Pull ar-k0-usage into release branch
[linux-2.6] / drivers / scsi / aacraid / commsup.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc. <alan@redhat.com>
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000 Adaptec, Inc. (aacraid@adaptec.com)
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2, or (at your option)
13  * any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; see the file COPYING.  If not, write to
22  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
23  *
24  * Module Name:
25  *  commsup.c
26  *
27  * Abstract: Contain all routines that are required for FSA host/adapter
28  *    communication.
29  *
30  */
31
32 #include <linux/kernel.h>
33 #include <linux/init.h>
34 #include <linux/types.h>
35 #include <linux/sched.h>
36 #include <linux/pci.h>
37 #include <linux/spinlock.h>
38 #include <linux/slab.h>
39 #include <linux/completion.h>
40 #include <linux/blkdev.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_device.h>
43 #include <asm/semaphore.h>
44 #include <asm/delay.h>
45
46 #include "aacraid.h"
47
48 /**
49  *      fib_map_alloc           -       allocate the fib objects
50  *      @dev: Adapter to allocate for
51  *
52  *      Allocate and map the shared PCI space for the FIB blocks used to
53  *      talk to the Adaptec firmware.
54  */
55  
56 static int fib_map_alloc(struct aac_dev *dev)
57 {
58         dprintk((KERN_INFO
59           "allocate hardware fibs pci_alloc_consistent(%p, %d * (%d + %d), %p)\n",
60           dev->pdev, dev->max_fib_size, dev->scsi_host_ptr->can_queue,
61           AAC_NUM_MGT_FIB, &dev->hw_fib_pa));
62         if((dev->hw_fib_va = pci_alloc_consistent(dev->pdev, dev->max_fib_size
63           * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB),
64           &dev->hw_fib_pa))==NULL)
65                 return -ENOMEM;
66         return 0;
67 }
68
69 /**
70  *      fib_map_free            -       free the fib objects
71  *      @dev: Adapter to free
72  *
73  *      Free the PCI mappings and the memory allocated for FIB blocks
74  *      on this adapter.
75  */
76
77 void fib_map_free(struct aac_dev *dev)
78 {
79         pci_free_consistent(dev->pdev, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB), dev->hw_fib_va, dev->hw_fib_pa);
80 }
81
82 /**
83  *      fib_setup       -       setup the fibs
84  *      @dev: Adapter to set up
85  *
86  *      Allocate the PCI space for the fibs, map it and then intialise the
87  *      fib area, the unmapped fib data and also the free list
88  */
89
90 int fib_setup(struct aac_dev * dev)
91 {
92         struct fib *fibptr;
93         struct hw_fib *hw_fib_va;
94         dma_addr_t hw_fib_pa;
95         int i;
96
97         while (((i = fib_map_alloc(dev)) == -ENOMEM)
98          && (dev->scsi_host_ptr->can_queue > (64 - AAC_NUM_MGT_FIB))) {
99                 dev->init->MaxIoCommands = cpu_to_le32((dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB) >> 1);
100                 dev->scsi_host_ptr->can_queue = le32_to_cpu(dev->init->MaxIoCommands) - AAC_NUM_MGT_FIB;
101         }
102         if (i<0)
103                 return -ENOMEM;
104                 
105         hw_fib_va = dev->hw_fib_va;
106         hw_fib_pa = dev->hw_fib_pa;
107         memset(hw_fib_va, 0, dev->max_fib_size * (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB));
108         /*
109          *      Initialise the fibs
110          */
111         for (i = 0, fibptr = &dev->fibs[i]; i < (dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++, fibptr++) 
112         {
113                 fibptr->dev = dev;
114                 fibptr->hw_fib = hw_fib_va;
115                 fibptr->data = (void *) fibptr->hw_fib->data;
116                 fibptr->next = fibptr+1;        /* Forward chain the fibs */
117                 init_MUTEX_LOCKED(&fibptr->event_wait);
118                 spin_lock_init(&fibptr->event_lock);
119                 hw_fib_va->header.XferState = cpu_to_le32(0xffffffff);
120                 hw_fib_va->header.SenderSize = cpu_to_le16(dev->max_fib_size);
121                 fibptr->hw_fib_pa = hw_fib_pa;
122                 hw_fib_va = (struct hw_fib *)((unsigned char *)hw_fib_va + dev->max_fib_size);
123                 hw_fib_pa = hw_fib_pa + dev->max_fib_size;
124         }
125         /*
126          *      Add the fib chain to the free list
127          */
128         dev->fibs[dev->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB - 1].next = NULL;
129         /*
130          *      Enable this to debug out of queue space
131          */
132         dev->free_fib = &dev->fibs[0];
133         return 0;
134 }
135
136 /**
137  *      fib_alloc       -       allocate a fib
138  *      @dev: Adapter to allocate the fib for
139  *
140  *      Allocate a fib from the adapter fib pool. If the pool is empty we
141  *      return NULL.
142  */
143  
144 struct fib * fib_alloc(struct aac_dev *dev)
145 {
146         struct fib * fibptr;
147         unsigned long flags;
148         spin_lock_irqsave(&dev->fib_lock, flags);
149         fibptr = dev->free_fib; 
150         if(!fibptr){
151                 spin_unlock_irqrestore(&dev->fib_lock, flags);
152                 return fibptr;
153         }
154         dev->free_fib = fibptr->next;
155         spin_unlock_irqrestore(&dev->fib_lock, flags);
156         /*
157          *      Set the proper node type code and node byte size
158          */
159         fibptr->type = FSAFS_NTC_FIB_CONTEXT;
160         fibptr->size = sizeof(struct fib);
161         /*
162          *      Null out fields that depend on being zero at the start of
163          *      each I/O
164          */
165         fibptr->hw_fib->header.XferState = 0;
166         fibptr->callback = NULL;
167         fibptr->callback_data = NULL;
168
169         return fibptr;
170 }
171
172 /**
173  *      fib_free        -       free a fib
174  *      @fibptr: fib to free up
175  *
176  *      Frees up a fib and places it on the appropriate queue
177  *      (either free or timed out)
178  */
179  
180 void fib_free(struct fib * fibptr)
181 {
182         unsigned long flags;
183
184         spin_lock_irqsave(&fibptr->dev->fib_lock, flags);
185         if (fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT) {
186                 aac_config.fib_timeouts++;
187                 fibptr->next = fibptr->dev->timeout_fib;
188                 fibptr->dev->timeout_fib = fibptr;
189         } else {
190                 if (fibptr->hw_fib->header.XferState != 0) {
191                         printk(KERN_WARNING "fib_free, XferState != 0, fibptr = 0x%p, XferState = 0x%x\n", 
192                                  (void*)fibptr, 
193                                  le32_to_cpu(fibptr->hw_fib->header.XferState));
194                 }
195                 fibptr->next = fibptr->dev->free_fib;
196                 fibptr->dev->free_fib = fibptr;
197         }       
198         spin_unlock_irqrestore(&fibptr->dev->fib_lock, flags);
199 }
200
201 /**
202  *      fib_init        -       initialise a fib
203  *      @fibptr: The fib to initialize
204  *      
205  *      Set up the generic fib fields ready for use
206  */
207  
208 void fib_init(struct fib *fibptr)
209 {
210         struct hw_fib *hw_fib = fibptr->hw_fib;
211
212         hw_fib->header.StructType = FIB_MAGIC;
213         hw_fib->header.Size = cpu_to_le16(fibptr->dev->max_fib_size);
214         hw_fib->header.XferState = cpu_to_le32(HostOwned | FibInitialized | FibEmpty | FastResponseCapable);
215         hw_fib->header.SenderFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
216         hw_fib->header.ReceiverFibAddress = cpu_to_le32(fibptr->hw_fib_pa);
217         hw_fib->header.SenderSize = cpu_to_le16(fibptr->dev->max_fib_size);
218 }
219
220 /**
221  *      fib_deallocate          -       deallocate a fib
222  *      @fibptr: fib to deallocate
223  *
224  *      Will deallocate and return to the free pool the FIB pointed to by the
225  *      caller.
226  */
227  
228 static void fib_dealloc(struct fib * fibptr)
229 {
230         struct hw_fib *hw_fib = fibptr->hw_fib;
231         if(hw_fib->header.StructType != FIB_MAGIC) 
232                 BUG();
233         hw_fib->header.XferState = 0;        
234 }
235
236 /*
237  *      Commuication primitives define and support the queuing method we use to
238  *      support host to adapter commuication. All queue accesses happen through
239  *      these routines and are the only routines which have a knowledge of the
240  *       how these queues are implemented.
241  */
242  
243 /**
244  *      aac_get_entry           -       get a queue entry
245  *      @dev: Adapter
246  *      @qid: Queue Number
247  *      @entry: Entry return
248  *      @index: Index return
249  *      @nonotify: notification control
250  *
251  *      With a priority the routine returns a queue entry if the queue has free entries. If the queue
252  *      is full(no free entries) than no entry is returned and the function returns 0 otherwise 1 is
253  *      returned.
254  */
255  
256 static int aac_get_entry (struct aac_dev * dev, u32 qid, struct aac_entry **entry, u32 * index, unsigned long *nonotify)
257 {
258         struct aac_queue * q;
259         unsigned long idx;
260
261         /*
262          *      All of the queues wrap when they reach the end, so we check
263          *      to see if they have reached the end and if they have we just
264          *      set the index back to zero. This is a wrap. You could or off
265          *      the high bits in all updates but this is a bit faster I think.
266          */
267
268         q = &dev->queues->queue[qid];
269
270         idx = *index = le32_to_cpu(*(q->headers.producer));
271         /* Interrupt Moderation, only interrupt for first two entries */
272         if (idx != le32_to_cpu(*(q->headers.consumer))) {
273                 if (--idx == 0) {
274                         if (qid == AdapNormCmdQueue)
275                                 idx = ADAP_NORM_CMD_ENTRIES;
276                         else
277                                 idx = ADAP_NORM_RESP_ENTRIES;
278                 }
279                 if (idx != le32_to_cpu(*(q->headers.consumer)))
280                         *nonotify = 1; 
281         }
282
283         if (qid == AdapNormCmdQueue) {
284                 if (*index >= ADAP_NORM_CMD_ENTRIES) 
285                         *index = 0; /* Wrap to front of the Producer Queue. */
286         } else {
287                 if (*index >= ADAP_NORM_RESP_ENTRIES) 
288                         *index = 0; /* Wrap to front of the Producer Queue. */
289         }
290
291         if ((*index + 1) == le32_to_cpu(*(q->headers.consumer))) { /* Queue is full */
292                 printk(KERN_WARNING "Queue %d full, %u outstanding.\n",
293                                 qid, q->numpending);
294                 return 0;
295         } else {
296                 *entry = q->base + *index;
297                 return 1;
298         }
299 }   
300
301 /**
302  *      aac_queue_get           -       get the next free QE
303  *      @dev: Adapter
304  *      @index: Returned index
305  *      @priority: Priority of fib
306  *      @fib: Fib to associate with the queue entry
307  *      @wait: Wait if queue full
308  *      @fibptr: Driver fib object to go with fib
309  *      @nonotify: Don't notify the adapter
310  *
311  *      Gets the next free QE off the requested priorty adapter command
312  *      queue and associates the Fib with the QE. The QE represented by
313  *      index is ready to insert on the queue when this routine returns
314  *      success.
315  */
316
317 static int aac_queue_get(struct aac_dev * dev, u32 * index, u32 qid, struct hw_fib * hw_fib, int wait, struct fib * fibptr, unsigned long *nonotify)
318 {
319         struct aac_entry * entry = NULL;
320         int map = 0;
321             
322         if (qid == AdapNormCmdQueue) {
323                 /*  if no entries wait for some if caller wants to */
324                 while (!aac_get_entry(dev, qid, &entry, index, nonotify)) 
325                 {
326                         printk(KERN_ERR "GetEntries failed\n");
327                 }
328                 /*
329                  *      Setup queue entry with a command, status and fib mapped
330                  */
331                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
332                 map = 1;
333         } else {
334                 while(!aac_get_entry(dev, qid, &entry, index, nonotify)) 
335                 {
336                         /* if no entries wait for some if caller wants to */
337                 }
338                 /*
339                  *      Setup queue entry with command, status and fib mapped
340                  */
341                 entry->size = cpu_to_le32(le16_to_cpu(hw_fib->header.Size));
342                 entry->addr = hw_fib->header.SenderFibAddress;
343                         /* Restore adapters pointer to the FIB */
344                 hw_fib->header.ReceiverFibAddress = hw_fib->header.SenderFibAddress;    /* Let the adapter now where to find its data */
345                 map = 0;
346         }
347         /*
348          *      If MapFib is true than we need to map the Fib and put pointers
349          *      in the queue entry.
350          */
351         if (map)
352                 entry->addr = cpu_to_le32(fibptr->hw_fib_pa);
353         return 0;
354 }
355
356 /*
357  *      Define the highest level of host to adapter communication routines. 
358  *      These routines will support host to adapter FS commuication. These 
359  *      routines have no knowledge of the commuication method used. This level
360  *      sends and receives FIBs. This level has no knowledge of how these FIBs
361  *      get passed back and forth.
362  */
363
364 /**
365  *      fib_send        -       send a fib to the adapter
366  *      @command: Command to send
367  *      @fibptr: The fib
368  *      @size: Size of fib data area
369  *      @priority: Priority of Fib
370  *      @wait: Async/sync select
371  *      @reply: True if a reply is wanted
372  *      @callback: Called with reply
373  *      @callback_data: Passed to callback
374  *
375  *      Sends the requested FIB to the adapter and optionally will wait for a
376  *      response FIB. If the caller does not wish to wait for a response than
377  *      an event to wait on must be supplied. This event will be set when a
378  *      response FIB is received from the adapter.
379  */
380  
381 int fib_send(u16 command, struct fib * fibptr, unsigned long size,  int priority, int wait, int reply, fib_callback callback, void * callback_data)
382 {
383         u32 index;
384         struct aac_dev * dev = fibptr->dev;
385         unsigned long nointr = 0;
386         struct hw_fib * hw_fib = fibptr->hw_fib;
387         struct aac_queue * q;
388         unsigned long flags = 0;
389         unsigned long qflags;
390
391         if (!(hw_fib->header.XferState & cpu_to_le32(HostOwned)))
392                 return -EBUSY;
393         /*
394          *      There are 5 cases with the wait and reponse requested flags. 
395          *      The only invalid cases are if the caller requests to wait and
396          *      does not request a response and if the caller does not want a
397          *      response and the Fib is not allocated from pool. If a response
398          *      is not requesed the Fib will just be deallocaed by the DPC
399          *      routine when the response comes back from the adapter. No
400          *      further processing will be done besides deleting the Fib. We 
401          *      will have a debug mode where the adapter can notify the host
402          *      it had a problem and the host can log that fact.
403          */
404         if (wait && !reply) {
405                 return -EINVAL;
406         } else if (!wait && reply) {
407                 hw_fib->header.XferState |= cpu_to_le32(Async | ResponseExpected);
408                 FIB_COUNTER_INCREMENT(aac_config.AsyncSent);
409         } else if (!wait && !reply) {
410                 hw_fib->header.XferState |= cpu_to_le32(NoResponseExpected);
411                 FIB_COUNTER_INCREMENT(aac_config.NoResponseSent);
412         } else if (wait && reply) {
413                 hw_fib->header.XferState |= cpu_to_le32(ResponseExpected);
414                 FIB_COUNTER_INCREMENT(aac_config.NormalSent);
415         } 
416         /*
417          *      Map the fib into 32bits by using the fib number
418          */
419
420         hw_fib->header.SenderFibAddress = cpu_to_le32(((u32)(fibptr-dev->fibs)) << 1);
421         hw_fib->header.SenderData = (u32)(fibptr - dev->fibs);
422         /*
423          *      Set FIB state to indicate where it came from and if we want a
424          *      response from the adapter. Also load the command from the
425          *      caller.
426          *
427          *      Map the hw fib pointer as a 32bit value
428          */
429         hw_fib->header.Command = cpu_to_le16(command);
430         hw_fib->header.XferState |= cpu_to_le32(SentFromHost);
431         fibptr->hw_fib->header.Flags = 0;       /* 0 the flags field - internal only*/
432         /*
433          *      Set the size of the Fib we want to send to the adapter
434          */
435         hw_fib->header.Size = cpu_to_le16(sizeof(struct aac_fibhdr) + size);
436         if (le16_to_cpu(hw_fib->header.Size) > le16_to_cpu(hw_fib->header.SenderSize)) {
437                 return -EMSGSIZE;
438         }                
439         /*
440          *      Get a queue entry connect the FIB to it and send an notify
441          *      the adapter a command is ready.
442          */
443         hw_fib->header.XferState |= cpu_to_le32(NormalPriority);
444
445         /*
446          *      Fill in the Callback and CallbackContext if we are not
447          *      going to wait.
448          */
449         if (!wait) {
450                 fibptr->callback = callback;
451                 fibptr->callback_data = callback_data;
452         }
453
454         fibptr->done = 0;
455         fibptr->flags = 0;
456
457         FIB_COUNTER_INCREMENT(aac_config.FibsSent);
458
459         dprintk((KERN_DEBUG "fib_send: inserting a queue entry at index %d.\n",index));
460         dprintk((KERN_DEBUG "Fib contents:.\n"));
461         dprintk((KERN_DEBUG "  Command =               %d.\n", hw_fib->header.Command));
462         dprintk((KERN_DEBUG "  XferState  =            %x.\n", hw_fib->header.XferState));
463         dprintk((KERN_DEBUG "  hw_fib va being sent=%p\n",fibptr->hw_fib));
464         dprintk((KERN_DEBUG "  hw_fib pa being sent=%lx\n",(ulong)fibptr->hw_fib_pa));
465         dprintk((KERN_DEBUG "  fib being sent=%p\n",fibptr));
466
467         q = &dev->queues->queue[AdapNormCmdQueue];
468
469         if(wait)
470                 spin_lock_irqsave(&fibptr->event_lock, flags);
471         spin_lock_irqsave(q->lock, qflags);
472         aac_queue_get( dev, &index, AdapNormCmdQueue, hw_fib, 1, fibptr, &nointr);
473
474         list_add_tail(&fibptr->queue, &q->pendingq);
475         q->numpending++;
476         *(q->headers.producer) = cpu_to_le32(index + 1);
477         spin_unlock_irqrestore(q->lock, qflags);
478         if (!(nointr & aac_config.irq_mod))
479                 aac_adapter_notify(dev, AdapNormCmdQueue);
480         /*
481          *      If the caller wanted us to wait for response wait now. 
482          */
483     
484         if (wait) {
485                 spin_unlock_irqrestore(&fibptr->event_lock, flags);
486                 /* Only set for first known interruptable command */
487                 if (wait < 0) {
488                         /*
489                          * *VERY* Dangerous to time out a command, the
490                          * assumption is made that we have no hope of
491                          * functioning because an interrupt routing or other
492                          * hardware failure has occurred.
493                          */
494                         unsigned long count = 36000000L; /* 3 minutes */
495                         unsigned long qflags;
496                         while (down_trylock(&fibptr->event_wait)) {
497                                 if (--count == 0) {
498                                         spin_lock_irqsave(q->lock, qflags);
499                                         q->numpending--;
500                                         list_del(&fibptr->queue);
501                                         spin_unlock_irqrestore(q->lock, qflags);
502                                         if (wait == -1) {
503                                                 printk(KERN_ERR "aacraid: fib_send: first asynchronous command timed out.\n"
504                                                   "Usually a result of a PCI interrupt routing problem;\n"
505                                                   "update mother board BIOS or consider utilizing one of\n"
506                                                   "the SAFE mode kernel options (acpi, apic etc)\n");
507                                         }
508                                         return -ETIMEDOUT;
509                                 }
510                                 udelay(5);
511                         }
512                 } else
513                         down(&fibptr->event_wait);
514                 if(fibptr->done == 0)
515                         BUG();
516                         
517                 if((fibptr->flags & FIB_CONTEXT_FLAG_TIMED_OUT)){
518                         return -ETIMEDOUT;
519                 } else {
520                         return 0;
521                 }
522         }
523         /*
524          *      If the user does not want a response than return success otherwise
525          *      return pending
526          */
527         if (reply)
528                 return -EINPROGRESS;
529         else
530                 return 0;
531 }
532
533 /** 
534  *      aac_consumer_get        -       get the top of the queue
535  *      @dev: Adapter
536  *      @q: Queue
537  *      @entry: Return entry
538  *
539  *      Will return a pointer to the entry on the top of the queue requested that
540  *      we are a consumer of, and return the address of the queue entry. It does
541  *      not change the state of the queue. 
542  */
543
544 int aac_consumer_get(struct aac_dev * dev, struct aac_queue * q, struct aac_entry **entry)
545 {
546         u32 index;
547         int status;
548         if (le32_to_cpu(*q->headers.producer) == le32_to_cpu(*q->headers.consumer)) {
549                 status = 0;
550         } else {
551                 /*
552                  *      The consumer index must be wrapped if we have reached
553                  *      the end of the queue, else we just use the entry
554                  *      pointed to by the header index
555                  */
556                 if (le32_to_cpu(*q->headers.consumer) >= q->entries) 
557                         index = 0;              
558                 else
559                         index = le32_to_cpu(*q->headers.consumer);
560                 *entry = q->base + index;
561                 status = 1;
562         }
563         return(status);
564 }
565
566 /**
567  *      aac_consumer_free       -       free consumer entry
568  *      @dev: Adapter
569  *      @q: Queue
570  *      @qid: Queue ident
571  *
572  *      Frees up the current top of the queue we are a consumer of. If the
573  *      queue was full notify the producer that the queue is no longer full.
574  */
575
576 void aac_consumer_free(struct aac_dev * dev, struct aac_queue *q, u32 qid)
577 {
578         int wasfull = 0;
579         u32 notify;
580
581         if ((le32_to_cpu(*q->headers.producer)+1) == le32_to_cpu(*q->headers.consumer))
582                 wasfull = 1;
583         
584         if (le32_to_cpu(*q->headers.consumer) >= q->entries)
585                 *q->headers.consumer = cpu_to_le32(1);
586         else
587                 *q->headers.consumer = cpu_to_le32(le32_to_cpu(*q->headers.consumer)+1);
588         
589         if (wasfull) {
590                 switch (qid) {
591
592                 case HostNormCmdQueue:
593                         notify = HostNormCmdNotFull;
594                         break;
595                 case HostNormRespQueue:
596                         notify = HostNormRespNotFull;
597                         break;
598                 default:
599                         BUG();
600                         return;
601                 }
602                 aac_adapter_notify(dev, notify);
603         }
604 }        
605
606 /**
607  *      fib_adapter_complete    -       complete adapter issued fib
608  *      @fibptr: fib to complete
609  *      @size: size of fib
610  *
611  *      Will do all necessary work to complete a FIB that was sent from
612  *      the adapter.
613  */
614
615 int fib_adapter_complete(struct fib * fibptr, unsigned short size)
616 {
617         struct hw_fib * hw_fib = fibptr->hw_fib;
618         struct aac_dev * dev = fibptr->dev;
619         struct aac_queue * q;
620         unsigned long nointr = 0;
621         unsigned long qflags;
622
623         if (hw_fib->header.XferState == 0) {
624                 return 0;
625         }
626         /*
627          *      If we plan to do anything check the structure type first.
628          */ 
629         if ( hw_fib->header.StructType != FIB_MAGIC ) {
630                 return -EINVAL;
631         }
632         /*
633          *      This block handles the case where the adapter had sent us a
634          *      command and we have finished processing the command. We
635          *      call completeFib when we are done processing the command 
636          *      and want to send a response back to the adapter. This will 
637          *      send the completed cdb to the adapter.
638          */
639         if (hw_fib->header.XferState & cpu_to_le32(SentFromAdapter)) {
640                 u32 index;
641                 hw_fib->header.XferState |= cpu_to_le32(HostProcessed);
642                 if (size) {
643                         size += sizeof(struct aac_fibhdr);
644                         if (size > le16_to_cpu(hw_fib->header.SenderSize)) 
645                                 return -EMSGSIZE;
646                         hw_fib->header.Size = cpu_to_le16(size);
647                 }
648                 q = &dev->queues->queue[AdapNormRespQueue];
649                 spin_lock_irqsave(q->lock, qflags);
650                 aac_queue_get(dev, &index, AdapNormRespQueue, hw_fib, 1, NULL, &nointr);
651                 *(q->headers.producer) = cpu_to_le32(index + 1);
652                 spin_unlock_irqrestore(q->lock, qflags);
653                 if (!(nointr & (int)aac_config.irq_mod))
654                         aac_adapter_notify(dev, AdapNormRespQueue);
655         }
656         else 
657         {
658                 printk(KERN_WARNING "fib_adapter_complete: Unknown xferstate detected.\n");
659                 BUG();
660         }   
661         return 0;
662 }
663
664 /**
665  *      fib_complete    -       fib completion handler
666  *      @fib: FIB to complete
667  *
668  *      Will do all necessary work to complete a FIB.
669  */
670  
671 int fib_complete(struct fib * fibptr)
672 {
673         struct hw_fib * hw_fib = fibptr->hw_fib;
674
675         /*
676          *      Check for a fib which has already been completed
677          */
678
679         if (hw_fib->header.XferState == 0)
680                 return 0;
681         /*
682          *      If we plan to do anything check the structure type first.
683          */ 
684
685         if (hw_fib->header.StructType != FIB_MAGIC)
686                 return -EINVAL;
687         /*
688          *      This block completes a cdb which orginated on the host and we 
689          *      just need to deallocate the cdb or reinit it. At this point the
690          *      command is complete that we had sent to the adapter and this
691          *      cdb could be reused.
692          */
693         if((hw_fib->header.XferState & cpu_to_le32(SentFromHost)) &&
694                 (hw_fib->header.XferState & cpu_to_le32(AdapterProcessed)))
695         {
696                 fib_dealloc(fibptr);
697         }
698         else if(hw_fib->header.XferState & cpu_to_le32(SentFromHost))
699         {
700                 /*
701                  *      This handles the case when the host has aborted the I/O
702                  *      to the adapter because the adapter is not responding
703                  */
704                 fib_dealloc(fibptr);
705         } else if(hw_fib->header.XferState & cpu_to_le32(HostOwned)) {
706                 fib_dealloc(fibptr);
707         } else {
708                 BUG();
709         }   
710         return 0;
711 }
712
713 /**
714  *      aac_printf      -       handle printf from firmware
715  *      @dev: Adapter
716  *      @val: Message info
717  *
718  *      Print a message passed to us by the controller firmware on the
719  *      Adaptec board
720  */
721
722 void aac_printf(struct aac_dev *dev, u32 val)
723 {
724         char *cp = dev->printfbuf;
725         if (dev->printf_enabled)
726         {
727                 int length = val & 0xffff;
728                 int level = (val >> 16) & 0xffff;
729                 
730                 /*
731                  *      The size of the printfbuf is set in port.c
732                  *      There is no variable or define for it
733                  */
734                 if (length > 255)
735                         length = 255;
736                 if (cp[length] != 0)
737                         cp[length] = 0;
738                 if (level == LOG_AAC_HIGH_ERROR)
739                         printk(KERN_WARNING "aacraid:%s", cp);
740                 else
741                         printk(KERN_INFO "aacraid:%s", cp);
742         }
743         memset(cp, 0,  256);
744 }
745
746
747 /**
748  *      aac_handle_aif          -       Handle a message from the firmware
749  *      @dev: Which adapter this fib is from
750  *      @fibptr: Pointer to fibptr from adapter
751  *
752  *      This routine handles a driver notify fib from the adapter and
753  *      dispatches it to the appropriate routine for handling.
754  */
755
756 static void aac_handle_aif(struct aac_dev * dev, struct fib * fibptr)
757 {
758         struct hw_fib * hw_fib = fibptr->hw_fib;
759         struct aac_aifcmd * aifcmd = (struct aac_aifcmd *)hw_fib->data;
760         int busy;
761         u32 container;
762         struct scsi_device *device;
763         enum {
764                 NOTHING,
765                 DELETE,
766                 ADD,
767                 CHANGE
768         } device_config_needed;
769
770         /* Sniff for container changes */
771
772         if (!dev)
773                 return;
774         container = (u32)-1;
775
776         /*
777          *      We have set this up to try and minimize the number of
778          * re-configures that take place. As a result of this when
779          * certain AIF's come in we will set a flag waiting for another
780          * type of AIF before setting the re-config flag.
781          */
782         switch (le32_to_cpu(aifcmd->command)) {
783         case AifCmdDriverNotify:
784                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
785                 /*
786                  *      Morph or Expand complete
787                  */
788                 case AifDenMorphComplete:
789                 case AifDenVolumeExtendComplete:
790                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
791                         if (container >= dev->maximum_num_containers)
792                                 break;
793
794                         /*
795                          *      Find the Scsi_Device associated with the SCSI
796                          * address. Make sure we have the right array, and if
797                          * so set the flag to initiate a new re-config once we
798                          * see an AifEnConfigChange AIF come through.
799                          */
800
801                         if ((dev != NULL) && (dev->scsi_host_ptr != NULL)) {
802                                 device = scsi_device_lookup(dev->scsi_host_ptr, 
803                                         CONTAINER_TO_CHANNEL(container), 
804                                         CONTAINER_TO_ID(container), 
805                                         CONTAINER_TO_LUN(container));
806                                 if (device) {
807                                         dev->fsa_dev[container].config_needed = CHANGE;
808                                         dev->fsa_dev[container].config_waiting_on = AifEnConfigChange;
809                                         scsi_device_put(device);
810                                 }
811                         }
812                 }
813
814                 /*
815                  *      If we are waiting on something and this happens to be
816                  * that thing then set the re-configure flag.
817                  */
818                 if (container != (u32)-1) {
819                         if (container >= dev->maximum_num_containers)
820                                 break;
821                         if (dev->fsa_dev[container].config_waiting_on ==
822                             le32_to_cpu(*(u32 *)aifcmd->data))
823                                 dev->fsa_dev[container].config_waiting_on = 0;
824                 } else for (container = 0;
825                     container < dev->maximum_num_containers; ++container) {
826                         if (dev->fsa_dev[container].config_waiting_on ==
827                             le32_to_cpu(*(u32 *)aifcmd->data))
828                                 dev->fsa_dev[container].config_waiting_on = 0;
829                 }
830                 break;
831
832         case AifCmdEventNotify:
833                 switch (le32_to_cpu(((u32 *)aifcmd->data)[0])) {
834                 /*
835                  *      Add an Array.
836                  */
837                 case AifEnAddContainer:
838                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
839                         if (container >= dev->maximum_num_containers)
840                                 break;
841                         dev->fsa_dev[container].config_needed = ADD;
842                         dev->fsa_dev[container].config_waiting_on =
843                                 AifEnConfigChange;
844                         break;
845
846                 /*
847                  *      Delete an Array.
848                  */
849                 case AifEnDeleteContainer:
850                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
851                         if (container >= dev->maximum_num_containers)
852                                 break;
853                         dev->fsa_dev[container].config_needed = DELETE;
854                         dev->fsa_dev[container].config_waiting_on =
855                                 AifEnConfigChange;
856                         break;
857
858                 /*
859                  *      Container change detected. If we currently are not
860                  * waiting on something else, setup to wait on a Config Change.
861                  */
862                 case AifEnContainerChange:
863                         container = le32_to_cpu(((u32 *)aifcmd->data)[1]);
864                         if (container >= dev->maximum_num_containers)
865                                 break;
866                         if (dev->fsa_dev[container].config_waiting_on)
867                                 break;
868                         dev->fsa_dev[container].config_needed = CHANGE;
869                         dev->fsa_dev[container].config_waiting_on =
870                                 AifEnConfigChange;
871                         break;
872
873                 case AifEnConfigChange:
874                         break;
875
876                 }
877
878                 /*
879                  *      If we are waiting on something and this happens to be
880                  * that thing then set the re-configure flag.
881                  */
882                 if (container != (u32)-1) {
883                         if (container >= dev->maximum_num_containers)
884                                 break;
885                         if (dev->fsa_dev[container].config_waiting_on ==
886                             le32_to_cpu(*(u32 *)aifcmd->data))
887                                 dev->fsa_dev[container].config_waiting_on = 0;
888                 } else for (container = 0;
889                     container < dev->maximum_num_containers; ++container) {
890                         if (dev->fsa_dev[container].config_waiting_on ==
891                             le32_to_cpu(*(u32 *)aifcmd->data))
892                                 dev->fsa_dev[container].config_waiting_on = 0;
893                 }
894                 break;
895
896         case AifCmdJobProgress:
897                 /*
898                  *      These are job progress AIF's. When a Clear is being
899                  * done on a container it is initially created then hidden from
900                  * the OS. When the clear completes we don't get a config
901                  * change so we monitor the job status complete on a clear then
902                  * wait for a container change.
903                  */
904
905                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
906                  && ((((u32 *)aifcmd->data)[6] == ((u32 *)aifcmd->data)[5])
907                   || (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsSuccess)))) {
908                         for (container = 0;
909                             container < dev->maximum_num_containers;
910                             ++container) {
911                                 /*
912                                  * Stomp on all config sequencing for all
913                                  * containers?
914                                  */
915                                 dev->fsa_dev[container].config_waiting_on =
916                                         AifEnContainerChange;
917                                 dev->fsa_dev[container].config_needed = ADD;
918                         }
919                 }
920                 if ((((u32 *)aifcmd->data)[1] == cpu_to_le32(AifJobCtrZero))
921                  && (((u32 *)aifcmd->data)[6] == 0)
922                  && (((u32 *)aifcmd->data)[4] == cpu_to_le32(AifJobStsRunning))) {
923                         for (container = 0;
924                             container < dev->maximum_num_containers;
925                             ++container) {
926                                 /*
927                                  * Stomp on all config sequencing for all
928                                  * containers?
929                                  */
930                                 dev->fsa_dev[container].config_waiting_on =
931                                         AifEnContainerChange;
932                                 dev->fsa_dev[container].config_needed = DELETE;
933                         }
934                 }
935                 break;
936         }
937
938         device_config_needed = NOTHING;
939         for (container = 0; container < dev->maximum_num_containers;
940             ++container) {
941                 if ((dev->fsa_dev[container].config_waiting_on == 0)
942                  && (dev->fsa_dev[container].config_needed != NOTHING)) {
943                         device_config_needed =
944                                 dev->fsa_dev[container].config_needed;
945                         dev->fsa_dev[container].config_needed = NOTHING;
946                         break;
947                 }
948         }
949         if (device_config_needed == NOTHING)
950                 return;
951
952         /*
953          *      If we decided that a re-configuration needs to be done,
954          * schedule it here on the way out the door, please close the door
955          * behind you.
956          */
957
958         busy = 0;
959
960
961         /*
962          *      Find the Scsi_Device associated with the SCSI address,
963          * and mark it as changed, invalidating the cache. This deals
964          * with changes to existing device IDs.
965          */
966
967         if (!dev || !dev->scsi_host_ptr)
968                 return;
969         /*
970          * force reload of disk info via probe_container
971          */
972         if ((device_config_needed == CHANGE)
973          && (dev->fsa_dev[container].valid == 1))
974                 dev->fsa_dev[container].valid = 2;
975         if ((device_config_needed == CHANGE) ||
976                         (device_config_needed == ADD))
977                 probe_container(dev, container);
978         device = scsi_device_lookup(dev->scsi_host_ptr, 
979                 CONTAINER_TO_CHANNEL(container), 
980                 CONTAINER_TO_ID(container), 
981                 CONTAINER_TO_LUN(container));
982         if (device) {
983                 switch (device_config_needed) {
984                 case DELETE:
985                         scsi_remove_device(device);
986                         break;
987                 case CHANGE:
988                         if (!dev->fsa_dev[container].valid) {
989                                 scsi_remove_device(device);
990                                 break;
991                         }
992                         scsi_rescan_device(&device->sdev_gendev);
993
994                 default:
995                         break;
996                 }
997                 scsi_device_put(device);
998         }
999         if (device_config_needed == ADD) {
1000                 scsi_add_device(dev->scsi_host_ptr,
1001                   CONTAINER_TO_CHANNEL(container),
1002                   CONTAINER_TO_ID(container),
1003                   CONTAINER_TO_LUN(container));
1004         }
1005
1006 }
1007
1008 /**
1009  *      aac_command_thread      -       command processing thread
1010  *      @dev: Adapter to monitor
1011  *
1012  *      Waits on the commandready event in it's queue. When the event gets set
1013  *      it will pull FIBs off it's queue. It will continue to pull FIBs off
1014  *      until the queue is empty. When the queue is empty it will wait for
1015  *      more FIBs.
1016  */
1017  
1018 int aac_command_thread(struct aac_dev * dev)
1019 {
1020         struct hw_fib *hw_fib, *hw_newfib;
1021         struct fib *fib, *newfib;
1022         struct aac_fib_context *fibctx;
1023         unsigned long flags;
1024         DECLARE_WAITQUEUE(wait, current);
1025
1026         /*
1027          *      We can only have one thread per adapter for AIF's.
1028          */
1029         if (dev->aif_thread)
1030                 return -EINVAL;
1031         /*
1032          *      Set up the name that will appear in 'ps'
1033          *      stored in  task_struct.comm[16].
1034          */
1035         daemonize("aacraid");
1036         allow_signal(SIGKILL);
1037         /*
1038          *      Let the DPC know it has a place to send the AIF's to.
1039          */
1040         dev->aif_thread = 1;
1041         add_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1042         set_current_state(TASK_INTERRUPTIBLE);
1043         dprintk ((KERN_INFO "aac_command_thread start\n"));
1044         while(1) 
1045         {
1046                 spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1047                 while(!list_empty(&(dev->queues->queue[HostNormCmdQueue].cmdq))) {
1048                         struct list_head *entry;
1049                         struct aac_aifcmd * aifcmd;
1050
1051                         set_current_state(TASK_RUNNING);
1052         
1053                         entry = dev->queues->queue[HostNormCmdQueue].cmdq.next;
1054                         list_del(entry);
1055                 
1056                         spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1057                         fib = list_entry(entry, struct fib, fiblink);
1058                         /*
1059                          *      We will process the FIB here or pass it to a 
1060                          *      worker thread that is TBD. We Really can't 
1061                          *      do anything at this point since we don't have
1062                          *      anything defined for this thread to do.
1063                          */
1064                         hw_fib = fib->hw_fib;
1065                         memset(fib, 0, sizeof(struct fib));
1066                         fib->type = FSAFS_NTC_FIB_CONTEXT;
1067                         fib->size = sizeof( struct fib );
1068                         fib->hw_fib = hw_fib;
1069                         fib->data = hw_fib->data;
1070                         fib->dev = dev;
1071                         /*
1072                          *      We only handle AifRequest fibs from the adapter.
1073                          */
1074                         aifcmd = (struct aac_aifcmd *) hw_fib->data;
1075                         if (aifcmd->command == cpu_to_le32(AifCmdDriverNotify)) {
1076                                 /* Handle Driver Notify Events */
1077                                 aac_handle_aif(dev, fib);
1078                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1079                                 fib_adapter_complete(fib, (u16)sizeof(u32));
1080                         } else {
1081                                 struct list_head *entry;
1082                                 /* The u32 here is important and intended. We are using
1083                                    32bit wrapping time to fit the adapter field */
1084                                    
1085                                 u32 time_now, time_last;
1086                                 unsigned long flagv;
1087                                 unsigned num;
1088                                 struct hw_fib ** hw_fib_pool, ** hw_fib_p;
1089                                 struct fib ** fib_pool, ** fib_p;
1090                         
1091                                 /* Sniff events */
1092                                 if ((aifcmd->command == 
1093                                      cpu_to_le32(AifCmdEventNotify)) ||
1094                                     (aifcmd->command == 
1095                                      cpu_to_le32(AifCmdJobProgress))) {
1096                                         aac_handle_aif(dev, fib);
1097                                 }
1098                                 
1099                                 time_now = jiffies/HZ;
1100
1101                                 /*
1102                                  * Warning: no sleep allowed while
1103                                  * holding spinlock. We take the estimate
1104                                  * and pre-allocate a set of fibs outside the
1105                                  * lock.
1106                                  */
1107                                 num = le32_to_cpu(dev->init->AdapterFibsSize)
1108                                     / sizeof(struct hw_fib); /* some extra */
1109                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1110                                 entry = dev->fib_list.next;
1111                                 while (entry != &dev->fib_list) {
1112                                         entry = entry->next;
1113                                         ++num;
1114                                 }
1115                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1116                                 hw_fib_pool = NULL;
1117                                 fib_pool = NULL;
1118                                 if (num
1119                                  && ((hw_fib_pool = kmalloc(sizeof(struct hw_fib *) * num, GFP_KERNEL)))
1120                                  && ((fib_pool = kmalloc(sizeof(struct fib *) * num, GFP_KERNEL)))) {
1121                                         hw_fib_p = hw_fib_pool;
1122                                         fib_p = fib_pool;
1123                                         while (hw_fib_p < &hw_fib_pool[num]) {
1124                                                 if (!(*(hw_fib_p++) = kmalloc(sizeof(struct hw_fib), GFP_KERNEL))) {
1125                                                         --hw_fib_p;
1126                                                         break;
1127                                                 }
1128                                                 if (!(*(fib_p++) = kmalloc(sizeof(struct fib), GFP_KERNEL))) {
1129                                                         kfree(*(--hw_fib_p));
1130                                                         break;
1131                                                 }
1132                                         }
1133                                         if ((num = hw_fib_p - hw_fib_pool) == 0) {
1134                                                 kfree(fib_pool);
1135                                                 fib_pool = NULL;
1136                                                 kfree(hw_fib_pool);
1137                                                 hw_fib_pool = NULL;
1138                                         }
1139                                 } else if (hw_fib_pool) {
1140                                         kfree(hw_fib_pool);
1141                                         hw_fib_pool = NULL;
1142                                 }
1143                                 spin_lock_irqsave(&dev->fib_lock, flagv);
1144                                 entry = dev->fib_list.next;
1145                                 /*
1146                                  * For each Context that is on the 
1147                                  * fibctxList, make a copy of the
1148                                  * fib, and then set the event to wake up the
1149                                  * thread that is waiting for it.
1150                                  */
1151                                 hw_fib_p = hw_fib_pool;
1152                                 fib_p = fib_pool;
1153                                 while (entry != &dev->fib_list) {
1154                                         /*
1155                                          * Extract the fibctx
1156                                          */
1157                                         fibctx = list_entry(entry, struct aac_fib_context, next);
1158                                         /*
1159                                          * Check if the queue is getting
1160                                          * backlogged
1161                                          */
1162                                         if (fibctx->count > 20)
1163                                         {
1164                                                 /*
1165                                                  * It's *not* jiffies folks,
1166                                                  * but jiffies / HZ so do not
1167                                                  * panic ...
1168                                                  */
1169                                                 time_last = fibctx->jiffies;
1170                                                 /*
1171                                                  * Has it been > 2 minutes 
1172                                                  * since the last read off
1173                                                  * the queue?
1174                                                  */
1175                                                 if ((time_now - time_last) > 120) {
1176                                                         entry = entry->next;
1177                                                         aac_close_fib_context(dev, fibctx);
1178                                                         continue;
1179                                                 }
1180                                         }
1181                                         /*
1182                                          * Warning: no sleep allowed while
1183                                          * holding spinlock
1184                                          */
1185                                         if (hw_fib_p < &hw_fib_pool[num]) {
1186                                                 hw_newfib = *hw_fib_p;
1187                                                 *(hw_fib_p++) = NULL;
1188                                                 newfib = *fib_p;
1189                                                 *(fib_p++) = NULL;
1190                                                 /*
1191                                                  * Make the copy of the FIB
1192                                                  */
1193                                                 memcpy(hw_newfib, hw_fib, sizeof(struct hw_fib));
1194                                                 memcpy(newfib, fib, sizeof(struct fib));
1195                                                 newfib->hw_fib = hw_newfib;
1196                                                 /*
1197                                                  * Put the FIB onto the
1198                                                  * fibctx's fibs
1199                                                  */
1200                                                 list_add_tail(&newfib->fiblink, &fibctx->fib_list);
1201                                                 fibctx->count++;
1202                                                 /* 
1203                                                  * Set the event to wake up the
1204                                                  * thread that is waiting.
1205                                                  */
1206                                                 up(&fibctx->wait_sem);
1207                                         } else {
1208                                                 printk(KERN_WARNING "aifd: didn't allocate NewFib.\n");
1209                                         }
1210                                         entry = entry->next;
1211                                 }
1212                                 /*
1213                                  *      Set the status of this FIB
1214                                  */
1215                                 *(__le32 *)hw_fib->data = cpu_to_le32(ST_OK);
1216                                 fib_adapter_complete(fib, sizeof(u32));
1217                                 spin_unlock_irqrestore(&dev->fib_lock, flagv);
1218                                 /* Free up the remaining resources */
1219                                 hw_fib_p = hw_fib_pool;
1220                                 fib_p = fib_pool;
1221                                 while (hw_fib_p < &hw_fib_pool[num]) {
1222                                         if (*hw_fib_p)
1223                                                 kfree(*hw_fib_p);
1224                                         if (*fib_p)
1225                                                 kfree(*fib_p);
1226                                         ++fib_p;
1227                                         ++hw_fib_p;
1228                                 }
1229                                 if (hw_fib_pool)
1230                                         kfree(hw_fib_pool);
1231                                 if (fib_pool)
1232                                         kfree(fib_pool);
1233                         }
1234                         kfree(fib);
1235                         spin_lock_irqsave(dev->queues->queue[HostNormCmdQueue].lock, flags);
1236                 }
1237                 /*
1238                  *      There are no more AIF's
1239                  */
1240                 spin_unlock_irqrestore(dev->queues->queue[HostNormCmdQueue].lock, flags);
1241                 schedule();
1242
1243                 if(signal_pending(current))
1244                         break;
1245                 set_current_state(TASK_INTERRUPTIBLE);
1246         }
1247         if (dev->queues)
1248                 remove_wait_queue(&dev->queues->queue[HostNormCmdQueue].cmdready, &wait);
1249         dev->aif_thread = 0;
1250         complete_and_exit(&dev->aif_completion, 0);
1251         return 0;
1252 }