1 /* smp.c: Sparc64 SMP support.
3 * Copyright (C) 1997, 2007 David S. Miller (davem@davemloft.net)
6 #include <linux/module.h>
7 #include <linux/kernel.h>
8 #include <linux/sched.h>
10 #include <linux/pagemap.h>
11 #include <linux/threads.h>
12 #include <linux/smp.h>
13 #include <linux/interrupt.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/delay.h>
16 #include <linux/init.h>
17 #include <linux/spinlock.h>
19 #include <linux/seq_file.h>
20 #include <linux/cache.h>
21 #include <linux/jiffies.h>
22 #include <linux/profile.h>
23 #include <linux/bootmem.h>
26 #include <asm/ptrace.h>
27 #include <asm/atomic.h>
28 #include <asm/tlbflush.h>
29 #include <asm/mmu_context.h>
30 #include <asm/cpudata.h>
31 #include <asm/hvtramp.h>
35 #include <asm/irq_regs.h>
37 #include <asm/pgtable.h>
38 #include <asm/oplib.h>
39 #include <asm/uaccess.h>
40 #include <asm/timer.h>
41 #include <asm/starfire.h>
43 #include <asm/sections.h>
45 #include <asm/mdesc.h>
47 #include <asm/hypervisor.h>
49 int sparc64_multi_core __read_mostly;
51 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_NONE;
52 cpumask_t cpu_online_map __read_mostly = CPU_MASK_NONE;
53 DEFINE_PER_CPU(cpumask_t, cpu_sibling_map) = CPU_MASK_NONE;
54 cpumask_t cpu_core_map[NR_CPUS] __read_mostly =
55 { [0 ... NR_CPUS-1] = CPU_MASK_NONE };
57 EXPORT_SYMBOL(cpu_possible_map);
58 EXPORT_SYMBOL(cpu_online_map);
59 EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
60 EXPORT_SYMBOL(cpu_core_map);
62 static cpumask_t smp_commenced_mask;
64 void smp_info(struct seq_file *m)
68 seq_printf(m, "State:\n");
69 for_each_online_cpu(i)
70 seq_printf(m, "CPU%d:\t\tonline\n", i);
73 void smp_bogo(struct seq_file *m)
77 for_each_online_cpu(i)
79 "Cpu%dClkTck\t: %016lx\n",
80 i, cpu_data(i).clock_tick);
83 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(call_lock);
85 extern void setup_sparc64_timer(void);
87 static volatile unsigned long callin_flag = 0;
89 void __devinit smp_callin(void)
91 int cpuid = hard_smp_processor_id();
93 __local_per_cpu_offset = __per_cpu_offset(cpuid);
95 if (tlb_type == hypervisor)
96 sun4v_ktsb_register();
100 setup_sparc64_timer();
102 if (cheetah_pcache_forced_on)
103 cheetah_enable_pcache();
108 __asm__ __volatile__("membar #Sync\n\t"
109 "flush %%g6" : : : "memory");
111 /* Clear this or we will die instantly when we
112 * schedule back to this idler...
114 current_thread_info()->new_child = 0;
116 /* Attach to the address space of init_task. */
117 atomic_inc(&init_mm.mm_count);
118 current->active_mm = &init_mm;
120 while (!cpu_isset(cpuid, smp_commenced_mask))
123 spin_lock(&call_lock);
124 cpu_set(cpuid, cpu_online_map);
125 spin_unlock(&call_lock);
127 /* idle thread is expected to have preempt disabled */
133 printk("CPU[%d]: Returns from cpu_idle!\n", smp_processor_id());
134 panic("SMP bolixed\n");
137 /* This tick register synchronization scheme is taken entirely from
138 * the ia64 port, see arch/ia64/kernel/smpboot.c for details and credit.
140 * The only change I've made is to rework it so that the master
141 * initiates the synchonization instead of the slave. -DaveM
145 #define SLAVE (SMP_CACHE_BYTES/sizeof(unsigned long))
147 #define NUM_ROUNDS 64 /* magic value */
148 #define NUM_ITERS 5 /* likewise */
150 static DEFINE_SPINLOCK(itc_sync_lock);
151 static unsigned long go[SLAVE + 1];
153 #define DEBUG_TICK_SYNC 0
155 static inline long get_delta (long *rt, long *master)
157 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
158 unsigned long tcenter, t0, t1, tm;
161 for (i = 0; i < NUM_ITERS; i++) {
162 t0 = tick_ops->get_tick();
165 while (!(tm = go[SLAVE]))
169 t1 = tick_ops->get_tick();
171 if (t1 - t0 < best_t1 - best_t0)
172 best_t0 = t0, best_t1 = t1, best_tm = tm;
175 *rt = best_t1 - best_t0;
176 *master = best_tm - best_t0;
178 /* average best_t0 and best_t1 without overflow: */
179 tcenter = (best_t0/2 + best_t1/2);
180 if (best_t0 % 2 + best_t1 % 2 == 2)
182 return tcenter - best_tm;
185 void smp_synchronize_tick_client(void)
187 long i, delta, adj, adjust_latency = 0, done = 0;
188 unsigned long flags, rt, master_time_stamp, bound;
191 long rt; /* roundtrip time */
192 long master; /* master's timestamp */
193 long diff; /* difference between midpoint and master's timestamp */
194 long lat; /* estimate of itc adjustment latency */
203 local_irq_save(flags);
205 for (i = 0; i < NUM_ROUNDS; i++) {
206 delta = get_delta(&rt, &master_time_stamp);
208 done = 1; /* let's lock on to this... */
214 adjust_latency += -delta;
215 adj = -delta + adjust_latency/4;
219 tick_ops->add_tick(adj);
223 t[i].master = master_time_stamp;
225 t[i].lat = adjust_latency/4;
229 local_irq_restore(flags);
232 for (i = 0; i < NUM_ROUNDS; i++)
233 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
234 t[i].rt, t[i].master, t[i].diff, t[i].lat);
237 printk(KERN_INFO "CPU %d: synchronized TICK with master CPU "
238 "(last diff %ld cycles, maxerr %lu cycles)\n",
239 smp_processor_id(), delta, rt);
242 static void smp_start_sync_tick_client(int cpu);
244 static void smp_synchronize_one_tick(int cpu)
246 unsigned long flags, i;
250 smp_start_sync_tick_client(cpu);
252 /* wait for client to be ready */
256 /* now let the client proceed into his loop */
260 spin_lock_irqsave(&itc_sync_lock, flags);
262 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; i++) {
267 go[SLAVE] = tick_ops->get_tick();
271 spin_unlock_irqrestore(&itc_sync_lock, flags);
274 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
275 /* XXX Put this in some common place. XXX */
276 static unsigned long kimage_addr_to_ra(void *p)
278 unsigned long val = (unsigned long) p;
280 return kern_base + (val - KERNBASE);
283 static void ldom_startcpu_cpuid(unsigned int cpu, unsigned long thread_reg)
285 extern unsigned long sparc64_ttable_tl0;
286 extern unsigned long kern_locked_tte_data;
287 extern int bigkernel;
288 struct hvtramp_descr *hdesc;
289 unsigned long trampoline_ra;
290 struct trap_per_cpu *tb;
291 u64 tte_vaddr, tte_data;
292 unsigned long hv_err;
294 hdesc = kzalloc(sizeof(*hdesc), GFP_KERNEL);
296 printk(KERN_ERR "ldom_startcpu_cpuid: Cannot allocate "
302 hdesc->num_mappings = (bigkernel ? 2 : 1);
304 tb = &trap_block[cpu];
307 hdesc->fault_info_va = (unsigned long) &tb->fault_info;
308 hdesc->fault_info_pa = kimage_addr_to_ra(&tb->fault_info);
310 hdesc->thread_reg = thread_reg;
312 tte_vaddr = (unsigned long) KERNBASE;
313 tte_data = kern_locked_tte_data;
315 hdesc->maps[0].vaddr = tte_vaddr;
316 hdesc->maps[0].tte = tte_data;
318 tte_vaddr += 0x400000;
319 tte_data += 0x400000;
320 hdesc->maps[1].vaddr = tte_vaddr;
321 hdesc->maps[1].tte = tte_data;
324 trampoline_ra = kimage_addr_to_ra(hv_cpu_startup);
326 hv_err = sun4v_cpu_start(cpu, trampoline_ra,
327 kimage_addr_to_ra(&sparc64_ttable_tl0),
330 printk(KERN_ERR "ldom_startcpu_cpuid: sun4v_cpu_start() "
331 "gives error %lu\n", hv_err);
335 extern unsigned long sparc64_cpu_startup;
337 /* The OBP cpu startup callback truncates the 3rd arg cookie to
338 * 32-bits (I think) so to be safe we have it read the pointer
339 * contained here so we work on >4GB machines. -DaveM
341 static struct thread_info *cpu_new_thread = NULL;
343 static int __devinit smp_boot_one_cpu(unsigned int cpu)
345 struct trap_per_cpu *tb = &trap_block[cpu];
346 unsigned long entry =
347 (unsigned long)(&sparc64_cpu_startup);
348 unsigned long cookie =
349 (unsigned long)(&cpu_new_thread);
350 struct task_struct *p;
357 cpu_new_thread = task_thread_info(p);
359 if (tlb_type == hypervisor) {
360 #if defined(CONFIG_SUN_LDOMS) && defined(CONFIG_HOTPLUG_CPU)
361 if (ldom_domaining_enabled)
362 ldom_startcpu_cpuid(cpu,
363 (unsigned long) cpu_new_thread);
366 prom_startcpu_cpuid(cpu, entry, cookie);
368 struct device_node *dp = of_find_node_by_cpuid(cpu);
370 prom_startcpu(dp->node, entry, cookie);
373 for (timeout = 0; timeout < 50000; timeout++) {
382 printk("Processor %d is stuck.\n", cpu);
385 cpu_new_thread = NULL;
395 static void spitfire_xcall_helper(u64 data0, u64 data1, u64 data2, u64 pstate, unsigned long cpu)
400 if (this_is_starfire) {
401 /* map to real upaid */
402 cpu = (((cpu & 0x3c) << 1) |
403 ((cpu & 0x40) >> 4) |
407 target = (cpu << 14) | 0x70;
409 /* Ok, this is the real Spitfire Errata #54.
410 * One must read back from a UDB internal register
411 * after writes to the UDB interrupt dispatch, but
412 * before the membar Sync for that write.
413 * So we use the high UDB control register (ASI 0x7f,
414 * ADDR 0x20) for the dummy read. -DaveM
417 __asm__ __volatile__(
418 "wrpr %1, %2, %%pstate\n\t"
419 "stxa %4, [%0] %3\n\t"
420 "stxa %5, [%0+%8] %3\n\t"
422 "stxa %6, [%0+%8] %3\n\t"
424 "stxa %%g0, [%7] %3\n\t"
427 "ldxa [%%g1] 0x7f, %%g0\n\t"
430 : "r" (pstate), "i" (PSTATE_IE), "i" (ASI_INTR_W),
431 "r" (data0), "r" (data1), "r" (data2), "r" (target),
432 "r" (0x10), "0" (tmp)
435 /* NOTE: PSTATE_IE is still clear. */
438 __asm__ __volatile__("ldxa [%%g0] %1, %0"
440 : "i" (ASI_INTR_DISPATCH_STAT));
442 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
449 } while (result & 0x1);
450 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
453 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
454 smp_processor_id(), result);
461 static inline void spitfire_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
466 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
467 for_each_cpu_mask(i, mask)
468 spitfire_xcall_helper(data0, data1, data2, pstate, i);
471 /* Cheetah now allows to send the whole 64-bytes of data in the interrupt
472 * packet, but we have no use for that. However we do take advantage of
473 * the new pipelining feature (ie. dispatch to multiple cpus simultaneously).
475 static void cheetah_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
477 u64 pstate, ver, busy_mask;
478 int nack_busy_id, is_jbus, need_more;
480 if (cpus_empty(mask))
483 /* Unfortunately, someone at Sun had the brilliant idea to make the
484 * busy/nack fields hard-coded by ITID number for this Ultra-III
485 * derivative processor.
487 __asm__ ("rdpr %%ver, %0" : "=r" (ver));
488 is_jbus = ((ver >> 32) == __JALAPENO_ID ||
489 (ver >> 32) == __SERRANO_ID);
491 __asm__ __volatile__("rdpr %%pstate, %0" : "=r" (pstate));
495 __asm__ __volatile__("wrpr %0, %1, %%pstate\n\t"
496 : : "r" (pstate), "i" (PSTATE_IE));
498 /* Setup the dispatch data registers. */
499 __asm__ __volatile__("stxa %0, [%3] %6\n\t"
500 "stxa %1, [%4] %6\n\t"
501 "stxa %2, [%5] %6\n\t"
504 : "r" (data0), "r" (data1), "r" (data2),
505 "r" (0x40), "r" (0x50), "r" (0x60),
513 for_each_cpu_mask(i, mask) {
514 u64 target = (i << 14) | 0x70;
517 busy_mask |= (0x1UL << (i * 2));
519 target |= (nack_busy_id << 24);
520 busy_mask |= (0x1UL <<
523 __asm__ __volatile__(
524 "stxa %%g0, [%0] %1\n\t"
527 : "r" (target), "i" (ASI_INTR_W));
529 if (nack_busy_id == 32) {
536 /* Now, poll for completion. */
538 u64 dispatch_stat, nack_mask;
541 stuck = 100000 * nack_busy_id;
542 nack_mask = busy_mask << 1;
544 __asm__ __volatile__("ldxa [%%g0] %1, %0"
545 : "=r" (dispatch_stat)
546 : "i" (ASI_INTR_DISPATCH_STAT));
547 if (!(dispatch_stat & (busy_mask | nack_mask))) {
548 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
550 if (unlikely(need_more)) {
552 for_each_cpu_mask(i, mask) {
564 } while (dispatch_stat & busy_mask);
566 __asm__ __volatile__("wrpr %0, 0x0, %%pstate"
569 if (dispatch_stat & busy_mask) {
570 /* Busy bits will not clear, continue instead
571 * of freezing up on this cpu.
573 printk("CPU[%d]: mondo stuckage result[%016lx]\n",
574 smp_processor_id(), dispatch_stat);
576 int i, this_busy_nack = 0;
578 /* Delay some random time with interrupts enabled
579 * to prevent deadlock.
581 udelay(2 * nack_busy_id);
583 /* Clear out the mask bits for cpus which did not
586 for_each_cpu_mask(i, mask) {
590 check_mask = (0x2UL << (2*i));
592 check_mask = (0x2UL <<
594 if ((dispatch_stat & check_mask) == 0)
597 if (this_busy_nack == 64)
606 /* Multi-cpu list version. */
607 static void hypervisor_xcall_deliver(u64 data0, u64 data1, u64 data2, cpumask_t mask)
609 struct trap_per_cpu *tb;
612 cpumask_t error_mask;
613 unsigned long flags, status;
614 int cnt, retries, this_cpu, prev_sent, i;
616 if (cpus_empty(mask))
619 /* We have to do this whole thing with interrupts fully disabled.
620 * Otherwise if we send an xcall from interrupt context it will
621 * corrupt both our mondo block and cpu list state.
623 * One consequence of this is that we cannot use timeout mechanisms
624 * that depend upon interrupts being delivered locally. So, for
625 * example, we cannot sample jiffies and expect it to advance.
627 * Fortunately, udelay() uses %stick/%tick so we can use that.
629 local_irq_save(flags);
631 this_cpu = smp_processor_id();
632 tb = &trap_block[this_cpu];
634 mondo = __va(tb->cpu_mondo_block_pa);
640 cpu_list = __va(tb->cpu_list_pa);
642 /* Setup the initial cpu list. */
644 for_each_cpu_mask(i, mask)
647 cpus_clear(error_mask);
651 int forward_progress, n_sent;
653 status = sun4v_cpu_mondo_send(cnt,
655 tb->cpu_mondo_block_pa);
657 /* HV_EOK means all cpus received the xcall, we're done. */
658 if (likely(status == HV_EOK))
661 /* First, see if we made any forward progress.
663 * The hypervisor indicates successful sends by setting
664 * cpu list entries to the value 0xffff.
667 for (i = 0; i < cnt; i++) {
668 if (likely(cpu_list[i] == 0xffff))
672 forward_progress = 0;
673 if (n_sent > prev_sent)
674 forward_progress = 1;
678 /* If we get a HV_ECPUERROR, then one or more of the cpus
679 * in the list are in error state. Use the cpu_state()
680 * hypervisor call to find out which cpus are in error state.
682 if (unlikely(status == HV_ECPUERROR)) {
683 for (i = 0; i < cnt; i++) {
691 err = sun4v_cpu_state(cpu);
693 err == HV_CPU_STATE_ERROR) {
694 cpu_list[i] = 0xffff;
695 cpu_set(cpu, error_mask);
698 } else if (unlikely(status != HV_EWOULDBLOCK))
699 goto fatal_mondo_error;
701 /* Don't bother rewriting the CPU list, just leave the
702 * 0xffff and non-0xffff entries in there and the
703 * hypervisor will do the right thing.
705 * Only advance timeout state if we didn't make any
708 if (unlikely(!forward_progress)) {
709 if (unlikely(++retries > 10000))
710 goto fatal_mondo_timeout;
712 /* Delay a little bit to let other cpus catch up
713 * on their cpu mondo queue work.
719 local_irq_restore(flags);
721 if (unlikely(!cpus_empty(error_mask)))
722 goto fatal_mondo_cpu_error;
726 fatal_mondo_cpu_error:
727 printk(KERN_CRIT "CPU[%d]: SUN4V mondo cpu error, some target cpus "
728 "were in error state\n",
730 printk(KERN_CRIT "CPU[%d]: Error mask [ ", this_cpu);
731 for_each_cpu_mask(i, error_mask)
737 local_irq_restore(flags);
738 printk(KERN_CRIT "CPU[%d]: SUN4V mondo timeout, no forward "
739 " progress after %d retries.\n",
741 goto dump_cpu_list_and_out;
744 local_irq_restore(flags);
745 printk(KERN_CRIT "CPU[%d]: Unexpected SUN4V mondo error %lu\n",
747 printk(KERN_CRIT "CPU[%d]: Args were cnt(%d) cpulist_pa(%lx) "
748 "mondo_block_pa(%lx)\n",
749 this_cpu, cnt, tb->cpu_list_pa, tb->cpu_mondo_block_pa);
751 dump_cpu_list_and_out:
752 printk(KERN_CRIT "CPU[%d]: CPU list [ ", this_cpu);
753 for (i = 0; i < cnt; i++)
754 printk("%u ", cpu_list[i]);
758 /* Send cross call to all processors mentioned in MASK
761 static void smp_cross_call_masked(unsigned long *func, u32 ctx, u64 data1, u64 data2, cpumask_t mask)
763 u64 data0 = (((u64)ctx)<<32 | (((u64)func) & 0xffffffff));
764 int this_cpu = get_cpu();
766 cpus_and(mask, mask, cpu_online_map);
767 cpu_clear(this_cpu, mask);
769 if (tlb_type == spitfire)
770 spitfire_xcall_deliver(data0, data1, data2, mask);
771 else if (tlb_type == cheetah || tlb_type == cheetah_plus)
772 cheetah_xcall_deliver(data0, data1, data2, mask);
774 hypervisor_xcall_deliver(data0, data1, data2, mask);
775 /* NOTE: Caller runs local copy on master. */
780 extern unsigned long xcall_sync_tick;
782 static void smp_start_sync_tick_client(int cpu)
784 cpumask_t mask = cpumask_of_cpu(cpu);
786 smp_cross_call_masked(&xcall_sync_tick,
790 /* Send cross call to all processors except self. */
791 #define smp_cross_call(func, ctx, data1, data2) \
792 smp_cross_call_masked(func, ctx, data1, data2, cpu_online_map)
794 struct call_data_struct {
795 void (*func) (void *info);
801 static struct call_data_struct *call_data;
803 extern unsigned long xcall_call_function;
806 * smp_call_function(): Run a function on all other CPUs.
807 * @func: The function to run. This must be fast and non-blocking.
808 * @info: An arbitrary pointer to pass to the function.
809 * @nonatomic: currently unused.
810 * @wait: If true, wait (atomically) until function has completed on other CPUs.
812 * Returns 0 on success, else a negative status code. Does not return until
813 * remote CPUs are nearly ready to execute <<func>> or are or have executed.
815 * You must not call this function with disabled interrupts or from a
816 * hardware interrupt handler or from a bottom half handler.
818 static int smp_call_function_mask(void (*func)(void *info), void *info,
819 int nonatomic, int wait, cpumask_t mask)
821 struct call_data_struct data;
824 /* Can deadlock when called with interrupts disabled */
825 WARN_ON(irqs_disabled());
829 atomic_set(&data.finished, 0);
832 spin_lock(&call_lock);
834 cpu_clear(smp_processor_id(), mask);
835 cpus = cpus_weight(mask);
842 smp_cross_call_masked(&xcall_call_function, 0, 0, 0, mask);
844 /* Wait for response */
845 while (atomic_read(&data.finished) != cpus)
849 spin_unlock(&call_lock);
854 int smp_call_function(void (*func)(void *info), void *info,
855 int nonatomic, int wait)
857 return smp_call_function_mask(func, info, nonatomic, wait,
861 void smp_call_function_client(int irq, struct pt_regs *regs)
863 void (*func) (void *info) = call_data->func;
864 void *info = call_data->info;
866 clear_softint(1 << irq);
867 if (call_data->wait) {
868 /* let initiator proceed only after completion */
870 atomic_inc(&call_data->finished);
872 /* let initiator proceed after getting data */
873 atomic_inc(&call_data->finished);
878 static void tsb_sync(void *info)
880 struct trap_per_cpu *tp = &trap_block[raw_smp_processor_id()];
881 struct mm_struct *mm = info;
883 /* It is not valid to test "currrent->active_mm == mm" here.
885 * The value of "current" is not changed atomically with
886 * switch_mm(). But that's OK, we just need to check the
887 * current cpu's trap block PGD physical address.
889 if (tp->pgd_paddr == __pa(mm->pgd))
890 tsb_context_switch(mm);
893 void smp_tsb_sync(struct mm_struct *mm)
895 smp_call_function_mask(tsb_sync, mm, 0, 1, mm->cpu_vm_mask);
898 extern unsigned long xcall_flush_tlb_mm;
899 extern unsigned long xcall_flush_tlb_pending;
900 extern unsigned long xcall_flush_tlb_kernel_range;
901 extern unsigned long xcall_report_regs;
902 extern unsigned long xcall_receive_signal;
903 extern unsigned long xcall_new_mmu_context_version;
905 #ifdef DCACHE_ALIASING_POSSIBLE
906 extern unsigned long xcall_flush_dcache_page_cheetah;
908 extern unsigned long xcall_flush_dcache_page_spitfire;
910 #ifdef CONFIG_DEBUG_DCFLUSH
911 extern atomic_t dcpage_flushes;
912 extern atomic_t dcpage_flushes_xcall;
915 static inline void __local_flush_dcache_page(struct page *page)
917 #ifdef DCACHE_ALIASING_POSSIBLE
918 __flush_dcache_page(page_address(page),
919 ((tlb_type == spitfire) &&
920 page_mapping(page) != NULL));
922 if (page_mapping(page) != NULL &&
923 tlb_type == spitfire)
924 __flush_icache_page(__pa(page_address(page)));
928 void smp_flush_dcache_page_impl(struct page *page, int cpu)
930 cpumask_t mask = cpumask_of_cpu(cpu);
933 if (tlb_type == hypervisor)
936 #ifdef CONFIG_DEBUG_DCFLUSH
937 atomic_inc(&dcpage_flushes);
940 this_cpu = get_cpu();
942 if (cpu == this_cpu) {
943 __local_flush_dcache_page(page);
944 } else if (cpu_online(cpu)) {
945 void *pg_addr = page_address(page);
948 if (tlb_type == spitfire) {
950 ((u64)&xcall_flush_dcache_page_spitfire);
951 if (page_mapping(page) != NULL)
952 data0 |= ((u64)1 << 32);
953 spitfire_xcall_deliver(data0,
957 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
958 #ifdef DCACHE_ALIASING_POSSIBLE
960 ((u64)&xcall_flush_dcache_page_cheetah);
961 cheetah_xcall_deliver(data0,
966 #ifdef CONFIG_DEBUG_DCFLUSH
967 atomic_inc(&dcpage_flushes_xcall);
974 void flush_dcache_page_all(struct mm_struct *mm, struct page *page)
976 void *pg_addr = page_address(page);
977 cpumask_t mask = cpu_online_map;
981 if (tlb_type == hypervisor)
984 this_cpu = get_cpu();
986 cpu_clear(this_cpu, mask);
988 #ifdef CONFIG_DEBUG_DCFLUSH
989 atomic_inc(&dcpage_flushes);
991 if (cpus_empty(mask))
993 if (tlb_type == spitfire) {
994 data0 = ((u64)&xcall_flush_dcache_page_spitfire);
995 if (page_mapping(page) != NULL)
996 data0 |= ((u64)1 << 32);
997 spitfire_xcall_deliver(data0,
1001 } else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1002 #ifdef DCACHE_ALIASING_POSSIBLE
1003 data0 = ((u64)&xcall_flush_dcache_page_cheetah);
1004 cheetah_xcall_deliver(data0,
1009 #ifdef CONFIG_DEBUG_DCFLUSH
1010 atomic_inc(&dcpage_flushes_xcall);
1013 __local_flush_dcache_page(page);
1018 static void __smp_receive_signal_mask(cpumask_t mask)
1020 smp_cross_call_masked(&xcall_receive_signal, 0, 0, 0, mask);
1023 void smp_receive_signal(int cpu)
1025 cpumask_t mask = cpumask_of_cpu(cpu);
1027 if (cpu_online(cpu))
1028 __smp_receive_signal_mask(mask);
1031 void smp_receive_signal_client(int irq, struct pt_regs *regs)
1033 clear_softint(1 << irq);
1036 void smp_new_mmu_context_version_client(int irq, struct pt_regs *regs)
1038 struct mm_struct *mm;
1039 unsigned long flags;
1041 clear_softint(1 << irq);
1043 /* See if we need to allocate a new TLB context because
1044 * the version of the one we are using is now out of date.
1046 mm = current->active_mm;
1047 if (unlikely(!mm || (mm == &init_mm)))
1050 spin_lock_irqsave(&mm->context.lock, flags);
1052 if (unlikely(!CTX_VALID(mm->context)))
1053 get_new_mmu_context(mm);
1055 spin_unlock_irqrestore(&mm->context.lock, flags);
1057 load_secondary_context(mm);
1058 __flush_tlb_mm(CTX_HWBITS(mm->context),
1062 void smp_new_mmu_context_version(void)
1064 smp_cross_call(&xcall_new_mmu_context_version, 0, 0, 0);
1067 void smp_report_regs(void)
1069 smp_cross_call(&xcall_report_regs, 0, 0, 0);
1072 /* We know that the window frames of the user have been flushed
1073 * to the stack before we get here because all callers of us
1074 * are flush_tlb_*() routines, and these run after flush_cache_*()
1075 * which performs the flushw.
1077 * The SMP TLB coherency scheme we use works as follows:
1079 * 1) mm->cpu_vm_mask is a bit mask of which cpus an address
1080 * space has (potentially) executed on, this is the heuristic
1081 * we use to avoid doing cross calls.
1083 * Also, for flushing from kswapd and also for clones, we
1084 * use cpu_vm_mask as the list of cpus to make run the TLB.
1086 * 2) TLB context numbers are shared globally across all processors
1087 * in the system, this allows us to play several games to avoid
1090 * One invariant is that when a cpu switches to a process, and
1091 * that processes tsk->active_mm->cpu_vm_mask does not have the
1092 * current cpu's bit set, that tlb context is flushed locally.
1094 * If the address space is non-shared (ie. mm->count == 1) we avoid
1095 * cross calls when we want to flush the currently running process's
1096 * tlb state. This is done by clearing all cpu bits except the current
1097 * processor's in current->active_mm->cpu_vm_mask and performing the
1098 * flush locally only. This will force any subsequent cpus which run
1099 * this task to flush the context from the local tlb if the process
1100 * migrates to another cpu (again).
1102 * 3) For shared address spaces (threads) and swapping we bite the
1103 * bullet for most cases and perform the cross call (but only to
1104 * the cpus listed in cpu_vm_mask).
1106 * The performance gain from "optimizing" away the cross call for threads is
1107 * questionable (in theory the big win for threads is the massive sharing of
1108 * address space state across processors).
1111 /* This currently is only used by the hugetlb arch pre-fault
1112 * hook on UltraSPARC-III+ and later when changing the pagesize
1113 * bits of the context register for an address space.
1115 void smp_flush_tlb_mm(struct mm_struct *mm)
1117 u32 ctx = CTX_HWBITS(mm->context);
1118 int cpu = get_cpu();
1120 if (atomic_read(&mm->mm_users) == 1) {
1121 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1122 goto local_flush_and_out;
1125 smp_cross_call_masked(&xcall_flush_tlb_mm,
1129 local_flush_and_out:
1130 __flush_tlb_mm(ctx, SECONDARY_CONTEXT);
1135 void smp_flush_tlb_pending(struct mm_struct *mm, unsigned long nr, unsigned long *vaddrs)
1137 u32 ctx = CTX_HWBITS(mm->context);
1138 int cpu = get_cpu();
1140 if (mm == current->active_mm && atomic_read(&mm->mm_users) == 1)
1141 mm->cpu_vm_mask = cpumask_of_cpu(cpu);
1143 smp_cross_call_masked(&xcall_flush_tlb_pending,
1144 ctx, nr, (unsigned long) vaddrs,
1147 __flush_tlb_pending(ctx, nr, vaddrs);
1152 void smp_flush_tlb_kernel_range(unsigned long start, unsigned long end)
1155 end = PAGE_ALIGN(end);
1157 smp_cross_call(&xcall_flush_tlb_kernel_range,
1160 __flush_tlb_kernel_range(start, end);
1165 /* #define CAPTURE_DEBUG */
1166 extern unsigned long xcall_capture;
1168 static atomic_t smp_capture_depth = ATOMIC_INIT(0);
1169 static atomic_t smp_capture_registry = ATOMIC_INIT(0);
1170 static unsigned long penguins_are_doing_time;
1172 void smp_capture(void)
1174 int result = atomic_add_ret(1, &smp_capture_depth);
1177 int ncpus = num_online_cpus();
1179 #ifdef CAPTURE_DEBUG
1180 printk("CPU[%d]: Sending penguins to jail...",
1181 smp_processor_id());
1183 penguins_are_doing_time = 1;
1184 membar_storestore_loadstore();
1185 atomic_inc(&smp_capture_registry);
1186 smp_cross_call(&xcall_capture, 0, 0, 0);
1187 while (atomic_read(&smp_capture_registry) != ncpus)
1189 #ifdef CAPTURE_DEBUG
1195 void smp_release(void)
1197 if (atomic_dec_and_test(&smp_capture_depth)) {
1198 #ifdef CAPTURE_DEBUG
1199 printk("CPU[%d]: Giving pardon to "
1200 "imprisoned penguins\n",
1201 smp_processor_id());
1203 penguins_are_doing_time = 0;
1204 membar_storeload_storestore();
1205 atomic_dec(&smp_capture_registry);
1209 /* Imprisoned penguins run with %pil == 15, but PSTATE_IE set, so they
1210 * can service tlb flush xcalls...
1212 extern void prom_world(int);
1214 void smp_penguin_jailcell(int irq, struct pt_regs *regs)
1216 clear_softint(1 << irq);
1220 __asm__ __volatile__("flushw");
1222 atomic_inc(&smp_capture_registry);
1223 membar_storeload_storestore();
1224 while (penguins_are_doing_time)
1226 atomic_dec(&smp_capture_registry);
1232 /* /proc/profile writes can call this, don't __init it please. */
1233 int setup_profiling_timer(unsigned int multiplier)
1238 void __init smp_prepare_cpus(unsigned int max_cpus)
1242 void __devinit smp_prepare_boot_cpu(void)
1246 void __devinit smp_fill_in_sib_core_maps(void)
1250 for_each_present_cpu(i) {
1253 cpus_clear(cpu_core_map[i]);
1254 if (cpu_data(i).core_id == 0) {
1255 cpu_set(i, cpu_core_map[i]);
1259 for_each_present_cpu(j) {
1260 if (cpu_data(i).core_id ==
1261 cpu_data(j).core_id)
1262 cpu_set(j, cpu_core_map[i]);
1266 for_each_present_cpu(i) {
1269 cpus_clear(per_cpu(cpu_sibling_map, i));
1270 if (cpu_data(i).proc_id == -1) {
1271 cpu_set(i, per_cpu(cpu_sibling_map, i));
1275 for_each_present_cpu(j) {
1276 if (cpu_data(i).proc_id ==
1277 cpu_data(j).proc_id)
1278 cpu_set(j, per_cpu(cpu_sibling_map, i));
1283 int __cpuinit __cpu_up(unsigned int cpu)
1285 int ret = smp_boot_one_cpu(cpu);
1288 cpu_set(cpu, smp_commenced_mask);
1289 while (!cpu_isset(cpu, cpu_online_map))
1291 if (!cpu_isset(cpu, cpu_online_map)) {
1294 /* On SUN4V, writes to %tick and %stick are
1297 if (tlb_type != hypervisor)
1298 smp_synchronize_one_tick(cpu);
1304 #ifdef CONFIG_HOTPLUG_CPU
1305 void cpu_play_dead(void)
1307 int cpu = smp_processor_id();
1308 unsigned long pstate;
1312 if (tlb_type == hypervisor) {
1313 struct trap_per_cpu *tb = &trap_block[cpu];
1315 sun4v_cpu_qconf(HV_CPU_QUEUE_CPU_MONDO,
1316 tb->cpu_mondo_pa, 0);
1317 sun4v_cpu_qconf(HV_CPU_QUEUE_DEVICE_MONDO,
1318 tb->dev_mondo_pa, 0);
1319 sun4v_cpu_qconf(HV_CPU_QUEUE_RES_ERROR,
1320 tb->resum_mondo_pa, 0);
1321 sun4v_cpu_qconf(HV_CPU_QUEUE_NONRES_ERROR,
1322 tb->nonresum_mondo_pa, 0);
1325 cpu_clear(cpu, smp_commenced_mask);
1326 membar_safe("#Sync");
1328 local_irq_disable();
1330 __asm__ __volatile__(
1331 "rdpr %%pstate, %0\n\t"
1332 "wrpr %0, %1, %%pstate"
1340 int __cpu_disable(void)
1342 int cpu = smp_processor_id();
1346 for_each_cpu_mask(i, cpu_core_map[cpu])
1347 cpu_clear(cpu, cpu_core_map[i]);
1348 cpus_clear(cpu_core_map[cpu]);
1350 for_each_cpu_mask(i, per_cpu(cpu_sibling_map, cpu))
1351 cpu_clear(cpu, per_cpu(cpu_sibling_map, i));
1352 cpus_clear(per_cpu(cpu_sibling_map, cpu));
1359 spin_lock(&call_lock);
1360 cpu_clear(cpu, cpu_online_map);
1361 spin_unlock(&call_lock);
1365 /* Make sure no interrupts point to this cpu. */
1370 local_irq_disable();
1375 void __cpu_die(unsigned int cpu)
1379 for (i = 0; i < 100; i++) {
1381 if (!cpu_isset(cpu, smp_commenced_mask))
1385 if (cpu_isset(cpu, smp_commenced_mask)) {
1386 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1388 #if defined(CONFIG_SUN_LDOMS)
1389 unsigned long hv_err;
1393 hv_err = sun4v_cpu_stop(cpu);
1394 if (hv_err == HV_EOK) {
1395 cpu_clear(cpu, cpu_present_map);
1398 } while (--limit > 0);
1400 printk(KERN_ERR "sun4v_cpu_stop() fails err=%lu\n",
1408 void __init smp_cpus_done(unsigned int max_cpus)
1412 void smp_send_reschedule(int cpu)
1414 smp_receive_signal(cpu);
1417 /* This is a nop because we capture all other cpus
1418 * anyways when making the PROM active.
1420 void smp_send_stop(void)
1424 unsigned long __per_cpu_base __read_mostly;
1425 unsigned long __per_cpu_shift __read_mostly;
1427 EXPORT_SYMBOL(__per_cpu_base);
1428 EXPORT_SYMBOL(__per_cpu_shift);
1430 void __init real_setup_per_cpu_areas(void)
1432 unsigned long goal, size, i;
1435 /* Copy section for each CPU (we discard the original) */
1436 goal = PERCPU_ENOUGH_ROOM;
1438 __per_cpu_shift = PAGE_SHIFT;
1439 for (size = PAGE_SIZE; size < goal; size <<= 1UL)
1442 ptr = alloc_bootmem_pages(size * NR_CPUS);
1444 __per_cpu_base = ptr - __per_cpu_start;
1446 for (i = 0; i < NR_CPUS; i++, ptr += size)
1447 memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
1449 /* Setup %g5 for the boot cpu. */
1450 __local_per_cpu_offset = __per_cpu_offset(smp_processor_id());