0)
2456 ew32(ITR, 1000000000 / (adapter->itr * 256));
2458 ctrl_ext = er32(CTRL_EXT);
2459 /* Reset delay timers after every interrupt */
2460 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
2461 /* Auto-Mask interrupts upon ICR access */
2462 ctrl_ext |= E1000_CTRL_EXT_IAME;
2463 ew32(IAM, 0xffffffff);
2464 ew32(CTRL_EXT, ctrl_ext);
2468 * Setup the HW Rx Head and Tail Descriptor Pointers and
2469 * the Base and Length of the Rx Descriptor Ring
2471 rdba = rx_ring->dma;
2472 ew32(RDBAL, (rdba & DMA_32BIT_MASK));
2473 ew32(RDBAH, (rdba >> 32));
2477 rx_ring->head = E1000_RDH;
2478 rx_ring->tail = E1000_RDT;
2480 /* Enable Receive Checksum Offload for TCP and UDP */
2481 rxcsum = er32(RXCSUM);
2482 if (adapter->flags & FLAG_RX_CSUM_ENABLED) {
2483 rxcsum |= E1000_RXCSUM_TUOFL;
2486 * IPv4 payload checksum for UDP fragments must be
2487 * used in conjunction with packet-split.
2489 if (adapter->rx_ps_pages)
2490 rxcsum |= E1000_RXCSUM_IPPCSE;
2492 rxcsum &= ~E1000_RXCSUM_TUOFL;
2493 /* no need to clear IPPCSE as it defaults to 0 */
2495 ew32(RXCSUM, rxcsum);
2498 * Enable early receives on supported devices, only takes effect when
2499 * packet size is equal or larger than the specified value (in 8 byte
2500 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
2502 if ((adapter->flags & FLAG_HAS_ERT) &&
2503 (adapter->netdev->mtu > ETH_DATA_LEN)) {
2504 u32 rxdctl = er32(RXDCTL(0));
2505 ew32(RXDCTL(0), rxdctl | 0x3);
2506 ew32(ERT, E1000_ERT_2048 | (1 << 13));
2508 * With jumbo frames and early-receive enabled, excessive
2509 * C4->C2 latencies result in dropped transactions.
2511 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2512 e1000e_driver_name, 55);
2514 pm_qos_update_requirement(PM_QOS_CPU_DMA_LATENCY,
2516 PM_QOS_DEFAULT_VALUE);
2519 /* Enable Receives */
2524 * e1000_update_mc_addr_list - Update Multicast addresses
2525 * @hw: pointer to the HW structure
2526 * @mc_addr_list: array of multicast addresses to program
2527 * @mc_addr_count: number of multicast addresses to program
2528 * @rar_used_count: the first RAR register free to program
2529 * @rar_count: total number of supported Receive Address Registers
2531 * Updates the Receive Address Registers and Multicast Table Array.
2532 * The caller must have a packed mc_addr_list of multicast addresses.
2533 * The parameter rar_count will usually be hw->mac.rar_entry_count
2534 * unless there are workarounds that change this. Currently no func pointer
2535 * exists and all implementations are handled in the generic version of this
2538 static void e1000_update_mc_addr_list(struct e1000_hw *hw, u8 *mc_addr_list,
2539 u32 mc_addr_count, u32 rar_used_count,
2542 hw->mac.ops.update_mc_addr_list(hw, mc_addr_list, mc_addr_count,
2543 rar_used_count, rar_count);
2547 * e1000_set_multi - Multicast and Promiscuous mode set
2548 * @netdev: network interface device structure
2550 * The set_multi entry point is called whenever the multicast address
2551 * list or the network interface flags are updated. This routine is
2552 * responsible for configuring the hardware for proper multicast,
2553 * promiscuous mode, and all-multi behavior.
2555 static void e1000_set_multi(struct net_device *netdev)
2557 struct e1000_adapter *adapter = netdev_priv(netdev);
2558 struct e1000_hw *hw = &adapter->hw;
2559 struct e1000_mac_info *mac = &hw->mac;
2560 struct dev_mc_list *mc_ptr;
2565 /* Check for Promiscuous and All Multicast modes */
2569 if (netdev->flags & IFF_PROMISC) {
2570 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2571 rctl &= ~E1000_RCTL_VFE;
2573 if (netdev->flags & IFF_ALLMULTI) {
2574 rctl |= E1000_RCTL_MPE;
2575 rctl &= ~E1000_RCTL_UPE;
2577 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2579 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
2580 rctl |= E1000_RCTL_VFE;
2585 if (netdev->mc_count) {
2586 mta_list = kmalloc(netdev->mc_count * 6, GFP_ATOMIC);
2590 /* prepare a packed array of only addresses. */
2591 mc_ptr = netdev->mc_list;
2593 for (i = 0; i < netdev->mc_count; i++) {
2596 memcpy(mta_list + (i*ETH_ALEN), mc_ptr->dmi_addr,
2598 mc_ptr = mc_ptr->next;
2601 e1000_update_mc_addr_list(hw, mta_list, i, 1,
2602 mac->rar_entry_count);
2606 * if we're called from probe, we might not have
2607 * anything to do here, so clear out the list
2609 e1000_update_mc_addr_list(hw, NULL, 0, 1, mac->rar_entry_count);
2614 * e1000_configure - configure the hardware for Rx and Tx
2615 * @adapter: private board structure
2617 static void e1000_configure(struct e1000_adapter *adapter)
2619 e1000_set_multi(adapter->netdev);
2621 e1000_restore_vlan(adapter);
2622 e1000_init_manageability(adapter);
2624 e1000_configure_tx(adapter);
2625 e1000_setup_rctl(adapter);
2626 e1000_configure_rx(adapter);
2627 adapter->alloc_rx_buf(adapter, e1000_desc_unused(adapter->rx_ring));
2631 * e1000e_power_up_phy - restore link in case the phy was powered down
2632 * @adapter: address of board private structure
2634 * The phy may be powered down to save power and turn off link when the
2635 * driver is unloaded and wake on lan is not enabled (among others)
2636 * *** this routine MUST be followed by a call to e1000e_reset ***
2638 void e1000e_power_up_phy(struct e1000_adapter *adapter)
2642 /* Just clear the power down bit to wake the phy back up */
2643 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
2645 * According to the manual, the phy will retain its
2646 * settings across a power-down/up cycle
2648 e1e_rphy(&adapter->hw, PHY_CONTROL, &mii_reg);
2649 mii_reg &= ~MII_CR_POWER_DOWN;
2650 e1e_wphy(&adapter->hw, PHY_CONTROL, mii_reg);
2653 adapter->hw.mac.ops.setup_link(&adapter->hw);
2657 * e1000_power_down_phy - Power down the PHY
2659 * Power down the PHY so no link is implied when interface is down
2660 * The PHY cannot be powered down is management or WoL is active
2662 static void e1000_power_down_phy(struct e1000_adapter *adapter)
2664 struct e1000_hw *hw = &adapter->hw;
2667 /* WoL is enabled */
2671 /* non-copper PHY? */
2672 if (adapter->hw.phy.media_type != e1000_media_type_copper)
2675 /* reset is blocked because of a SoL/IDER session */
2676 if (e1000e_check_mng_mode(hw) || e1000_check_reset_block(hw))
2679 /* manageability (AMT) is enabled */
2680 if (er32(MANC) & E1000_MANC_SMBUS_EN)
2683 /* power down the PHY */
2684 e1e_rphy(hw, PHY_CONTROL, &mii_reg);
2685 mii_reg |= MII_CR_POWER_DOWN;
2686 e1e_wphy(hw, PHY_CONTROL, mii_reg);
2691 * e1000e_reset - bring the hardware into a known good state
2693 * This function boots the hardware and enables some settings that
2694 * require a configuration cycle of the hardware - those cannot be
2695 * set/changed during runtime. After reset the device needs to be
2696 * properly configured for Rx, Tx etc.
2698 void e1000e_reset(struct e1000_adapter *adapter)
2700 struct e1000_mac_info *mac = &adapter->hw.mac;
2701 struct e1000_fc_info *fc = &adapter->hw.fc;
2702 struct e1000_hw *hw = &adapter->hw;
2703 u32 tx_space, min_tx_space, min_rx_space;
2704 u32 pba = adapter->pba;
2707 /* reset Packet Buffer Allocation to default */
2710 if (adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
2712 * To maintain wire speed transmits, the Tx FIFO should be
2713 * large enough to accommodate two full transmit packets,
2714 * rounded up to the next 1KB and expressed in KB. Likewise,
2715 * the Rx FIFO should be large enough to accommodate at least
2716 * one full receive packet and is similarly rounded up and
2720 /* upper 16 bits has Tx packet buffer allocation size in KB */
2721 tx_space = pba >> 16;
2722 /* lower 16 bits has Rx packet buffer allocation size in KB */
2725 * the Tx fifo also stores 16 bytes of information about the tx
2726 * but don't include ethernet FCS because hardware appends it
2728 min_tx_space = (adapter->max_frame_size +
2729 sizeof(struct e1000_tx_desc) -
2731 min_tx_space = ALIGN(min_tx_space, 1024);
2732 min_tx_space >>= 10;
2733 /* software strips receive CRC, so leave room for it */
2734 min_rx_space = adapter->max_frame_size;
2735 min_rx_space = ALIGN(min_rx_space, 1024);
2736 min_rx_space >>= 10;
2739 * If current Tx allocation is less than the min Tx FIFO size,
2740 * and the min Tx FIFO size is less than the current Rx FIFO
2741 * allocation, take space away from current Rx allocation
2743 if ((tx_space < min_tx_space) &&
2744 ((min_tx_space - tx_space) < pba)) {
2745 pba -= min_tx_space - tx_space;
2748 * if short on Rx space, Rx wins and must trump tx
2749 * adjustment or use Early Receive if available
2751 if ((pba < min_rx_space) &&
2752 (!(adapter->flags & FLAG_HAS_ERT)))
2753 /* ERT enabled in e1000_configure_rx */
2762 * flow control settings
2764 * The high water mark must be low enough to fit one full frame
2765 * (or the size used for early receive) above it in the Rx FIFO.
2766 * Set it to the lower of:
2767 * - 90% of the Rx FIFO size, and
2768 * - the full Rx FIFO size minus the early receive size (for parts
2769 * with ERT support assuming ERT set to E1000_ERT_2048), or
2770 * - the full Rx FIFO size minus one full frame
2772 if (adapter->flags & FLAG_HAS_ERT)
2773 hwm = min(((pba << 10) * 9 / 10),
2774 ((pba << 10) - (E1000_ERT_2048 << 3)));
2776 hwm = min(((pba << 10) * 9 / 10),
2777 ((pba << 10) - adapter->max_frame_size));
2779 fc->high_water = hwm & 0xFFF8; /* 8-byte granularity */
2780 fc->low_water = fc->high_water - 8;
2782 if (adapter->flags & FLAG_DISABLE_FC_PAUSE_TIME)
2783 fc->pause_time = 0xFFFF;
2785 fc->pause_time = E1000_FC_PAUSE_TIME;
2787 fc->current_mode = fc->requested_mode;
2789 /* Allow time for pending master requests to run */
2790 mac->ops.reset_hw(hw);
2793 * For parts with AMT enabled, let the firmware know
2794 * that the network interface is in control
2796 if (adapter->flags & FLAG_HAS_AMT)
2797 e1000_get_hw_control(adapter);
2801 if (mac->ops.init_hw(hw))
2802 e_err("Hardware Error\n");
2804 e1000_update_mng_vlan(adapter);
2806 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
2807 ew32(VET, ETH_P_8021Q);
2809 e1000e_reset_adaptive(hw);
2810 e1000_get_phy_info(hw);
2812 if (!(adapter->flags & FLAG_SMART_POWER_DOWN)) {
2815 * speed up time to link by disabling smart power down, ignore
2816 * the return value of this function because there is nothing
2817 * different we would do if it failed
2819 e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data);
2820 phy_data &= ~IGP02E1000_PM_SPD;
2821 e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, phy_data);
2825 int e1000e_up(struct e1000_adapter *adapter)
2827 struct e1000_hw *hw = &adapter->hw;
2829 /* hardware has been reset, we need to reload some things */
2830 e1000_configure(adapter);
2832 clear_bit(__E1000_DOWN, &adapter->state);
2834 napi_enable(&adapter->napi);
2835 if (adapter->msix_entries)
2836 e1000_configure_msix(adapter);
2837 e1000_irq_enable(adapter);
2839 /* fire a link change interrupt to start the watchdog */
2840 ew32(ICS, E1000_ICS_LSC);
2844 void e1000e_down(struct e1000_adapter *adapter)
2846 struct net_device *netdev = adapter->netdev;
2847 struct e1000_hw *hw = &adapter->hw;
2851 * signal that we're down so the interrupt handler does not
2852 * reschedule our watchdog timer
2854 set_bit(__E1000_DOWN, &adapter->state);
2856 /* disable receives in the hardware */
2858 ew32(RCTL, rctl & ~E1000_RCTL_EN);
2859 /* flush and sleep below */
2861 netif_tx_stop_all_queues(netdev);
2863 /* disable transmits in the hardware */
2865 tctl &= ~E1000_TCTL_EN;
2867 /* flush both disables and wait for them to finish */
2871 napi_disable(&adapter->napi);
2872 e1000_irq_disable(adapter);
2874 del_timer_sync(&adapter->watchdog_timer);
2875 del_timer_sync(&adapter->phy_info_timer);
2877 netdev->tx_queue_len = adapter->tx_queue_len;
2878 netif_carrier_off(netdev);
2879 adapter->link_speed = 0;
2880 adapter->link_duplex = 0;
2882 if (!pci_channel_offline(adapter->pdev))
2883 e1000e_reset(adapter);
2884 e1000_clean_tx_ring(adapter);
2885 e1000_clean_rx_ring(adapter);
2888 * TODO: for power management, we could drop the link and
2889 * pci_disable_device here.
2893 void e1000e_reinit_locked(struct e1000_adapter *adapter)
2896 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
2898 e1000e_down(adapter);
2900 clear_bit(__E1000_RESETTING, &adapter->state);
2904 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
2905 * @adapter: board private structure to initialize
2907 * e1000_sw_init initializes the Adapter private data structure.
2908 * Fields are initialized based on PCI device information and
2909 * OS network device settings (MTU size).
2911 static int __devinit e1000_sw_init(struct e1000_adapter *adapter)
2913 struct net_device *netdev = adapter->netdev;
2915 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN;
2916 adapter->rx_ps_bsize0 = 128;
2917 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN;
2918 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2920 e1000e_set_interrupt_capability(adapter);
2922 if (e1000_alloc_queues(adapter))
2925 spin_lock_init(&adapter->tx_queue_lock);
2927 /* Explicitly disable IRQ since the NIC can be in any state. */
2928 e1000_irq_disable(adapter);
2930 set_bit(__E1000_DOWN, &adapter->state);
2935 * e1000_intr_msi_test - Interrupt Handler
2936 * @irq: interrupt number
2937 * @data: pointer to a network interface device structure
2939 static irqreturn_t e1000_intr_msi_test(int irq, void *data)
2941 struct net_device *netdev = data;
2942 struct e1000_adapter *adapter = netdev_priv(netdev);
2943 struct e1000_hw *hw = &adapter->hw;
2944 u32 icr = er32(ICR);
2946 e_dbg("%s: icr is %08X\n", netdev->name, icr);
2947 if (icr & E1000_ICR_RXSEQ) {
2948 adapter->flags &= ~FLAG_MSI_TEST_FAILED;
2956 * e1000_test_msi_interrupt - Returns 0 for successful test
2957 * @adapter: board private struct
2959 * code flow taken from tg3.c
2961 static int e1000_test_msi_interrupt(struct e1000_adapter *adapter)
2963 struct net_device *netdev = adapter->netdev;
2964 struct e1000_hw *hw = &adapter->hw;
2967 /* poll_enable hasn't been called yet, so don't need disable */
2968 /* clear any pending events */
2971 /* free the real vector and request a test handler */
2972 e1000_free_irq(adapter);
2973 e1000e_reset_interrupt_capability(adapter);
2975 /* Assume that the test fails, if it succeeds then the test
2976 * MSI irq handler will unset this flag */
2977 adapter->flags |= FLAG_MSI_TEST_FAILED;
2979 err = pci_enable_msi(adapter->pdev);
2981 goto msi_test_failed;
2983 err = request_irq(adapter->pdev->irq, &e1000_intr_msi_test, 0,
2984 netdev->name, netdev);
2986 pci_disable_msi(adapter->pdev);
2987 goto msi_test_failed;
2992 e1000_irq_enable(adapter);
2994 /* fire an unusual interrupt on the test handler */
2995 ew32(ICS, E1000_ICS_RXSEQ);
2999 e1000_irq_disable(adapter);
3003 if (adapter->flags & FLAG_MSI_TEST_FAILED) {
3004 adapter->int_mode = E1000E_INT_MODE_LEGACY;
3006 e_info("MSI interrupt test failed!\n");
3009 free_irq(adapter->pdev->irq, netdev);
3010 pci_disable_msi(adapter->pdev);
3013 goto msi_test_failed;
3015 /* okay so the test worked, restore settings */
3016 e_dbg("%s: MSI interrupt test succeeded!\n", netdev->name);
3018 e1000e_set_interrupt_capability(adapter);
3019 e1000_request_irq(adapter);
3024 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3025 * @adapter: board private struct
3027 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3029 static int e1000_test_msi(struct e1000_adapter *adapter)
3034 if (!(adapter->flags & FLAG_MSI_ENABLED))
3037 /* disable SERR in case the MSI write causes a master abort */
3038 pci_read_config_word(adapter->pdev, PCI_COMMAND, &pci_cmd);
3039 pci_write_config_word(adapter->pdev, PCI_COMMAND,
3040 pci_cmd & ~PCI_COMMAND_SERR);
3042 err = e1000_test_msi_interrupt(adapter);
3044 /* restore previous setting of command word */
3045 pci_write_config_word(adapter->pdev, PCI_COMMAND, pci_cmd);
3051 /* EIO means MSI test failed */
3055 /* back to INTx mode */
3056 e_warn("MSI interrupt test failed, using legacy interrupt.\n");
3058 e1000_free_irq(adapter);
3060 err = e1000_request_irq(adapter);
3066 * e1000_open - Called when a network interface is made active
3067 * @netdev: network interface device structure
3069 * Returns 0 on success, negative value on failure
3071 * The open entry point is called when a network interface is made
3072 * active by the system (IFF_UP). At this point all resources needed
3073 * for transmit and receive operations are allocated, the interrupt
3074 * handler is registered with the OS, the watchdog timer is started,
3075 * and the stack is notified that the interface is ready.
3077 static int e1000_open(struct net_device *netdev)
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3080 struct e1000_hw *hw = &adapter->hw;
3083 /* disallow open during test */
3084 if (test_bit(__E1000_TESTING, &adapter->state))
3087 /* allocate transmit descriptors */
3088 err = e1000e_setup_tx_resources(adapter);
3092 /* allocate receive descriptors */
3093 err = e1000e_setup_rx_resources(adapter);
3097 e1000e_power_up_phy(adapter);
3099 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
3100 if ((adapter->hw.mng_cookie.status &
3101 E1000_MNG_DHCP_COOKIE_STATUS_VLAN))
3102 e1000_update_mng_vlan(adapter);
3105 * If AMT is enabled, let the firmware know that the network
3106 * interface is now open
3108 if (adapter->flags & FLAG_HAS_AMT)
3109 e1000_get_hw_control(adapter);
3112 * before we allocate an interrupt, we must be ready to handle it.
3113 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3114 * as soon as we call pci_request_irq, so we have to setup our
3115 * clean_rx handler before we do so.
3117 e1000_configure(adapter);
3119 err = e1000_request_irq(adapter);
3124 * Work around PCIe errata with MSI interrupts causing some chipsets to
3125 * ignore e1000e MSI messages, which means we need to test our MSI
3128 if (adapter->int_mode != E1000E_INT_MODE_LEGACY) {
3129 err = e1000_test_msi(adapter);
3131 e_err("Interrupt allocation failed\n");
3136 /* From here on the code is the same as e1000e_up() */
3137 clear_bit(__E1000_DOWN, &adapter->state);
3139 napi_enable(&adapter->napi);
3141 e1000_irq_enable(adapter);
3143 netif_tx_start_all_queues(netdev);
3145 /* fire a link status change interrupt to start the watchdog */
3146 ew32(ICS, E1000_ICS_LSC);
3151 e1000_release_hw_control(adapter);
3152 e1000_power_down_phy(adapter);
3153 e1000e_free_rx_resources(adapter);
3155 e1000e_free_tx_resources(adapter);
3157 e1000e_reset(adapter);
3163 * e1000_close - Disables a network interface
3164 * @netdev: network interface device structure
3166 * Returns 0, this is not allowed to fail
3168 * The close entry point is called when an interface is de-activated
3169 * by the OS. The hardware is still under the drivers control, but
3170 * needs to be disabled. A global MAC reset is issued to stop the
3171 * hardware, and all transmit and receive resources are freed.
3173 static int e1000_close(struct net_device *netdev)
3175 struct e1000_adapter *adapter = netdev_priv(netdev);
3177 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
3178 e1000e_down(adapter);
3179 e1000_power_down_phy(adapter);
3180 e1000_free_irq(adapter);
3182 e1000e_free_tx_resources(adapter);
3183 e1000e_free_rx_resources(adapter);
3186 * kill manageability vlan ID if supported, but not if a vlan with
3187 * the same ID is registered on the host OS (let 8021q kill it)
3189 if ((adapter->hw.mng_cookie.status &
3190 E1000_MNG_DHCP_COOKIE_STATUS_VLAN) &&
3192 vlan_group_get_device(adapter->vlgrp, adapter->mng_vlan_id)))
3193 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
3196 * If AMT is enabled, let the firmware know that the network
3197 * interface is now closed
3199 if (adapter->flags & FLAG_HAS_AMT)
3200 e1000_release_hw_control(adapter);
3205 * e1000_set_mac - Change the Ethernet Address of the NIC
3206 * @netdev: network interface device structure
3207 * @p: pointer to an address structure
3209 * Returns 0 on success, negative on failure
3211 static int e1000_set_mac(struct net_device *netdev, void *p)
3213 struct e1000_adapter *adapter = netdev_priv(netdev);
3214 struct sockaddr *addr = p;
3216 if (!is_valid_ether_addr(addr->sa_data))
3217 return -EADDRNOTAVAIL;
3219 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
3220 memcpy(adapter->hw.mac.addr, addr->sa_data, netdev->addr_len);
3222 e1000e_rar_set(&adapter->hw, adapter->hw.mac.addr, 0);
3224 if (adapter->flags & FLAG_RESET_OVERWRITES_LAA) {
3225 /* activate the work around */
3226 e1000e_set_laa_state_82571(&adapter->hw, 1);
3229 * Hold a copy of the LAA in RAR[14] This is done so that
3230 * between the time RAR[0] gets clobbered and the time it
3231 * gets fixed (in e1000_watchdog), the actual LAA is in one
3232 * of the RARs and no incoming packets directed to this port
3233 * are dropped. Eventually the LAA will be in RAR[0] and
3236 e1000e_rar_set(&adapter->hw,
3237 adapter->hw.mac.addr,
3238 adapter->hw.mac.rar_entry_count - 1);
3245 * e1000e_update_phy_task - work thread to update phy
3246 * @work: pointer to our work struct
3248 * this worker thread exists because we must acquire a
3249 * semaphore to read the phy, which we could msleep while
3250 * waiting for it, and we can't msleep in a timer.
3252 static void e1000e_update_phy_task(struct work_struct *work)
3254 struct e1000_adapter *adapter = container_of(work,
3255 struct e1000_adapter, update_phy_task);
3256 e1000_get_phy_info(&adapter->hw);
3260 * Need to wait a few seconds after link up to get diagnostic information from
3263 static void e1000_update_phy_info(unsigned long data)
3265 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3266 schedule_work(&adapter->update_phy_task);
3270 * e1000e_update_stats - Update the board statistics counters
3271 * @adapter: board private structure
3273 void e1000e_update_stats(struct e1000_adapter *adapter)
3275 struct e1000_hw *hw = &adapter->hw;
3276 struct pci_dev *pdev = adapter->pdev;
3279 * Prevent stats update while adapter is being reset, or if the pci
3280 * connection is down.
3282 if (adapter->link_speed == 0)
3284 if (pci_channel_offline(pdev))
3287 adapter->stats.crcerrs += er32(CRCERRS);
3288 adapter->stats.gprc += er32(GPRC);
3289 adapter->stats.gorc += er32(GORCL);
3290 er32(GORCH); /* Clear gorc */
3291 adapter->stats.bprc += er32(BPRC);
3292 adapter->stats.mprc += er32(MPRC);
3293 adapter->stats.roc += er32(ROC);
3295 adapter->stats.mpc += er32(MPC);
3296 adapter->stats.scc += er32(SCC);
3297 adapter->stats.ecol += er32(ECOL);
3298 adapter->stats.mcc += er32(MCC);
3299 adapter->stats.latecol += er32(LATECOL);
3300 adapter->stats.dc += er32(DC);
3301 adapter->stats.xonrxc += er32(XONRXC);
3302 adapter->stats.xontxc += er32(XONTXC);
3303 adapter->stats.xoffrxc += er32(XOFFRXC);
3304 adapter->stats.xofftxc += er32(XOFFTXC);
3305 adapter->stats.gptc += er32(GPTC);
3306 adapter->stats.gotc += er32(GOTCL);
3307 er32(GOTCH); /* Clear gotc */
3308 adapter->stats.rnbc += er32(RNBC);
3309 adapter->stats.ruc += er32(RUC);
3311 adapter->stats.mptc += er32(MPTC);
3312 adapter->stats.bptc += er32(BPTC);
3314 /* used for adaptive IFS */
3316 hw->mac.tx_packet_delta = er32(TPT);
3317 adapter->stats.tpt += hw->mac.tx_packet_delta;
3318 hw->mac.collision_delta = er32(COLC);
3319 adapter->stats.colc += hw->mac.collision_delta;
3321 adapter->stats.algnerrc += er32(ALGNERRC);
3322 adapter->stats.rxerrc += er32(RXERRC);
3323 if (hw->mac.type != e1000_82574)
3324 adapter->stats.tncrs += er32(TNCRS);
3325 adapter->stats.cexterr += er32(CEXTERR);
3326 adapter->stats.tsctc += er32(TSCTC);
3327 adapter->stats.tsctfc += er32(TSCTFC);
3329 /* Fill out the OS statistics structure */
3330 adapter->net_stats.multicast = adapter->stats.mprc;
3331 adapter->net_stats.collisions = adapter->stats.colc;
3336 * RLEC on some newer hardware can be incorrect so build
3337 * our own version based on RUC and ROC
3339 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3340 adapter->stats.crcerrs + adapter->stats.algnerrc +
3341 adapter->stats.ruc + adapter->stats.roc +
3342 adapter->stats.cexterr;
3343 adapter->net_stats.rx_length_errors = adapter->stats.ruc +
3345 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3346 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3347 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3350 adapter->net_stats.tx_errors = adapter->stats.ecol +
3351 adapter->stats.latecol;
3352 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3353 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3354 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3356 /* Tx Dropped needs to be maintained elsewhere */
3358 /* Management Stats */
3359 adapter->stats.mgptc += er32(MGTPTC);
3360 adapter->stats.mgprc += er32(MGTPRC);
3361 adapter->stats.mgpdc += er32(MGTPDC);
3365 * e1000_phy_read_status - Update the PHY register status snapshot
3366 * @adapter: board private structure
3368 static void e1000_phy_read_status(struct e1000_adapter *adapter)
3370 struct e1000_hw *hw = &adapter->hw;
3371 struct e1000_phy_regs *phy = &adapter->phy_regs;
3374 if ((er32(STATUS) & E1000_STATUS_LU) &&
3375 (adapter->hw.phy.media_type == e1000_media_type_copper)) {
3376 ret_val = e1e_rphy(hw, PHY_CONTROL, &phy->bmcr);
3377 ret_val |= e1e_rphy(hw, PHY_STATUS, &phy->bmsr);
3378 ret_val |= e1e_rphy(hw, PHY_AUTONEG_ADV, &phy->advertise);
3379 ret_val |= e1e_rphy(hw, PHY_LP_ABILITY, &phy->lpa);
3380 ret_val |= e1e_rphy(hw, PHY_AUTONEG_EXP, &phy->expansion);
3381 ret_val |= e1e_rphy(hw, PHY_1000T_CTRL, &phy->ctrl1000);
3382 ret_val |= e1e_rphy(hw, PHY_1000T_STATUS, &phy->stat1000);
3383 ret_val |= e1e_rphy(hw, PHY_EXT_STATUS, &phy->estatus);
3385 e_warn("Error reading PHY register\n");
3388 * Do not read PHY registers if link is not up
3389 * Set values to typical power-on defaults
3391 phy->bmcr = (BMCR_SPEED1000 | BMCR_ANENABLE | BMCR_FULLDPLX);
3392 phy->bmsr = (BMSR_100FULL | BMSR_100HALF | BMSR_10FULL |
3393 BMSR_10HALF | BMSR_ESTATEN | BMSR_ANEGCAPABLE |
3395 phy->advertise = (ADVERTISE_PAUSE_ASYM | ADVERTISE_PAUSE_CAP |
3396 ADVERTISE_ALL | ADVERTISE_CSMA);
3398 phy->expansion = EXPANSION_ENABLENPAGE;
3399 phy->ctrl1000 = ADVERTISE_1000FULL;
3401 phy->estatus = (ESTATUS_1000_TFULL | ESTATUS_1000_THALF);
3405 static void e1000_print_link_info(struct e1000_adapter *adapter)
3407 struct e1000_hw *hw = &adapter->hw;
3408 u32 ctrl = er32(CTRL);
3410 /* Link status message must follow this format for user tools */
3411 printk(KERN_INFO "e1000e: %s NIC Link is Up %d Mbps %s, "
3412 "Flow Control: %s\n",
3413 adapter->netdev->name,
3414 adapter->link_speed,
3415 (adapter->link_duplex == FULL_DUPLEX) ?
3416 "Full Duplex" : "Half Duplex",
3417 ((ctrl & E1000_CTRL_TFCE) && (ctrl & E1000_CTRL_RFCE)) ?
3419 ((ctrl & E1000_CTRL_RFCE) ? "RX" :
3420 ((ctrl & E1000_CTRL_TFCE) ? "TX" : "None" )));
3423 bool e1000_has_link(struct e1000_adapter *adapter)
3425 struct e1000_hw *hw = &adapter->hw;
3426 bool link_active = 0;
3430 * get_link_status is set on LSC (link status) interrupt or
3431 * Rx sequence error interrupt. get_link_status will stay
3432 * false until the check_for_link establishes link
3433 * for copper adapters ONLY
3435 switch (hw->phy.media_type) {
3436 case e1000_media_type_copper:
3437 if (hw->mac.get_link_status) {
3438 ret_val = hw->mac.ops.check_for_link(hw);
3439 link_active = !hw->mac.get_link_status;
3444 case e1000_media_type_fiber:
3445 ret_val = hw->mac.ops.check_for_link(hw);
3446 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
3448 case e1000_media_type_internal_serdes:
3449 ret_val = hw->mac.ops.check_for_link(hw);
3450 link_active = adapter->hw.mac.serdes_has_link;
3453 case e1000_media_type_unknown:
3457 if ((ret_val == E1000_ERR_PHY) && (hw->phy.type == e1000_phy_igp_3) &&
3458 (er32(CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
3459 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
3460 e_info("Gigabit has been disabled, downgrading speed\n");
3466 static void e1000e_enable_receives(struct e1000_adapter *adapter)
3468 /* make sure the receive unit is started */
3469 if ((adapter->flags & FLAG_RX_NEEDS_RESTART) &&
3470 (adapter->flags & FLAG_RX_RESTART_NOW)) {
3471 struct e1000_hw *hw = &adapter->hw;
3472 u32 rctl = er32(RCTL);
3473 ew32(RCTL, rctl | E1000_RCTL_EN);
3474 adapter->flags &= ~FLAG_RX_RESTART_NOW;
3479 * e1000_watchdog - Timer Call-back
3480 * @data: pointer to adapter cast into an unsigned long
3482 static void e1000_watchdog(unsigned long data)
3484 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
3486 /* Do the rest outside of interrupt context */
3487 schedule_work(&adapter->watchdog_task);
3489 /* TODO: make this use queue_delayed_work() */
3492 static void e1000_watchdog_task(struct work_struct *work)
3494 struct e1000_adapter *adapter = container_of(work,
3495 struct e1000_adapter, watchdog_task);
3496 struct net_device *netdev = adapter->netdev;
3497 struct e1000_mac_info *mac = &adapter->hw.mac;
3498 struct e1000_phy_info *phy = &adapter->hw.phy;
3499 struct e1000_ring *tx_ring = adapter->tx_ring;
3500 struct e1000_hw *hw = &adapter->hw;
3504 link = e1000_has_link(adapter);
3505 if ((netif_carrier_ok(netdev)) && link) {
3506 e1000e_enable_receives(adapter);
3510 if ((e1000e_enable_tx_pkt_filtering(hw)) &&
3511 (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id))
3512 e1000_update_mng_vlan(adapter);
3515 if (!netif_carrier_ok(netdev)) {
3517 /* update snapshot of PHY registers on LSC */
3518 e1000_phy_read_status(adapter);
3519 mac->ops.get_link_up_info(&adapter->hw,
3520 &adapter->link_speed,
3521 &adapter->link_duplex);
3522 e1000_print_link_info(adapter);
3524 * On supported PHYs, check for duplex mismatch only
3525 * if link has autonegotiated at 10/100 half
3527 if ((hw->phy.type == e1000_phy_igp_3 ||
3528 hw->phy.type == e1000_phy_bm) &&
3529 (hw->mac.autoneg == true) &&
3530 (adapter->link_speed == SPEED_10 ||
3531 adapter->link_speed == SPEED_100) &&
3532 (adapter->link_duplex == HALF_DUPLEX)) {
3535 e1e_rphy(hw, PHY_AUTONEG_EXP, &autoneg_exp);
3537 if (!(autoneg_exp & NWAY_ER_LP_NWAY_CAPS))
3538 e_info("Autonegotiated half duplex but"
3539 " link partner cannot autoneg. "
3540 " Try forcing full duplex if "
3541 "link gets many collisions.\n");
3545 * tweak tx_queue_len according to speed/duplex
3546 * and adjust the timeout factor
3548 netdev->tx_queue_len = adapter->tx_queue_len;
3549 adapter->tx_timeout_factor = 1;
3550 switch (adapter->link_speed) {
3553 netdev->tx_queue_len = 10;
3554 adapter->tx_timeout_factor = 16;
3558 netdev->tx_queue_len = 100;
3559 /* maybe add some timeout factor ? */
3564 * workaround: re-program speed mode bit after
3567 if ((adapter->flags & FLAG_TARC_SPEED_MODE_BIT) &&
3570 tarc0 = er32(TARC(0));
3571 tarc0 &= ~SPEED_MODE_BIT;
3572 ew32(TARC(0), tarc0);
3576 * disable TSO for pcie and 10/100 speeds, to avoid
3577 * some hardware issues
3579 if (!(adapter->flags & FLAG_TSO_FORCE)) {
3580 switch (adapter->link_speed) {
3583 e_info("10/100 speed: disabling TSO\n");
3584 netdev->features &= ~NETIF_F_TSO;
3585 netdev->features &= ~NETIF_F_TSO6;
3588 netdev->features |= NETIF_F_TSO;
3589 netdev->features |= NETIF_F_TSO6;
3598 * enable transmits in the hardware, need to do this
3599 * after setting TARC(0)
3602 tctl |= E1000_TCTL_EN;
3606 * Perform any post-link-up configuration before
3607 * reporting link up.
3609 if (phy->ops.cfg_on_link_up)
3610 phy->ops.cfg_on_link_up(hw);
3612 netif_carrier_on(netdev);
3613 netif_tx_wake_all_queues(netdev);
3615 if (!test_bit(__E1000_DOWN, &adapter->state))
3616 mod_timer(&adapter->phy_info_timer,
3617 round_jiffies(jiffies + 2 * HZ));
3620 if (netif_carrier_ok(netdev)) {
3621 adapter->link_speed = 0;
3622 adapter->link_duplex = 0;
3623 /* Link status message must follow this format */
3624 printk(KERN_INFO "e1000e: %s NIC Link is Down\n",
3625 adapter->netdev->name);
3626 netif_carrier_off(netdev);
3627 netif_tx_stop_all_queues(netdev);
3628 if (!test_bit(__E1000_DOWN, &adapter->state))
3629 mod_timer(&adapter->phy_info_timer,
3630 round_jiffies(jiffies + 2 * HZ));
3632 if (adapter->flags & FLAG_RX_NEEDS_RESTART)
3633 schedule_work(&adapter->reset_task);
3638 e1000e_update_stats(adapter);
3640 mac->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
3641 adapter->tpt_old = adapter->stats.tpt;
3642 mac->collision_delta = adapter->stats.colc - adapter->colc_old;
3643 adapter->colc_old = adapter->stats.colc;
3645 adapter->gorc = adapter->stats.gorc - adapter->gorc_old;
3646 adapter->gorc_old = adapter->stats.gorc;
3647 adapter->gotc = adapter->stats.gotc - adapter->gotc_old;
3648 adapter->gotc_old = adapter->stats.gotc;
3650 e1000e_update_adaptive(&adapter->hw);
3652 if (!netif_carrier_ok(netdev)) {
3653 tx_pending = (e1000_desc_unused(tx_ring) + 1 <
3657 * We've lost link, so the controller stops DMA,
3658 * but we've got queued Tx work that's never going
3659 * to get done, so reset controller to flush Tx.
3660 * (Do the reset outside of interrupt context).
3662 adapter->tx_timeout_count++;
3663 schedule_work(&adapter->reset_task);
3667 /* Cause software interrupt to ensure Rx ring is cleaned */
3668 if (adapter->msix_entries)
3669 ew32(ICS, adapter->rx_ring->ims_val);
3671 ew32(ICS, E1000_ICS_RXDMT0);
3673 /* Force detection of hung controller every watchdog period */
3674 adapter->detect_tx_hung = 1;
3677 * With 82571 controllers, LAA may be overwritten due to controller
3678 * reset from the other port. Set the appropriate LAA in RAR[0]
3680 if (e1000e_get_laa_state_82571(hw))
3681 e1000e_rar_set(hw, adapter->hw.mac.addr, 0);
3683 /* Reset the timer */
3684 if (!test_bit(__E1000_DOWN, &adapter->state))
3685 mod_timer(&adapter->watchdog_timer,
3686 round_jiffies(jiffies + 2 * HZ));
3689 #define E1000_TX_FLAGS_CSUM 0x00000001
3690 #define E1000_TX_FLAGS_VLAN 0x00000002
3691 #define E1000_TX_FLAGS_TSO 0x00000004
3692 #define E1000_TX_FLAGS_IPV4 0x00000008
3693 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
3694 #define E1000_TX_FLAGS_VLAN_SHIFT 16
3696 static int e1000_tso(struct e1000_adapter *adapter,
3697 struct sk_buff *skb)
3699 struct e1000_ring *tx_ring = adapter->tx_ring;
3700 struct e1000_context_desc *context_desc;
3701 struct e1000_buffer *buffer_info;
3704 u16 ipcse = 0, tucse, mss;
3705 u8 ipcss, ipcso, tucss, tucso, hdr_len;
3708 if (skb_is_gso(skb)) {
3709 if (skb_header_cloned(skb)) {
3710 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3715 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
3716 mss = skb_shinfo(skb)->gso_size;
3717 if (skb->protocol == htons(ETH_P_IP)) {
3718 struct iphdr *iph = ip_hdr(skb);
3721 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
3725 cmd_length = E1000_TXD_CMD_IP;
3726 ipcse = skb_transport_offset(skb) - 1;
3727 } else if (skb_shinfo(skb)->gso_type == SKB_GSO_TCPV6) {
3728 ipv6_hdr(skb)->payload_len = 0;
3729 tcp_hdr(skb)->check =
3730 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3731 &ipv6_hdr(skb)->daddr,
3735 ipcss = skb_network_offset(skb);
3736 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
3737 tucss = skb_transport_offset(skb);
3738 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
3741 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
3742 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
3744 i = tx_ring->next_to_use;
3745 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3746 buffer_info = &tx_ring->buffer_info[i];
3748 context_desc->lower_setup.ip_fields.ipcss = ipcss;
3749 context_desc->lower_setup.ip_fields.ipcso = ipcso;
3750 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
3751 context_desc->upper_setup.tcp_fields.tucss = tucss;
3752 context_desc->upper_setup.tcp_fields.tucso = tucso;
3753 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
3754 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
3755 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
3756 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
3758 buffer_info->time_stamp = jiffies;
3759 buffer_info->next_to_watch = i;
3762 if (i == tx_ring->count)
3764 tx_ring->next_to_use = i;
3772 static bool e1000_tx_csum(struct e1000_adapter *adapter, struct sk_buff *skb)
3774 struct e1000_ring *tx_ring = adapter->tx_ring;
3775 struct e1000_context_desc *context_desc;
3776 struct e1000_buffer *buffer_info;
3779 u32 cmd_len = E1000_TXD_CMD_DEXT;
3781 if (skb->ip_summed != CHECKSUM_PARTIAL)
3784 switch (skb->protocol) {
3785 case __constant_htons(ETH_P_IP):
3786 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
3787 cmd_len |= E1000_TXD_CMD_TCP;
3789 case __constant_htons(ETH_P_IPV6):
3790 /* XXX not handling all IPV6 headers */
3791 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3792 cmd_len |= E1000_TXD_CMD_TCP;
3795 if (unlikely(net_ratelimit()))
3796 e_warn("checksum_partial proto=%x!\n", skb->protocol);
3800 css = skb_transport_offset(skb);
3802 i = tx_ring->next_to_use;
3803 buffer_info = &tx_ring->buffer_info[i];
3804 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
3806 context_desc->lower_setup.ip_config = 0;
3807 context_desc->upper_setup.tcp_fields.tucss = css;
3808 context_desc->upper_setup.tcp_fields.tucso =
3809 css + skb->csum_offset;
3810 context_desc->upper_setup.tcp_fields.tucse = 0;
3811 context_desc->tcp_seg_setup.data = 0;
3812 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
3814 buffer_info->time_stamp = jiffies;
3815 buffer_info->next_to_watch = i;
3818 if (i == tx_ring->count)
3820 tx_ring->next_to_use = i;
3825 #define E1000_MAX_PER_TXD 8192
3826 #define E1000_MAX_TXD_PWR 12
3828 static int e1000_tx_map(struct e1000_adapter *adapter,
3829 struct sk_buff *skb, unsigned int first,
3830 unsigned int max_per_txd, unsigned int nr_frags,
3833 struct e1000_ring *tx_ring = adapter->tx_ring;
3834 struct e1000_buffer *buffer_info;
3835 unsigned int len = skb->len - skb->data_len;
3836 unsigned int offset = 0, size, count = 0, i;
3839 i = tx_ring->next_to_use;
3842 buffer_info = &tx_ring->buffer_info[i];
3843 size = min(len, max_per_txd);
3845 /* Workaround for premature desc write-backs
3846 * in TSO mode. Append 4-byte sentinel desc */
3847 if (mss && !nr_frags && size == len && size > 8)
3850 buffer_info->length = size;
3851 /* set time_stamp *before* dma to help avoid a possible race */
3852 buffer_info->time_stamp = jiffies;
3854 pci_map_single(adapter->pdev,
3858 if (pci_dma_mapping_error(adapter->pdev, buffer_info->dma)) {
3859 dev_err(&adapter->pdev->dev, "TX DMA map failed\n");
3860 adapter->tx_dma_failed++;
3863 buffer_info->next_to_watch = i;
3869 if (i == tx_ring->count)
3873 for (f = 0; f < nr_frags; f++) {
3874 struct skb_frag_struct *frag;
3876 frag = &skb_shinfo(skb)->frags[f];
3878 offset = frag->page_offset;
3881 buffer_info = &tx_ring->buffer_info[i];
3882 size = min(len, max_per_txd);
3883 /* Workaround for premature desc write-backs
3884 * in TSO mode. Append 4-byte sentinel desc */
3885 if (mss && f == (nr_frags-1) && size == len && size > 8)
3888 buffer_info->length = size;
3889 buffer_info->time_stamp = jiffies;
3891 pci_map_page(adapter->pdev,
3896 if (pci_dma_mapping_error(adapter->pdev,
3897 buffer_info->dma)) {
3898 dev_err(&adapter->pdev->dev,
3899 "TX DMA page map failed\n");
3900 adapter->tx_dma_failed++;
3904 buffer_info->next_to_watch = i;
3911 if (i == tx_ring->count)
3917 i = tx_ring->count - 1;
3921 tx_ring->buffer_info[i].skb = skb;
3922 tx_ring->buffer_info[first].next_to_watch = i;
3927 static void e1000_tx_queue(struct e1000_adapter *adapter,
3928 int tx_flags, int count)
3930 struct e1000_ring *tx_ring = adapter->tx_ring;
3931 struct e1000_tx_desc *tx_desc = NULL;
3932 struct e1000_buffer *buffer_info;
3933 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
3936 if (tx_flags & E1000_TX_FLAGS_TSO) {
3937 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
3939 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3941 if (tx_flags & E1000_TX_FLAGS_IPV4)
3942 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
3945 if (tx_flags & E1000_TX_FLAGS_CSUM) {
3946 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3947 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3950 if (tx_flags & E1000_TX_FLAGS_VLAN) {
3951 txd_lower |= E1000_TXD_CMD_VLE;
3952 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3955 i = tx_ring->next_to_use;
3958 buffer_info = &tx_ring->buffer_info[i];
3959 tx_desc = E1000_TX_DESC(*tx_ring, i);
3960 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3961 tx_desc->lower.data =
3962 cpu_to_le32(txd_lower | buffer_info->length);
3963 tx_desc->upper.data = cpu_to_le32(txd_upper);
3966 if (i == tx_ring->count)
3970 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3973 * Force memory writes to complete before letting h/w
3974 * know there are new descriptors to fetch. (Only
3975 * applicable for weak-ordered memory model archs,
3980 tx_ring->next_to_use = i;
3981 writel(i, adapter->hw.hw_addr + tx_ring->tail);
3983 * we need this if more than one processor can write to our tail
3984 * at a time, it synchronizes IO on IA64/Altix systems
3989 #define MINIMUM_DHCP_PACKET_SIZE 282
3990 static int e1000_transfer_dhcp_info(struct e1000_adapter *adapter,
3991 struct sk_buff *skb)
3993 struct e1000_hw *hw = &adapter->hw;
3996 if (vlan_tx_tag_present(skb)) {
3997 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id)
3998 && (adapter->hw.mng_cookie.status &
3999 E1000_MNG_DHCP_COOKIE_STATUS_VLAN)))
4003 if (skb->len <= MINIMUM_DHCP_PACKET_SIZE)
4006 if (((struct ethhdr *) skb->data)->h_proto != htons(ETH_P_IP))
4010 const struct iphdr *ip = (struct iphdr *)((u8 *)skb->data+14);
4013 if (ip->protocol != IPPROTO_UDP)
4016 udp = (struct udphdr *)((u8 *)ip + (ip->ihl << 2));
4017 if (ntohs(udp->dest) != 67)
4020 offset = (u8 *)udp + 8 - skb->data;
4021 length = skb->len - offset;
4022 return e1000e_mng_write_dhcp_info(hw, (u8 *)udp + 8, length);
4028 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
4030 struct e1000_adapter *adapter = netdev_priv(netdev);
4032 netif_stop_queue(netdev);
4034 * Herbert's original patch had:
4035 * smp_mb__after_netif_stop_queue();
4036 * but since that doesn't exist yet, just open code it.
4041 * We need to check again in a case another CPU has just
4042 * made room available.
4044 if (e1000_desc_unused(adapter->tx_ring) < size)
4048 netif_start_queue(netdev);
4049 ++adapter->restart_queue;
4053 static int e1000_maybe_stop_tx(struct net_device *netdev, int size)
4055 struct e1000_adapter *adapter = netdev_priv(netdev);
4057 if (e1000_desc_unused(adapter->tx_ring) >= size)
4059 return __e1000_maybe_stop_tx(netdev, size);
4062 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4063 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
4065 struct e1000_adapter *adapter = netdev_priv(netdev);
4066 struct e1000_ring *tx_ring = adapter->tx_ring;
4068 unsigned int max_per_txd = E1000_MAX_PER_TXD;
4069 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
4070 unsigned int tx_flags = 0;
4071 unsigned int len = skb->len - skb->data_len;
4072 unsigned long irq_flags;
4073 unsigned int nr_frags;
4079 if (test_bit(__E1000_DOWN, &adapter->state)) {
4080 dev_kfree_skb_any(skb);
4081 return NETDEV_TX_OK;
4084 if (skb->len <= 0) {
4085 dev_kfree_skb_any(skb);
4086 return NETDEV_TX_OK;
4089 mss = skb_shinfo(skb)->gso_size;
4091 * The controller does a simple calculation to
4092 * make sure there is enough room in the FIFO before
4093 * initiating the DMA for each buffer. The calc is:
4094 * 4 = ceil(buffer len/mss). To make sure we don't
4095 * overrun the FIFO, adjust the max buffer len if mss
4100 max_per_txd = min(mss << 2, max_per_txd);
4101 max_txd_pwr = fls(max_per_txd) - 1;
4104 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4105 * points to just header, pull a few bytes of payload from
4106 * frags into skb->data
4108 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
4110 * we do this workaround for ES2LAN, but it is un-necessary,
4111 * avoiding it could save a lot of cycles
4113 if (skb->data_len && (hdr_len == len)) {
4114 unsigned int pull_size;
4116 pull_size = min((unsigned int)4, skb->data_len);
4117 if (!__pskb_pull_tail(skb, pull_size)) {
4118 e_err("__pskb_pull_tail failed.\n");
4119 dev_kfree_skb_any(skb);
4120 return NETDEV_TX_OK;
4122 len = skb->len - skb->data_len;
4126 /* reserve a descriptor for the offload context */
4127 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
4131 count += TXD_USE_COUNT(len, max_txd_pwr);
4133 nr_frags = skb_shinfo(skb)->nr_frags;
4134 for (f = 0; f < nr_frags; f++)
4135 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
4138 if (adapter->hw.mac.tx_pkt_filtering)
4139 e1000_transfer_dhcp_info(adapter, skb);
4141 if (!spin_trylock_irqsave(&adapter->tx_queue_lock, irq_flags))
4142 /* Collision - tell upper layer to requeue */
4143 return NETDEV_TX_LOCKED;
4146 * need: count + 2 desc gap to keep tail from touching
4147 * head, otherwise try next time
4149 if (e1000_maybe_stop_tx(netdev, count + 2)) {
4150 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4151 return NETDEV_TX_BUSY;
4154 if (adapter->vlgrp && vlan_tx_tag_present(skb)) {
4155 tx_flags |= E1000_TX_FLAGS_VLAN;
4156 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
4159 first = tx_ring->next_to_use;
4161 tso = e1000_tso(adapter, skb);
4163 dev_kfree_skb_any(skb);
4164 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4165 return NETDEV_TX_OK;
4169 tx_flags |= E1000_TX_FLAGS_TSO;
4170 else if (e1000_tx_csum(adapter, skb))
4171 tx_flags |= E1000_TX_FLAGS_CSUM;
4174 * Old method was to assume IPv4 packet by default if TSO was enabled.
4175 * 82571 hardware supports TSO capabilities for IPv6 as well...
4176 * no longer assume, we must.
4178 if (skb->protocol == htons(ETH_P_IP))
4179 tx_flags |= E1000_TX_FLAGS_IPV4;
4181 count = e1000_tx_map(adapter, skb, first, max_per_txd, nr_frags, mss);
4183 /* handle pci_map_single() error in e1000_tx_map */
4184 dev_kfree_skb_any(skb);
4185 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4186 return NETDEV_TX_OK;
4189 e1000_tx_queue(adapter, tx_flags, count);
4191 netdev->trans_start = jiffies;
4193 /* Make sure there is space in the ring for the next send. */
4194 e1000_maybe_stop_tx(netdev, MAX_SKB_FRAGS + 2);
4196 spin_unlock_irqrestore(&adapter->tx_queue_lock, irq_flags);
4197 return NETDEV_TX_OK;
4201 * e1000_tx_timeout - Respond to a Tx Hang
4202 * @netdev: network interface device structure
4204 static void e1000_tx_timeout(struct net_device *netdev)
4206 struct e1000_adapter *adapter = netdev_priv(netdev);
4208 /* Do the reset outside of interrupt context */
4209 adapter->tx_timeout_count++;
4210 schedule_work(&adapter->reset_task);
4213 static void e1000_reset_task(struct work_struct *work)
4215 struct e1000_adapter *adapter;
4216 adapter = container_of(work, struct e1000_adapter, reset_task);
4218 e1000e_reinit_locked(adapter);
4222 * e1000_get_stats - Get System Network Statistics
4223 * @netdev: network interface device structure
4225 * Returns the address of the device statistics structure.
4226 * The statistics are actually updated from the timer callback.
4228 static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
4230 struct e1000_adapter *adapter = netdev_priv(netdev);
4232 /* only return the current stats */
4233 return &adapter->net_stats;
4237 * e1000_change_mtu - Change the Maximum Transfer Unit
4238 * @netdev: network interface device structure
4239 * @new_mtu: new value for maximum frame size
4241 * Returns 0 on success, negative on failure
4243 static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
4245 struct e1000_adapter *adapter = netdev_priv(netdev);
4246 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN;
4248 if ((new_mtu < ETH_ZLEN + ETH_FCS_LEN + VLAN_HLEN) ||
4249 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
4250 e_err("Invalid MTU setting\n");
4254 /* Jumbo frame size limits */
4255 if (max_frame > ETH_FRAME_LEN + ETH_FCS_LEN) {
4256 if (!(adapter->flags & FLAG_HAS_JUMBO_FRAMES)) {
4257 e_err("Jumbo Frames not supported.\n");
4260 if (adapter->hw.phy.type == e1000_phy_ife) {
4261 e_err("Jumbo Frames not supported.\n");
4266 #define MAX_STD_JUMBO_FRAME_SIZE 9234
4267 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
4268 e_err("MTU > 9216 not supported.\n");
4272 while (test_and_set_bit(__E1000_RESETTING, &adapter->state))
4274 /* e1000e_down has a dependency on max_frame_size */
4275 adapter->max_frame_size = max_frame;
4276 if (netif_running(netdev))
4277 e1000e_down(adapter);
4280 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
4281 * means we reserve 2 more, this pushes us to allocate from the next
4283 * i.e. RXBUFFER_2048 --> size-4096 slab
4284 * However with the new *_jumbo_rx* routines, jumbo receives will use
4288 if (max_frame <= 256)
4289 adapter->rx_buffer_len = 256;
4290 else if (max_frame <= 512)
4291 adapter->rx_buffer_len = 512;
4292 else if (max_frame <= 1024)
4293 adapter->rx_buffer_len = 1024;
4294 else if (max_frame <= 2048)
4295 adapter->rx_buffer_len = 2048;
4297 adapter->rx_buffer_len = 4096;
4299 /* adjust allocation if LPE protects us, and we aren't using SBP */
4300 if ((max_frame == ETH_FRAME_LEN + ETH_FCS_LEN) ||
4301 (max_frame == ETH_FRAME_LEN + VLAN_HLEN + ETH_FCS_LEN))
4302 adapter->rx_buffer_len = ETH_FRAME_LEN + VLAN_HLEN
4305 e_info("changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4306 netdev->mtu = new_mtu;
4308 if (netif_running(netdev))
4311 e1000e_reset(adapter);
4313 clear_bit(__E1000_RESETTING, &adapter->state);
4318 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4321 struct e1000_adapter *adapter = netdev_priv(netdev);
4322 struct mii_ioctl_data *data = if_mii(ifr);
4324 if (adapter->hw.phy.media_type != e1000_media_type_copper)
4329 data->phy_id = adapter->hw.phy.addr;
4332 if (!capable(CAP_NET_ADMIN))
4334 switch (data->reg_num & 0x1F) {
4336 data->val_out = adapter->phy_regs.bmcr;
4339 data->val_out = adapter->phy_regs.bmsr;
4342 data->val_out = (adapter->hw.phy.id >> 16);
4345 data->val_out = (adapter->hw.phy.id & 0xFFFF);
4348 data->val_out = adapter->phy_regs.advertise;
4351 data->val_out = adapter->phy_regs.lpa;
4354 data->val_out = adapter->phy_regs.expansion;
4357 data->val_out = adapter->phy_regs.ctrl1000;
4360 data->val_out = adapter->phy_regs.stat1000;
4363 data->val_out = adapter->phy_regs.estatus;
4376 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4382 return e1000_mii_ioctl(netdev, ifr, cmd);
4388 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4390 struct net_device *netdev = pci_get_drvdata(pdev);
4391 struct e1000_adapter *adapter = netdev_priv(netdev);
4392 struct e1000_hw *hw = &adapter->hw;
4393 u32 ctrl, ctrl_ext, rctl, status;
4394 u32 wufc = adapter->wol;
4397 netif_device_detach(netdev);
4399 if (netif_running(netdev)) {
4400 WARN_ON(test_bit(__E1000_RESETTING, &adapter->state));
4401 e1000e_down(adapter);
4402 e1000_free_irq(adapter);
4404 e1000e_reset_interrupt_capability(adapter);
4406 retval = pci_save_state(pdev);
4410 status = er32(STATUS);
4411 if (status & E1000_STATUS_LU)
4412 wufc &= ~E1000_WUFC_LNKC;
4415 e1000_setup_rctl(adapter);
4416 e1000_set_multi(netdev);
4418 /* turn on all-multi mode if wake on multicast is enabled */
4419 if (wufc & E1000_WUFC_MC) {
4421 rctl |= E1000_RCTL_MPE;
4426 /* advertise wake from D3Cold */
4427 #define E1000_CTRL_ADVD3WUC 0x00100000
4428 /* phy power management enable */
4429 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4430 ctrl |= E1000_CTRL_ADVD3WUC |
4431 E1000_CTRL_EN_PHY_PWR_MGMT;
4434 if (adapter->hw.phy.media_type == e1000_media_type_fiber ||
4435 adapter->hw.phy.media_type ==
4436 e1000_media_type_internal_serdes) {
4437 /* keep the laser running in D3 */
4438 ctrl_ext = er32(CTRL_EXT);
4439 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4440 ew32(CTRL_EXT, ctrl_ext);
4443 if (adapter->flags & FLAG_IS_ICH)
4444 e1000e_disable_gig_wol_ich8lan(&adapter->hw);
4446 /* Allow time for pending master requests to run */
4447 e1000e_disable_pcie_master(&adapter->hw);
4449 ew32(WUC, E1000_WUC_PME_EN);
4451 pci_enable_wake(pdev, PCI_D3hot, 1);
4452 pci_enable_wake(pdev, PCI_D3cold, 1);
4456 pci_enable_wake(pdev, PCI_D3hot, 0);
4457 pci_enable_wake(pdev, PCI_D3cold, 0);
4460 /* make sure adapter isn't asleep if manageability is enabled */
4461 if (adapter->flags & FLAG_MNG_PT_ENABLED) {
4462 pci_enable_wake(pdev, PCI_D3hot, 1);
4463 pci_enable_wake(pdev, PCI_D3cold, 1);
4466 if (adapter->hw.phy.type == e1000_phy_igp_3)
4467 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter->hw);
4470 * Release control of h/w to f/w. If f/w is AMT enabled, this
4471 * would have already happened in close and is redundant.
4473 e1000_release_hw_control(adapter);
4475 pci_disable_device(pdev);
4478 * The pci-e switch on some quad port adapters will report a
4479 * correctable error when the MAC transitions from D0 to D3. To
4480 * prevent this we need to mask off the correctable errors on the
4481 * downstream port of the pci-e switch.
4483 if (adapter->flags & FLAG_IS_QUAD_PORT) {
4484 struct pci_dev *us_dev = pdev->bus->self;
4485 int pos = pci_find_capability(us_dev, PCI_CAP_ID_EXP);
4488 pci_read_config_word(us_dev, pos + PCI_EXP_DEVCTL, &devctl);
4489 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL,
4490 (devctl & ~PCI_EXP_DEVCTL_CERE));
4492 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4494 pci_write_config_word(us_dev, pos + PCI_EXP_DEVCTL, devctl);
4496 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4502 static void e1000e_disable_l1aspm(struct pci_dev *pdev)
4508 * 82573 workaround - disable L1 ASPM on mobile chipsets
4510 * L1 ASPM on various mobile (ich7) chipsets do not behave properly
4511 * resulting in lost data or garbage information on the pci-e link
4512 * level. This could result in (false) bad EEPROM checksum errors,
4513 * long ping times (up to 2s) or even a system freeze/hang.
4515 * Unfortunately this feature saves about 1W power consumption when
4518 pos = pci_find_capability(pdev, PCI_CAP_ID_EXP);
4519 pci_read_config_word(pdev, pos + PCI_EXP_LNKCTL, &val);
4521 dev_warn(&pdev->dev, "Disabling L1 ASPM\n");
4523 pci_write_config_word(pdev, pos + PCI_EXP_LNKCTL, val);
4528 static int e1000_resume(struct pci_dev *pdev)
4530 struct net_device *netdev = pci_get_drvdata(pdev);
4531 struct e1000_adapter *adapter = netdev_priv(netdev);
4532 struct e1000_hw *hw = &adapter->hw;
4535 pci_set_power_state(pdev, PCI_D0);
4536 pci_restore_state(pdev);
4537 e1000e_disable_l1aspm(pdev);
4539 err = pci_enable_device_mem(pdev);
4542 "Cannot enable PCI device from suspend\n");
4546 pci_set_master(pdev);
4548 pci_enable_wake(pdev, PCI_D3hot, 0);
4549 pci_enable_wake(pdev, PCI_D3cold, 0);
4551 e1000e_set_interrupt_capability(adapter);
4552 if (netif_running(netdev)) {
4553 err = e1000_request_irq(adapter);
4558 e1000e_power_up_phy(adapter);
4559 e1000e_reset(adapter);
4562 e1000_init_manageability(adapter);
4564 if (netif_running(netdev))
4567 netif_device_attach(netdev);
4570 * If the controller has AMT, do not set DRV_LOAD until the interface
4571 * is up. For all other cases, let the f/w know that the h/w is now
4572 * under the control of the driver.
4574 if (!(adapter->flags & FLAG_HAS_AMT))
4575 e1000_get_hw_control(adapter);
4581 static void e1000_shutdown(struct pci_dev *pdev)
4583 e1000_suspend(pdev, PMSG_SUSPEND);
4586 #ifdef CONFIG_NET_POLL_CONTROLLER
4588 * Polling 'interrupt' - used by things like netconsole to send skbs
4589 * without having to re-enable interrupts. It's not called while
4590 * the interrupt routine is executing.
4592 static void e1000_netpoll(struct net_device *netdev)
4594 struct e1000_adapter *adapter = netdev_priv(netdev);
4596 disable_irq(adapter->pdev->irq);
4597 e1000_intr(adapter->pdev->irq, netdev);
4599 enable_irq(adapter->pdev->irq);
4604 * e1000_io_error_detected - called when PCI error is detected
4605 * @pdev: Pointer to PCI device
4606 * @state: The current pci connection state
4608 * This function is called after a PCI bus error affecting
4609 * this device has been detected.
4611 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
4612 pci_channel_state_t state)
4614 struct net_device *netdev = pci_get_drvdata(pdev);
4615 struct e1000_adapter *adapter = netdev_priv(netdev);
4617 netif_device_detach(netdev);
4619 if (netif_running(netdev))
4620 e1000e_down(adapter);
4621 pci_disable_device(pdev);
4623 /* Request a slot slot reset. */
4624 return PCI_ERS_RESULT_NEED_RESET;
4628 * e1000_io_slot_reset - called after the pci bus has been reset.
4629 * @pdev: Pointer to PCI device
4631 * Restart the card from scratch, as if from a cold-boot. Implementation
4632 * resembles the first-half of the e1000_resume routine.
4634 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4636 struct net_device *netdev = pci_get_drvdata(pdev);
4637 struct e1000_adapter *adapter = netdev_priv(netdev);
4638 struct e1000_hw *hw = &adapter->hw;
4641 e1000e_disable_l1aspm(pdev);
4642 err = pci_enable_device_mem(pdev);
4645 "Cannot re-enable PCI device after reset.\n");
4646 return PCI_ERS_RESULT_DISCONNECT;
4648 pci_set_master(pdev);
4649 pci_restore_state(pdev);
4651 pci_enable_wake(pdev, PCI_D3hot, 0);
4652 pci_enable_wake(pdev, PCI_D3cold, 0);
4654 e1000e_reset(adapter);
4657 return PCI_ERS_RESULT_RECOVERED;
4661 * e1000_io_resume - called when traffic can start flowing again.
4662 * @pdev: Pointer to PCI device
4664 * This callback is called when the error recovery driver tells us that
4665 * its OK to resume normal operation. Implementation resembles the
4666 * second-half of the e1000_resume routine.
4668 static void e1000_io_resume(struct pci_dev *pdev)
4670 struct net_device *netdev = pci_get_drvdata(pdev);
4671 struct e1000_adapter *adapter = netdev_priv(netdev);
4673 e1000_init_manageability(adapter);
4675 if (netif_running(netdev)) {
4676 if (e1000e_up(adapter)) {
4678 "can't bring device back up after reset\n");
4683 netif_device_attach(netdev);
4686 * If the controller has AMT, do not set DRV_LOAD until the interface
4687 * is up. For all other cases, let the f/w know that the h/w is now
4688 * under the control of the driver.
4690 if (!(adapter->flags & FLAG_HAS_AMT))
4691 e1000_get_hw_control(adapter);
4695 static void e1000_print_device_info(struct e1000_adapter *adapter)
4697 struct e1000_hw *hw = &adapter->hw;
4698 struct net_device *netdev = adapter->netdev;
4701 /* print bus type/speed/width info */
4702 e_info("(PCI Express:2.5GB/s:%s) %pM\n",
4704 ((hw->bus.width == e1000_bus_width_pcie_x4) ? "Width x4" :
4708 e_info("Intel(R) PRO/%s Network Connection\n",
4709 (hw->phy.type == e1000_phy_ife) ? "10/100" : "1000");
4710 e1000e_read_pba_num(hw, &pba_num);
4711 e_info("MAC: %d, PHY: %d, PBA No: %06x-%03x\n",
4712 hw->mac.type, hw->phy.type, (pba_num >> 8), (pba_num & 0xff));
4715 static void e1000_eeprom_checks(struct e1000_adapter *adapter)
4717 struct e1000_hw *hw = &adapter->hw;
4721 if (hw->mac.type != e1000_82573)
4724 ret_val = e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &buf);
4725 if (!ret_val && (!(le16_to_cpu(buf) & (1 << 0)))) {
4726 /* Deep Smart Power Down (DSPD) */
4727 dev_warn(&adapter->pdev->dev,
4728 "Warning: detected DSPD enabled in EEPROM\n");
4731 ret_val = e1000_read_nvm(hw, NVM_INIT_3GIO_3, 1, &buf);
4732 if (!ret_val && (le16_to_cpu(buf) & (3 << 2))) {
4734 dev_warn(&adapter->pdev->dev,
4735 "Warning: detected ASPM enabled in EEPROM\n");
4739 static const struct net_device_ops e1000e_netdev_ops = {
4740 .ndo_open = e1000_open,
4741 .ndo_stop = e1000_close,
4742 .ndo_start_xmit = e1000_xmit_frame,
4743 .ndo_get_stats = e1000_get_stats,
4744 .ndo_set_multicast_list = e1000_set_multi,
4745 .ndo_set_mac_address = e1000_set_mac,
4746 .ndo_change_mtu = e1000_change_mtu,
4747 .ndo_do_ioctl = e1000_ioctl,
4748 .ndo_tx_timeout = e1000_tx_timeout,
4749 .ndo_validate_addr = eth_validate_addr,
4751 .ndo_vlan_rx_register = e1000_vlan_rx_register,
4752 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
4753 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
4754 #ifdef CONFIG_NET_POLL_CONTROLLER
4755 .ndo_poll_controller = e1000_netpoll,
4760 * e1000_probe - Device Initialization Routine
4761 * @pdev: PCI device information struct
4762 * @ent: entry in e1000_pci_tbl
4764 * Returns 0 on success, negative on failure
4766 * e1000_probe initializes an adapter identified by a pci_dev structure.
4767 * The OS initialization, configuring of the adapter private structure,
4768 * and a hardware reset occur.
4770 static int __devinit e1000_probe(struct pci_dev *pdev,
4771 const struct pci_device_id *ent)
4773 struct net_device *netdev;
4774 struct e1000_adapter *adapter;
4775 struct e1000_hw *hw;
4776 const struct e1000_info *ei = e1000_info_tbl[ent->driver_data];
4777 resource_size_t mmio_start, mmio_len;
4778 resource_size_t flash_start, flash_len;
4780 static int cards_found;
4781 int i, err, pci_using_dac;
4782 u16 eeprom_data = 0;
4783 u16 eeprom_apme_mask = E1000_EEPROM_APME;
4785 e1000e_disable_l1aspm(pdev);
4787 err = pci_enable_device_mem(pdev);
4792 err = pci_set_dma_mask(pdev, DMA_64BIT_MASK);
4794 err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK);
4798 err = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
4800 err = pci_set_consistent_dma_mask(pdev,
4803 dev_err(&pdev->dev, "No usable DMA "
4804 "configuration, aborting\n");
4810 err = pci_request_selected_regions(pdev,
4811 pci_select_bars(pdev, IORESOURCE_MEM),
4812 e1000e_driver_name);
4816 pci_set_master(pdev);
4817 /* PCI config space info */
4818 err = pci_save_state(pdev);
4820 goto err_alloc_etherdev;
4823 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
4825 goto err_alloc_etherdev;
4827 SET_NETDEV_DEV(netdev, &pdev->dev);
4829 pci_set_drvdata(pdev, netdev);
4830 adapter = netdev_priv(netdev);
4832 adapter->netdev = netdev;
4833 adapter->pdev = pdev;
4835 adapter->pba = ei->pba;
4836 adapter->flags = ei->flags;
4837 adapter->flags2 = ei->flags2;
4838 adapter->hw.adapter = adapter;
4839 adapter->hw.mac.type = ei->mac;
4840 adapter->msg_enable = (1 << NETIF_MSG_DRV | NETIF_MSG_PROBE) - 1;
4842 mmio_start = pci_resource_start(pdev, 0);
4843 mmio_len = pci_resource_len(pdev, 0);
4846 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
4847 if (!adapter->hw.hw_addr)
4850 if ((adapter->flags & FLAG_HAS_FLASH) &&
4851 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
4852 flash_start = pci_resource_start(pdev, 1);
4853 flash_len = pci_resource_len(pdev, 1);
4854 adapter->hw.flash_address = ioremap(flash_start, flash_len);
4855 if (!adapter->hw.flash_address)
4859 /* construct the net_device struct */
4860 netdev->netdev_ops = &e1000e_netdev_ops;
4861 e1000e_set_ethtool_ops(netdev);
4862 netdev->watchdog_timeo = 5 * HZ;
4863 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
4864 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
4866 netdev->mem_start = mmio_start;
4867 netdev->mem_end = mmio_start + mmio_len;
4869 adapter->bd_number = cards_found++;
4871 e1000e_check_options(adapter);
4873 /* setup adapter struct */
4874 err = e1000_sw_init(adapter);
4880 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4881 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
4882 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4884 err = ei->get_variants(adapter);
4888 if ((adapter->flags & FLAG_IS_ICH) &&
4889 (adapter->flags & FLAG_READ_ONLY_NVM))
4890 e1000e_write_protect_nvm_ich8lan(&adapter->hw);
4892 hw->mac.ops.get_bus_info(&adapter->hw);
4894 adapter->hw.phy.autoneg_wait_to_complete = 0;
4896 /* Copper options */
4897 if (adapter->hw.phy.media_type == e1000_media_type_copper) {
4898 adapter->hw.phy.mdix = AUTO_ALL_MODES;
4899 adapter->hw.phy.disable_polarity_correction = 0;
4900 adapter->hw.phy.ms_type = e1000_ms_hw_default;
4903 if (e1000_check_reset_block(&adapter->hw))
4904 e_info("PHY reset is blocked due to SOL/IDER session.\n");
4906 netdev->features = NETIF_F_SG |
4908 NETIF_F_HW_VLAN_TX |
4911 if (adapter->flags & FLAG_HAS_HW_VLAN_FILTER)
4912 netdev->features |= NETIF_F_HW_VLAN_FILTER;
4914 netdev->features |= NETIF_F_TSO;
4915 netdev->features |= NETIF_F_TSO6;
4917 netdev->vlan_features |= NETIF_F_TSO;
4918 netdev->vlan_features |= NETIF_F_TSO6;
4919 netdev->vlan_features |= NETIF_F_HW_CSUM;
4920 netdev->vlan_features |= NETIF_F_SG;
4923 netdev->features |= NETIF_F_HIGHDMA;
4926 * We should not be using LLTX anymore, but we are still Tx faster with
4929 netdev->features |= NETIF_F_LLTX;
4931 if (e1000e_enable_mng_pass_thru(&adapter->hw))
4932 adapter->flags |= FLAG_MNG_PT_ENABLED;
4935 * before reading the NVM, reset the controller to
4936 * put the device in a known good starting state
4938 adapter->hw.mac.ops.reset_hw(&adapter->hw);
4941 * systems with ASPM and others may see the checksum fail on the first
4942 * attempt. Let's give it a few tries
4945 if (e1000_validate_nvm_checksum(&adapter->hw) >= 0)
4948 e_err("The NVM Checksum Is Not Valid\n");
4954 e1000_eeprom_checks(adapter);
4956 /* copy the MAC address out of the NVM */
4957 if (e1000e_read_mac_addr(&adapter->hw))
4958 e_err("NVM Read Error while reading MAC address\n");
4960 memcpy(netdev->dev_addr, adapter->hw.mac.addr, netdev->addr_len);
4961 memcpy(netdev->perm_addr, adapter->hw.mac.addr, netdev->addr_len);
4963 if (!is_valid_ether_addr(netdev->perm_addr)) {
4964 e_err("Invalid MAC Address: %pM\n", netdev->perm_addr);
4969 init_timer(&adapter->watchdog_timer);
4970 adapter->watchdog_timer.function = &e1000_watchdog;
4971 adapter->watchdog_timer.data = (unsigned long) adapter;
4973 init_timer(&adapter->phy_info_timer);
4974 adapter->phy_info_timer.function = &e1000_update_phy_info;
4975 adapter->phy_info_timer.data = (unsigned long) adapter;
4977 INIT_WORK(&adapter->reset_task, e1000_reset_task);
4978 INIT_WORK(&adapter->watchdog_task, e1000_watchdog_task);
4979 INIT_WORK(&adapter->downshift_task, e1000e_downshift_workaround);
4980 INIT_WORK(&adapter->update_phy_task, e1000e_update_phy_task);
4982 /* Initialize link parameters. User can change them with ethtool */
4983 adapter->hw.mac.autoneg = 1;
4984 adapter->fc_autoneg = 1;
4985 adapter->hw.fc.requested_mode = e1000_fc_default;
4986 adapter->hw.fc.current_mode = e1000_fc_default;
4987 adapter->hw.phy.autoneg_advertised = 0x2f;
4989 /* ring size defaults */
4990 adapter->rx_ring->count = 256;
4991 adapter->tx_ring->count = 256;
4994 * Initial Wake on LAN setting - If APM wake is enabled in
4995 * the EEPROM, enable the ACPI Magic Packet filter
4997 if (adapter->flags & FLAG_APME_IN_WUC) {
4998 /* APME bit in EEPROM is mapped to WUC.APME */
4999 eeprom_data = er32(WUC);
5000 eeprom_apme_mask = E1000_WUC_APME;
5001 } else if (adapter->flags & FLAG_APME_IN_CTRL3) {
5002 if (adapter->flags & FLAG_APME_CHECK_PORT_B &&
5003 (adapter->hw.bus.func == 1))
5004 e1000_read_nvm(&adapter->hw,
5005 NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
5007 e1000_read_nvm(&adapter->hw,
5008 NVM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
5011 /* fetch WoL from EEPROM */
5012 if (eeprom_data & eeprom_apme_mask)
5013 adapter->eeprom_wol |= E1000_WUFC_MAG;
5016 * now that we have the eeprom settings, apply the special cases
5017 * where the eeprom may be wrong or the board simply won't support
5018 * wake on lan on a particular port
5020 if (!(adapter->flags & FLAG_HAS_WOL))
5021 adapter->eeprom_wol = 0;
5023 /* initialize the wol settings based on the eeprom settings */
5024 adapter->wol = adapter->eeprom_wol;
5025 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
5027 /* save off EEPROM version number */
5028 e1000_read_nvm(&adapter->hw, 5, 1, &adapter->eeprom_vers);
5030 /* reset the hardware with the new settings */
5031 e1000e_reset(adapter);
5034 * If the controller has AMT, do not set DRV_LOAD until the interface
5035 * is up. For all other cases, let the f/w know that the h/w is now
5036 * under the control of the driver.
5038 if (!(adapter->flags & FLAG_HAS_AMT))
5039 e1000_get_hw_control(adapter);
5041 /* tell the stack to leave us alone until e1000_open() is called */
5042 netif_carrier_off(netdev);
5043 netif_tx_stop_all_queues(netdev);
5045 strcpy(netdev->name, "eth%d");
5046 err = register_netdev(netdev);
5050 e1000_print_device_info(adapter);
5055 if (!(adapter->flags & FLAG_HAS_AMT))
5056 e1000_release_hw_control(adapter);
5058 if (!e1000_check_reset_block(&adapter->hw))
5059 e1000_phy_hw_reset(&adapter->hw);
5062 kfree(adapter->tx_ring);
5063 kfree(adapter->rx_ring);
5065 if (adapter->hw.flash_address)
5066 iounmap(adapter->hw.flash_address);
5067 e1000e_reset_interrupt_capability(adapter);
5069 iounmap(adapter->hw.hw_addr);
5071 free_netdev(netdev);
5073 pci_release_selected_regions(pdev,
5074 pci_select_bars(pdev, IORESOURCE_MEM));
5077 pci_disable_device(pdev);
5082 * e1000_remove - Device Removal Routine
5083 * @pdev: PCI device information struct
5085 * e1000_remove is called by the PCI subsystem to alert the driver
5086 * that it should release a PCI device. The could be caused by a
5087 * Hot-Plug event, or because the driver is going to be removed from
5090 static void __devexit e1000_remove(struct pci_dev *pdev)
5092 struct net_device *netdev = pci_get_drvdata(pdev);
5093 struct e1000_adapter *adapter = netdev_priv(netdev);
5096 * flush_scheduled work may reschedule our watchdog task, so
5097 * explicitly disable watchdog tasks from being rescheduled
5099 set_bit(__E1000_DOWN, &adapter->state);
5100 del_timer_sync(&adapter->watchdog_timer);
5101 del_timer_sync(&adapter->phy_info_timer);
5103 flush_scheduled_work();
5106 * Release control of h/w to f/w. If f/w is AMT enabled, this
5107 * would have already happened in close and is redundant.
5109 e1000_release_hw_control(adapter);
5111 unregister_netdev(netdev);
5113 if (!e1000_check_reset_block(&adapter->hw))
5114 e1000_phy_hw_reset(&adapter->hw);
5116 e1000e_reset_interrupt_capability(adapter);
5117 kfree(adapter->tx_ring);
5118 kfree(adapter->rx_ring);
5120 iounmap(adapter->hw.hw_addr);
5121 if (adapter->hw.flash_address)
5122 iounmap(adapter->hw.flash_address);
5123 pci_release_selected_regions(pdev,
5124 pci_select_bars(pdev, IORESOURCE_MEM));
5126 free_netdev(netdev);
5128 pci_disable_device(pdev);
5131 /* PCI Error Recovery (ERS) */
5132 static struct pci_error_handlers e1000_err_handler = {
5133 .error_detected = e1000_io_error_detected,
5134 .slot_reset = e1000_io_slot_reset,
5135 .resume = e1000_io_resume,
5138 static struct pci_device_id e1000_pci_tbl[] = {
5139 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_COPPER), board_82571 },
5140 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_FIBER), board_82571 },
5141 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER), board_82571 },
5142 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_COPPER_LP), board_82571 },
5143 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_QUAD_FIBER), board_82571 },
5144 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES), board_82571 },
5145 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_DUAL), board_82571 },
5146 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571EB_SERDES_QUAD), board_82571 },
5147 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82571PT_QUAD_COPPER), board_82571 },
5149 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI), board_82572 },
5150 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_COPPER), board_82572 },
5151 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_FIBER), board_82572 },
5152 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82572EI_SERDES), board_82572 },
5154 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E), board_82573 },
5155 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573E_IAMT), board_82573 },
5156 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82573L), board_82573 },
5158 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82574L), board_82574 },
5160 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_DPT),
5161 board_80003es2lan },
5162 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_COPPER_SPT),
5163 board_80003es2lan },
5164 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_DPT),
5165 board_80003es2lan },
5166 { PCI_VDEVICE(INTEL, E1000_DEV_ID_80003ES2LAN_SERDES_SPT),
5167 board_80003es2lan },
5169 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE), board_ich8lan },
5170 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_G), board_ich8lan },
5171 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IFE_GT), board_ich8lan },
5172 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_AMT), board_ich8lan },
5173 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_C), board_ich8lan },
5174 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M), board_ich8lan },
5175 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH8_IGP_M_AMT), board_ich8lan },
5177 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE), board_ich9lan },
5178 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_G), board_ich9lan },
5179 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IFE_GT), board_ich9lan },
5180 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_AMT), board_ich9lan },
5181 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_C), board_ich9lan },
5182 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_BM), board_ich9lan },
5183 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M), board_ich9lan },
5184 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_AMT), board_ich9lan },
5185 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH9_IGP_M_V), board_ich9lan },
5187 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LM), board_ich9lan },
5188 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_LF), board_ich9lan },
5189 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_R_BM_V), board_ich9lan },
5191 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LM), board_ich10lan },
5192 { PCI_VDEVICE(INTEL, E1000_DEV_ID_ICH10_D_BM_LF), board_ich10lan },
5194 { } /* terminate list */
5196 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
5198 /* PCI Device API Driver */
5199 static struct pci_driver e1000_driver = {
5200 .name = e1000e_driver_name,
5201 .id_table = e1000_pci_tbl,
5202 .probe = e1000_probe,
5203 .remove = __devexit_p(e1000_remove),
5205 /* Power Management Hooks */
5206 .suspend = e1000_suspend,
5207 .resume = e1000_resume,
5209 .shutdown = e1000_shutdown,
5210 .err_handler = &e1000_err_handler
5214 * e1000_init_module - Driver Registration Routine
5216 * e1000_init_module is the first routine called when the driver is
5217 * loaded. All it does is register with the PCI subsystem.
5219 static int __init e1000_init_module(void)
5222 printk(KERN_INFO "%s: Intel(R) PRO/1000 Network Driver - %s\n",
5223 e1000e_driver_name, e1000e_driver_version);
5224 printk(KERN_INFO "%s: Copyright (c) 1999-2008 Intel Corporation.\n",
5225 e1000e_driver_name);
5226 ret = pci_register_driver(&e1000_driver);
5227 pm_qos_add_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name,
5228 PM_QOS_DEFAULT_VALUE);
5232 module_init(e1000_init_module);
5235 * e1000_exit_module - Driver Exit Cleanup Routine
5237 * e1000_exit_module is called just before the driver is removed
5240 static void __exit e1000_exit_module(void)
5242 pci_unregister_driver(&e1000_driver);
5243 pm_qos_remove_requirement(PM_QOS_CPU_DMA_LATENCY, e1000e_driver_name);
5245 module_exit(e1000_exit_module);
5248 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
5249 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
5250 MODULE_LICENSE("GPL");
5251 MODULE_VERSION(DRV_VERSION);