2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/hv_lp_event.h>
54 #include <asm/iseries/lpar_map.h>
59 #include "vpd_areas.h"
60 #include "processor_vpd.h"
61 #include "main_store.h"
65 extern void hvlog(char *fmt, ...);
68 #define DBG(fmt...) hvlog(fmt)
73 /* Function Prototypes */
74 extern void ppcdbg_initialize(void);
76 static void build_iSeries_Memory_Map(void);
77 static void iseries_shared_idle(void);
78 static void iseries_dedicated_idle(void);
80 extern void iSeries_pci_final_fixup(void);
82 static void iSeries_pci_final_fixup(void) { }
85 /* Global Variables */
86 int piranha_simulator;
88 extern int rd_size; /* Defined in drivers/block/rd.c */
89 extern unsigned long klimit;
90 extern unsigned long embedded_sysmap_start;
91 extern unsigned long embedded_sysmap_end;
93 extern unsigned long iSeries_recal_tb;
94 extern unsigned long iSeries_recal_titan;
96 static int mf_initialized;
98 static unsigned long cmd_mem_limit;
101 unsigned long absStart;
102 unsigned long absEnd;
103 unsigned long logicalStart;
104 unsigned long logicalEnd;
108 * Process the main store vpd to determine where the holes in memory are
109 * and return the number of physical blocks and fill in the array of
112 static unsigned long iSeries_process_Condor_mainstore_vpd(
113 struct MemoryBlock *mb_array, unsigned long max_entries)
115 unsigned long holeFirstChunk, holeSizeChunks;
116 unsigned long numMemoryBlocks = 1;
117 struct IoHriMainStoreSegment4 *msVpd =
118 (struct IoHriMainStoreSegment4 *)xMsVpd;
119 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
120 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
121 unsigned long holeSize = holeEnd - holeStart;
123 printk("Mainstore_VPD: Condor\n");
125 * Determine if absolute memory has any
126 * holes so that we can interpret the
127 * access map we get back from the hypervisor
130 mb_array[0].logicalStart = 0;
131 mb_array[0].logicalEnd = 0x100000000;
132 mb_array[0].absStart = 0;
133 mb_array[0].absEnd = 0x100000000;
137 holeStart = holeStart & 0x000fffffffffffff;
138 holeStart = addr_to_chunk(holeStart);
139 holeFirstChunk = holeStart;
140 holeSize = addr_to_chunk(holeSize);
141 holeSizeChunks = holeSize;
142 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
143 holeFirstChunk, holeSizeChunks );
144 mb_array[0].logicalEnd = holeFirstChunk;
145 mb_array[0].absEnd = holeFirstChunk;
146 mb_array[1].logicalStart = holeFirstChunk;
147 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
148 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
149 mb_array[1].absEnd = 0x100000000;
151 return numMemoryBlocks;
154 #define MaxSegmentAreas 32
155 #define MaxSegmentAdrRangeBlocks 128
156 #define MaxAreaRangeBlocks 4
158 static unsigned long iSeries_process_Regatta_mainstore_vpd(
159 struct MemoryBlock *mb_array, unsigned long max_entries)
161 struct IoHriMainStoreSegment5 *msVpdP =
162 (struct IoHriMainStoreSegment5 *)xMsVpd;
163 unsigned long numSegmentBlocks = 0;
164 u32 existsBits = msVpdP->msAreaExists;
165 unsigned long area_num;
167 printk("Mainstore_VPD: Regatta\n");
169 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
170 unsigned long numAreaBlocks;
171 struct IoHriMainStoreArea4 *currentArea;
173 if (existsBits & 0x80000000) {
174 unsigned long block_num;
176 currentArea = &msVpdP->msAreaArray[area_num];
177 numAreaBlocks = currentArea->numAdrRangeBlocks;
178 printk("ms_vpd: processing area %2ld blocks=%ld",
179 area_num, numAreaBlocks);
180 for (block_num = 0; block_num < numAreaBlocks;
182 /* Process an address range block */
183 struct MemoryBlock tempBlock;
187 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
189 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
190 tempBlock.logicalStart = 0;
191 tempBlock.logicalEnd = 0;
192 printk("\n block %ld absStart=%016lx absEnd=%016lx",
193 block_num, tempBlock.absStart,
196 for (i = 0; i < numSegmentBlocks; ++i) {
197 if (mb_array[i].absStart ==
201 if (i == numSegmentBlocks) {
202 if (numSegmentBlocks == max_entries)
203 panic("iSeries_process_mainstore_vpd: too many memory blocks");
204 mb_array[numSegmentBlocks] = tempBlock;
207 printk(" (duplicate)");
213 /* Now sort the blocks found into ascending sequence */
214 if (numSegmentBlocks > 1) {
217 for (m = 0; m < numSegmentBlocks - 1; ++m) {
218 for (n = numSegmentBlocks - 1; m < n; --n) {
219 if (mb_array[n].absStart <
220 mb_array[n-1].absStart) {
221 struct MemoryBlock tempBlock;
223 tempBlock = mb_array[n];
224 mb_array[n] = mb_array[n-1];
225 mb_array[n-1] = tempBlock;
231 * Assign "logical" addresses to each block. These
232 * addresses correspond to the hypervisor "bitmap" space.
233 * Convert all addresses into units of 256K chunks.
236 unsigned long i, nextBitmapAddress;
238 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
239 nextBitmapAddress = 0;
240 for (i = 0; i < numSegmentBlocks; ++i) {
241 unsigned long length = mb_array[i].absEnd -
242 mb_array[i].absStart;
244 mb_array[i].logicalStart = nextBitmapAddress;
245 mb_array[i].logicalEnd = nextBitmapAddress + length;
246 nextBitmapAddress += length;
247 printk(" Bitmap range: %016lx - %016lx\n"
248 " Absolute range: %016lx - %016lx\n",
249 mb_array[i].logicalStart,
250 mb_array[i].logicalEnd,
251 mb_array[i].absStart, mb_array[i].absEnd);
252 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
254 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
256 mb_array[i].logicalStart =
257 addr_to_chunk(mb_array[i].logicalStart);
258 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
262 return numSegmentBlocks;
265 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
266 unsigned long max_entries)
269 unsigned long mem_blocks = 0;
271 if (cpu_has_feature(CPU_FTR_SLB))
272 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
275 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
278 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
279 for (i = 0; i < mem_blocks; ++i) {
280 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
281 " abs chunks %016lx - %016lx\n",
282 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
283 mb_array[i].absStart, mb_array[i].absEnd);
288 static void __init iSeries_get_cmdline(void)
292 /* copy the command line parameter from the primary VSP */
293 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
294 HvLpDma_Direction_RemoteToLocal);
299 if (!*p || *p == '\n')
306 static void __init iSeries_init_early(void)
308 DBG(" -> iSeries_init_early()\n");
310 ppc64_firmware_features = FW_FEATURE_ISERIES;
314 ppc64_interrupt_controller = IC_ISERIES;
316 #if defined(CONFIG_BLK_DEV_INITRD)
318 * If the init RAM disk has been configured and there is
319 * a non-zero starting address for it, set it up
322 initrd_start = (unsigned long)__va(naca.xRamDisk);
323 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
324 initrd_below_start_ok = 1; // ramdisk in kernel space
325 ROOT_DEV = Root_RAM0;
326 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
327 rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
329 #endif /* CONFIG_BLK_DEV_INITRD */
331 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
334 iSeries_recal_tb = get_tb();
335 iSeries_recal_titan = HvCallXm_loadTod();
338 * Initialize the hash table management pointers
343 * Initialize the DMA/TCE management
345 iommu_init_early_iSeries();
347 /* Initialize machine-dependency vectors */
351 if (itLpNaca.xPirEnvironMode == 0)
352 piranha_simulator = 1;
354 /* Associate Lp Event Queue 0 with processor 0 */
355 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
361 /* If we were passed an initrd, set the ROOT_DEV properly if the values
362 * look sensible. If not, clear initrd reference.
364 #ifdef CONFIG_BLK_DEV_INITRD
365 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
366 initrd_end > initrd_start)
367 ROOT_DEV = Root_RAM0;
369 initrd_start = initrd_end = 0;
370 #endif /* CONFIG_BLK_DEV_INITRD */
372 DBG(" <- iSeries_init_early()\n");
375 struct mschunks_map mschunks_map = {
376 /* XXX We don't use these, but Piranha might need them. */
377 .chunk_size = MSCHUNKS_CHUNK_SIZE,
378 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
379 .chunk_mask = MSCHUNKS_OFFSET_MASK,
381 EXPORT_SYMBOL(mschunks_map);
383 void mschunks_alloc(unsigned long num_chunks)
385 klimit = _ALIGN(klimit, sizeof(u32));
386 mschunks_map.mapping = (u32 *)klimit;
387 klimit += num_chunks * sizeof(u32);
388 mschunks_map.num_chunks = num_chunks;
392 * The iSeries may have very large memories ( > 128 GB ) and a partition
393 * may get memory in "chunks" that may be anywhere in the 2**52 real
394 * address space. The chunks are 256K in size. To map this to the
395 * memory model Linux expects, the AS/400 specific code builds a
396 * translation table to translate what Linux thinks are "physical"
397 * addresses to the actual real addresses. This allows us to make
398 * it appear to Linux that we have contiguous memory starting at
399 * physical address zero while in fact this could be far from the truth.
400 * To avoid confusion, I'll let the words physical and/or real address
401 * apply to the Linux addresses while I'll use "absolute address" to
402 * refer to the actual hardware real address.
404 * build_iSeries_Memory_Map gets information from the Hypervisor and
405 * looks at the Main Store VPD to determine the absolute addresses
406 * of the memory that has been assigned to our partition and builds
407 * a table used to translate Linux's physical addresses to these
408 * absolute addresses. Absolute addresses are needed when
409 * communicating with the hypervisor (e.g. to build HPT entries)
412 static void __init build_iSeries_Memory_Map(void)
414 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
416 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
417 u32 totalChunks,moreChunks;
418 u32 currChunk, thisChunk, absChunk;
422 struct MemoryBlock mb[32];
423 unsigned long numMemoryBlocks, curBlock;
425 /* Chunk size on iSeries is 256K bytes */
426 totalChunks = (u32)HvLpConfig_getMsChunks();
427 mschunks_alloc(totalChunks);
430 * Get absolute address of our load area
431 * and map it to physical address 0
432 * This guarantees that the loadarea ends up at physical 0
433 * otherwise, it might not be returned by PLIC as the first
437 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
438 loadAreaSize = itLpNaca.xLoadAreaChunks;
441 * Only add the pages already mapped here.
442 * Otherwise we might add the hpt pages
443 * The rest of the pages of the load area
444 * aren't in the HPT yet and can still
445 * be assigned an arbitrary physical address
447 if ((loadAreaSize * 64) > HvPagesToMap)
448 loadAreaSize = HvPagesToMap / 64;
450 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
453 * TODO Do we need to do something if the HPT is in the 64MB load area?
454 * This would be required if the itLpNaca.xLoadAreaChunks includes
458 printk("Mapping load area - physical addr = 0000000000000000\n"
459 " absolute addr = %016lx\n",
460 chunk_to_addr(loadAreaFirstChunk));
461 printk("Load area size %dK\n", loadAreaSize * 256);
463 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
464 mschunks_map.mapping[nextPhysChunk] =
465 loadAreaFirstChunk + nextPhysChunk;
468 * Get absolute address of our HPT and remember it so
469 * we won't map it to any physical address
471 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
472 hptSizePages = (u32)HvCallHpt_getHptPages();
473 hptSizeChunks = hptSizePages >>
474 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
475 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
477 printk("HPT absolute addr = %016lx, size = %dK\n",
478 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
480 ppc64_pft_size = __ilog2(hptSizePages * HW_PAGE_SIZE);
483 * The actual hashed page table is in the hypervisor,
484 * we have no direct access
489 * Determine if absolute memory has any
490 * holes so that we can interpret the
491 * access map we get back from the hypervisor
494 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
497 * Process the main store access map from the hypervisor
498 * to build up our physical -> absolute translation table
503 moreChunks = totalChunks;
506 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
508 thisChunk = currChunk;
510 chunkBit = map >> 63;
514 while (thisChunk >= mb[curBlock].logicalEnd) {
516 if (curBlock >= numMemoryBlocks)
517 panic("out of memory blocks");
519 if (thisChunk < mb[curBlock].logicalStart)
520 panic("memory block error");
522 absChunk = mb[curBlock].absStart +
523 (thisChunk - mb[curBlock].logicalStart);
524 if (((absChunk < hptFirstChunk) ||
525 (absChunk > hptLastChunk)) &&
526 ((absChunk < loadAreaFirstChunk) ||
527 (absChunk > loadAreaLastChunk))) {
528 mschunks_map.mapping[nextPhysChunk] =
540 * main store size (in chunks) is
541 * totalChunks - hptSizeChunks
542 * which should be equal to
545 systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk);
551 static void __init iSeries_setup_arch(void)
553 unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
555 if (get_paca()->lppaca.shared_proc) {
556 ppc_md.idle_loop = iseries_shared_idle;
557 printk(KERN_INFO "Using shared processor idle loop\n");
559 ppc_md.idle_loop = iseries_dedicated_idle;
560 printk(KERN_INFO "Using dedicated idle loop\n");
563 /* Setup the Lp Event Queue */
564 setup_hvlpevent_queue();
566 printk("Max logical processors = %d\n",
567 itVpdAreas.xSlicMaxLogicalProcs);
568 printk("Max physical processors = %d\n",
569 itVpdAreas.xSlicMaxPhysicalProcs);
571 systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
572 printk("Processor version = %x\n", systemcfg->processor);
575 static void iSeries_show_cpuinfo(struct seq_file *m)
577 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
584 static int iSeries_get_irq(struct pt_regs *regs)
586 /* -2 means ignore this interrupt */
593 static void iSeries_restart(char *cmd)
601 static void iSeries_power_off(void)
609 static void iSeries_halt(void)
614 static void __init iSeries_progress(char * st, unsigned short code)
616 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
617 if (!piranha_simulator && mf_initialized) {
619 mf_display_progress(code);
625 static void __init iSeries_fixup_klimit(void)
628 * Change klimit to take into account any ram disk
629 * that may be included
632 klimit = KERNELBASE + (u64)naca.xRamDisk +
633 (naca.xRamDiskSize * HW_PAGE_SIZE);
636 * No ram disk was included - check and see if there
637 * was an embedded system map. Change klimit to take
638 * into account any embedded system map
640 if (embedded_sysmap_end)
641 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
646 static int __init iSeries_src_init(void)
648 /* clear the progress line */
649 ppc_md.progress(" ", 0xffff);
653 late_initcall(iSeries_src_init);
655 static inline void process_iSeries_events(void)
657 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
660 static void yield_shared_processor(void)
664 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
670 /* Compute future tb value when yield should expire */
671 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
674 * The decrementer stops during the yield. Force a fake decrementer
675 * here and let the timer_interrupt code sort out the actual time.
677 get_paca()->lppaca.int_dword.fields.decr_int = 1;
678 process_iSeries_events();
681 static void iseries_shared_idle(void)
684 while (!need_resched() && !hvlpevent_is_pending()) {
686 ppc64_runlatch_off();
688 /* Recheck with irqs off */
689 if (!need_resched() && !hvlpevent_is_pending())
690 yield_shared_processor();
698 if (hvlpevent_is_pending())
699 process_iSeries_events();
705 static void iseries_dedicated_idle(void)
710 oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);
713 set_thread_flag(TIF_POLLING_NRFLAG);
715 while (!need_resched()) {
716 ppc64_runlatch_off();
719 if (hvlpevent_is_pending()) {
722 process_iSeries_events();
727 clear_thread_flag(TIF_POLLING_NRFLAG);
738 void __init iSeries_init_IRQ(void) { }
741 static int __init iseries_probe(int platform)
743 return PLATFORM_ISERIES_LPAR == platform;
746 struct machdep_calls __initdata iseries_md = {
747 .setup_arch = iSeries_setup_arch,
748 .show_cpuinfo = iSeries_show_cpuinfo,
749 .init_IRQ = iSeries_init_IRQ,
750 .get_irq = iSeries_get_irq,
751 .init_early = iSeries_init_early,
752 .pcibios_fixup = iSeries_pci_final_fixup,
753 .restart = iSeries_restart,
754 .power_off = iSeries_power_off,
755 .halt = iSeries_halt,
756 .get_boot_time = iSeries_get_boot_time,
757 .set_rtc_time = iSeries_set_rtc_time,
758 .get_rtc_time = iSeries_get_rtc_time,
759 .calibrate_decr = generic_calibrate_decr,
760 .progress = iSeries_progress,
761 .probe = iseries_probe,
762 /* XXX Implement enable_pmcs for iSeries */
766 unsigned char data[PAGE_SIZE];
770 struct iseries_flat_dt {
771 struct boot_param_header header;
777 struct iseries_flat_dt iseries_dt;
779 void dt_init(struct iseries_flat_dt *dt)
781 dt->header.off_mem_rsvmap =
782 offsetof(struct iseries_flat_dt, reserve_map);
783 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
784 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
785 dt->header.totalsize = sizeof(struct iseries_flat_dt);
786 dt->header.dt_strings_size = sizeof(struct blob);
788 /* There is no notion of hardware cpu id on iSeries */
789 dt->header.boot_cpuid_phys = smp_processor_id();
791 dt->dt.next = (unsigned long)&dt->dt.data;
792 dt->strings.next = (unsigned long)&dt->strings.data;
794 dt->header.magic = OF_DT_HEADER;
795 dt->header.version = 0x10;
796 dt->header.last_comp_version = 0x10;
798 dt->reserve_map[0] = 0;
799 dt->reserve_map[1] = 0;
802 void dt_check_blob(struct blob *b)
804 if (b->next >= (unsigned long)&b->next) {
805 DBG("Ran out of space in flat device tree blob!\n");
810 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
812 *((u32*)dt->dt.next) = value;
813 dt->dt.next += sizeof(u32);
815 dt_check_blob(&dt->dt);
818 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
820 *((u64*)dt->dt.next) = value;
821 dt->dt.next += sizeof(u64);
823 dt_check_blob(&dt->dt);
826 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
828 unsigned long start = blob->next - (unsigned long)blob->data;
830 memcpy((char *)blob->next, data, len);
831 blob->next = _ALIGN(blob->next + len, 4);
838 void dt_start_node(struct iseries_flat_dt *dt, char *name)
840 dt_push_u32(dt, OF_DT_BEGIN_NODE);
841 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
844 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
846 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
848 unsigned long offset;
850 dt_push_u32(dt, OF_DT_PROP);
852 /* Length of the data */
853 dt_push_u32(dt, len);
855 /* Put the property name in the string blob. */
856 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
858 /* The offset of the properties name in the string blob. */
859 dt_push_u32(dt, (u32)offset);
861 /* The actual data. */
862 dt_push_bytes(&dt->dt, data, len);
865 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
867 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
870 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
872 dt_prop(dt, name, (char *)&data, sizeof(u32));
875 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
877 dt_prop(dt, name, (char *)&data, sizeof(u64));
880 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
882 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
885 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
887 dt_prop(dt, name, NULL, 0);
890 void dt_cpus(struct iseries_flat_dt *dt)
892 unsigned char buf[32];
894 unsigned int i, index;
895 struct IoHriProcessorVpd *d;
898 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
899 p = strchr(buf, ' ');
900 if (!p) p = buf + strlen(buf);
902 dt_start_node(dt, "cpus");
903 dt_prop_u32(dt, "#address-cells", 1);
904 dt_prop_u32(dt, "#size-cells", 0);
906 for (i = 0; i < NR_CPUS; i++) {
907 if (paca[i].lppaca.dyn_proc_status >= 2)
910 snprintf(p, 32 - (p - buf), "@%d", i);
911 dt_start_node(dt, buf);
913 dt_prop_str(dt, "device_type", "cpu");
915 index = paca[i].lppaca.dyn_hv_phys_proc_index;
916 d = &xIoHriProcessorVpd[index];
918 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
919 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
921 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
922 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
924 /* magic conversions to Hz copied from old code */
925 dt_prop_u32(dt, "clock-frequency",
926 ((1UL << 34) * 1000000) / d->xProcFreq);
927 dt_prop_u32(dt, "timebase-frequency",
928 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
930 dt_prop_u32(dt, "reg", i);
938 void build_flat_dt(struct iseries_flat_dt *dt)
944 dt_start_node(dt, "");
946 dt_prop_u32(dt, "#address-cells", 2);
947 dt_prop_u32(dt, "#size-cells", 2);
950 dt_start_node(dt, "memory@0");
951 dt_prop_str(dt, "name", "memory");
952 dt_prop_str(dt, "device_type", "memory");
954 tmp[1] = systemcfg->physicalMemorySize;
955 dt_prop_u64_list(dt, "reg", tmp, 2);
959 dt_start_node(dt, "chosen");
960 dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
962 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
969 dt_push_u32(dt, OF_DT_END);
972 void * __init iSeries_early_setup(void)
974 iSeries_fixup_klimit();
977 * Initialize the table which translate Linux physical addresses to
978 * AS/400 absolute addresses
980 build_iSeries_Memory_Map();
982 iSeries_get_cmdline();
984 /* Save unparsed command line copy for /proc/cmdline */
985 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
987 /* Parse early parameters, in particular mem=x */
990 build_flat_dt(&iseries_dt);
992 return (void *) __pa(&iseries_dt);
996 * On iSeries we just parse the mem=X option from the command line.
997 * On pSeries it's a bit more complicated, see prom_init_mem()
999 static int __init early_parsemem(char *p)
1002 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
1005 early_param("mem", early_parsemem);