2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/blkdev.h>
21 #include <linux/scatterlist.h>
22 #include <linux/swap.h>
23 #include <linux/radix-tree.h>
24 #include <linux/writeback.h>
25 #include <linux/buffer_head.h> // for block_sync_page
26 #include <linux/workqueue.h>
30 #include "transaction.h"
31 #include "btrfs_inode.h"
33 #include "print-tree.h"
36 static int check_tree_block(struct btrfs_root *root, struct extent_buffer *buf)
38 if (extent_buffer_blocknr(buf) != btrfs_header_blocknr(buf)) {
39 printk(KERN_CRIT "buf blocknr(buf) is %llu, header is %llu\n",
40 (unsigned long long)extent_buffer_blocknr(buf),
41 (unsigned long long)btrfs_header_blocknr(buf));
48 static struct extent_io_ops btree_extent_io_ops;
49 static struct workqueue_struct *end_io_workqueue;
50 static struct workqueue_struct *async_submit_workqueue;
56 struct btrfs_fs_info *info;
59 struct list_head list;
62 struct async_submit_bio {
65 struct list_head list;
66 extent_submit_bio_hook_t *submit_bio_hook;
71 struct extent_map *btree_get_extent(struct inode *inode, struct page *page,
72 size_t page_offset, u64 start, u64 len,
75 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
76 struct extent_map *em;
79 spin_lock(&em_tree->lock);
80 em = lookup_extent_mapping(em_tree, start, len);
81 spin_unlock(&em_tree->lock);
85 em = alloc_extent_map(GFP_NOFS);
87 em = ERR_PTR(-ENOMEM);
93 em->bdev = inode->i_sb->s_bdev;
95 spin_lock(&em_tree->lock);
96 ret = add_extent_mapping(em_tree, em);
98 u64 failed_start = em->start;
99 u64 failed_len = em->len;
101 printk("failed to insert %Lu %Lu -> %Lu into tree\n",
102 em->start, em->len, em->block_start);
104 em = lookup_extent_mapping(em_tree, start, len);
106 printk("after failing, found %Lu %Lu %Lu\n",
107 em->start, em->len, em->block_start);
110 em = lookup_extent_mapping(em_tree, failed_start,
113 printk("double failure lookup gives us "
114 "%Lu %Lu -> %Lu\n", em->start,
115 em->len, em->block_start);
124 spin_unlock(&em_tree->lock);
132 u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
134 return btrfs_crc32c(seed, data, len);
137 void btrfs_csum_final(u32 crc, char *result)
139 *(__le32 *)result = ~cpu_to_le32(crc);
142 static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
145 char result[BTRFS_CRC32_SIZE];
147 unsigned long cur_len;
148 unsigned long offset = BTRFS_CSUM_SIZE;
149 char *map_token = NULL;
151 unsigned long map_start;
152 unsigned long map_len;
156 len = buf->len - offset;
158 err = map_private_extent_buffer(buf, offset, 32,
160 &map_start, &map_len, KM_USER0);
162 printk("failed to map extent buffer! %lu\n",
166 cur_len = min(len, map_len - (offset - map_start));
167 crc = btrfs_csum_data(root, kaddr + offset - map_start,
171 unmap_extent_buffer(buf, map_token, KM_USER0);
173 btrfs_csum_final(crc, result);
176 int from_this_trans = 0;
178 if (root->fs_info->running_transaction &&
179 btrfs_header_generation(buf) ==
180 root->fs_info->running_transaction->transid)
183 /* FIXME, this is not good */
184 if (memcmp_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE)) {
187 memcpy(&found, result, BTRFS_CRC32_SIZE);
189 read_extent_buffer(buf, &val, 0, BTRFS_CRC32_SIZE);
190 printk("btrfs: %s checksum verify failed on %llu "
191 "wanted %X found %X from_this_trans %d "
193 root->fs_info->sb->s_id,
194 buf->start, val, found, from_this_trans,
195 btrfs_header_level(buf));
199 write_extent_buffer(buf, result, 0, BTRFS_CRC32_SIZE);
204 static int btree_read_extent_buffer_pages(struct btrfs_root *root,
205 struct extent_buffer *eb,
208 struct extent_io_tree *io_tree;
213 io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
215 ret = read_extent_buffer_pages(io_tree, eb, start, 1,
216 btree_get_extent, mirror_num);
219 printk("good read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
222 num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
224 printk("failed to read %Lu mirror %d total %d\n", eb->start, mirror_num, num_copies);
225 if (num_copies == 1) {
226 printk("reading %Lu failed only one copy\n", eb->start);
230 if (mirror_num > num_copies) {
231 printk("bailing at mirror %d of %d\n", mirror_num, num_copies);
235 printk("read extent buffer page last\n");
239 int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
241 struct extent_io_tree *tree;
242 u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
246 struct extent_buffer *eb;
249 tree = &BTRFS_I(page->mapping->host)->io_tree;
251 if (page->private == EXTENT_PAGE_PRIVATE)
255 len = page->private >> 2;
259 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
260 ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE);
262 btrfs_clear_buffer_defrag(eb);
263 found_start = btrfs_header_bytenr(eb);
264 if (found_start != start) {
265 printk("warning: eb start incorrect %Lu buffer %Lu len %lu\n",
266 start, found_start, len);
270 if (eb->first_page != page) {
271 printk("bad first page %lu %lu\n", eb->first_page->index,
276 if (!PageUptodate(page)) {
277 printk("csum not up to date page %lu\n", page->index);
281 found_level = btrfs_header_level(eb);
282 spin_lock(&root->fs_info->hash_lock);
283 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
284 spin_unlock(&root->fs_info->hash_lock);
285 csum_tree_block(root, eb, 0);
287 free_extent_buffer(eb);
292 static int btree_writepage_io_hook(struct page *page, u64 start, u64 end)
294 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
296 csum_dirty_buffer(root, page);
300 int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
301 struct extent_state *state)
303 struct extent_io_tree *tree;
307 struct extent_buffer *eb;
308 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
311 tree = &BTRFS_I(page->mapping->host)->io_tree;
312 if (page->private == EXTENT_PAGE_PRIVATE)
316 len = page->private >> 2;
320 eb = alloc_extent_buffer(tree, start, len, page, GFP_NOFS);
322 btrfs_clear_buffer_defrag(eb);
323 found_start = btrfs_header_bytenr(eb);
324 if (found_start != start) {
325 printk("bad start on %Lu found %Lu\n", eb->start, found_start);
329 if (eb->first_page != page) {
330 printk("bad first page %lu %lu\n", eb->first_page->index,
336 found_level = btrfs_header_level(eb);
338 ret = csum_tree_block(root, eb, 1);
342 end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
343 end = eb->start + end - 1;
344 release_extent_buffer_tail_pages(eb);
346 free_extent_buffer(eb);
351 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,23)
352 static void end_workqueue_bio(struct bio *bio, int err)
354 static int end_workqueue_bio(struct bio *bio,
355 unsigned int bytes_done, int err)
358 struct end_io_wq *end_io_wq = bio->bi_private;
359 struct btrfs_fs_info *fs_info;
362 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
367 fs_info = end_io_wq->info;
368 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
369 end_io_wq->error = err;
370 list_add_tail(&end_io_wq->list, &fs_info->end_io_work_list);
371 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
372 queue_work(end_io_workqueue, &fs_info->end_io_work);
374 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
379 int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
382 struct end_io_wq *end_io_wq;
383 end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
387 end_io_wq->private = bio->bi_private;
388 end_io_wq->end_io = bio->bi_end_io;
389 end_io_wq->info = info;
390 end_io_wq->error = 0;
391 end_io_wq->bio = bio;
392 end_io_wq->metadata = metadata;
394 bio->bi_private = end_io_wq;
395 bio->bi_end_io = end_workqueue_bio;
399 int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
400 int rw, struct bio *bio, int mirror_num,
401 extent_submit_bio_hook_t *submit_bio_hook)
403 struct async_submit_bio *async;
406 * inline writerback should stay inline, only hop to the async
407 * queue if we're pdflush
409 if (!current_is_pdflush())
410 return submit_bio_hook(inode, rw, bio, mirror_num);
412 async = kmalloc(sizeof(*async), GFP_NOFS);
416 async->inode = inode;
419 async->mirror_num = mirror_num;
420 async->submit_bio_hook = submit_bio_hook;
422 spin_lock(&fs_info->async_submit_work_lock);
423 list_add_tail(&async->list, &fs_info->async_submit_work_list);
424 spin_unlock(&fs_info->async_submit_work_lock);
426 queue_work(async_submit_workqueue, &fs_info->async_submit_work);
430 static int __btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
433 struct btrfs_root *root = BTRFS_I(inode)->root;
437 offset = bio->bi_sector << 9;
439 if (rw & (1 << BIO_RW)) {
440 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
443 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 1);
446 if (offset == BTRFS_SUPER_INFO_OFFSET) {
447 bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
451 return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num);
454 static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
457 if (!(rw & (1 << BIO_RW))) {
458 return __btree_submit_bio_hook(inode, rw, bio, mirror_num);
460 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
461 inode, rw, bio, mirror_num,
462 __btree_submit_bio_hook);
465 static int btree_writepage(struct page *page, struct writeback_control *wbc)
467 struct extent_io_tree *tree;
468 tree = &BTRFS_I(page->mapping->host)->io_tree;
469 return extent_write_full_page(tree, page, btree_get_extent, wbc);
472 static int btree_writepages(struct address_space *mapping,
473 struct writeback_control *wbc)
475 struct extent_io_tree *tree;
476 tree = &BTRFS_I(mapping->host)->io_tree;
477 if (wbc->sync_mode == WB_SYNC_NONE) {
480 unsigned long thresh = 96 * 1024 * 1024;
482 if (wbc->for_kupdate)
485 if (current_is_pdflush()) {
486 thresh = 96 * 1024 * 1024;
488 thresh = 8 * 1024 * 1024;
490 num_dirty = count_range_bits(tree, &start, (u64)-1,
491 thresh, EXTENT_DIRTY);
492 if (num_dirty < thresh) {
496 return extent_writepages(tree, mapping, btree_get_extent, wbc);
499 int btree_readpage(struct file *file, struct page *page)
501 struct extent_io_tree *tree;
502 tree = &BTRFS_I(page->mapping->host)->io_tree;
503 return extent_read_full_page(tree, page, btree_get_extent);
506 static int btree_releasepage(struct page *page, gfp_t gfp_flags)
508 struct extent_io_tree *tree;
509 struct extent_map_tree *map;
512 if (page_count(page) > 3) {
513 /* once for page->private, once for the caller, once
514 * once for the page cache
518 tree = &BTRFS_I(page->mapping->host)->io_tree;
519 map = &BTRFS_I(page->mapping->host)->extent_tree;
520 ret = try_release_extent_state(map, tree, page, gfp_flags);
522 invalidate_extent_lru(tree, page_offset(page), PAGE_CACHE_SIZE);
523 ClearPagePrivate(page);
524 set_page_private(page, 0);
525 page_cache_release(page);
530 static void btree_invalidatepage(struct page *page, unsigned long offset)
532 struct extent_io_tree *tree;
533 tree = &BTRFS_I(page->mapping->host)->io_tree;
534 extent_invalidatepage(tree, page, offset);
535 btree_releasepage(page, GFP_NOFS);
539 static int btree_writepage(struct page *page, struct writeback_control *wbc)
541 struct buffer_head *bh;
542 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
543 struct buffer_head *head;
544 if (!page_has_buffers(page)) {
545 create_empty_buffers(page, root->fs_info->sb->s_blocksize,
546 (1 << BH_Dirty)|(1 << BH_Uptodate));
548 head = page_buffers(page);
551 if (buffer_dirty(bh))
552 csum_tree_block(root, bh, 0);
553 bh = bh->b_this_page;
554 } while (bh != head);
555 return block_write_full_page(page, btree_get_block, wbc);
559 static struct address_space_operations btree_aops = {
560 .readpage = btree_readpage,
561 .writepage = btree_writepage,
562 .writepages = btree_writepages,
563 .releasepage = btree_releasepage,
564 .invalidatepage = btree_invalidatepage,
565 .sync_page = block_sync_page,
568 int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize)
570 struct extent_buffer *buf = NULL;
571 struct inode *btree_inode = root->fs_info->btree_inode;
574 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
577 read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
578 buf, 0, 0, btree_get_extent, 0);
579 free_extent_buffer(buf);
583 static int close_all_devices(struct btrfs_fs_info *fs_info)
585 struct list_head *list;
586 struct list_head *next;
587 struct btrfs_device *device;
589 list = &fs_info->fs_devices->devices;
590 list_for_each(next, list) {
591 device = list_entry(next, struct btrfs_device, dev_list);
592 if (device->bdev && device->bdev != fs_info->sb->s_bdev)
593 close_bdev_excl(device->bdev);
599 int btrfs_verify_block_csum(struct btrfs_root *root,
600 struct extent_buffer *buf)
602 return btrfs_buffer_uptodate(buf);
605 struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
606 u64 bytenr, u32 blocksize)
608 struct inode *btree_inode = root->fs_info->btree_inode;
609 struct extent_buffer *eb;
610 eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
611 bytenr, blocksize, GFP_NOFS);
615 struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
616 u64 bytenr, u32 blocksize)
618 struct inode *btree_inode = root->fs_info->btree_inode;
619 struct extent_buffer *eb;
621 eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
622 bytenr, blocksize, NULL, GFP_NOFS);
627 struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
630 struct extent_buffer *buf = NULL;
631 struct inode *btree_inode = root->fs_info->btree_inode;
632 struct extent_io_tree *io_tree;
635 io_tree = &BTRFS_I(btree_inode)->io_tree;
637 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
641 ret = btree_read_extent_buffer_pages(root, buf, 0);
644 buf->flags |= EXTENT_UPTODATE;
650 int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
651 struct extent_buffer *buf)
653 struct inode *btree_inode = root->fs_info->btree_inode;
654 if (btrfs_header_generation(buf) ==
655 root->fs_info->running_transaction->transid)
656 clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
661 int wait_on_tree_block_writeback(struct btrfs_root *root,
662 struct extent_buffer *buf)
664 struct inode *btree_inode = root->fs_info->btree_inode;
665 wait_on_extent_buffer_writeback(&BTRFS_I(btree_inode)->io_tree,
670 static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
671 u32 stripesize, struct btrfs_root *root,
672 struct btrfs_fs_info *fs_info,
677 root->commit_root = NULL;
678 root->sectorsize = sectorsize;
679 root->nodesize = nodesize;
680 root->leafsize = leafsize;
681 root->stripesize = stripesize;
683 root->track_dirty = 0;
685 root->fs_info = fs_info;
686 root->objectid = objectid;
687 root->last_trans = 0;
688 root->highest_inode = 0;
689 root->last_inode_alloc = 0;
693 INIT_LIST_HEAD(&root->dirty_list);
694 memset(&root->root_key, 0, sizeof(root->root_key));
695 memset(&root->root_item, 0, sizeof(root->root_item));
696 memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
697 memset(&root->root_kobj, 0, sizeof(root->root_kobj));
698 init_completion(&root->kobj_unregister);
699 root->defrag_running = 0;
700 root->defrag_level = 0;
701 root->root_key.objectid = objectid;
705 static int find_and_setup_root(struct btrfs_root *tree_root,
706 struct btrfs_fs_info *fs_info,
708 struct btrfs_root *root)
713 __setup_root(tree_root->nodesize, tree_root->leafsize,
714 tree_root->sectorsize, tree_root->stripesize,
715 root, fs_info, objectid);
716 ret = btrfs_find_last_root(tree_root, objectid,
717 &root->root_item, &root->root_key);
720 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
721 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
727 struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_fs_info *fs_info,
728 struct btrfs_key *location)
730 struct btrfs_root *root;
731 struct btrfs_root *tree_root = fs_info->tree_root;
732 struct btrfs_path *path;
733 struct extent_buffer *l;
738 root = kzalloc(sizeof(*root), GFP_NOFS);
740 return ERR_PTR(-ENOMEM);
741 if (location->offset == (u64)-1) {
742 ret = find_and_setup_root(tree_root, fs_info,
743 location->objectid, root);
751 __setup_root(tree_root->nodesize, tree_root->leafsize,
752 tree_root->sectorsize, tree_root->stripesize,
753 root, fs_info, location->objectid);
755 path = btrfs_alloc_path();
757 ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
764 read_extent_buffer(l, &root->root_item,
765 btrfs_item_ptr_offset(l, path->slots[0]),
766 sizeof(root->root_item));
767 memcpy(&root->root_key, location, sizeof(*location));
770 btrfs_release_path(root, path);
771 btrfs_free_path(path);
776 blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
777 root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
782 ret = btrfs_find_highest_inode(root, &highest_inode);
784 root->highest_inode = highest_inode;
785 root->last_inode_alloc = highest_inode;
790 struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
793 struct btrfs_root *root;
795 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID)
796 return fs_info->tree_root;
797 if (root_objectid == BTRFS_EXTENT_TREE_OBJECTID)
798 return fs_info->extent_root;
800 root = radix_tree_lookup(&fs_info->fs_roots_radix,
801 (unsigned long)root_objectid);
805 struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
806 struct btrfs_key *location)
808 struct btrfs_root *root;
811 if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
812 return fs_info->tree_root;
813 if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
814 return fs_info->extent_root;
816 root = radix_tree_lookup(&fs_info->fs_roots_radix,
817 (unsigned long)location->objectid);
821 root = btrfs_read_fs_root_no_radix(fs_info, location);
824 ret = radix_tree_insert(&fs_info->fs_roots_radix,
825 (unsigned long)root->root_key.objectid,
828 free_extent_buffer(root->node);
832 ret = btrfs_find_dead_roots(fs_info->tree_root,
833 root->root_key.objectid, root);
839 struct btrfs_root *btrfs_read_fs_root(struct btrfs_fs_info *fs_info,
840 struct btrfs_key *location,
841 const char *name, int namelen)
843 struct btrfs_root *root;
846 root = btrfs_read_fs_root_no_name(fs_info, location);
853 ret = btrfs_set_root_name(root, name, namelen);
855 free_extent_buffer(root->node);
860 ret = btrfs_sysfs_add_root(root);
862 free_extent_buffer(root->node);
871 static int add_hasher(struct btrfs_fs_info *info, char *type) {
872 struct btrfs_hasher *hasher;
874 hasher = kmalloc(sizeof(*hasher), GFP_NOFS);
877 hasher->hash_tfm = crypto_alloc_hash(type, 0, CRYPTO_ALG_ASYNC);
878 if (!hasher->hash_tfm) {
882 spin_lock(&info->hash_lock);
883 list_add(&hasher->list, &info->hashers);
884 spin_unlock(&info->hash_lock);
889 static int btrfs_congested_fn(void *congested_data, int bdi_bits)
891 struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
893 struct list_head *cur;
894 struct btrfs_device *device;
895 struct backing_dev_info *bdi;
897 list_for_each(cur, &info->fs_devices->devices) {
898 device = list_entry(cur, struct btrfs_device, dev_list);
899 bdi = blk_get_backing_dev_info(device->bdev);
900 if (bdi && bdi_congested(bdi, bdi_bits)) {
908 void btrfs_unplug_io_fn(struct backing_dev_info *bdi, struct page *page)
910 struct list_head *cur;
911 struct btrfs_device *device;
912 struct btrfs_fs_info *info;
914 info = (struct btrfs_fs_info *)bdi->unplug_io_data;
915 list_for_each(cur, &info->fs_devices->devices) {
916 device = list_entry(cur, struct btrfs_device, dev_list);
917 bdi = blk_get_backing_dev_info(device->bdev);
918 if (bdi->unplug_io_fn) {
919 bdi->unplug_io_fn(bdi, page);
924 static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
926 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
929 bdi->ra_pages = default_backing_dev_info.ra_pages * 4;
931 bdi->capabilities = default_backing_dev_info.capabilities;
932 bdi->unplug_io_fn = btrfs_unplug_io_fn;
933 bdi->unplug_io_data = info;
934 bdi->congested_fn = btrfs_congested_fn;
935 bdi->congested_data = info;
939 static int bio_ready_for_csum(struct bio *bio)
945 struct extent_io_tree *io_tree = NULL;
946 struct btrfs_fs_info *info = NULL;
947 struct bio_vec *bvec;
951 bio_for_each_segment(bvec, bio, i) {
952 page = bvec->bv_page;
953 if (page->private == EXTENT_PAGE_PRIVATE) {
954 length += bvec->bv_len;
957 if (!page->private) {
958 length += bvec->bv_len;
961 length = bvec->bv_len;
962 buf_len = page->private >> 2;
963 start = page_offset(page) + bvec->bv_offset;
964 io_tree = &BTRFS_I(page->mapping->host)->io_tree;
965 info = BTRFS_I(page->mapping->host)->root->fs_info;
967 /* are we fully contained in this bio? */
968 if (buf_len <= length)
971 ret = extent_range_uptodate(io_tree, start + length,
972 start + buf_len - 1);
978 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
979 static void btrfs_end_io_csum(void *p)
981 static void btrfs_end_io_csum(struct work_struct *work)
984 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
985 struct btrfs_fs_info *fs_info = p;
987 struct btrfs_fs_info *fs_info = container_of(work,
988 struct btrfs_fs_info,
992 struct end_io_wq *end_io_wq;
994 struct list_head *next;
999 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1000 if (list_empty(&fs_info->end_io_work_list)) {
1001 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1005 next = fs_info->end_io_work_list.next;
1007 spin_unlock_irqrestore(&fs_info->end_io_work_lock, flags);
1009 end_io_wq = list_entry(next, struct end_io_wq, list);
1011 bio = end_io_wq->bio;
1012 if (end_io_wq->metadata && !bio_ready_for_csum(bio)) {
1013 spin_lock_irqsave(&fs_info->end_io_work_lock, flags);
1014 was_empty = list_empty(&fs_info->end_io_work_list);
1015 list_add_tail(&end_io_wq->list,
1016 &fs_info->end_io_work_list);
1017 spin_unlock_irqrestore(&fs_info->end_io_work_lock,
1023 error = end_io_wq->error;
1024 bio->bi_private = end_io_wq->private;
1025 bio->bi_end_io = end_io_wq->end_io;
1027 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,23)
1028 bio_endio(bio, bio->bi_size, error);
1030 bio_endio(bio, error);
1035 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1036 static void btrfs_async_submit_work(void *p)
1038 static void btrfs_async_submit_work(struct work_struct *work)
1041 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1042 struct btrfs_fs_info *fs_info = p;
1044 struct btrfs_fs_info *fs_info = container_of(work,
1045 struct btrfs_fs_info,
1048 struct async_submit_bio *async;
1049 struct list_head *next;
1052 spin_lock(&fs_info->async_submit_work_lock);
1053 if (list_empty(&fs_info->async_submit_work_list)) {
1054 spin_unlock(&fs_info->async_submit_work_lock);
1057 next = fs_info->async_submit_work_list.next;
1059 spin_unlock(&fs_info->async_submit_work_lock);
1061 async = list_entry(next, struct async_submit_bio, list);
1062 async->submit_bio_hook(async->inode, async->rw, async->bio,
1068 struct btrfs_root *open_ctree(struct super_block *sb,
1069 struct btrfs_fs_devices *fs_devices)
1076 struct btrfs_root *extent_root = kmalloc(sizeof(struct btrfs_root),
1078 struct btrfs_root *tree_root = kmalloc(sizeof(struct btrfs_root),
1080 struct btrfs_fs_info *fs_info = kzalloc(sizeof(*fs_info),
1082 struct btrfs_root *chunk_root = kmalloc(sizeof(struct btrfs_root),
1084 struct btrfs_root *dev_root = kmalloc(sizeof(struct btrfs_root),
1088 struct btrfs_super_block *disk_super;
1090 if (!extent_root || !tree_root || !fs_info) {
1094 end_io_workqueue = create_workqueue("btrfs-end-io");
1095 BUG_ON(!end_io_workqueue);
1096 async_submit_workqueue = create_workqueue("btrfs-async-submit");
1098 INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_NOFS);
1099 INIT_LIST_HEAD(&fs_info->trans_list);
1100 INIT_LIST_HEAD(&fs_info->dead_roots);
1101 INIT_LIST_HEAD(&fs_info->hashers);
1102 INIT_LIST_HEAD(&fs_info->end_io_work_list);
1103 INIT_LIST_HEAD(&fs_info->async_submit_work_list);
1104 spin_lock_init(&fs_info->hash_lock);
1105 spin_lock_init(&fs_info->end_io_work_lock);
1106 spin_lock_init(&fs_info->async_submit_work_lock);
1107 spin_lock_init(&fs_info->delalloc_lock);
1108 spin_lock_init(&fs_info->new_trans_lock);
1110 init_completion(&fs_info->kobj_unregister);
1111 sb_set_blocksize(sb, BTRFS_SUPER_INFO_SIZE);
1112 fs_info->tree_root = tree_root;
1113 fs_info->extent_root = extent_root;
1114 fs_info->chunk_root = chunk_root;
1115 fs_info->dev_root = dev_root;
1116 fs_info->fs_devices = fs_devices;
1117 INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1118 INIT_LIST_HEAD(&fs_info->space_info);
1119 btrfs_mapping_init(&fs_info->mapping_tree);
1121 fs_info->max_extent = (u64)-1;
1122 fs_info->max_inline = 8192 * 1024;
1123 setup_bdi(fs_info, &fs_info->bdi);
1124 fs_info->btree_inode = new_inode(sb);
1125 fs_info->btree_inode->i_ino = 1;
1126 fs_info->btree_inode->i_nlink = 1;
1129 * we set the i_size on the btree inode to the max possible int.
1130 * the real end of the address space is determined by all of
1131 * the devices in the system
1133 fs_info->btree_inode->i_size = OFFSET_MAX;
1134 fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1135 fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1137 extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1138 fs_info->btree_inode->i_mapping,
1140 extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree,
1143 BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1145 extent_io_tree_init(&fs_info->free_space_cache,
1146 fs_info->btree_inode->i_mapping, GFP_NOFS);
1147 extent_io_tree_init(&fs_info->block_group_cache,
1148 fs_info->btree_inode->i_mapping, GFP_NOFS);
1149 extent_io_tree_init(&fs_info->pinned_extents,
1150 fs_info->btree_inode->i_mapping, GFP_NOFS);
1151 extent_io_tree_init(&fs_info->pending_del,
1152 fs_info->btree_inode->i_mapping, GFP_NOFS);
1153 extent_io_tree_init(&fs_info->extent_ins,
1154 fs_info->btree_inode->i_mapping, GFP_NOFS);
1155 fs_info->do_barriers = 1;
1157 #if LINUX_VERSION_CODE <= KERNEL_VERSION(2,6,18)
1158 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum, fs_info);
1159 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work,
1161 INIT_WORK(&fs_info->trans_work, btrfs_transaction_cleaner, fs_info);
1163 INIT_WORK(&fs_info->end_io_work, btrfs_end_io_csum);
1164 INIT_WORK(&fs_info->async_submit_work, btrfs_async_submit_work);
1165 INIT_DELAYED_WORK(&fs_info->trans_work, btrfs_transaction_cleaner);
1167 BTRFS_I(fs_info->btree_inode)->root = tree_root;
1168 memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1169 sizeof(struct btrfs_key));
1170 insert_inode_hash(fs_info->btree_inode);
1171 mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1173 mutex_init(&fs_info->trans_mutex);
1174 mutex_init(&fs_info->fs_mutex);
1177 ret = add_hasher(fs_info, "crc32c");
1179 printk("btrfs: failed hash setup, modprobe cryptomgr?\n");
1184 __setup_root(4096, 4096, 4096, 4096, tree_root,
1185 fs_info, BTRFS_ROOT_TREE_OBJECTID);
1187 fs_info->sb_buffer = read_tree_block(tree_root,
1188 BTRFS_SUPER_INFO_OFFSET,
1191 if (!fs_info->sb_buffer)
1194 read_extent_buffer(fs_info->sb_buffer, &fs_info->super_copy, 0,
1195 sizeof(fs_info->super_copy));
1197 read_extent_buffer(fs_info->sb_buffer, fs_info->fsid,
1198 (unsigned long)btrfs_super_fsid(fs_info->sb_buffer),
1201 disk_super = &fs_info->super_copy;
1202 if (!btrfs_super_root(disk_super))
1203 goto fail_sb_buffer;
1205 if (btrfs_super_num_devices(disk_super) != fs_devices->num_devices) {
1206 printk("Btrfs: wanted %llu devices, but found %llu\n",
1207 (unsigned long long)btrfs_super_num_devices(disk_super),
1208 (unsigned long long)fs_devices->num_devices);
1209 goto fail_sb_buffer;
1211 nodesize = btrfs_super_nodesize(disk_super);
1212 leafsize = btrfs_super_leafsize(disk_super);
1213 sectorsize = btrfs_super_sectorsize(disk_super);
1214 stripesize = btrfs_super_stripesize(disk_super);
1215 tree_root->nodesize = nodesize;
1216 tree_root->leafsize = leafsize;
1217 tree_root->sectorsize = sectorsize;
1218 tree_root->stripesize = stripesize;
1219 sb_set_blocksize(sb, sectorsize);
1221 if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1222 sizeof(disk_super->magic))) {
1223 printk("btrfs: valid FS not found on %s\n", sb->s_id);
1224 goto fail_sb_buffer;
1227 mutex_lock(&fs_info->fs_mutex);
1229 ret = btrfs_read_sys_array(tree_root);
1232 blocksize = btrfs_level_size(tree_root,
1233 btrfs_super_chunk_root_level(disk_super));
1235 __setup_root(nodesize, leafsize, sectorsize, stripesize,
1236 chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1238 chunk_root->node = read_tree_block(chunk_root,
1239 btrfs_super_chunk_root(disk_super),
1241 BUG_ON(!chunk_root->node);
1243 read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1244 (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1247 ret = btrfs_read_chunk_tree(chunk_root);
1250 blocksize = btrfs_level_size(tree_root,
1251 btrfs_super_root_level(disk_super));
1254 tree_root->node = read_tree_block(tree_root,
1255 btrfs_super_root(disk_super),
1257 if (!tree_root->node)
1258 goto fail_sb_buffer;
1261 ret = find_and_setup_root(tree_root, fs_info,
1262 BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1264 goto fail_tree_root;
1265 extent_root->track_dirty = 1;
1267 ret = find_and_setup_root(tree_root, fs_info,
1268 BTRFS_DEV_TREE_OBJECTID, dev_root);
1269 dev_root->track_dirty = 1;
1272 goto fail_extent_root;
1274 btrfs_read_block_groups(extent_root);
1276 fs_info->generation = btrfs_super_generation(disk_super) + 1;
1277 fs_info->data_alloc_profile = (u64)-1;
1278 fs_info->metadata_alloc_profile = (u64)-1;
1279 fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
1281 mutex_unlock(&fs_info->fs_mutex);
1285 free_extent_buffer(extent_root->node);
1287 mutex_unlock(&fs_info->fs_mutex);
1288 free_extent_buffer(tree_root->node);
1290 free_extent_buffer(fs_info->sb_buffer);
1291 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1293 iput(fs_info->btree_inode);
1295 close_all_devices(fs_info);
1298 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1299 bdi_destroy(&fs_info->bdi);
1302 return ERR_PTR(err);
1305 static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
1307 char b[BDEVNAME_SIZE];
1310 set_buffer_uptodate(bh);
1312 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
1313 printk(KERN_WARNING "lost page write due to "
1314 "I/O error on %s\n",
1315 bdevname(bh->b_bdev, b));
1317 set_buffer_write_io_error(bh);
1318 clear_buffer_uptodate(bh);
1324 int write_all_supers(struct btrfs_root *root)
1326 struct list_head *cur;
1327 struct list_head *head = &root->fs_info->fs_devices->devices;
1328 struct btrfs_device *dev;
1329 struct extent_buffer *sb;
1330 struct btrfs_dev_item *dev_item;
1331 struct buffer_head *bh;
1335 do_barriers = !btrfs_test_opt(root, NOBARRIER);
1337 sb = root->fs_info->sb_buffer;
1338 dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
1340 list_for_each(cur, head) {
1341 dev = list_entry(cur, struct btrfs_device, dev_list);
1342 btrfs_set_device_type(sb, dev_item, dev->type);
1343 btrfs_set_device_id(sb, dev_item, dev->devid);
1344 btrfs_set_device_total_bytes(sb, dev_item, dev->total_bytes);
1345 btrfs_set_device_bytes_used(sb, dev_item, dev->bytes_used);
1346 btrfs_set_device_io_align(sb, dev_item, dev->io_align);
1347 btrfs_set_device_io_width(sb, dev_item, dev->io_width);
1348 btrfs_set_device_sector_size(sb, dev_item, dev->sector_size);
1349 write_extent_buffer(sb, dev->uuid,
1350 (unsigned long)btrfs_device_uuid(dev_item),
1353 btrfs_set_header_flag(sb, BTRFS_HEADER_FLAG_WRITTEN);
1354 csum_tree_block(root, sb, 0);
1356 bh = __getblk(dev->bdev, BTRFS_SUPER_INFO_OFFSET /
1357 root->fs_info->sb->s_blocksize,
1358 BTRFS_SUPER_INFO_SIZE);
1360 read_extent_buffer(sb, bh->b_data, 0, BTRFS_SUPER_INFO_SIZE);
1361 dev->pending_io = bh;
1364 set_buffer_uptodate(bh);
1366 bh->b_end_io = btrfs_end_buffer_write_sync;
1368 if (do_barriers && dev->barriers) {
1369 ret = submit_bh(WRITE_BARRIER, bh);
1370 if (ret == -EOPNOTSUPP) {
1371 printk("btrfs: disabling barriers on dev %s\n",
1373 set_buffer_uptodate(bh);
1377 ret = submit_bh(WRITE, bh);
1380 ret = submit_bh(WRITE, bh);
1385 list_for_each(cur, head) {
1386 dev = list_entry(cur, struct btrfs_device, dev_list);
1387 BUG_ON(!dev->pending_io);
1388 bh = dev->pending_io;
1390 if (!buffer_uptodate(dev->pending_io)) {
1391 if (do_barriers && dev->barriers) {
1392 printk("btrfs: disabling barriers on dev %s\n",
1394 set_buffer_uptodate(bh);
1398 ret = submit_bh(WRITE, bh);
1401 BUG_ON(!buffer_uptodate(bh));
1407 dev->pending_io = NULL;
1413 int write_ctree_super(struct btrfs_trans_handle *trans, struct btrfs_root
1418 ret = write_all_supers(root);
1420 if (!btrfs_test_opt(root, NOBARRIER))
1421 blkdev_issue_flush(sb->s_bdev, NULL);
1422 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, super);
1423 ret = sync_page_range_nolock(btree_inode, btree_inode->i_mapping,
1424 super->start, super->len);
1425 if (!btrfs_test_opt(root, NOBARRIER))
1426 blkdev_issue_flush(sb->s_bdev, NULL);
1431 int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
1433 radix_tree_delete(&fs_info->fs_roots_radix,
1434 (unsigned long)root->root_key.objectid);
1436 btrfs_sysfs_del_root(root);
1440 free_extent_buffer(root->node);
1441 if (root->commit_root)
1442 free_extent_buffer(root->commit_root);
1449 static int del_fs_roots(struct btrfs_fs_info *fs_info)
1452 struct btrfs_root *gang[8];
1456 ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
1461 for (i = 0; i < ret; i++)
1462 btrfs_free_fs_root(fs_info, gang[i]);
1467 int close_ctree(struct btrfs_root *root)
1470 struct btrfs_trans_handle *trans;
1471 struct btrfs_fs_info *fs_info = root->fs_info;
1473 fs_info->closing = 1;
1474 btrfs_transaction_flush_work(root);
1475 mutex_lock(&fs_info->fs_mutex);
1476 btrfs_defrag_dirty_roots(root->fs_info);
1477 trans = btrfs_start_transaction(root, 1);
1478 ret = btrfs_commit_transaction(trans, root);
1479 /* run commit again to drop the original snapshot */
1480 trans = btrfs_start_transaction(root, 1);
1481 btrfs_commit_transaction(trans, root);
1482 ret = btrfs_write_and_wait_transaction(NULL, root);
1484 write_ctree_super(NULL, root);
1485 mutex_unlock(&fs_info->fs_mutex);
1487 if (fs_info->delalloc_bytes) {
1488 printk("btrfs: at unmount delalloc count %Lu\n",
1489 fs_info->delalloc_bytes);
1491 if (fs_info->extent_root->node)
1492 free_extent_buffer(fs_info->extent_root->node);
1494 if (fs_info->tree_root->node)
1495 free_extent_buffer(fs_info->tree_root->node);
1497 if (root->fs_info->chunk_root->node);
1498 free_extent_buffer(root->fs_info->chunk_root->node);
1500 if (root->fs_info->dev_root->node);
1501 free_extent_buffer(root->fs_info->dev_root->node);
1503 free_extent_buffer(fs_info->sb_buffer);
1505 btrfs_free_block_groups(root->fs_info);
1506 del_fs_roots(fs_info);
1508 filemap_write_and_wait(fs_info->btree_inode->i_mapping);
1510 extent_io_tree_empty_lru(&fs_info->free_space_cache);
1511 extent_io_tree_empty_lru(&fs_info->block_group_cache);
1512 extent_io_tree_empty_lru(&fs_info->pinned_extents);
1513 extent_io_tree_empty_lru(&fs_info->pending_del);
1514 extent_io_tree_empty_lru(&fs_info->extent_ins);
1515 extent_io_tree_empty_lru(&BTRFS_I(fs_info->btree_inode)->io_tree);
1517 truncate_inode_pages(fs_info->btree_inode->i_mapping, 0);
1518 flush_workqueue(end_io_workqueue);
1519 destroy_workqueue(end_io_workqueue);
1521 flush_workqueue(async_submit_workqueue);
1522 destroy_workqueue(async_submit_workqueue);
1524 iput(fs_info->btree_inode);
1526 while(!list_empty(&fs_info->hashers)) {
1527 struct btrfs_hasher *hasher;
1528 hasher = list_entry(fs_info->hashers.next, struct btrfs_hasher,
1530 list_del(&hasher->hashers);
1531 crypto_free_hash(&fs_info->hash_tfm);
1535 close_all_devices(fs_info);
1536 btrfs_mapping_tree_free(&fs_info->mapping_tree);
1538 #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,23)
1539 bdi_destroy(&fs_info->bdi);
1542 kfree(fs_info->extent_root);
1543 kfree(fs_info->tree_root);
1544 kfree(fs_info->chunk_root);
1545 kfree(fs_info->dev_root);
1549 int btrfs_buffer_uptodate(struct extent_buffer *buf)
1551 struct inode *btree_inode = buf->first_page->mapping->host;
1552 return extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf);
1555 int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
1557 struct inode *btree_inode = buf->first_page->mapping->host;
1558 return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
1562 void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
1564 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1565 u64 transid = btrfs_header_generation(buf);
1566 struct inode *btree_inode = root->fs_info->btree_inode;
1568 if (transid != root->fs_info->generation) {
1569 printk(KERN_CRIT "transid mismatch buffer %llu, found %Lu running %Lu\n",
1570 (unsigned long long)buf->start,
1571 transid, root->fs_info->generation);
1574 set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree, buf);
1577 void btrfs_throttle(struct btrfs_root *root)
1579 struct backing_dev_info *bdi;
1581 bdi = root->fs_info->sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
1582 if (root->fs_info->throttles && bdi_write_congested(bdi)) {
1583 #if LINUX_VERSION_CODE > KERNEL_VERSION(2,6,18)
1584 congestion_wait(WRITE, HZ/20);
1586 blk_congestion_wait(WRITE, HZ/20);
1591 void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
1593 balance_dirty_pages_ratelimited_nr(
1594 root->fs_info->btree_inode->i_mapping, 1);
1597 void btrfs_set_buffer_defrag(struct extent_buffer *buf)
1599 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1600 struct inode *btree_inode = root->fs_info->btree_inode;
1601 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1602 buf->start + buf->len - 1, EXTENT_DEFRAG, GFP_NOFS);
1605 void btrfs_set_buffer_defrag_done(struct extent_buffer *buf)
1607 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1608 struct inode *btree_inode = root->fs_info->btree_inode;
1609 set_extent_bits(&BTRFS_I(btree_inode)->io_tree, buf->start,
1610 buf->start + buf->len - 1, EXTENT_DEFRAG_DONE,
1614 int btrfs_buffer_defrag(struct extent_buffer *buf)
1616 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1617 struct inode *btree_inode = root->fs_info->btree_inode;
1618 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1619 buf->start, buf->start + buf->len - 1, EXTENT_DEFRAG, 0);
1622 int btrfs_buffer_defrag_done(struct extent_buffer *buf)
1624 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1625 struct inode *btree_inode = root->fs_info->btree_inode;
1626 return test_range_bit(&BTRFS_I(btree_inode)->io_tree,
1627 buf->start, buf->start + buf->len - 1,
1628 EXTENT_DEFRAG_DONE, 0);
1631 int btrfs_clear_buffer_defrag_done(struct extent_buffer *buf)
1633 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1634 struct inode *btree_inode = root->fs_info->btree_inode;
1635 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1636 buf->start, buf->start + buf->len - 1,
1637 EXTENT_DEFRAG_DONE, GFP_NOFS);
1640 int btrfs_clear_buffer_defrag(struct extent_buffer *buf)
1642 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1643 struct inode *btree_inode = root->fs_info->btree_inode;
1644 return clear_extent_bits(&BTRFS_I(btree_inode)->io_tree,
1645 buf->start, buf->start + buf->len - 1,
1646 EXTENT_DEFRAG, GFP_NOFS);
1649 int btrfs_read_buffer(struct extent_buffer *buf)
1651 struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
1653 ret = btree_read_extent_buffer_pages(root, buf, 0);
1655 buf->flags |= EXTENT_UPTODATE;
1660 static struct extent_io_ops btree_extent_io_ops = {
1661 .writepage_io_hook = btree_writepage_io_hook,
1662 .readpage_end_io_hook = btree_readpage_end_io_hook,
1663 .submit_bio_hook = btree_submit_bio_hook,
1664 /* note we're sharing with inode.c for the merge bio hook */
1665 .merge_bio_hook = btrfs_merge_bio_hook,