3 * BRIEF MODULE DESCRIPTION
4 * The Descriptor Based DMA channel manager that first appeared
5 * on the Au1550. I started with dma.c, but I think all that is
6 * left is this initial comment :-)
8 * Copyright 2004 Embedded Edge, LLC
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
17 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
18 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
19 * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
22 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
23 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 * You should have received a copy of the GNU General Public License along
28 * with this program; if not, write to the Free Software Foundation, Inc.,
29 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/interrupt.h>
37 #include <linux/module.h>
38 #include <asm/mach-au1x00/au1000.h>
39 #include <asm/mach-au1x00/au1xxx_dbdma.h>
41 #if defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200)
44 * The Descriptor Based DMA supports up to 16 channels.
46 * There are 32 devices defined. We keep an internal structure
47 * of devices using these channels, along with additional
50 * We allocate the descriptors and allow access to them through various
51 * functions. The drivers allocate the data buffers and assign them
54 static DEFINE_SPINLOCK(au1xxx_dbdma_spin_lock);
56 /* I couldn't find a macro that did this... */
57 #define ALIGN_ADDR(x, a) ((((u32)(x)) + (a-1)) & ~(a-1))
59 static dbdma_global_t *dbdma_gptr = (dbdma_global_t *)DDMA_GLOBAL_BASE;
60 static int dbdma_initialized;
61 static void au1xxx_dbdma_init(void);
63 static dbdev_tab_t dbdev_tab[] = {
64 #ifdef CONFIG_SOC_AU1550
66 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
67 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
68 { DSCR_CMD0_UART3_TX, DEV_FLAGS_OUT, 0, 8, 0x11400004, 0, 0 },
69 { DSCR_CMD0_UART3_RX, DEV_FLAGS_IN, 0, 8, 0x11400000, 0, 0 },
72 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
73 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
74 { DSCR_CMD0_DMA_REQ2, 0, 0, 0, 0x00000000, 0, 0 },
75 { DSCR_CMD0_DMA_REQ3, 0, 0, 0, 0x00000000, 0, 0 },
78 { DSCR_CMD0_USBDEV_RX0, DEV_FLAGS_IN, 4, 8, 0x10200000, 0, 0 },
79 { DSCR_CMD0_USBDEV_TX0, DEV_FLAGS_OUT, 4, 8, 0x10200004, 0, 0 },
80 { DSCR_CMD0_USBDEV_TX1, DEV_FLAGS_OUT, 4, 8, 0x10200008, 0, 0 },
81 { DSCR_CMD0_USBDEV_TX2, DEV_FLAGS_OUT, 4, 8, 0x1020000c, 0, 0 },
82 { DSCR_CMD0_USBDEV_RX3, DEV_FLAGS_IN, 4, 8, 0x10200010, 0, 0 },
83 { DSCR_CMD0_USBDEV_RX4, DEV_FLAGS_IN, 4, 8, 0x10200014, 0, 0 },
86 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 0, 0x11a0001c, 0, 0 },
87 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 0, 0x11a0001c, 0, 0 },
90 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 0, 0x11b0001c, 0, 0 },
91 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 0, 0x11b0001c, 0, 0 },
94 { DSCR_CMD0_PSC2_TX, DEV_FLAGS_OUT, 0, 0, 0x10a0001c, 0, 0 },
95 { DSCR_CMD0_PSC2_RX, DEV_FLAGS_IN, 0, 0, 0x10a0001c, 0, 0 },
98 { DSCR_CMD0_PSC3_TX, DEV_FLAGS_OUT, 0, 0, 0x10b0001c, 0, 0 },
99 { DSCR_CMD0_PSC3_RX, DEV_FLAGS_IN, 0, 0, 0x10b0001c, 0, 0 },
101 { DSCR_CMD0_PCI_WRITE, 0, 0, 0, 0x00000000, 0, 0 }, /* PCI */
102 { DSCR_CMD0_NAND_FLASH, 0, 0, 0, 0x00000000, 0, 0 }, /* NAND */
105 { DSCR_CMD0_MAC0_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
106 { DSCR_CMD0_MAC0_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
109 { DSCR_CMD0_MAC1_RX, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
110 { DSCR_CMD0_MAC1_TX, DEV_FLAGS_OUT, 0, 0, 0x00000000, 0, 0 },
112 #endif /* CONFIG_SOC_AU1550 */
114 #ifdef CONFIG_SOC_AU1200
115 { DSCR_CMD0_UART0_TX, DEV_FLAGS_OUT, 0, 8, 0x11100004, 0, 0 },
116 { DSCR_CMD0_UART0_RX, DEV_FLAGS_IN, 0, 8, 0x11100000, 0, 0 },
117 { DSCR_CMD0_UART1_TX, DEV_FLAGS_OUT, 0, 8, 0x11200004, 0, 0 },
118 { DSCR_CMD0_UART1_RX, DEV_FLAGS_IN, 0, 8, 0x11200000, 0, 0 },
120 { DSCR_CMD0_DMA_REQ0, 0, 0, 0, 0x00000000, 0, 0 },
121 { DSCR_CMD0_DMA_REQ1, 0, 0, 0, 0x00000000, 0, 0 },
123 { DSCR_CMD0_MAE_BE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
124 { DSCR_CMD0_MAE_FE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
125 { DSCR_CMD0_MAE_BOTH, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
126 { DSCR_CMD0_LCD, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
128 { DSCR_CMD0_SDMS_TX0, DEV_FLAGS_OUT, 4, 8, 0x10600000, 0, 0 },
129 { DSCR_CMD0_SDMS_RX0, DEV_FLAGS_IN, 4, 8, 0x10600004, 0, 0 },
130 { DSCR_CMD0_SDMS_TX1, DEV_FLAGS_OUT, 4, 8, 0x10680000, 0, 0 },
131 { DSCR_CMD0_SDMS_RX1, DEV_FLAGS_IN, 4, 8, 0x10680004, 0, 0 },
133 { DSCR_CMD0_AES_RX, DEV_FLAGS_IN , 4, 32, 0x10300008, 0, 0 },
134 { DSCR_CMD0_AES_TX, DEV_FLAGS_OUT, 4, 32, 0x10300004, 0, 0 },
136 { DSCR_CMD0_PSC0_TX, DEV_FLAGS_OUT, 0, 16, 0x11a0001c, 0, 0 },
137 { DSCR_CMD0_PSC0_RX, DEV_FLAGS_IN, 0, 16, 0x11a0001c, 0, 0 },
138 { DSCR_CMD0_PSC0_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
140 { DSCR_CMD0_PSC1_TX, DEV_FLAGS_OUT, 0, 16, 0x11b0001c, 0, 0 },
141 { DSCR_CMD0_PSC1_RX, DEV_FLAGS_IN, 0, 16, 0x11b0001c, 0, 0 },
142 { DSCR_CMD0_PSC1_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
144 { DSCR_CMD0_CIM_RXA, DEV_FLAGS_IN, 0, 32, 0x14004020, 0, 0 },
145 { DSCR_CMD0_CIM_RXB, DEV_FLAGS_IN, 0, 32, 0x14004040, 0, 0 },
146 { DSCR_CMD0_CIM_RXC, DEV_FLAGS_IN, 0, 32, 0x14004060, 0, 0 },
147 { DSCR_CMD0_CIM_SYNC, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
149 { DSCR_CMD0_NAND_FLASH, DEV_FLAGS_IN, 0, 0, 0x00000000, 0, 0 },
151 #endif /* CONFIG_SOC_AU1200 */
153 { DSCR_CMD0_THROTTLE, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
154 { DSCR_CMD0_ALWAYS, DEV_FLAGS_ANYUSE, 0, 0, 0x00000000, 0, 0 },
156 /* Provide 16 user definable device types */
157 { ~0, 0, 0, 0, 0, 0, 0 },
158 { ~0, 0, 0, 0, 0, 0, 0 },
159 { ~0, 0, 0, 0, 0, 0, 0 },
160 { ~0, 0, 0, 0, 0, 0, 0 },
161 { ~0, 0, 0, 0, 0, 0, 0 },
162 { ~0, 0, 0, 0, 0, 0, 0 },
163 { ~0, 0, 0, 0, 0, 0, 0 },
164 { ~0, 0, 0, 0, 0, 0, 0 },
165 { ~0, 0, 0, 0, 0, 0, 0 },
166 { ~0, 0, 0, 0, 0, 0, 0 },
167 { ~0, 0, 0, 0, 0, 0, 0 },
168 { ~0, 0, 0, 0, 0, 0, 0 },
169 { ~0, 0, 0, 0, 0, 0, 0 },
170 { ~0, 0, 0, 0, 0, 0, 0 },
171 { ~0, 0, 0, 0, 0, 0, 0 },
172 { ~0, 0, 0, 0, 0, 0, 0 },
175 #define DBDEV_TAB_SIZE ARRAY_SIZE(dbdev_tab)
177 static chan_tab_t *chan_tab_ptr[NUM_DBDMA_CHANS];
179 static dbdev_tab_t *find_dbdev_id(u32 id)
183 for (i = 0; i < DBDEV_TAB_SIZE; ++i) {
191 void *au1xxx_ddma_get_nextptr_virt(au1x_ddma_desc_t *dp)
193 return phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
195 EXPORT_SYMBOL(au1xxx_ddma_get_nextptr_virt);
197 u32 au1xxx_ddma_add_device(dbdev_tab_t *dev)
201 static u16 new_id = 0x1000;
203 p = find_dbdev_id(~0);
205 memcpy(p, dev, sizeof(dbdev_tab_t));
206 p->dev_id = DSCR_DEV2CUSTOM_ID(new_id, dev->dev_id);
210 printk(KERN_DEBUG "add_device: id:%x flags:%x padd:%x\n",
211 p->dev_id, p->dev_flags, p->dev_physaddr);
217 EXPORT_SYMBOL(au1xxx_ddma_add_device);
219 void au1xxx_ddma_del_device(u32 devid)
221 dbdev_tab_t *p = find_dbdev_id(devid);
224 memset(p, 0, sizeof(dbdev_tab_t));
228 EXPORT_SYMBOL(au1xxx_ddma_del_device);
230 /* Allocate a channel and return a non-zero descriptor if successful. */
231 u32 au1xxx_dbdma_chan_alloc(u32 srcid, u32 destid,
232 void (*callback)(int, void *), void *callparam)
238 dbdev_tab_t *stp, *dtp;
243 * We do the intialization on the first channel allocation.
244 * We have to wait because of the interrupt handler initialization
245 * which can't be done successfully during board set up.
247 if (!dbdma_initialized)
249 dbdma_initialized = 1;
251 stp = find_dbdev_id(srcid);
254 dtp = find_dbdev_id(destid);
261 /* Check to see if we can get both channels. */
262 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
263 if (!(stp->dev_flags & DEV_FLAGS_INUSE) ||
264 (stp->dev_flags & DEV_FLAGS_ANYUSE)) {
266 stp->dev_flags |= DEV_FLAGS_INUSE;
267 if (!(dtp->dev_flags & DEV_FLAGS_INUSE) ||
268 (dtp->dev_flags & DEV_FLAGS_ANYUSE)) {
269 /* Got destination */
270 dtp->dev_flags |= DEV_FLAGS_INUSE;
272 /* Can't get dest. Release src. */
273 stp->dev_flags &= ~DEV_FLAGS_INUSE;
278 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
281 /* Let's see if we can allocate a channel for it. */
284 spin_lock_irqsave(&au1xxx_dbdma_spin_lock, flags);
285 for (i = 0; i < NUM_DBDMA_CHANS; i++)
286 if (chan_tab_ptr[i] == NULL) {
288 * If kmalloc fails, it is caught below same
289 * as a channel not available.
291 ctp = kmalloc(sizeof(chan_tab_t), GFP_ATOMIC);
292 chan_tab_ptr[i] = ctp;
295 spin_unlock_irqrestore(&au1xxx_dbdma_spin_lock, flags);
298 memset(ctp, 0, sizeof(chan_tab_t));
299 ctp->chan_index = chan = i;
300 dcp = DDMA_CHANNEL_BASE;
301 dcp += (0x0100 * chan);
302 ctp->chan_ptr = (au1x_dma_chan_t *)dcp;
303 cp = (au1x_dma_chan_t *)dcp;
305 ctp->chan_dest = dtp;
306 ctp->chan_callback = callback;
307 ctp->chan_callparam = callparam;
309 /* Initialize channel configuration. */
311 if (stp->dev_intlevel)
313 if (stp->dev_intpolarity)
315 if (dtp->dev_intlevel)
317 if (dtp->dev_intpolarity)
319 if ((stp->dev_flags & DEV_FLAGS_SYNC) ||
320 (dtp->dev_flags & DEV_FLAGS_SYNC))
325 /* Return a non-zero value that can be used to
326 * find the channel information in subsequent
329 rv = (u32)(&chan_tab_ptr[chan]);
331 /* Release devices */
332 stp->dev_flags &= ~DEV_FLAGS_INUSE;
333 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
338 EXPORT_SYMBOL(au1xxx_dbdma_chan_alloc);
341 * Set the device width if source or destination is a FIFO.
342 * Should be 8, 16, or 32 bits.
344 u32 au1xxx_dbdma_set_devwidth(u32 chanid, int bits)
348 dbdev_tab_t *stp, *dtp;
350 ctp = *((chan_tab_t **)chanid);
352 dtp = ctp->chan_dest;
355 if (stp->dev_flags & DEV_FLAGS_IN) { /* Source in fifo */
356 rv = stp->dev_devwidth;
357 stp->dev_devwidth = bits;
359 if (dtp->dev_flags & DEV_FLAGS_OUT) { /* Destination out fifo */
360 rv = dtp->dev_devwidth;
361 dtp->dev_devwidth = bits;
366 EXPORT_SYMBOL(au1xxx_dbdma_set_devwidth);
368 /* Allocate a descriptor ring, initializing as much as possible. */
369 u32 au1xxx_dbdma_ring_alloc(u32 chanid, int entries)
372 u32 desc_base, srcid, destid;
373 u32 cmd0, cmd1, src1, dest1;
376 dbdev_tab_t *stp, *dtp;
377 au1x_ddma_desc_t *dp;
380 * I guess we could check this to be within the
381 * range of the table......
383 ctp = *((chan_tab_t **)chanid);
385 dtp = ctp->chan_dest;
388 * The descriptors must be 32-byte aligned. There is a
389 * possibility the allocation will give us such an address,
390 * and if we try that first we are likely to not waste larger
393 desc_base = (u32)kmalloc(entries * sizeof(au1x_ddma_desc_t),
398 if (desc_base & 0x1f) {
400 * Lost....do it again, allocate extra, and round
403 kfree((const void *)desc_base);
404 i = entries * sizeof(au1x_ddma_desc_t);
405 i += (sizeof(au1x_ddma_desc_t) - 1);
406 desc_base = (u32)kmalloc(i, GFP_KERNEL|GFP_DMA);
410 desc_base = ALIGN_ADDR(desc_base, sizeof(au1x_ddma_desc_t));
412 dp = (au1x_ddma_desc_t *)desc_base;
414 /* Keep track of the base descriptor. */
415 ctp->chan_desc_base = dp;
417 /* Initialize the rings with as much information as we know. */
419 destid = dtp->dev_id;
421 cmd0 = cmd1 = src1 = dest1 = 0;
424 cmd0 |= DSCR_CMD0_SID(srcid);
425 cmd0 |= DSCR_CMD0_DID(destid);
426 cmd0 |= DSCR_CMD0_IE | DSCR_CMD0_CV;
427 cmd0 |= DSCR_CMD0_ST(DSCR_CMD0_ST_NOCHANGE);
429 /* Is it mem to mem transfer? */
430 if (((DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_THROTTLE) ||
431 (DSCR_CUSTOM2DEV_ID(srcid) == DSCR_CMD0_ALWAYS)) &&
432 ((DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_THROTTLE) ||
433 (DSCR_CUSTOM2DEV_ID(destid) == DSCR_CMD0_ALWAYS)))
434 cmd0 |= DSCR_CMD0_MEM;
436 switch (stp->dev_devwidth) {
438 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_BYTE);
441 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_HALFWORD);
445 cmd0 |= DSCR_CMD0_SW(DSCR_CMD0_WORD);
449 switch (dtp->dev_devwidth) {
451 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_BYTE);
454 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_HALFWORD);
458 cmd0 |= DSCR_CMD0_DW(DSCR_CMD0_WORD);
463 * If the device is marked as an in/out FIFO, ensure it is
466 if (stp->dev_flags & DEV_FLAGS_IN)
467 cmd0 |= DSCR_CMD0_SN; /* Source in FIFO */
468 if (dtp->dev_flags & DEV_FLAGS_OUT)
469 cmd0 |= DSCR_CMD0_DN; /* Destination out FIFO */
472 * Set up source1. For now, assume no stride and increment.
473 * A channel attribute update can change this later.
475 switch (stp->dev_tsize) {
477 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE1);
480 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE2);
483 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE4);
487 src1 |= DSCR_SRC1_STS(DSCR_xTS_SIZE8);
491 /* If source input is FIFO, set static address. */
492 if (stp->dev_flags & DEV_FLAGS_IN) {
493 if (stp->dev_flags & DEV_FLAGS_BURSTABLE)
494 src1 |= DSCR_SRC1_SAM(DSCR_xAM_BURST);
496 src1 |= DSCR_SRC1_SAM(DSCR_xAM_STATIC);
499 if (stp->dev_physaddr)
500 src0 = stp->dev_physaddr;
503 * Set up dest1. For now, assume no stride and increment.
504 * A channel attribute update can change this later.
506 switch (dtp->dev_tsize) {
508 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE1);
511 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE2);
514 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE4);
518 dest1 |= DSCR_DEST1_DTS(DSCR_xTS_SIZE8);
522 /* If destination output is FIFO, set static address. */
523 if (dtp->dev_flags & DEV_FLAGS_OUT) {
524 if (dtp->dev_flags & DEV_FLAGS_BURSTABLE)
525 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_BURST);
527 dest1 |= DSCR_DEST1_DAM(DSCR_xAM_STATIC);
530 if (dtp->dev_physaddr)
531 dest0 = dtp->dev_physaddr;
534 printk(KERN_DEBUG "did:%x sid:%x cmd0:%x cmd1:%x source0:%x "
535 "source1:%x dest0:%x dest1:%x\n",
536 dtp->dev_id, stp->dev_id, cmd0, cmd1, src0,
539 for (i = 0; i < entries; i++) {
540 dp->dscr_cmd0 = cmd0;
541 dp->dscr_cmd1 = cmd1;
542 dp->dscr_source0 = src0;
543 dp->dscr_source1 = src1;
544 dp->dscr_dest0 = dest0;
545 dp->dscr_dest1 = dest1;
549 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(dp + 1));
553 /* Make last descrptor point to the first. */
555 dp->dscr_nxtptr = DSCR_NXTPTR(virt_to_phys(ctp->chan_desc_base));
556 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
558 return (u32)ctp->chan_desc_base;
560 EXPORT_SYMBOL(au1xxx_dbdma_ring_alloc);
563 * Put a source buffer into the DMA ring.
564 * This updates the source pointer and byte count. Normally used
565 * for memory to fifo transfers.
567 u32 _au1xxx_dbdma_put_source(u32 chanid, void *buf, int nbytes, u32 flags)
570 au1x_ddma_desc_t *dp;
573 * I guess we could check this to be within the
574 * range of the table......
576 ctp = *(chan_tab_t **)chanid;
579 * We should have multiple callers for a particular channel,
580 * an interrupt doesn't affect this pointer nor the descriptor,
581 * so no locking should be needed.
586 * If the descriptor is valid, we are way ahead of the DMA
587 * engine, so just return an error condition.
589 if (dp->dscr_cmd0 & DSCR_CMD0_V)
592 /* Load up buffer address and byte count. */
593 dp->dscr_source0 = virt_to_phys(buf);
594 dp->dscr_cmd1 = nbytes;
596 if (flags & DDMA_FLAGS_IE)
597 dp->dscr_cmd0 |= DSCR_CMD0_IE;
598 if (flags & DDMA_FLAGS_NOIE)
599 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
602 * There is an errata on the Au1200/Au1550 parts that could result
603 * in "stale" data being DMA'ed. It has to do with the snoop logic on
604 * the cache eviction buffer. DMA_NONCOHERENT is on by default for
605 * these parts. If it is fixed in the future, these dma_cache_inv will
606 * just be nothing more than empty macros. See io.h.
608 dma_cache_wback_inv((unsigned long)buf, nbytes);
609 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
611 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
612 ctp->chan_ptr->ddma_dbell = 0;
614 /* Get next descriptor pointer. */
615 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
617 /* Return something non-zero. */
620 EXPORT_SYMBOL(_au1xxx_dbdma_put_source);
622 /* Put a destination buffer into the DMA ring.
623 * This updates the destination pointer and byte count. Normally used
624 * to place an empty buffer into the ring for fifo to memory transfers.
627 _au1xxx_dbdma_put_dest(u32 chanid, void *buf, int nbytes, u32 flags)
630 au1x_ddma_desc_t *dp;
632 /* I guess we could check this to be within the
633 * range of the table......
635 ctp = *((chan_tab_t **)chanid);
637 /* We should have multiple callers for a particular channel,
638 * an interrupt doesn't affect this pointer nor the descriptor,
639 * so no locking should be needed.
643 /* If the descriptor is valid, we are way ahead of the DMA
644 * engine, so just return an error condition.
646 if (dp->dscr_cmd0 & DSCR_CMD0_V)
649 /* Load up buffer address and byte count */
652 if (flags & DDMA_FLAGS_IE)
653 dp->dscr_cmd0 |= DSCR_CMD0_IE;
654 if (flags & DDMA_FLAGS_NOIE)
655 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
657 dp->dscr_dest0 = virt_to_phys(buf);
658 dp->dscr_cmd1 = nbytes;
660 printk(KERN_DEBUG "cmd0:%x cmd1:%x source0:%x source1:%x dest0:%x dest1:%x\n",
661 dp->dscr_cmd0, dp->dscr_cmd1, dp->dscr_source0,
662 dp->dscr_source1, dp->dscr_dest0, dp->dscr_dest1);
665 * There is an errata on the Au1200/Au1550 parts that could result in
666 * "stale" data being DMA'ed. It has to do with the snoop logic on the
667 * cache eviction buffer. DMA_NONCOHERENT is on by default for these
668 * parts. If it is fixed in the future, these dma_cache_inv will just
669 * be nothing more than empty macros. See io.h.
671 dma_cache_inv((unsigned long)buf, nbytes);
672 dp->dscr_cmd0 |= DSCR_CMD0_V; /* Let it rip */
674 dma_cache_wback_inv((unsigned long)dp, sizeof(dp));
675 ctp->chan_ptr->ddma_dbell = 0;
677 /* Get next descriptor pointer. */
678 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
680 /* Return something non-zero. */
683 EXPORT_SYMBOL(_au1xxx_dbdma_put_dest);
686 * Get a destination buffer into the DMA ring.
687 * Normally used to get a full buffer from the ring during fifo
688 * to memory transfers. This does not set the valid bit, you will
689 * have to put another destination buffer to keep the DMA going.
691 u32 au1xxx_dbdma_get_dest(u32 chanid, void **buf, int *nbytes)
694 au1x_ddma_desc_t *dp;
698 * I guess we could check this to be within the
699 * range of the table......
701 ctp = *((chan_tab_t **)chanid);
704 * We should have multiple callers for a particular channel,
705 * an interrupt doesn't affect this pointer nor the descriptor,
706 * so no locking should be needed.
711 * If the descriptor is valid, we are way ahead of the DMA
712 * engine, so just return an error condition.
714 if (dp->dscr_cmd0 & DSCR_CMD0_V)
717 /* Return buffer address and byte count. */
718 *buf = (void *)(phys_to_virt(dp->dscr_dest0));
719 *nbytes = dp->dscr_cmd1;
722 /* Get next descriptor pointer. */
723 ctp->get_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
725 /* Return something non-zero. */
728 EXPORT_SYMBOL_GPL(au1xxx_dbdma_get_dest);
730 void au1xxx_dbdma_stop(u32 chanid)
734 int halt_timeout = 0;
736 ctp = *((chan_tab_t **)chanid);
739 cp->ddma_cfg &= ~DDMA_CFG_EN; /* Disable channel */
741 while (!(cp->ddma_stat & DDMA_STAT_H)) {
744 if (halt_timeout > 100) {
745 printk(KERN_WARNING "warning: DMA channel won't halt\n");
749 /* clear current desc valid and doorbell */
750 cp->ddma_stat |= (DDMA_STAT_DB | DDMA_STAT_V);
753 EXPORT_SYMBOL(au1xxx_dbdma_stop);
756 * Start using the current descriptor pointer. If the DBDMA encounters
757 * a non-valid descriptor, it will stop. In this case, we can just
758 * continue by adding a buffer to the list and starting again.
760 void au1xxx_dbdma_start(u32 chanid)
765 ctp = *((chan_tab_t **)chanid);
767 cp->ddma_desptr = virt_to_phys(ctp->cur_ptr);
768 cp->ddma_cfg |= DDMA_CFG_EN; /* Enable channel */
773 EXPORT_SYMBOL(au1xxx_dbdma_start);
775 void au1xxx_dbdma_reset(u32 chanid)
778 au1x_ddma_desc_t *dp;
780 au1xxx_dbdma_stop(chanid);
782 ctp = *((chan_tab_t **)chanid);
783 ctp->get_ptr = ctp->put_ptr = ctp->cur_ptr = ctp->chan_desc_base;
785 /* Run through the descriptors and reset the valid indicator. */
786 dp = ctp->chan_desc_base;
789 dp->dscr_cmd0 &= ~DSCR_CMD0_V;
791 * Reset our software status -- this is used to determine
792 * if a descriptor is in use by upper level software. Since
793 * posting can reset 'V' bit.
796 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
797 } while (dp != ctp->chan_desc_base);
799 EXPORT_SYMBOL(au1xxx_dbdma_reset);
801 u32 au1xxx_get_dma_residue(u32 chanid)
807 ctp = *((chan_tab_t **)chanid);
810 /* This is only valid if the channel is stopped. */
811 rv = cp->ddma_bytecnt;
816 EXPORT_SYMBOL_GPL(au1xxx_get_dma_residue);
818 void au1xxx_dbdma_chan_free(u32 chanid)
821 dbdev_tab_t *stp, *dtp;
823 ctp = *((chan_tab_t **)chanid);
825 dtp = ctp->chan_dest;
827 au1xxx_dbdma_stop(chanid);
829 kfree((void *)ctp->chan_desc_base);
831 stp->dev_flags &= ~DEV_FLAGS_INUSE;
832 dtp->dev_flags &= ~DEV_FLAGS_INUSE;
833 chan_tab_ptr[ctp->chan_index] = NULL;
837 EXPORT_SYMBOL(au1xxx_dbdma_chan_free);
839 static irqreturn_t dbdma_interrupt(int irq, void *dev_id)
844 au1x_ddma_desc_t *dp;
847 intstat = dbdma_gptr->ddma_intstat;
849 chan_index = __ffs(intstat);
851 ctp = chan_tab_ptr[chan_index];
855 /* Reset interrupt. */
859 if (ctp->chan_callback)
860 ctp->chan_callback(irq, ctp->chan_callparam);
862 ctp->cur_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
863 return IRQ_RETVAL(1);
866 static void au1xxx_dbdma_init(void)
870 dbdma_gptr->ddma_config = 0;
871 dbdma_gptr->ddma_throttle = 0;
872 dbdma_gptr->ddma_inten = 0xffff;
875 #if defined(CONFIG_SOC_AU1550)
876 irq_nr = AU1550_DDMA_INT;
877 #elif defined(CONFIG_SOC_AU1200)
878 irq_nr = AU1200_DDMA_INT;
880 #error Unknown Au1x00 SOC
883 if (request_irq(irq_nr, dbdma_interrupt, IRQF_DISABLED,
884 "Au1xxx dbdma", (void *)dbdma_gptr))
885 printk(KERN_ERR "Can't get 1550 dbdma irq");
888 void au1xxx_dbdma_dump(u32 chanid)
891 au1x_ddma_desc_t *dp;
892 dbdev_tab_t *stp, *dtp;
896 ctp = *((chan_tab_t **)chanid);
898 dtp = ctp->chan_dest;
901 printk(KERN_DEBUG "Chan %x, stp %x (dev %d) dtp %x (dev %d) \n",
902 (u32)ctp, (u32)stp, stp - dbdev_tab, (u32)dtp,
904 printk(KERN_DEBUG "desc base %x, get %x, put %x, cur %x\n",
905 (u32)(ctp->chan_desc_base), (u32)(ctp->get_ptr),
906 (u32)(ctp->put_ptr), (u32)(ctp->cur_ptr));
908 printk(KERN_DEBUG "dbdma chan %x\n", (u32)cp);
909 printk(KERN_DEBUG "cfg %08x, desptr %08x, statptr %08x\n",
910 cp->ddma_cfg, cp->ddma_desptr, cp->ddma_statptr);
911 printk(KERN_DEBUG "dbell %08x, irq %08x, stat %08x, bytecnt %08x\n",
912 cp->ddma_dbell, cp->ddma_irq, cp->ddma_stat,
915 /* Run through the descriptors */
916 dp = ctp->chan_desc_base;
919 printk(KERN_DEBUG "Dp[%d]= %08x, cmd0 %08x, cmd1 %08x\n",
920 i++, (u32)dp, dp->dscr_cmd0, dp->dscr_cmd1);
921 printk(KERN_DEBUG "src0 %08x, src1 %08x, dest0 %08x, dest1 %08x\n",
922 dp->dscr_source0, dp->dscr_source1,
923 dp->dscr_dest0, dp->dscr_dest1);
924 printk(KERN_DEBUG "stat %08x, nxtptr %08x\n",
925 dp->dscr_stat, dp->dscr_nxtptr);
926 dp = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
927 } while (dp != ctp->chan_desc_base);
930 /* Put a descriptor into the DMA ring.
931 * This updates the source/destination pointers and byte count.
933 u32 au1xxx_dbdma_put_dscr(u32 chanid, au1x_ddma_desc_t *dscr)
936 au1x_ddma_desc_t *dp;
940 * I guess we could check this to be within the
941 * range of the table......
943 ctp = *((chan_tab_t **)chanid);
946 * We should have multiple callers for a particular channel,
947 * an interrupt doesn't affect this pointer nor the descriptor,
948 * so no locking should be needed.
953 * If the descriptor is valid, we are way ahead of the DMA
954 * engine, so just return an error condition.
956 if (dp->dscr_cmd0 & DSCR_CMD0_V)
959 /* Load up buffer addresses and byte count. */
960 dp->dscr_dest0 = dscr->dscr_dest0;
961 dp->dscr_source0 = dscr->dscr_source0;
962 dp->dscr_dest1 = dscr->dscr_dest1;
963 dp->dscr_source1 = dscr->dscr_source1;
964 dp->dscr_cmd1 = dscr->dscr_cmd1;
965 nbytes = dscr->dscr_cmd1;
966 /* Allow the caller to specifiy if an interrupt is generated */
967 dp->dscr_cmd0 &= ~DSCR_CMD0_IE;
968 dp->dscr_cmd0 |= dscr->dscr_cmd0 | DSCR_CMD0_V;
969 ctp->chan_ptr->ddma_dbell = 0;
971 /* Get next descriptor pointer. */
972 ctp->put_ptr = phys_to_virt(DSCR_GET_NXTPTR(dp->dscr_nxtptr));
974 /* Return something non-zero. */
978 #endif /* defined(CONFIG_SOC_AU1550) || defined(CONFIG_SOC_AU1200) */