2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/module.h>
47 #include <linux/slab.h>
48 #include <linux/highmem.h>
49 #include <linux/bitops.h>
50 #include <linux/kthread.h>
51 #include <asm/atomic.h>
54 #include <linux/raid/bitmap.h>
55 #include <linux/async_tx.h>
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
67 #define HASH_MASK (NR_HASH - 1)
69 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
71 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
72 * order without overlap. There may be several bio's per stripe+device, and
73 * a bio could span several devices.
74 * When walking this list for a particular stripe+device, we must never proceed
75 * beyond a bio that extends past this device, as the next bio might no longer
77 * This macro is used to determine the 'next' bio in the list, given the sector
78 * of the current stripe+device
80 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
82 * The following can be used to debug the driver
84 #define RAID5_PARANOIA 1
85 #if RAID5_PARANOIA && defined(CONFIG_SMP)
86 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 # define CHECK_DEVLOCK()
96 #if !RAID6_USE_EMPTY_ZERO_PAGE
97 /* In .bss so it's zeroed */
98 const char raid6_empty_zero_page[PAGE_SIZE] __attribute__((aligned(256)));
101 static inline int raid6_next_disk(int disk, int raid_disks)
104 return (disk < raid_disks) ? disk : 0;
107 static void return_io(struct bio *return_bi)
109 struct bio *bi = return_bi;
112 return_bi = bi->bi_next;
116 test_bit(BIO_UPTODATE, &bi->bi_flags)
122 static void print_raid5_conf (raid5_conf_t *conf);
124 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
126 if (atomic_dec_and_test(&sh->count)) {
127 BUG_ON(!list_empty(&sh->lru));
128 BUG_ON(atomic_read(&conf->active_stripes)==0);
129 if (test_bit(STRIPE_HANDLE, &sh->state)) {
130 if (test_bit(STRIPE_DELAYED, &sh->state)) {
131 list_add_tail(&sh->lru, &conf->delayed_list);
132 blk_plug_device(conf->mddev->queue);
133 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
134 sh->bm_seq - conf->seq_write > 0) {
135 list_add_tail(&sh->lru, &conf->bitmap_list);
136 blk_plug_device(conf->mddev->queue);
138 clear_bit(STRIPE_BIT_DELAY, &sh->state);
139 list_add_tail(&sh->lru, &conf->handle_list);
141 md_wakeup_thread(conf->mddev->thread);
143 BUG_ON(sh->ops.pending);
144 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
145 atomic_dec(&conf->preread_active_stripes);
146 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
147 md_wakeup_thread(conf->mddev->thread);
149 atomic_dec(&conf->active_stripes);
150 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
151 list_add_tail(&sh->lru, &conf->inactive_list);
152 wake_up(&conf->wait_for_stripe);
153 if (conf->retry_read_aligned)
154 md_wakeup_thread(conf->mddev->thread);
159 static void release_stripe(struct stripe_head *sh)
161 raid5_conf_t *conf = sh->raid_conf;
164 spin_lock_irqsave(&conf->device_lock, flags);
165 __release_stripe(conf, sh);
166 spin_unlock_irqrestore(&conf->device_lock, flags);
169 static inline void remove_hash(struct stripe_head *sh)
171 pr_debug("remove_hash(), stripe %llu\n",
172 (unsigned long long)sh->sector);
174 hlist_del_init(&sh->hash);
177 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
179 struct hlist_head *hp = stripe_hash(conf, sh->sector);
181 pr_debug("insert_hash(), stripe %llu\n",
182 (unsigned long long)sh->sector);
185 hlist_add_head(&sh->hash, hp);
189 /* find an idle stripe, make sure it is unhashed, and return it. */
190 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
192 struct stripe_head *sh = NULL;
193 struct list_head *first;
196 if (list_empty(&conf->inactive_list))
198 first = conf->inactive_list.next;
199 sh = list_entry(first, struct stripe_head, lru);
200 list_del_init(first);
202 atomic_inc(&conf->active_stripes);
207 static void shrink_buffers(struct stripe_head *sh, int num)
212 for (i=0; i<num ; i++) {
216 sh->dev[i].page = NULL;
221 static int grow_buffers(struct stripe_head *sh, int num)
225 for (i=0; i<num; i++) {
228 if (!(page = alloc_page(GFP_KERNEL))) {
231 sh->dev[i].page = page;
236 static void raid5_build_block (struct stripe_head *sh, int i);
238 static void init_stripe(struct stripe_head *sh, sector_t sector, int pd_idx, int disks)
240 raid5_conf_t *conf = sh->raid_conf;
243 BUG_ON(atomic_read(&sh->count) != 0);
244 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
245 BUG_ON(sh->ops.pending || sh->ops.ack || sh->ops.complete);
248 pr_debug("init_stripe called, stripe %llu\n",
249 (unsigned long long)sh->sector);
259 for (i = sh->disks; i--; ) {
260 struct r5dev *dev = &sh->dev[i];
262 if (dev->toread || dev->read || dev->towrite || dev->written ||
263 test_bit(R5_LOCKED, &dev->flags)) {
264 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
265 (unsigned long long)sh->sector, i, dev->toread,
266 dev->read, dev->towrite, dev->written,
267 test_bit(R5_LOCKED, &dev->flags));
271 raid5_build_block(sh, i);
273 insert_hash(conf, sh);
276 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector, int disks)
278 struct stripe_head *sh;
279 struct hlist_node *hn;
282 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
283 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
284 if (sh->sector == sector && sh->disks == disks)
286 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
290 static void unplug_slaves(mddev_t *mddev);
291 static void raid5_unplug_device(struct request_queue *q);
293 static struct stripe_head *get_active_stripe(raid5_conf_t *conf, sector_t sector, int disks,
294 int pd_idx, int noblock)
296 struct stripe_head *sh;
298 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
300 spin_lock_irq(&conf->device_lock);
303 wait_event_lock_irq(conf->wait_for_stripe,
305 conf->device_lock, /* nothing */);
306 sh = __find_stripe(conf, sector, disks);
308 if (!conf->inactive_blocked)
309 sh = get_free_stripe(conf);
310 if (noblock && sh == NULL)
313 conf->inactive_blocked = 1;
314 wait_event_lock_irq(conf->wait_for_stripe,
315 !list_empty(&conf->inactive_list) &&
316 (atomic_read(&conf->active_stripes)
317 < (conf->max_nr_stripes *3/4)
318 || !conf->inactive_blocked),
320 raid5_unplug_device(conf->mddev->queue)
322 conf->inactive_blocked = 0;
324 init_stripe(sh, sector, pd_idx, disks);
326 if (atomic_read(&sh->count)) {
327 BUG_ON(!list_empty(&sh->lru));
329 if (!test_bit(STRIPE_HANDLE, &sh->state))
330 atomic_inc(&conf->active_stripes);
331 if (list_empty(&sh->lru) &&
332 !test_bit(STRIPE_EXPANDING, &sh->state))
334 list_del_init(&sh->lru);
337 } while (sh == NULL);
340 atomic_inc(&sh->count);
342 spin_unlock_irq(&conf->device_lock);
346 /* test_and_ack_op() ensures that we only dequeue an operation once */
347 #define test_and_ack_op(op, pend) \
349 if (test_bit(op, &sh->ops.pending) && \
350 !test_bit(op, &sh->ops.complete)) { \
351 if (test_and_set_bit(op, &sh->ops.ack)) \
352 clear_bit(op, &pend); \
356 clear_bit(op, &pend); \
359 /* find new work to run, do not resubmit work that is already
362 static unsigned long get_stripe_work(struct stripe_head *sh)
364 unsigned long pending;
367 pending = sh->ops.pending;
369 test_and_ack_op(STRIPE_OP_BIOFILL, pending);
370 test_and_ack_op(STRIPE_OP_COMPUTE_BLK, pending);
371 test_and_ack_op(STRIPE_OP_PREXOR, pending);
372 test_and_ack_op(STRIPE_OP_BIODRAIN, pending);
373 test_and_ack_op(STRIPE_OP_POSTXOR, pending);
374 test_and_ack_op(STRIPE_OP_CHECK, pending);
375 if (test_and_clear_bit(STRIPE_OP_IO, &sh->ops.pending))
378 sh->ops.count -= ack;
379 if (unlikely(sh->ops.count < 0)) {
380 printk(KERN_ERR "pending: %#lx ops.pending: %#lx ops.ack: %#lx "
381 "ops.complete: %#lx\n", pending, sh->ops.pending,
382 sh->ops.ack, sh->ops.complete);
390 raid5_end_read_request(struct bio *bi, int error);
392 raid5_end_write_request(struct bio *bi, int error);
394 static void ops_run_io(struct stripe_head *sh)
396 raid5_conf_t *conf = sh->raid_conf;
397 int i, disks = sh->disks;
401 for (i = disks; i--; ) {
405 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
407 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
412 bi = &sh->dev[i].req;
416 bi->bi_end_io = raid5_end_write_request;
418 bi->bi_end_io = raid5_end_read_request;
421 rdev = rcu_dereference(conf->disks[i].rdev);
422 if (rdev && test_bit(Faulty, &rdev->flags))
425 atomic_inc(&rdev->nr_pending);
429 if (test_bit(STRIPE_SYNCING, &sh->state) ||
430 test_bit(STRIPE_EXPAND_SOURCE, &sh->state) ||
431 test_bit(STRIPE_EXPAND_READY, &sh->state))
432 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
434 bi->bi_bdev = rdev->bdev;
435 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
436 __FUNCTION__, (unsigned long long)sh->sector,
438 atomic_inc(&sh->count);
439 bi->bi_sector = sh->sector + rdev->data_offset;
440 bi->bi_flags = 1 << BIO_UPTODATE;
444 bi->bi_io_vec = &sh->dev[i].vec;
445 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
446 bi->bi_io_vec[0].bv_offset = 0;
447 bi->bi_size = STRIPE_SIZE;
450 test_bit(R5_ReWrite, &sh->dev[i].flags))
451 atomic_add(STRIPE_SECTORS,
452 &rdev->corrected_errors);
453 generic_make_request(bi);
456 set_bit(STRIPE_DEGRADED, &sh->state);
457 pr_debug("skip op %ld on disc %d for sector %llu\n",
458 bi->bi_rw, i, (unsigned long long)sh->sector);
459 clear_bit(R5_LOCKED, &sh->dev[i].flags);
460 set_bit(STRIPE_HANDLE, &sh->state);
465 static struct dma_async_tx_descriptor *
466 async_copy_data(int frombio, struct bio *bio, struct page *page,
467 sector_t sector, struct dma_async_tx_descriptor *tx)
470 struct page *bio_page;
474 if (bio->bi_sector >= sector)
475 page_offset = (signed)(bio->bi_sector - sector) * 512;
477 page_offset = (signed)(sector - bio->bi_sector) * -512;
478 bio_for_each_segment(bvl, bio, i) {
479 int len = bio_iovec_idx(bio, i)->bv_len;
483 if (page_offset < 0) {
484 b_offset = -page_offset;
485 page_offset += b_offset;
489 if (len > 0 && page_offset + len > STRIPE_SIZE)
490 clen = STRIPE_SIZE - page_offset;
495 b_offset += bio_iovec_idx(bio, i)->bv_offset;
496 bio_page = bio_iovec_idx(bio, i)->bv_page;
498 tx = async_memcpy(page, bio_page, page_offset,
503 tx = async_memcpy(bio_page, page, b_offset,
508 if (clen < len) /* hit end of page */
516 static void ops_complete_biofill(void *stripe_head_ref)
518 struct stripe_head *sh = stripe_head_ref;
519 struct bio *return_bi = NULL;
520 raid5_conf_t *conf = sh->raid_conf;
523 pr_debug("%s: stripe %llu\n", __FUNCTION__,
524 (unsigned long long)sh->sector);
526 /* clear completed biofills */
527 for (i = sh->disks; i--; ) {
528 struct r5dev *dev = &sh->dev[i];
530 /* acknowledge completion of a biofill operation */
531 /* and check if we need to reply to a read request,
532 * new R5_Wantfill requests are held off until
533 * !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending)
535 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
536 struct bio *rbi, *rbi2;
538 /* The access to dev->read is outside of the
539 * spin_lock_irq(&conf->device_lock), but is protected
540 * by the STRIPE_OP_BIOFILL pending bit
545 while (rbi && rbi->bi_sector <
546 dev->sector + STRIPE_SECTORS) {
547 rbi2 = r5_next_bio(rbi, dev->sector);
548 spin_lock_irq(&conf->device_lock);
549 if (--rbi->bi_phys_segments == 0) {
550 rbi->bi_next = return_bi;
553 spin_unlock_irq(&conf->device_lock);
558 set_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
560 return_io(return_bi);
562 set_bit(STRIPE_HANDLE, &sh->state);
566 static void ops_run_biofill(struct stripe_head *sh)
568 struct dma_async_tx_descriptor *tx = NULL;
569 raid5_conf_t *conf = sh->raid_conf;
572 pr_debug("%s: stripe %llu\n", __FUNCTION__,
573 (unsigned long long)sh->sector);
575 for (i = sh->disks; i--; ) {
576 struct r5dev *dev = &sh->dev[i];
577 if (test_bit(R5_Wantfill, &dev->flags)) {
579 spin_lock_irq(&conf->device_lock);
580 dev->read = rbi = dev->toread;
582 spin_unlock_irq(&conf->device_lock);
583 while (rbi && rbi->bi_sector <
584 dev->sector + STRIPE_SECTORS) {
585 tx = async_copy_data(0, rbi, dev->page,
587 rbi = r5_next_bio(rbi, dev->sector);
592 atomic_inc(&sh->count);
593 async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
594 ops_complete_biofill, sh);
597 static void ops_complete_compute5(void *stripe_head_ref)
599 struct stripe_head *sh = stripe_head_ref;
600 int target = sh->ops.target;
601 struct r5dev *tgt = &sh->dev[target];
603 pr_debug("%s: stripe %llu\n", __FUNCTION__,
604 (unsigned long long)sh->sector);
606 set_bit(R5_UPTODATE, &tgt->flags);
607 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
608 clear_bit(R5_Wantcompute, &tgt->flags);
609 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
610 set_bit(STRIPE_HANDLE, &sh->state);
614 static struct dma_async_tx_descriptor *
615 ops_run_compute5(struct stripe_head *sh, unsigned long pending)
617 /* kernel stack size limits the total number of disks */
618 int disks = sh->disks;
619 struct page *xor_srcs[disks];
620 int target = sh->ops.target;
621 struct r5dev *tgt = &sh->dev[target];
622 struct page *xor_dest = tgt->page;
624 struct dma_async_tx_descriptor *tx;
627 pr_debug("%s: stripe %llu block: %d\n",
628 __FUNCTION__, (unsigned long long)sh->sector, target);
629 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
631 for (i = disks; i--; )
633 xor_srcs[count++] = sh->dev[i].page;
635 atomic_inc(&sh->count);
637 if (unlikely(count == 1))
638 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
639 0, NULL, ops_complete_compute5, sh);
641 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
642 ASYNC_TX_XOR_ZERO_DST, NULL,
643 ops_complete_compute5, sh);
645 /* ack now if postxor is not set to be run */
646 if (tx && !test_bit(STRIPE_OP_POSTXOR, &pending))
652 static void ops_complete_prexor(void *stripe_head_ref)
654 struct stripe_head *sh = stripe_head_ref;
656 pr_debug("%s: stripe %llu\n", __FUNCTION__,
657 (unsigned long long)sh->sector);
659 set_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
662 static struct dma_async_tx_descriptor *
663 ops_run_prexor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
665 /* kernel stack size limits the total number of disks */
666 int disks = sh->disks;
667 struct page *xor_srcs[disks];
668 int count = 0, pd_idx = sh->pd_idx, i;
670 /* existing parity data subtracted */
671 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
673 pr_debug("%s: stripe %llu\n", __FUNCTION__,
674 (unsigned long long)sh->sector);
676 for (i = disks; i--; ) {
677 struct r5dev *dev = &sh->dev[i];
678 /* Only process blocks that are known to be uptodate */
679 if (dev->towrite && test_bit(R5_Wantprexor, &dev->flags))
680 xor_srcs[count++] = dev->page;
683 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
684 ASYNC_TX_DEP_ACK | ASYNC_TX_XOR_DROP_DST, tx,
685 ops_complete_prexor, sh);
690 static struct dma_async_tx_descriptor *
691 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
693 int disks = sh->disks;
694 int pd_idx = sh->pd_idx, i;
696 /* check if prexor is active which means only process blocks
697 * that are part of a read-modify-write (Wantprexor)
699 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
701 pr_debug("%s: stripe %llu\n", __FUNCTION__,
702 (unsigned long long)sh->sector);
704 for (i = disks; i--; ) {
705 struct r5dev *dev = &sh->dev[i];
710 if (prexor) { /* rmw */
712 test_bit(R5_Wantprexor, &dev->flags))
715 if (i != pd_idx && dev->towrite &&
716 test_bit(R5_LOCKED, &dev->flags))
723 spin_lock(&sh->lock);
724 chosen = dev->towrite;
726 BUG_ON(dev->written);
727 wbi = dev->written = chosen;
728 spin_unlock(&sh->lock);
730 while (wbi && wbi->bi_sector <
731 dev->sector + STRIPE_SECTORS) {
732 tx = async_copy_data(1, wbi, dev->page,
734 wbi = r5_next_bio(wbi, dev->sector);
742 static void ops_complete_postxor(void *stripe_head_ref)
744 struct stripe_head *sh = stripe_head_ref;
746 pr_debug("%s: stripe %llu\n", __FUNCTION__,
747 (unsigned long long)sh->sector);
749 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
750 set_bit(STRIPE_HANDLE, &sh->state);
754 static void ops_complete_write(void *stripe_head_ref)
756 struct stripe_head *sh = stripe_head_ref;
757 int disks = sh->disks, i, pd_idx = sh->pd_idx;
759 pr_debug("%s: stripe %llu\n", __FUNCTION__,
760 (unsigned long long)sh->sector);
762 for (i = disks; i--; ) {
763 struct r5dev *dev = &sh->dev[i];
764 if (dev->written || i == pd_idx)
765 set_bit(R5_UPTODATE, &dev->flags);
768 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
769 set_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
771 set_bit(STRIPE_HANDLE, &sh->state);
776 ops_run_postxor(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
778 /* kernel stack size limits the total number of disks */
779 int disks = sh->disks;
780 struct page *xor_srcs[disks];
782 int count = 0, pd_idx = sh->pd_idx, i;
783 struct page *xor_dest;
784 int prexor = test_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
786 dma_async_tx_callback callback;
788 pr_debug("%s: stripe %llu\n", __FUNCTION__,
789 (unsigned long long)sh->sector);
791 /* check if prexor is active which means only process blocks
792 * that are part of a read-modify-write (written)
795 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
796 for (i = disks; i--; ) {
797 struct r5dev *dev = &sh->dev[i];
799 xor_srcs[count++] = dev->page;
802 xor_dest = sh->dev[pd_idx].page;
803 for (i = disks; i--; ) {
804 struct r5dev *dev = &sh->dev[i];
806 xor_srcs[count++] = dev->page;
810 /* check whether this postxor is part of a write */
811 callback = test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending) ?
812 ops_complete_write : ops_complete_postxor;
814 /* 1/ if we prexor'd then the dest is reused as a source
815 * 2/ if we did not prexor then we are redoing the parity
816 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
817 * for the synchronous xor case
819 flags = ASYNC_TX_DEP_ACK | ASYNC_TX_ACK |
820 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
822 atomic_inc(&sh->count);
824 if (unlikely(count == 1)) {
825 flags &= ~(ASYNC_TX_XOR_DROP_DST | ASYNC_TX_XOR_ZERO_DST);
826 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE,
827 flags, tx, callback, sh);
829 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
830 flags, tx, callback, sh);
833 static void ops_complete_check(void *stripe_head_ref)
835 struct stripe_head *sh = stripe_head_ref;
836 int pd_idx = sh->pd_idx;
838 pr_debug("%s: stripe %llu\n", __FUNCTION__,
839 (unsigned long long)sh->sector);
841 if (test_and_clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending) &&
842 sh->ops.zero_sum_result == 0)
843 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
845 set_bit(STRIPE_OP_CHECK, &sh->ops.complete);
846 set_bit(STRIPE_HANDLE, &sh->state);
850 static void ops_run_check(struct stripe_head *sh)
852 /* kernel stack size limits the total number of disks */
853 int disks = sh->disks;
854 struct page *xor_srcs[disks];
855 struct dma_async_tx_descriptor *tx;
857 int count = 0, pd_idx = sh->pd_idx, i;
858 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
860 pr_debug("%s: stripe %llu\n", __FUNCTION__,
861 (unsigned long long)sh->sector);
863 for (i = disks; i--; ) {
864 struct r5dev *dev = &sh->dev[i];
866 xor_srcs[count++] = dev->page;
869 tx = async_xor_zero_sum(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
870 &sh->ops.zero_sum_result, 0, NULL, NULL, NULL);
873 set_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
875 clear_bit(STRIPE_OP_MOD_DMA_CHECK, &sh->ops.pending);
877 atomic_inc(&sh->count);
878 tx = async_trigger_callback(ASYNC_TX_DEP_ACK | ASYNC_TX_ACK, tx,
879 ops_complete_check, sh);
882 static void raid5_run_ops(struct stripe_head *sh, unsigned long pending)
884 int overlap_clear = 0, i, disks = sh->disks;
885 struct dma_async_tx_descriptor *tx = NULL;
887 if (test_bit(STRIPE_OP_BIOFILL, &pending)) {
892 if (test_bit(STRIPE_OP_COMPUTE_BLK, &pending))
893 tx = ops_run_compute5(sh, pending);
895 if (test_bit(STRIPE_OP_PREXOR, &pending))
896 tx = ops_run_prexor(sh, tx);
898 if (test_bit(STRIPE_OP_BIODRAIN, &pending)) {
899 tx = ops_run_biodrain(sh, tx);
903 if (test_bit(STRIPE_OP_POSTXOR, &pending))
904 ops_run_postxor(sh, tx);
906 if (test_bit(STRIPE_OP_CHECK, &pending))
909 if (test_bit(STRIPE_OP_IO, &pending))
913 for (i = disks; i--; ) {
914 struct r5dev *dev = &sh->dev[i];
915 if (test_and_clear_bit(R5_Overlap, &dev->flags))
916 wake_up(&sh->raid_conf->wait_for_overlap);
920 static int grow_one_stripe(raid5_conf_t *conf)
922 struct stripe_head *sh;
923 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
926 memset(sh, 0, sizeof(*sh) + (conf->raid_disks-1)*sizeof(struct r5dev));
927 sh->raid_conf = conf;
928 spin_lock_init(&sh->lock);
930 if (grow_buffers(sh, conf->raid_disks)) {
931 shrink_buffers(sh, conf->raid_disks);
932 kmem_cache_free(conf->slab_cache, sh);
935 sh->disks = conf->raid_disks;
936 /* we just created an active stripe so... */
937 atomic_set(&sh->count, 1);
938 atomic_inc(&conf->active_stripes);
939 INIT_LIST_HEAD(&sh->lru);
944 static int grow_stripes(raid5_conf_t *conf, int num)
946 struct kmem_cache *sc;
947 int devs = conf->raid_disks;
949 sprintf(conf->cache_name[0], "raid5-%s", mdname(conf->mddev));
950 sprintf(conf->cache_name[1], "raid5-%s-alt", mdname(conf->mddev));
951 conf->active_name = 0;
952 sc = kmem_cache_create(conf->cache_name[conf->active_name],
953 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
957 conf->slab_cache = sc;
958 conf->pool_size = devs;
960 if (!grow_one_stripe(conf))
965 #ifdef CONFIG_MD_RAID5_RESHAPE
966 static int resize_stripes(raid5_conf_t *conf, int newsize)
968 /* Make all the stripes able to hold 'newsize' devices.
969 * New slots in each stripe get 'page' set to a new page.
971 * This happens in stages:
972 * 1/ create a new kmem_cache and allocate the required number of
974 * 2/ gather all the old stripe_heads and tranfer the pages across
975 * to the new stripe_heads. This will have the side effect of
976 * freezing the array as once all stripe_heads have been collected,
977 * no IO will be possible. Old stripe heads are freed once their
978 * pages have been transferred over, and the old kmem_cache is
979 * freed when all stripes are done.
980 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
981 * we simple return a failre status - no need to clean anything up.
982 * 4/ allocate new pages for the new slots in the new stripe_heads.
983 * If this fails, we don't bother trying the shrink the
984 * stripe_heads down again, we just leave them as they are.
985 * As each stripe_head is processed the new one is released into
988 * Once step2 is started, we cannot afford to wait for a write,
989 * so we use GFP_NOIO allocations.
991 struct stripe_head *osh, *nsh;
992 LIST_HEAD(newstripes);
993 struct disk_info *ndisks;
995 struct kmem_cache *sc;
998 if (newsize <= conf->pool_size)
999 return 0; /* never bother to shrink */
1001 md_allow_write(conf->mddev);
1004 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1005 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1010 for (i = conf->max_nr_stripes; i; i--) {
1011 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1015 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1017 nsh->raid_conf = conf;
1018 spin_lock_init(&nsh->lock);
1020 list_add(&nsh->lru, &newstripes);
1023 /* didn't get enough, give up */
1024 while (!list_empty(&newstripes)) {
1025 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1026 list_del(&nsh->lru);
1027 kmem_cache_free(sc, nsh);
1029 kmem_cache_destroy(sc);
1032 /* Step 2 - Must use GFP_NOIO now.
1033 * OK, we have enough stripes, start collecting inactive
1034 * stripes and copying them over
1036 list_for_each_entry(nsh, &newstripes, lru) {
1037 spin_lock_irq(&conf->device_lock);
1038 wait_event_lock_irq(conf->wait_for_stripe,
1039 !list_empty(&conf->inactive_list),
1041 unplug_slaves(conf->mddev)
1043 osh = get_free_stripe(conf);
1044 spin_unlock_irq(&conf->device_lock);
1045 atomic_set(&nsh->count, 1);
1046 for(i=0; i<conf->pool_size; i++)
1047 nsh->dev[i].page = osh->dev[i].page;
1048 for( ; i<newsize; i++)
1049 nsh->dev[i].page = NULL;
1050 kmem_cache_free(conf->slab_cache, osh);
1052 kmem_cache_destroy(conf->slab_cache);
1055 * At this point, we are holding all the stripes so the array
1056 * is completely stalled, so now is a good time to resize
1059 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1061 for (i=0; i<conf->raid_disks; i++)
1062 ndisks[i] = conf->disks[i];
1064 conf->disks = ndisks;
1068 /* Step 4, return new stripes to service */
1069 while(!list_empty(&newstripes)) {
1070 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1071 list_del_init(&nsh->lru);
1072 for (i=conf->raid_disks; i < newsize; i++)
1073 if (nsh->dev[i].page == NULL) {
1074 struct page *p = alloc_page(GFP_NOIO);
1075 nsh->dev[i].page = p;
1079 release_stripe(nsh);
1081 /* critical section pass, GFP_NOIO no longer needed */
1083 conf->slab_cache = sc;
1084 conf->active_name = 1-conf->active_name;
1085 conf->pool_size = newsize;
1090 static int drop_one_stripe(raid5_conf_t *conf)
1092 struct stripe_head *sh;
1094 spin_lock_irq(&conf->device_lock);
1095 sh = get_free_stripe(conf);
1096 spin_unlock_irq(&conf->device_lock);
1099 BUG_ON(atomic_read(&sh->count));
1100 shrink_buffers(sh, conf->pool_size);
1101 kmem_cache_free(conf->slab_cache, sh);
1102 atomic_dec(&conf->active_stripes);
1106 static void shrink_stripes(raid5_conf_t *conf)
1108 while (drop_one_stripe(conf))
1111 if (conf->slab_cache)
1112 kmem_cache_destroy(conf->slab_cache);
1113 conf->slab_cache = NULL;
1116 static void raid5_end_read_request(struct bio * bi, int error)
1118 struct stripe_head *sh = bi->bi_private;
1119 raid5_conf_t *conf = sh->raid_conf;
1120 int disks = sh->disks, i;
1121 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1122 char b[BDEVNAME_SIZE];
1126 for (i=0 ; i<disks; i++)
1127 if (bi == &sh->dev[i].req)
1130 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1131 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1139 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1140 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1141 rdev = conf->disks[i].rdev;
1142 printk(KERN_INFO "raid5:%s: read error corrected (%lu sectors at %llu on %s)\n",
1143 mdname(conf->mddev), STRIPE_SECTORS,
1144 (unsigned long long)sh->sector + rdev->data_offset,
1145 bdevname(rdev->bdev, b));
1146 clear_bit(R5_ReadError, &sh->dev[i].flags);
1147 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1149 if (atomic_read(&conf->disks[i].rdev->read_errors))
1150 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1152 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1154 rdev = conf->disks[i].rdev;
1156 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1157 atomic_inc(&rdev->read_errors);
1158 if (conf->mddev->degraded)
1159 printk(KERN_WARNING "raid5:%s: read error not correctable (sector %llu on %s).\n",
1160 mdname(conf->mddev),
1161 (unsigned long long)sh->sector + rdev->data_offset,
1163 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1165 printk(KERN_WARNING "raid5:%s: read error NOT corrected!! (sector %llu on %s).\n",
1166 mdname(conf->mddev),
1167 (unsigned long long)sh->sector + rdev->data_offset,
1169 else if (atomic_read(&rdev->read_errors)
1170 > conf->max_nr_stripes)
1172 "raid5:%s: Too many read errors, failing device %s.\n",
1173 mdname(conf->mddev), bdn);
1177 set_bit(R5_ReadError, &sh->dev[i].flags);
1179 clear_bit(R5_ReadError, &sh->dev[i].flags);
1180 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1181 md_error(conf->mddev, rdev);
1184 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1185 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1186 set_bit(STRIPE_HANDLE, &sh->state);
1190 static void raid5_end_write_request (struct bio *bi, int error)
1192 struct stripe_head *sh = bi->bi_private;
1193 raid5_conf_t *conf = sh->raid_conf;
1194 int disks = sh->disks, i;
1195 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1197 for (i=0 ; i<disks; i++)
1198 if (bi == &sh->dev[i].req)
1201 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1202 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1210 md_error(conf->mddev, conf->disks[i].rdev);
1212 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1214 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1215 set_bit(STRIPE_HANDLE, &sh->state);
1220 static sector_t compute_blocknr(struct stripe_head *sh, int i);
1222 static void raid5_build_block (struct stripe_head *sh, int i)
1224 struct r5dev *dev = &sh->dev[i];
1226 bio_init(&dev->req);
1227 dev->req.bi_io_vec = &dev->vec;
1229 dev->req.bi_max_vecs++;
1230 dev->vec.bv_page = dev->page;
1231 dev->vec.bv_len = STRIPE_SIZE;
1232 dev->vec.bv_offset = 0;
1234 dev->req.bi_sector = sh->sector;
1235 dev->req.bi_private = sh;
1238 dev->sector = compute_blocknr(sh, i);
1241 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1243 char b[BDEVNAME_SIZE];
1244 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1245 pr_debug("raid5: error called\n");
1247 if (!test_bit(Faulty, &rdev->flags)) {
1248 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1249 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1250 unsigned long flags;
1251 spin_lock_irqsave(&conf->device_lock, flags);
1253 spin_unlock_irqrestore(&conf->device_lock, flags);
1255 * if recovery was running, make sure it aborts.
1257 set_bit(MD_RECOVERY_ERR, &mddev->recovery);
1259 set_bit(Faulty, &rdev->flags);
1261 "raid5: Disk failure on %s, disabling device."
1262 " Operation continuing on %d devices\n",
1263 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1268 * Input: a 'big' sector number,
1269 * Output: index of the data and parity disk, and the sector # in them.
1271 static sector_t raid5_compute_sector(sector_t r_sector, unsigned int raid_disks,
1272 unsigned int data_disks, unsigned int * dd_idx,
1273 unsigned int * pd_idx, raid5_conf_t *conf)
1276 unsigned long chunk_number;
1277 unsigned int chunk_offset;
1278 sector_t new_sector;
1279 int sectors_per_chunk = conf->chunk_size >> 9;
1281 /* First compute the information on this sector */
1284 * Compute the chunk number and the sector offset inside the chunk
1286 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1287 chunk_number = r_sector;
1288 BUG_ON(r_sector != chunk_number);
1291 * Compute the stripe number
1293 stripe = chunk_number / data_disks;
1296 * Compute the data disk and parity disk indexes inside the stripe
1298 *dd_idx = chunk_number % data_disks;
1301 * Select the parity disk based on the user selected algorithm.
1303 switch(conf->level) {
1305 *pd_idx = data_disks;
1308 switch (conf->algorithm) {
1309 case ALGORITHM_LEFT_ASYMMETRIC:
1310 *pd_idx = data_disks - stripe % raid_disks;
1311 if (*dd_idx >= *pd_idx)
1314 case ALGORITHM_RIGHT_ASYMMETRIC:
1315 *pd_idx = stripe % raid_disks;
1316 if (*dd_idx >= *pd_idx)
1319 case ALGORITHM_LEFT_SYMMETRIC:
1320 *pd_idx = data_disks - stripe % raid_disks;
1321 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1323 case ALGORITHM_RIGHT_SYMMETRIC:
1324 *pd_idx = stripe % raid_disks;
1325 *dd_idx = (*pd_idx + 1 + *dd_idx) % raid_disks;
1328 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1334 /**** FIX THIS ****/
1335 switch (conf->algorithm) {
1336 case ALGORITHM_LEFT_ASYMMETRIC:
1337 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1338 if (*pd_idx == raid_disks-1)
1339 (*dd_idx)++; /* Q D D D P */
1340 else if (*dd_idx >= *pd_idx)
1341 (*dd_idx) += 2; /* D D P Q D */
1343 case ALGORITHM_RIGHT_ASYMMETRIC:
1344 *pd_idx = stripe % raid_disks;
1345 if (*pd_idx == raid_disks-1)
1346 (*dd_idx)++; /* Q D D D P */
1347 else if (*dd_idx >= *pd_idx)
1348 (*dd_idx) += 2; /* D D P Q D */
1350 case ALGORITHM_LEFT_SYMMETRIC:
1351 *pd_idx = raid_disks - 1 - (stripe % raid_disks);
1352 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1354 case ALGORITHM_RIGHT_SYMMETRIC:
1355 *pd_idx = stripe % raid_disks;
1356 *dd_idx = (*pd_idx + 2 + *dd_idx) % raid_disks;
1359 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1366 * Finally, compute the new sector number
1368 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1373 static sector_t compute_blocknr(struct stripe_head *sh, int i)
1375 raid5_conf_t *conf = sh->raid_conf;
1376 int raid_disks = sh->disks;
1377 int data_disks = raid_disks - conf->max_degraded;
1378 sector_t new_sector = sh->sector, check;
1379 int sectors_per_chunk = conf->chunk_size >> 9;
1382 int chunk_number, dummy1, dummy2, dd_idx = i;
1386 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1387 stripe = new_sector;
1388 BUG_ON(new_sector != stripe);
1390 if (i == sh->pd_idx)
1392 switch(conf->level) {
1395 switch (conf->algorithm) {
1396 case ALGORITHM_LEFT_ASYMMETRIC:
1397 case ALGORITHM_RIGHT_ASYMMETRIC:
1401 case ALGORITHM_LEFT_SYMMETRIC:
1402 case ALGORITHM_RIGHT_SYMMETRIC:
1405 i -= (sh->pd_idx + 1);
1408 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1413 if (i == raid6_next_disk(sh->pd_idx, raid_disks))
1414 return 0; /* It is the Q disk */
1415 switch (conf->algorithm) {
1416 case ALGORITHM_LEFT_ASYMMETRIC:
1417 case ALGORITHM_RIGHT_ASYMMETRIC:
1418 if (sh->pd_idx == raid_disks-1)
1419 i--; /* Q D D D P */
1420 else if (i > sh->pd_idx)
1421 i -= 2; /* D D P Q D */
1423 case ALGORITHM_LEFT_SYMMETRIC:
1424 case ALGORITHM_RIGHT_SYMMETRIC:
1425 if (sh->pd_idx == raid_disks-1)
1426 i--; /* Q D D D P */
1431 i -= (sh->pd_idx + 2);
1435 printk (KERN_CRIT "raid6: unsupported algorithm %d\n",
1441 chunk_number = stripe * data_disks + i;
1442 r_sector = (sector_t)chunk_number * sectors_per_chunk + chunk_offset;
1444 check = raid5_compute_sector (r_sector, raid_disks, data_disks, &dummy1, &dummy2, conf);
1445 if (check != sh->sector || dummy1 != dd_idx || dummy2 != sh->pd_idx) {
1446 printk(KERN_ERR "compute_blocknr: map not correct\n");
1455 * Copy data between a page in the stripe cache, and one or more bion
1456 * The page could align with the middle of the bio, or there could be
1457 * several bion, each with several bio_vecs, which cover part of the page
1458 * Multiple bion are linked together on bi_next. There may be extras
1459 * at the end of this list. We ignore them.
1461 static void copy_data(int frombio, struct bio *bio,
1465 char *pa = page_address(page);
1466 struct bio_vec *bvl;
1470 if (bio->bi_sector >= sector)
1471 page_offset = (signed)(bio->bi_sector - sector) * 512;
1473 page_offset = (signed)(sector - bio->bi_sector) * -512;
1474 bio_for_each_segment(bvl, bio, i) {
1475 int len = bio_iovec_idx(bio,i)->bv_len;
1479 if (page_offset < 0) {
1480 b_offset = -page_offset;
1481 page_offset += b_offset;
1485 if (len > 0 && page_offset + len > STRIPE_SIZE)
1486 clen = STRIPE_SIZE - page_offset;
1490 char *ba = __bio_kmap_atomic(bio, i, KM_USER0);
1492 memcpy(pa+page_offset, ba+b_offset, clen);
1494 memcpy(ba+b_offset, pa+page_offset, clen);
1495 __bio_kunmap_atomic(ba, KM_USER0);
1497 if (clen < len) /* hit end of page */
1503 #define check_xor() do { \
1504 if (count == MAX_XOR_BLOCKS) { \
1505 xor_blocks(count, STRIPE_SIZE, dest, ptr);\
1510 static void compute_parity6(struct stripe_head *sh, int method)
1512 raid6_conf_t *conf = sh->raid_conf;
1513 int i, pd_idx = sh->pd_idx, qd_idx, d0_idx, disks = sh->disks, count;
1515 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1518 qd_idx = raid6_next_disk(pd_idx, disks);
1519 d0_idx = raid6_next_disk(qd_idx, disks);
1521 pr_debug("compute_parity, stripe %llu, method %d\n",
1522 (unsigned long long)sh->sector, method);
1525 case READ_MODIFY_WRITE:
1526 BUG(); /* READ_MODIFY_WRITE N/A for RAID-6 */
1527 case RECONSTRUCT_WRITE:
1528 for (i= disks; i-- ;)
1529 if ( i != pd_idx && i != qd_idx && sh->dev[i].towrite ) {
1530 chosen = sh->dev[i].towrite;
1531 sh->dev[i].towrite = NULL;
1533 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1534 wake_up(&conf->wait_for_overlap);
1536 BUG_ON(sh->dev[i].written);
1537 sh->dev[i].written = chosen;
1541 BUG(); /* Not implemented yet */
1544 for (i = disks; i--;)
1545 if (sh->dev[i].written) {
1546 sector_t sector = sh->dev[i].sector;
1547 struct bio *wbi = sh->dev[i].written;
1548 while (wbi && wbi->bi_sector < sector + STRIPE_SECTORS) {
1549 copy_data(1, wbi, sh->dev[i].page, sector);
1550 wbi = r5_next_bio(wbi, sector);
1553 set_bit(R5_LOCKED, &sh->dev[i].flags);
1554 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1558 // case RECONSTRUCT_WRITE:
1559 // case CHECK_PARITY:
1560 // case UPDATE_PARITY:
1561 /* Note that unlike RAID-5, the ordering of the disks matters greatly. */
1562 /* FIX: Is this ordering of drives even remotely optimal? */
1566 ptrs[count++] = page_address(sh->dev[i].page);
1567 if (count <= disks-2 && !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1568 printk("block %d/%d not uptodate on parity calc\n", i,count);
1569 i = raid6_next_disk(i, disks);
1570 } while ( i != d0_idx );
1574 raid6_call.gen_syndrome(disks, STRIPE_SIZE, ptrs);
1577 case RECONSTRUCT_WRITE:
1578 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1579 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1580 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1581 set_bit(R5_LOCKED, &sh->dev[qd_idx].flags);
1584 set_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1585 set_bit(R5_UPTODATE, &sh->dev[qd_idx].flags);
1591 /* Compute one missing block */
1592 static void compute_block_1(struct stripe_head *sh, int dd_idx, int nozero)
1594 int i, count, disks = sh->disks;
1595 void *ptr[MAX_XOR_BLOCKS], *dest, *p;
1596 int pd_idx = sh->pd_idx;
1597 int qd_idx = raid6_next_disk(pd_idx, disks);
1599 pr_debug("compute_block_1, stripe %llu, idx %d\n",
1600 (unsigned long long)sh->sector, dd_idx);
1602 if ( dd_idx == qd_idx ) {
1603 /* We're actually computing the Q drive */
1604 compute_parity6(sh, UPDATE_PARITY);
1606 dest = page_address(sh->dev[dd_idx].page);
1607 if (!nozero) memset(dest, 0, STRIPE_SIZE);
1609 for (i = disks ; i--; ) {
1610 if (i == dd_idx || i == qd_idx)
1612 p = page_address(sh->dev[i].page);
1613 if (test_bit(R5_UPTODATE, &sh->dev[i].flags))
1616 printk("compute_block() %d, stripe %llu, %d"
1617 " not present\n", dd_idx,
1618 (unsigned long long)sh->sector, i);
1623 xor_blocks(count, STRIPE_SIZE, dest, ptr);
1624 if (!nozero) set_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1625 else clear_bit(R5_UPTODATE, &sh->dev[dd_idx].flags);
1629 /* Compute two missing blocks */
1630 static void compute_block_2(struct stripe_head *sh, int dd_idx1, int dd_idx2)
1632 int i, count, disks = sh->disks;
1633 int pd_idx = sh->pd_idx;
1634 int qd_idx = raid6_next_disk(pd_idx, disks);
1635 int d0_idx = raid6_next_disk(qd_idx, disks);
1638 /* faila and failb are disk numbers relative to d0_idx */
1639 /* pd_idx become disks-2 and qd_idx become disks-1 */
1640 faila = (dd_idx1 < d0_idx) ? dd_idx1+(disks-d0_idx) : dd_idx1-d0_idx;
1641 failb = (dd_idx2 < d0_idx) ? dd_idx2+(disks-d0_idx) : dd_idx2-d0_idx;
1643 BUG_ON(faila == failb);
1644 if ( failb < faila ) { int tmp = faila; faila = failb; failb = tmp; }
1646 pr_debug("compute_block_2, stripe %llu, idx %d,%d (%d,%d)\n",
1647 (unsigned long long)sh->sector, dd_idx1, dd_idx2, faila, failb);
1649 if ( failb == disks-1 ) {
1650 /* Q disk is one of the missing disks */
1651 if ( faila == disks-2 ) {
1652 /* Missing P+Q, just recompute */
1653 compute_parity6(sh, UPDATE_PARITY);
1656 /* We're missing D+Q; recompute D from P */
1657 compute_block_1(sh, (dd_idx1 == qd_idx) ? dd_idx2 : dd_idx1, 0);
1658 compute_parity6(sh, UPDATE_PARITY); /* Is this necessary? */
1663 /* We're missing D+P or D+D; build pointer table */
1665 /**** FIX THIS: This could be very bad if disks is close to 256 ****/
1671 ptrs[count++] = page_address(sh->dev[i].page);
1672 i = raid6_next_disk(i, disks);
1673 if (i != dd_idx1 && i != dd_idx2 &&
1674 !test_bit(R5_UPTODATE, &sh->dev[i].flags))
1675 printk("compute_2 with missing block %d/%d\n", count, i);
1676 } while ( i != d0_idx );
1678 if ( failb == disks-2 ) {
1679 /* We're missing D+P. */
1680 raid6_datap_recov(disks, STRIPE_SIZE, faila, ptrs);
1682 /* We're missing D+D. */
1683 raid6_2data_recov(disks, STRIPE_SIZE, faila, failb, ptrs);
1686 /* Both the above update both missing blocks */
1687 set_bit(R5_UPTODATE, &sh->dev[dd_idx1].flags);
1688 set_bit(R5_UPTODATE, &sh->dev[dd_idx2].flags);
1693 handle_write_operations5(struct stripe_head *sh, int rcw, int expand)
1695 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1699 /* if we are not expanding this is a proper write request, and
1700 * there will be bios with new data to be drained into the
1704 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1708 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1711 for (i = disks; i--; ) {
1712 struct r5dev *dev = &sh->dev[i];
1715 set_bit(R5_LOCKED, &dev->flags);
1717 clear_bit(R5_UPTODATE, &dev->flags);
1722 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
1723 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
1725 set_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
1726 set_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
1727 set_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
1731 for (i = disks; i--; ) {
1732 struct r5dev *dev = &sh->dev[i];
1736 /* For a read-modify write there may be blocks that are
1737 * locked for reading while others are ready to be
1738 * written so we distinguish these blocks by the
1742 (test_bit(R5_UPTODATE, &dev->flags) ||
1743 test_bit(R5_Wantcompute, &dev->flags))) {
1744 set_bit(R5_Wantprexor, &dev->flags);
1745 set_bit(R5_LOCKED, &dev->flags);
1746 clear_bit(R5_UPTODATE, &dev->flags);
1752 /* keep the parity disk locked while asynchronous operations
1755 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
1756 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
1759 pr_debug("%s: stripe %llu locked: %d pending: %lx\n",
1760 __FUNCTION__, (unsigned long long)sh->sector,
1761 locked, sh->ops.pending);
1767 * Each stripe/dev can have one or more bion attached.
1768 * toread/towrite point to the first in a chain.
1769 * The bi_next chain must be in order.
1771 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
1774 raid5_conf_t *conf = sh->raid_conf;
1777 pr_debug("adding bh b#%llu to stripe s#%llu\n",
1778 (unsigned long long)bi->bi_sector,
1779 (unsigned long long)sh->sector);
1782 spin_lock(&sh->lock);
1783 spin_lock_irq(&conf->device_lock);
1785 bip = &sh->dev[dd_idx].towrite;
1786 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
1789 bip = &sh->dev[dd_idx].toread;
1790 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
1791 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
1793 bip = & (*bip)->bi_next;
1795 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
1798 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
1802 bi->bi_phys_segments ++;
1803 spin_unlock_irq(&conf->device_lock);
1804 spin_unlock(&sh->lock);
1806 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
1807 (unsigned long long)bi->bi_sector,
1808 (unsigned long long)sh->sector, dd_idx);
1810 if (conf->mddev->bitmap && firstwrite) {
1811 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
1813 sh->bm_seq = conf->seq_flush+1;
1814 set_bit(STRIPE_BIT_DELAY, &sh->state);
1818 /* check if page is covered */
1819 sector_t sector = sh->dev[dd_idx].sector;
1820 for (bi=sh->dev[dd_idx].towrite;
1821 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
1822 bi && bi->bi_sector <= sector;
1823 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
1824 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
1825 sector = bi->bi_sector + (bi->bi_size>>9);
1827 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
1828 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
1833 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
1834 spin_unlock_irq(&conf->device_lock);
1835 spin_unlock(&sh->lock);
1839 static void end_reshape(raid5_conf_t *conf);
1841 static int page_is_zero(struct page *p)
1843 char *a = page_address(p);
1844 return ((*(u32*)a) == 0 &&
1845 memcmp(a, a+4, STRIPE_SIZE-4)==0);
1848 static int stripe_to_pdidx(sector_t stripe, raid5_conf_t *conf, int disks)
1850 int sectors_per_chunk = conf->chunk_size >> 9;
1852 int chunk_offset = sector_div(stripe, sectors_per_chunk);
1854 raid5_compute_sector(stripe * (disks - conf->max_degraded)
1855 *sectors_per_chunk + chunk_offset,
1856 disks, disks - conf->max_degraded,
1857 &dd_idx, &pd_idx, conf);
1862 handle_requests_to_failed_array(raid5_conf_t *conf, struct stripe_head *sh,
1863 struct stripe_head_state *s, int disks,
1864 struct bio **return_bi)
1867 for (i = disks; i--; ) {
1871 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1874 rdev = rcu_dereference(conf->disks[i].rdev);
1875 if (rdev && test_bit(In_sync, &rdev->flags))
1876 /* multiple read failures in one stripe */
1877 md_error(conf->mddev, rdev);
1880 spin_lock_irq(&conf->device_lock);
1881 /* fail all writes first */
1882 bi = sh->dev[i].towrite;
1883 sh->dev[i].towrite = NULL;
1889 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1890 wake_up(&conf->wait_for_overlap);
1892 while (bi && bi->bi_sector <
1893 sh->dev[i].sector + STRIPE_SECTORS) {
1894 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
1895 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1896 if (--bi->bi_phys_segments == 0) {
1897 md_write_end(conf->mddev);
1898 bi->bi_next = *return_bi;
1903 /* and fail all 'written' */
1904 bi = sh->dev[i].written;
1905 sh->dev[i].written = NULL;
1906 if (bi) bitmap_end = 1;
1907 while (bi && bi->bi_sector <
1908 sh->dev[i].sector + STRIPE_SECTORS) {
1909 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
1910 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1911 if (--bi->bi_phys_segments == 0) {
1912 md_write_end(conf->mddev);
1913 bi->bi_next = *return_bi;
1919 /* fail any reads if this device is non-operational and
1920 * the data has not reached the cache yet.
1922 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
1923 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
1924 test_bit(R5_ReadError, &sh->dev[i].flags))) {
1925 bi = sh->dev[i].toread;
1926 sh->dev[i].toread = NULL;
1927 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
1928 wake_up(&conf->wait_for_overlap);
1929 if (bi) s->to_read--;
1930 while (bi && bi->bi_sector <
1931 sh->dev[i].sector + STRIPE_SECTORS) {
1932 struct bio *nextbi =
1933 r5_next_bio(bi, sh->dev[i].sector);
1934 clear_bit(BIO_UPTODATE, &bi->bi_flags);
1935 if (--bi->bi_phys_segments == 0) {
1936 bi->bi_next = *return_bi;
1942 spin_unlock_irq(&conf->device_lock);
1944 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
1945 STRIPE_SECTORS, 0, 0);
1950 /* __handle_issuing_new_read_requests5 - returns 0 if there are no more disks
1953 static int __handle_issuing_new_read_requests5(struct stripe_head *sh,
1954 struct stripe_head_state *s, int disk_idx, int disks)
1956 struct r5dev *dev = &sh->dev[disk_idx];
1957 struct r5dev *failed_dev = &sh->dev[s->failed_num];
1959 /* don't schedule compute operations or reads on the parity block while
1960 * a check is in flight
1962 if ((disk_idx == sh->pd_idx) &&
1963 test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
1966 /* is the data in this block needed, and can we get it? */
1967 if (!test_bit(R5_LOCKED, &dev->flags) &&
1968 !test_bit(R5_UPTODATE, &dev->flags) && (dev->toread ||
1969 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
1970 s->syncing || s->expanding || (s->failed &&
1971 (failed_dev->toread || (failed_dev->towrite &&
1972 !test_bit(R5_OVERWRITE, &failed_dev->flags)
1974 /* 1/ We would like to get this block, possibly by computing it,
1975 * but we might not be able to.
1977 * 2/ Since parity check operations potentially make the parity
1978 * block !uptodate it will need to be refreshed before any
1979 * compute operations on data disks are scheduled.
1981 * 3/ We hold off parity block re-reads until check operations
1984 if ((s->uptodate == disks - 1) &&
1985 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
1986 set_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
1987 set_bit(R5_Wantcompute, &dev->flags);
1988 sh->ops.target = disk_idx;
1991 /* Careful: from this point on 'uptodate' is in the eye
1992 * of raid5_run_ops which services 'compute' operations
1993 * before writes. R5_Wantcompute flags a block that will
1994 * be R5_UPTODATE by the time it is needed for a
1995 * subsequent operation.
1998 return 0; /* uptodate + compute == disks */
1999 } else if ((s->uptodate < disks - 1) &&
2000 test_bit(R5_Insync, &dev->flags)) {
2001 /* Note: we hold off compute operations while checks are
2002 * in flight, but we still prefer 'compute' over 'read'
2003 * hence we only read if (uptodate < * disks-1)
2005 set_bit(R5_LOCKED, &dev->flags);
2006 set_bit(R5_Wantread, &dev->flags);
2007 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2010 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2018 static void handle_issuing_new_read_requests5(struct stripe_head *sh,
2019 struct stripe_head_state *s, int disks)
2023 /* Clear completed compute operations. Parity recovery
2024 * (STRIPE_OP_MOD_REPAIR_PD) implies a write-back which is handled
2025 * later on in this routine
2027 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2028 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2029 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2030 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2031 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2034 /* look for blocks to read/compute, skip this if a compute
2035 * is already in flight, or if the stripe contents are in the
2036 * midst of changing due to a write
2038 if (!test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2039 !test_bit(STRIPE_OP_PREXOR, &sh->ops.pending) &&
2040 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2041 for (i = disks; i--; )
2042 if (__handle_issuing_new_read_requests5(
2043 sh, s, i, disks) == 0)
2046 set_bit(STRIPE_HANDLE, &sh->state);
2049 static void handle_issuing_new_read_requests6(struct stripe_head *sh,
2050 struct stripe_head_state *s, struct r6_state *r6s,
2054 for (i = disks; i--; ) {
2055 struct r5dev *dev = &sh->dev[i];
2056 if (!test_bit(R5_LOCKED, &dev->flags) &&
2057 !test_bit(R5_UPTODATE, &dev->flags) &&
2058 (dev->toread || (dev->towrite &&
2059 !test_bit(R5_OVERWRITE, &dev->flags)) ||
2060 s->syncing || s->expanding ||
2062 (sh->dev[r6s->failed_num[0]].toread ||
2065 (sh->dev[r6s->failed_num[1]].toread ||
2067 /* we would like to get this block, possibly
2068 * by computing it, but we might not be able to
2070 if (s->uptodate == disks-1) {
2071 pr_debug("Computing stripe %llu block %d\n",
2072 (unsigned long long)sh->sector, i);
2073 compute_block_1(sh, i, 0);
2075 } else if ( s->uptodate == disks-2 && s->failed >= 2 ) {
2076 /* Computing 2-failure is *very* expensive; only
2077 * do it if failed >= 2
2080 for (other = disks; other--; ) {
2083 if (!test_bit(R5_UPTODATE,
2084 &sh->dev[other].flags))
2088 pr_debug("Computing stripe %llu blocks %d,%d\n",
2089 (unsigned long long)sh->sector,
2091 compute_block_2(sh, i, other);
2093 } else if (test_bit(R5_Insync, &dev->flags)) {
2094 set_bit(R5_LOCKED, &dev->flags);
2095 set_bit(R5_Wantread, &dev->flags);
2097 pr_debug("Reading block %d (sync=%d)\n",
2102 set_bit(STRIPE_HANDLE, &sh->state);
2106 /* handle_completed_write_requests
2107 * any written block on an uptodate or failed drive can be returned.
2108 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2109 * never LOCKED, so we don't need to test 'failed' directly.
2111 static void handle_completed_write_requests(raid5_conf_t *conf,
2112 struct stripe_head *sh, int disks, struct bio **return_bi)
2117 for (i = disks; i--; )
2118 if (sh->dev[i].written) {
2120 if (!test_bit(R5_LOCKED, &dev->flags) &&
2121 test_bit(R5_UPTODATE, &dev->flags)) {
2122 /* We can return any write requests */
2123 struct bio *wbi, *wbi2;
2125 pr_debug("Return write for disc %d\n", i);
2126 spin_lock_irq(&conf->device_lock);
2128 dev->written = NULL;
2129 while (wbi && wbi->bi_sector <
2130 dev->sector + STRIPE_SECTORS) {
2131 wbi2 = r5_next_bio(wbi, dev->sector);
2132 if (--wbi->bi_phys_segments == 0) {
2133 md_write_end(conf->mddev);
2134 wbi->bi_next = *return_bi;
2139 if (dev->towrite == NULL)
2141 spin_unlock_irq(&conf->device_lock);
2143 bitmap_endwrite(conf->mddev->bitmap,
2146 !test_bit(STRIPE_DEGRADED, &sh->state),
2152 static void handle_issuing_new_write_requests5(raid5_conf_t *conf,
2153 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2155 int rmw = 0, rcw = 0, i;
2156 for (i = disks; i--; ) {
2157 /* would I have to read this buffer for read_modify_write */
2158 struct r5dev *dev = &sh->dev[i];
2159 if ((dev->towrite || i == sh->pd_idx) &&
2160 !test_bit(R5_LOCKED, &dev->flags) &&
2161 !(test_bit(R5_UPTODATE, &dev->flags) ||
2162 test_bit(R5_Wantcompute, &dev->flags))) {
2163 if (test_bit(R5_Insync, &dev->flags))
2166 rmw += 2*disks; /* cannot read it */
2168 /* Would I have to read this buffer for reconstruct_write */
2169 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2170 !test_bit(R5_LOCKED, &dev->flags) &&
2171 !(test_bit(R5_UPTODATE, &dev->flags) ||
2172 test_bit(R5_Wantcompute, &dev->flags))) {
2173 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2178 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2179 (unsigned long long)sh->sector, rmw, rcw);
2180 set_bit(STRIPE_HANDLE, &sh->state);
2181 if (rmw < rcw && rmw > 0)
2182 /* prefer read-modify-write, but need to get some data */
2183 for (i = disks; i--; ) {
2184 struct r5dev *dev = &sh->dev[i];
2185 if ((dev->towrite || i == sh->pd_idx) &&
2186 !test_bit(R5_LOCKED, &dev->flags) &&
2187 !(test_bit(R5_UPTODATE, &dev->flags) ||
2188 test_bit(R5_Wantcompute, &dev->flags)) &&
2189 test_bit(R5_Insync, &dev->flags)) {
2191 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2192 pr_debug("Read_old block "
2193 "%d for r-m-w\n", i);
2194 set_bit(R5_LOCKED, &dev->flags);
2195 set_bit(R5_Wantread, &dev->flags);
2196 if (!test_and_set_bit(
2197 STRIPE_OP_IO, &sh->ops.pending))
2201 set_bit(STRIPE_DELAYED, &sh->state);
2202 set_bit(STRIPE_HANDLE, &sh->state);
2206 if (rcw <= rmw && rcw > 0)
2207 /* want reconstruct write, but need to get some data */
2208 for (i = disks; i--; ) {
2209 struct r5dev *dev = &sh->dev[i];
2210 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2212 !test_bit(R5_LOCKED, &dev->flags) &&
2213 !(test_bit(R5_UPTODATE, &dev->flags) ||
2214 test_bit(R5_Wantcompute, &dev->flags)) &&
2215 test_bit(R5_Insync, &dev->flags)) {
2217 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2218 pr_debug("Read_old block "
2219 "%d for Reconstruct\n", i);
2220 set_bit(R5_LOCKED, &dev->flags);
2221 set_bit(R5_Wantread, &dev->flags);
2222 if (!test_and_set_bit(
2223 STRIPE_OP_IO, &sh->ops.pending))
2227 set_bit(STRIPE_DELAYED, &sh->state);
2228 set_bit(STRIPE_HANDLE, &sh->state);
2232 /* now if nothing is locked, and if we have enough data,
2233 * we can start a write request
2235 /* since handle_stripe can be called at any time we need to handle the
2236 * case where a compute block operation has been submitted and then a
2237 * subsequent call wants to start a write request. raid5_run_ops only
2238 * handles the case where compute block and postxor are requested
2239 * simultaneously. If this is not the case then new writes need to be
2240 * held off until the compute completes.
2242 if ((s->req_compute ||
2243 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) &&
2244 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2245 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2246 s->locked += handle_write_operations5(sh, rcw == 0, 0);
2249 static void handle_issuing_new_write_requests6(raid5_conf_t *conf,
2250 struct stripe_head *sh, struct stripe_head_state *s,
2251 struct r6_state *r6s, int disks)
2253 int rcw = 0, must_compute = 0, pd_idx = sh->pd_idx, i;
2254 int qd_idx = r6s->qd_idx;
2255 for (i = disks; i--; ) {
2256 struct r5dev *dev = &sh->dev[i];
2257 /* Would I have to read this buffer for reconstruct_write */
2258 if (!test_bit(R5_OVERWRITE, &dev->flags)
2259 && i != pd_idx && i != qd_idx
2260 && (!test_bit(R5_LOCKED, &dev->flags)
2262 !test_bit(R5_UPTODATE, &dev->flags)) {
2263 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2265 pr_debug("raid6: must_compute: "
2266 "disk %d flags=%#lx\n", i, dev->flags);
2271 pr_debug("for sector %llu, rcw=%d, must_compute=%d\n",
2272 (unsigned long long)sh->sector, rcw, must_compute);
2273 set_bit(STRIPE_HANDLE, &sh->state);
2276 /* want reconstruct write, but need to get some data */
2277 for (i = disks; i--; ) {
2278 struct r5dev *dev = &sh->dev[i];
2279 if (!test_bit(R5_OVERWRITE, &dev->flags)
2280 && !(s->failed == 0 && (i == pd_idx || i == qd_idx))
2281 && !test_bit(R5_LOCKED, &dev->flags) &&
2282 !test_bit(R5_UPTODATE, &dev->flags) &&
2283 test_bit(R5_Insync, &dev->flags)) {
2285 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2286 pr_debug("Read_old stripe %llu "
2287 "block %d for Reconstruct\n",
2288 (unsigned long long)sh->sector, i);
2289 set_bit(R5_LOCKED, &dev->flags);
2290 set_bit(R5_Wantread, &dev->flags);
2293 pr_debug("Request delayed stripe %llu "
2294 "block %d for Reconstruct\n",
2295 (unsigned long long)sh->sector, i);
2296 set_bit(STRIPE_DELAYED, &sh->state);
2297 set_bit(STRIPE_HANDLE, &sh->state);
2301 /* now if nothing is locked, and if we have enough data, we can start a
2304 if (s->locked == 0 && rcw == 0 &&
2305 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2306 if (must_compute > 0) {
2307 /* We have failed blocks and need to compute them */
2308 switch (s->failed) {
2312 compute_block_1(sh, r6s->failed_num[0], 0);
2315 compute_block_2(sh, r6s->failed_num[0],
2316 r6s->failed_num[1]);
2318 default: /* This request should have been failed? */
2323 pr_debug("Computing parity for stripe %llu\n",
2324 (unsigned long long)sh->sector);
2325 compute_parity6(sh, RECONSTRUCT_WRITE);
2326 /* now every locked buffer is ready to be written */
2327 for (i = disks; i--; )
2328 if (test_bit(R5_LOCKED, &sh->dev[i].flags)) {
2329 pr_debug("Writing stripe %llu block %d\n",
2330 (unsigned long long)sh->sector, i);
2332 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2334 /* after a RECONSTRUCT_WRITE, the stripe MUST be in-sync */
2335 set_bit(STRIPE_INSYNC, &sh->state);
2337 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2338 atomic_dec(&conf->preread_active_stripes);
2339 if (atomic_read(&conf->preread_active_stripes) <
2341 md_wakeup_thread(conf->mddev->thread);
2346 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2347 struct stripe_head_state *s, int disks)
2349 set_bit(STRIPE_HANDLE, &sh->state);
2350 /* Take one of the following actions:
2351 * 1/ start a check parity operation if (uptodate == disks)
2352 * 2/ finish a check parity operation and act on the result
2353 * 3/ skip to the writeback section if we previously
2354 * initiated a recovery operation
2356 if (s->failed == 0 &&
2357 !test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2358 if (!test_and_set_bit(STRIPE_OP_CHECK, &sh->ops.pending)) {
2359 BUG_ON(s->uptodate != disks);
2360 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2364 test_and_clear_bit(STRIPE_OP_CHECK, &sh->ops.complete)) {
2365 clear_bit(STRIPE_OP_CHECK, &sh->ops.ack);
2366 clear_bit(STRIPE_OP_CHECK, &sh->ops.pending);
2368 if (sh->ops.zero_sum_result == 0)
2369 /* parity is correct (on disc,
2370 * not in buffer any more)
2372 set_bit(STRIPE_INSYNC, &sh->state);
2374 conf->mddev->resync_mismatches +=
2377 MD_RECOVERY_CHECK, &conf->mddev->recovery))
2378 /* don't try to repair!! */
2379 set_bit(STRIPE_INSYNC, &sh->state);
2381 set_bit(STRIPE_OP_COMPUTE_BLK,
2383 set_bit(STRIPE_OP_MOD_REPAIR_PD,
2385 set_bit(R5_Wantcompute,
2386 &sh->dev[sh->pd_idx].flags);
2387 sh->ops.target = sh->pd_idx;
2395 /* check if we can clear a parity disk reconstruct */
2396 if (test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete) &&
2397 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending)) {
2399 clear_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending);
2400 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.complete);
2401 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.ack);
2402 clear_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending);
2405 /* Wait for check parity and compute block operations to complete
2408 if (!test_bit(STRIPE_INSYNC, &sh->state) &&
2409 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending) &&
2410 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending)) {
2412 /* either failed parity check, or recovery is happening */
2414 s->failed_num = sh->pd_idx;
2415 dev = &sh->dev[s->failed_num];
2416 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2417 BUG_ON(s->uptodate != disks);
2419 set_bit(R5_LOCKED, &dev->flags);
2420 set_bit(R5_Wantwrite, &dev->flags);
2421 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2424 clear_bit(STRIPE_DEGRADED, &sh->state);
2426 set_bit(STRIPE_INSYNC, &sh->state);
2431 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2432 struct stripe_head_state *s,
2433 struct r6_state *r6s, struct page *tmp_page,
2436 int update_p = 0, update_q = 0;
2438 int pd_idx = sh->pd_idx;
2439 int qd_idx = r6s->qd_idx;
2441 set_bit(STRIPE_HANDLE, &sh->state);
2443 BUG_ON(s->failed > 2);
2444 BUG_ON(s->uptodate < disks);
2445 /* Want to check and possibly repair P and Q.
2446 * However there could be one 'failed' device, in which
2447 * case we can only check one of them, possibly using the
2448 * other to generate missing data
2451 /* If !tmp_page, we cannot do the calculations,
2452 * but as we have set STRIPE_HANDLE, we will soon be called
2453 * by stripe_handle with a tmp_page - just wait until then.
2456 if (s->failed == r6s->q_failed) {
2457 /* The only possible failed device holds 'Q', so it
2458 * makes sense to check P (If anything else were failed,
2459 * we would have used P to recreate it).
2461 compute_block_1(sh, pd_idx, 1);
2462 if (!page_is_zero(sh->dev[pd_idx].page)) {
2463 compute_block_1(sh, pd_idx, 0);
2467 if (!r6s->q_failed && s->failed < 2) {
2468 /* q is not failed, and we didn't use it to generate
2469 * anything, so it makes sense to check it
2471 memcpy(page_address(tmp_page),
2472 page_address(sh->dev[qd_idx].page),
2474 compute_parity6(sh, UPDATE_PARITY);
2475 if (memcmp(page_address(tmp_page),
2476 page_address(sh->dev[qd_idx].page),
2477 STRIPE_SIZE) != 0) {
2478 clear_bit(STRIPE_INSYNC, &sh->state);
2482 if (update_p || update_q) {
2483 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2484 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2485 /* don't try to repair!! */
2486 update_p = update_q = 0;
2489 /* now write out any block on a failed drive,
2490 * or P or Q if they need it
2493 if (s->failed == 2) {
2494 dev = &sh->dev[r6s->failed_num[1]];
2496 set_bit(R5_LOCKED, &dev->flags);
2497 set_bit(R5_Wantwrite, &dev->flags);
2499 if (s->failed >= 1) {
2500 dev = &sh->dev[r6s->failed_num[0]];
2502 set_bit(R5_LOCKED, &dev->flags);
2503 set_bit(R5_Wantwrite, &dev->flags);
2507 dev = &sh->dev[pd_idx];
2509 set_bit(R5_LOCKED, &dev->flags);
2510 set_bit(R5_Wantwrite, &dev->flags);
2513 dev = &sh->dev[qd_idx];
2515 set_bit(R5_LOCKED, &dev->flags);
2516 set_bit(R5_Wantwrite, &dev->flags);
2518 clear_bit(STRIPE_DEGRADED, &sh->state);
2520 set_bit(STRIPE_INSYNC, &sh->state);
2524 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2525 struct r6_state *r6s)
2529 /* We have read all the blocks in this stripe and now we need to
2530 * copy some of them into a target stripe for expand.
2532 struct dma_async_tx_descriptor *tx = NULL;
2533 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2534 for (i = 0; i < sh->disks; i++)
2535 if (i != sh->pd_idx && (!r6s || i != r6s->qd_idx)) {
2536 int dd_idx, pd_idx, j;
2537 struct stripe_head *sh2;
2539 sector_t bn = compute_blocknr(sh, i);
2540 sector_t s = raid5_compute_sector(bn, conf->raid_disks,
2542 conf->max_degraded, &dd_idx,
2544 sh2 = get_active_stripe(conf, s, conf->raid_disks,
2547 /* so far only the early blocks of this stripe
2548 * have been requested. When later blocks
2549 * get requested, we will try again
2552 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2553 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2554 /* must have already done this block */
2555 release_stripe(sh2);
2559 /* place all the copies on one channel */
2560 tx = async_memcpy(sh2->dev[dd_idx].page,
2561 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2562 ASYNC_TX_DEP_ACK, tx, NULL, NULL);
2564 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2565 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2566 for (j = 0; j < conf->raid_disks; j++)
2567 if (j != sh2->pd_idx &&
2568 (!r6s || j != raid6_next_disk(sh2->pd_idx,
2570 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2572 if (j == conf->raid_disks) {
2573 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2574 set_bit(STRIPE_HANDLE, &sh2->state);
2576 release_stripe(sh2);
2579 /* done submitting copies, wait for them to complete */
2582 dma_wait_for_async_tx(tx);
2587 * handle_stripe - do things to a stripe.
2589 * We lock the stripe and then examine the state of various bits
2590 * to see what needs to be done.
2592 * return some read request which now have data
2593 * return some write requests which are safely on disc
2594 * schedule a read on some buffers
2595 * schedule a write of some buffers
2596 * return confirmation of parity correctness
2598 * buffers are taken off read_list or write_list, and bh_cache buffers
2599 * get BH_Lock set before the stripe lock is released.
2603 static void handle_stripe5(struct stripe_head *sh)
2605 raid5_conf_t *conf = sh->raid_conf;
2606 int disks = sh->disks, i;
2607 struct bio *return_bi = NULL;
2608 struct stripe_head_state s;
2610 unsigned long pending = 0;
2612 memset(&s, 0, sizeof(s));
2613 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d "
2614 "ops=%lx:%lx:%lx\n", (unsigned long long)sh->sector, sh->state,
2615 atomic_read(&sh->count), sh->pd_idx,
2616 sh->ops.pending, sh->ops.ack, sh->ops.complete);
2618 spin_lock(&sh->lock);
2619 clear_bit(STRIPE_HANDLE, &sh->state);
2620 clear_bit(STRIPE_DELAYED, &sh->state);
2622 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2623 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2624 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2625 /* Now to look around and see what can be done */
2628 for (i=disks; i--; ) {
2630 struct r5dev *dev = &sh->dev[i];
2631 clear_bit(R5_Insync, &dev->flags);
2633 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2634 "written %p\n", i, dev->flags, dev->toread, dev->read,
2635 dev->towrite, dev->written);
2637 /* maybe we can request a biofill operation
2639 * new wantfill requests are only permitted while
2640 * STRIPE_OP_BIOFILL is clear
2642 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2643 !test_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2644 set_bit(R5_Wantfill, &dev->flags);
2646 /* now count some things */
2647 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2648 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2649 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2651 if (test_bit(R5_Wantfill, &dev->flags))
2653 else if (dev->toread)
2657 if (!test_bit(R5_OVERWRITE, &dev->flags))
2662 rdev = rcu_dereference(conf->disks[i].rdev);
2663 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2664 /* The ReadError flag will just be confusing now */
2665 clear_bit(R5_ReadError, &dev->flags);
2666 clear_bit(R5_ReWrite, &dev->flags);
2668 if (!rdev || !test_bit(In_sync, &rdev->flags)
2669 || test_bit(R5_ReadError, &dev->flags)) {
2673 set_bit(R5_Insync, &dev->flags);
2677 if (s.to_fill && !test_and_set_bit(STRIPE_OP_BIOFILL, &sh->ops.pending))
2680 pr_debug("locked=%d uptodate=%d to_read=%d"
2681 " to_write=%d failed=%d failed_num=%d\n",
2682 s.locked, s.uptodate, s.to_read, s.to_write,
2683 s.failed, s.failed_num);
2684 /* check if the array has lost two devices and, if so, some requests might
2687 if (s.failed > 1 && s.to_read+s.to_write+s.written)
2688 handle_requests_to_failed_array(conf, sh, &s, disks,
2690 if (s.failed > 1 && s.syncing) {
2691 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2692 clear_bit(STRIPE_SYNCING, &sh->state);
2696 /* might be able to return some write requests if the parity block
2697 * is safe, or on a failed drive
2699 dev = &sh->dev[sh->pd_idx];
2701 ((test_bit(R5_Insync, &dev->flags) &&
2702 !test_bit(R5_LOCKED, &dev->flags) &&
2703 test_bit(R5_UPTODATE, &dev->flags)) ||
2704 (s.failed == 1 && s.failed_num == sh->pd_idx)))
2705 handle_completed_write_requests(conf, sh, disks, &return_bi);
2707 /* Now we might consider reading some blocks, either to check/generate
2708 * parity, or to satisfy requests
2709 * or to load a block that is being partially written.
2711 if (s.to_read || s.non_overwrite ||
2712 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding ||
2713 test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending))
2714 handle_issuing_new_read_requests5(sh, &s, disks);
2716 /* Now we check to see if any write operations have recently
2720 /* leave prexor set until postxor is done, allows us to distinguish
2721 * a rmw from a rcw during biodrain
2723 if (test_bit(STRIPE_OP_PREXOR, &sh->ops.complete) &&
2724 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2726 clear_bit(STRIPE_OP_PREXOR, &sh->ops.complete);
2727 clear_bit(STRIPE_OP_PREXOR, &sh->ops.ack);
2728 clear_bit(STRIPE_OP_PREXOR, &sh->ops.pending);
2730 for (i = disks; i--; )
2731 clear_bit(R5_Wantprexor, &sh->dev[i].flags);
2734 /* if only POSTXOR is set then this is an 'expand' postxor */
2735 if (test_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete) &&
2736 test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete)) {
2738 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.complete);
2739 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.ack);
2740 clear_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending);
2742 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2743 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2744 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2746 /* All the 'written' buffers and the parity block are ready to
2747 * be written back to disk
2749 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
2750 for (i = disks; i--; ) {
2752 if (test_bit(R5_LOCKED, &dev->flags) &&
2753 (i == sh->pd_idx || dev->written)) {
2754 pr_debug("Writing block %d\n", i);
2755 set_bit(R5_Wantwrite, &dev->flags);
2756 if (!test_and_set_bit(
2757 STRIPE_OP_IO, &sh->ops.pending))
2759 if (!test_bit(R5_Insync, &dev->flags) ||
2760 (i == sh->pd_idx && s.failed == 0))
2761 set_bit(STRIPE_INSYNC, &sh->state);
2764 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2765 atomic_dec(&conf->preread_active_stripes);
2766 if (atomic_read(&conf->preread_active_stripes) <
2768 md_wakeup_thread(conf->mddev->thread);
2772 /* Now to consider new write requests and what else, if anything
2773 * should be read. We do not handle new writes when:
2774 * 1/ A 'write' operation (copy+xor) is already in flight.
2775 * 2/ A 'check' operation is in flight, as it may clobber the parity
2778 if (s.to_write && !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending) &&
2779 !test_bit(STRIPE_OP_CHECK, &sh->ops.pending))
2780 handle_issuing_new_write_requests5(conf, sh, &s, disks);
2782 /* maybe we need to check and possibly fix the parity for this stripe
2783 * Any reads will already have been scheduled, so we just see if enough
2784 * data is available. The parity check is held off while parity
2785 * dependent operations are in flight.
2787 if ((s.syncing && s.locked == 0 &&
2788 !test_bit(STRIPE_OP_COMPUTE_BLK, &sh->ops.pending) &&
2789 !test_bit(STRIPE_INSYNC, &sh->state)) ||
2790 test_bit(STRIPE_OP_CHECK, &sh->ops.pending) ||
2791 test_bit(STRIPE_OP_MOD_REPAIR_PD, &sh->ops.pending))
2792 handle_parity_checks5(conf, sh, &s, disks);
2794 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
2795 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
2796 clear_bit(STRIPE_SYNCING, &sh->state);
2799 /* If the failed drive is just a ReadError, then we might need to progress
2800 * the repair/check process
2802 if (s.failed == 1 && !conf->mddev->ro &&
2803 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
2804 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
2805 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
2807 dev = &sh->dev[s.failed_num];
2808 if (!test_bit(R5_ReWrite, &dev->flags)) {
2809 set_bit(R5_Wantwrite, &dev->flags);
2810 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2812 set_bit(R5_ReWrite, &dev->flags);
2813 set_bit(R5_LOCKED, &dev->flags);
2816 /* let's read it back */
2817 set_bit(R5_Wantread, &dev->flags);
2818 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2820 set_bit(R5_LOCKED, &dev->flags);
2825 /* Finish postxor operations initiated by the expansion
2828 if (test_bit(STRIPE_OP_POSTXOR, &sh->ops.complete) &&
2829 !test_bit(STRIPE_OP_BIODRAIN, &sh->ops.pending)) {
2831 clear_bit(STRIPE_EXPANDING, &sh->state);
2833 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.pending);
2834 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.ack);
2835 clear_bit(STRIPE_OP_POSTXOR, &sh->ops.complete);
2837 for (i = conf->raid_disks; i--; ) {
2838 set_bit(R5_Wantwrite, &sh->dev[i].flags);
2839 if (!test_and_set_bit(STRIPE_OP_IO, &sh->ops.pending))
2844 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
2845 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2846 /* Need to write out all blocks after computing parity */
2847 sh->disks = conf->raid_disks;
2848 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
2850 s.locked += handle_write_operations5(sh, 1, 1);
2851 } else if (s.expanded &&
2852 !test_bit(STRIPE_OP_POSTXOR, &sh->ops.pending)) {
2853 clear_bit(STRIPE_EXPAND_READY, &sh->state);
2854 atomic_dec(&conf->reshape_stripes);
2855 wake_up(&conf->wait_for_overlap);
2856 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
2859 if (s.expanding && s.locked == 0)
2860 handle_stripe_expansion(conf, sh, NULL);
2863 pending = get_stripe_work(sh);
2865 spin_unlock(&sh->lock);
2868 raid5_run_ops(sh, pending);
2870 return_io(return_bi);
2874 static void handle_stripe6(struct stripe_head *sh, struct page *tmp_page)
2876 raid6_conf_t *conf = sh->raid_conf;
2877 int disks = sh->disks;
2878 struct bio *return_bi = NULL;
2879 int i, pd_idx = sh->pd_idx;
2880 struct stripe_head_state s;
2881 struct r6_state r6s;
2882 struct r5dev *dev, *pdev, *qdev;
2884 r6s.qd_idx = raid6_next_disk(pd_idx, disks);
2885 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
2886 "pd_idx=%d, qd_idx=%d\n",
2887 (unsigned long long)sh->sector, sh->state,
2888 atomic_read(&sh->count), pd_idx, r6s.qd_idx);
2889 memset(&s, 0, sizeof(s));
2891 spin_lock(&sh->lock);
2892 clear_bit(STRIPE_HANDLE, &sh->state);
2893 clear_bit(STRIPE_DELAYED, &sh->state);
2895 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2896 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2897 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2898 /* Now to look around and see what can be done */
2900 /* clean-up completed biofill operations */
2901 if (test_bit(STRIPE_OP_BIOFILL, &sh->ops.complete)) {
2902 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.pending);
2903 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.ack);
2904 clear_bit(STRIPE_OP_BIOFILL, &sh->ops.complete);
2908 for (i=disks; i--; ) {
2911 clear_bit(R5_Insync, &dev->flags);
2913 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
2914 i, dev->flags, dev->toread, dev->towrite, dev->written);
2915 /* maybe we can reply to a read */
2916 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread) {
2917 struct bio *rbi, *rbi2;
2918 pr_debug("Return read for disc %d\n", i);
2919 spin_lock_irq(&conf->device_lock);
2922 if (test_and_clear_bit(R5_Overlap, &dev->flags))
2923 wake_up(&conf->wait_for_overlap);
2924 spin_unlock_irq(&conf->device_lock);
2925 while (rbi && rbi->bi_sector < dev->sector + STRIPE_SECTORS) {
2926 copy_data(0, rbi, dev->page, dev->sector);
2927 rbi2 = r5_next_bio(rbi, dev->sector);
2928 spin_lock_irq(&conf->device_lock);
2929 if (--rbi->bi_phys_segments == 0) {
2930 rbi->bi_next = return_bi;
2933 spin_unlock_irq(&conf->device_lock);
2938 /* now count some things */
2939 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2940 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2947 if (!test_bit(R5_OVERWRITE, &dev->flags))
2952 rdev = rcu_dereference(conf->disks[i].rdev);
2953 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
2954 /* The ReadError flag will just be confusing now */
2955 clear_bit(R5_ReadError, &dev->flags);
2956 clear_bit(R5_ReWrite, &dev->flags);
2958 if (!rdev || !test_bit(In_sync, &rdev->flags)
2959 || test_bit(R5_ReadError, &dev->flags)) {
2961 r6s.failed_num[s.failed] = i;
2964 set_bit(R5_Insync, &dev->flags);
2967 pr_debug("locked=%d uptodate=%d to_read=%d"
2968 " to_write=%d failed=%d failed_num=%d,%d\n",
2969 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
2970 r6s.failed_num[0], r6s.failed_num[1]);
2971 /* check if the array has lost >2 devices and, if so, some requests
2972 * might need to be failed
2974 if (s.failed > 2 && s.to_read+s.to_write+s.written)
2975 handle_requests_to_failed_array(conf, sh, &s, disks,
2977 if (s.failed > 2 && s.syncing) {
2978 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
2979 clear_bit(STRIPE_SYNCING, &sh->state);
2984 * might be able to return some write requests if the parity blocks
2985 * are safe, or on a failed drive
2987 pdev = &sh->dev[pd_idx];
2988 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
2989 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
2990 qdev = &sh->dev[r6s.qd_idx];
2991 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == r6s.qd_idx)
2992 || (s.failed >= 2 && r6s.failed_num[1] == r6s.qd_idx);
2995 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
2996 && !test_bit(R5_LOCKED, &pdev->flags)
2997 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
2998 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
2999 && !test_bit(R5_LOCKED, &qdev->flags)
3000 && test_bit(R5_UPTODATE, &qdev->flags)))))
3001 handle_completed_write_requests(conf, sh, disks, &return_bi);
3003 /* Now we might consider reading some blocks, either to check/generate
3004 * parity, or to satisfy requests
3005 * or to load a block that is being partially written.
3007 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3008 (s.syncing && (s.uptodate < disks)) || s.expanding)
3009 handle_issuing_new_read_requests6(sh, &s, &r6s, disks);
3011 /* now to consider writing and what else, if anything should be read */
3013 handle_issuing_new_write_requests6(conf, sh, &s, &r6s, disks);
3015 /* maybe we need to check and possibly fix the parity for this stripe
3016 * Any reads will already have been scheduled, so we just see if enough
3019 if (s.syncing && s.locked == 0 && !test_bit(STRIPE_INSYNC, &sh->state))
3020 handle_parity_checks6(conf, sh, &s, &r6s, tmp_page, disks);
3022 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3023 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3024 clear_bit(STRIPE_SYNCING, &sh->state);
3027 /* If the failed drives are just a ReadError, then we might need
3028 * to progress the repair/check process
3030 if (s.failed <= 2 && !conf->mddev->ro)
3031 for (i = 0; i < s.failed; i++) {
3032 dev = &sh->dev[r6s.failed_num[i]];
3033 if (test_bit(R5_ReadError, &dev->flags)
3034 && !test_bit(R5_LOCKED, &dev->flags)
3035 && test_bit(R5_UPTODATE, &dev->flags)
3037 if (!test_bit(R5_ReWrite, &dev->flags)) {
3038 set_bit(R5_Wantwrite, &dev->flags);
3039 set_bit(R5_ReWrite, &dev->flags);
3040 set_bit(R5_LOCKED, &dev->flags);
3042 /* let's read it back */
3043 set_bit(R5_Wantread, &dev->flags);
3044 set_bit(R5_LOCKED, &dev->flags);
3049 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state)) {
3050 /* Need to write out all blocks after computing P&Q */
3051 sh->disks = conf->raid_disks;
3052 sh->pd_idx = stripe_to_pdidx(sh->sector, conf,
3054 compute_parity6(sh, RECONSTRUCT_WRITE);
3055 for (i = conf->raid_disks ; i-- ; ) {
3056 set_bit(R5_LOCKED, &sh->dev[i].flags);
3058 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3060 clear_bit(STRIPE_EXPANDING, &sh->state);
3061 } else if (s.expanded) {
3062 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3063 atomic_dec(&conf->reshape_stripes);
3064 wake_up(&conf->wait_for_overlap);
3065 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3068 if (s.expanding && s.locked == 0)
3069 handle_stripe_expansion(conf, sh, &r6s);
3071 spin_unlock(&sh->lock);
3073 return_io(return_bi);
3075 for (i=disks; i-- ;) {
3079 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
3081 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
3086 bi = &sh->dev[i].req;
3090 bi->bi_end_io = raid5_end_write_request;
3092 bi->bi_end_io = raid5_end_read_request;
3095 rdev = rcu_dereference(conf->disks[i].rdev);
3096 if (rdev && test_bit(Faulty, &rdev->flags))
3099 atomic_inc(&rdev->nr_pending);
3103 if (s.syncing || s.expanding || s.expanded)
3104 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
3106 bi->bi_bdev = rdev->bdev;
3107 pr_debug("for %llu schedule op %ld on disc %d\n",
3108 (unsigned long long)sh->sector, bi->bi_rw, i);
3109 atomic_inc(&sh->count);
3110 bi->bi_sector = sh->sector + rdev->data_offset;
3111 bi->bi_flags = 1 << BIO_UPTODATE;
3113 bi->bi_max_vecs = 1;
3115 bi->bi_io_vec = &sh->dev[i].vec;
3116 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
3117 bi->bi_io_vec[0].bv_offset = 0;
3118 bi->bi_size = STRIPE_SIZE;
3121 test_bit(R5_ReWrite, &sh->dev[i].flags))
3122 atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
3123 generic_make_request(bi);
3126 set_bit(STRIPE_DEGRADED, &sh->state);
3127 pr_debug("skip op %ld on disc %d for sector %llu\n",
3128 bi->bi_rw, i, (unsigned long long)sh->sector);
3129 clear_bit(R5_LOCKED, &sh->dev[i].flags);
3130 set_bit(STRIPE_HANDLE, &sh->state);
3135 static void handle_stripe(struct stripe_head *sh, struct page *tmp_page)
3137 if (sh->raid_conf->level == 6)
3138 handle_stripe6(sh, tmp_page);
3145 static void raid5_activate_delayed(raid5_conf_t *conf)
3147 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3148 while (!list_empty(&conf->delayed_list)) {
3149 struct list_head *l = conf->delayed_list.next;
3150 struct stripe_head *sh;
3151 sh = list_entry(l, struct stripe_head, lru);
3153 clear_bit(STRIPE_DELAYED, &sh->state);
3154 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3155 atomic_inc(&conf->preread_active_stripes);
3156 list_add_tail(&sh->lru, &conf->handle_list);
3161 static void activate_bit_delay(raid5_conf_t *conf)
3163 /* device_lock is held */
3164 struct list_head head;
3165 list_add(&head, &conf->bitmap_list);
3166 list_del_init(&conf->bitmap_list);
3167 while (!list_empty(&head)) {
3168 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3169 list_del_init(&sh->lru);
3170 atomic_inc(&sh->count);
3171 __release_stripe(conf, sh);
3175 static void unplug_slaves(mddev_t *mddev)
3177 raid5_conf_t *conf = mddev_to_conf(mddev);
3181 for (i=0; i<mddev->raid_disks; i++) {
3182 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3183 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3184 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3186 atomic_inc(&rdev->nr_pending);
3189 if (r_queue->unplug_fn)
3190 r_queue->unplug_fn(r_queue);
3192 rdev_dec_pending(rdev, mddev);
3199 static void raid5_unplug_device(struct request_queue *q)
3201 mddev_t *mddev = q->queuedata;
3202 raid5_conf_t *conf = mddev_to_conf(mddev);
3203 unsigned long flags;
3205 spin_lock_irqsave(&conf->device_lock, flags);
3207 if (blk_remove_plug(q)) {
3209 raid5_activate_delayed(conf);
3211 md_wakeup_thread(mddev->thread);
3213 spin_unlock_irqrestore(&conf->device_lock, flags);
3215 unplug_slaves(mddev);
3218 static int raid5_congested(void *data, int bits)
3220 mddev_t *mddev = data;
3221 raid5_conf_t *conf = mddev_to_conf(mddev);
3223 /* No difference between reads and writes. Just check
3224 * how busy the stripe_cache is
3226 if (conf->inactive_blocked)
3230 if (list_empty_careful(&conf->inactive_list))
3236 /* We want read requests to align with chunks where possible,
3237 * but write requests don't need to.
3239 static int raid5_mergeable_bvec(struct request_queue *q, struct bio *bio, struct bio_vec *biovec)
3241 mddev_t *mddev = q->queuedata;
3242 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3244 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3245 unsigned int bio_sectors = bio->bi_size >> 9;
3247 if (bio_data_dir(bio) == WRITE)
3248 return biovec->bv_len; /* always allow writes to be mergeable */
3250 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3251 if (max < 0) max = 0;
3252 if (max <= biovec->bv_len && bio_sectors == 0)
3253 return biovec->bv_len;
3259 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3261 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3262 unsigned int chunk_sectors = mddev->chunk_size >> 9;
3263 unsigned int bio_sectors = bio->bi_size >> 9;
3265 return chunk_sectors >=
3266 ((sector & (chunk_sectors - 1)) + bio_sectors);
3270 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3271 * later sampled by raid5d.
3273 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3275 unsigned long flags;
3277 spin_lock_irqsave(&conf->device_lock, flags);
3279 bi->bi_next = conf->retry_read_aligned_list;
3280 conf->retry_read_aligned_list = bi;
3282 spin_unlock_irqrestore(&conf->device_lock, flags);
3283 md_wakeup_thread(conf->mddev->thread);
3287 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3291 bi = conf->retry_read_aligned;
3293 conf->retry_read_aligned = NULL;
3296 bi = conf->retry_read_aligned_list;
3298 conf->retry_read_aligned_list = bi->bi_next;
3300 bi->bi_phys_segments = 1; /* biased count of active stripes */
3301 bi->bi_hw_segments = 0; /* count of processed stripes */
3309 * The "raid5_align_endio" should check if the read succeeded and if it
3310 * did, call bio_endio on the original bio (having bio_put the new bio
3312 * If the read failed..
3314 static void raid5_align_endio(struct bio *bi, int error)
3316 struct bio* raid_bi = bi->bi_private;
3319 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3324 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3325 conf = mddev_to_conf(mddev);
3326 rdev = (void*)raid_bi->bi_next;
3327 raid_bi->bi_next = NULL;
3329 rdev_dec_pending(rdev, conf->mddev);
3331 if (!error && uptodate) {
3332 bio_endio(raid_bi, 0);
3333 if (atomic_dec_and_test(&conf->active_aligned_reads))
3334 wake_up(&conf->wait_for_stripe);
3339 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3341 add_bio_to_retry(raid_bi, conf);
3344 static int bio_fits_rdev(struct bio *bi)
3346 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3348 if ((bi->bi_size>>9) > q->max_sectors)
3350 blk_recount_segments(q, bi);
3351 if (bi->bi_phys_segments > q->max_phys_segments ||
3352 bi->bi_hw_segments > q->max_hw_segments)
3355 if (q->merge_bvec_fn)
3356 /* it's too hard to apply the merge_bvec_fn at this stage,
3365 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3367 mddev_t *mddev = q->queuedata;
3368 raid5_conf_t *conf = mddev_to_conf(mddev);
3369 const unsigned int raid_disks = conf->raid_disks;
3370 const unsigned int data_disks = raid_disks - conf->max_degraded;
3371 unsigned int dd_idx, pd_idx;
3372 struct bio* align_bi;
3375 if (!in_chunk_boundary(mddev, raid_bio)) {
3376 pr_debug("chunk_aligned_read : non aligned\n");
3380 * use bio_clone to make a copy of the bio
3382 align_bi = bio_clone(raid_bio, GFP_NOIO);
3386 * set bi_end_io to a new function, and set bi_private to the
3389 align_bi->bi_end_io = raid5_align_endio;
3390 align_bi->bi_private = raid_bio;
3394 align_bi->bi_sector = raid5_compute_sector(raid_bio->bi_sector,
3402 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3403 if (rdev && test_bit(In_sync, &rdev->flags)) {
3404 atomic_inc(&rdev->nr_pending);
3406 raid_bio->bi_next = (void*)rdev;
3407 align_bi->bi_bdev = rdev->bdev;
3408 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3409 align_bi->bi_sector += rdev->data_offset;
3411 if (!bio_fits_rdev(align_bi)) {
3412 /* too big in some way */
3414 rdev_dec_pending(rdev, mddev);
3418 spin_lock_irq(&conf->device_lock);
3419 wait_event_lock_irq(conf->wait_for_stripe,
3421 conf->device_lock, /* nothing */);
3422 atomic_inc(&conf->active_aligned_reads);
3423 spin_unlock_irq(&conf->device_lock);
3425 generic_make_request(align_bi);
3435 static int make_request(struct request_queue *q, struct bio * bi)
3437 mddev_t *mddev = q->queuedata;
3438 raid5_conf_t *conf = mddev_to_conf(mddev);
3439 unsigned int dd_idx, pd_idx;
3440 sector_t new_sector;
3441 sector_t logical_sector, last_sector;
3442 struct stripe_head *sh;
3443 const int rw = bio_data_dir(bi);
3446 if (unlikely(bio_barrier(bi))) {
3447 bio_endio(bi, -EOPNOTSUPP);
3451 md_write_start(mddev, bi);
3453 disk_stat_inc(mddev->gendisk, ios[rw]);
3454 disk_stat_add(mddev->gendisk, sectors[rw], bio_sectors(bi));
3457 mddev->reshape_position == MaxSector &&
3458 chunk_aligned_read(q,bi))
3461 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3462 last_sector = bi->bi_sector + (bi->bi_size>>9);
3464 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3466 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3468 int disks, data_disks;
3471 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3472 if (likely(conf->expand_progress == MaxSector))
3473 disks = conf->raid_disks;
3475 /* spinlock is needed as expand_progress may be
3476 * 64bit on a 32bit platform, and so it might be
3477 * possible to see a half-updated value
3478 * Ofcourse expand_progress could change after
3479 * the lock is dropped, so once we get a reference
3480 * to the stripe that we think it is, we will have
3483 spin_lock_irq(&conf->device_lock);
3484 disks = conf->raid_disks;
3485 if (logical_sector >= conf->expand_progress)
3486 disks = conf->previous_raid_disks;
3488 if (logical_sector >= conf->expand_lo) {
3489 spin_unlock_irq(&conf->device_lock);
3494 spin_unlock_irq(&conf->device_lock);
3496 data_disks = disks - conf->max_degraded;
3498 new_sector = raid5_compute_sector(logical_sector, disks, data_disks,
3499 &dd_idx, &pd_idx, conf);
3500 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3501 (unsigned long long)new_sector,
3502 (unsigned long long)logical_sector);
3504 sh = get_active_stripe(conf, new_sector, disks, pd_idx, (bi->bi_rw&RWA_MASK));
3506 if (unlikely(conf->expand_progress != MaxSector)) {
3507 /* expansion might have moved on while waiting for a
3508 * stripe, so we must do the range check again.
3509 * Expansion could still move past after this
3510 * test, but as we are holding a reference to
3511 * 'sh', we know that if that happens,
3512 * STRIPE_EXPANDING will get set and the expansion
3513 * won't proceed until we finish with the stripe.
3516 spin_lock_irq(&conf->device_lock);
3517 if (logical_sector < conf->expand_progress &&
3518 disks == conf->previous_raid_disks)
3519 /* mismatch, need to try again */
3521 spin_unlock_irq(&conf->device_lock);
3527 /* FIXME what if we get a false positive because these
3528 * are being updated.
3530 if (logical_sector >= mddev->suspend_lo &&
3531 logical_sector < mddev->suspend_hi) {
3537 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3538 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3539 /* Stripe is busy expanding or
3540 * add failed due to overlap. Flush everything
3543 raid5_unplug_device(mddev->queue);
3548 finish_wait(&conf->wait_for_overlap, &w);
3549 handle_stripe(sh, NULL);
3552 /* cannot get stripe for read-ahead, just give-up */
3553 clear_bit(BIO_UPTODATE, &bi->bi_flags);
3554 finish_wait(&conf->wait_for_overlap, &w);
3559 spin_lock_irq(&conf->device_lock);
3560 remaining = --bi->bi_phys_segments;
3561 spin_unlock_irq(&conf->device_lock);
3562 if (remaining == 0) {
3565 md_write_end(mddev);
3568 test_bit(BIO_UPTODATE, &bi->bi_flags)
3574 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
3576 /* reshaping is quite different to recovery/resync so it is
3577 * handled quite separately ... here.
3579 * On each call to sync_request, we gather one chunk worth of
3580 * destination stripes and flag them as expanding.
3581 * Then we find all the source stripes and request reads.
3582 * As the reads complete, handle_stripe will copy the data
3583 * into the destination stripe and release that stripe.
3585 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3586 struct stripe_head *sh;
3588 sector_t first_sector, last_sector;
3589 int raid_disks = conf->previous_raid_disks;
3590 int data_disks = raid_disks - conf->max_degraded;
3591 int new_data_disks = conf->raid_disks - conf->max_degraded;
3594 sector_t writepos, safepos, gap;
3596 if (sector_nr == 0 &&
3597 conf->expand_progress != 0) {
3598 /* restarting in the middle, skip the initial sectors */
3599 sector_nr = conf->expand_progress;
3600 sector_div(sector_nr, new_data_disks);
3605 /* we update the metadata when there is more than 3Meg
3606 * in the block range (that is rather arbitrary, should
3607 * probably be time based) or when the data about to be
3608 * copied would over-write the source of the data at
3609 * the front of the range.
3610 * i.e. one new_stripe forward from expand_progress new_maps
3611 * to after where expand_lo old_maps to
3613 writepos = conf->expand_progress +
3614 conf->chunk_size/512*(new_data_disks);
3615 sector_div(writepos, new_data_disks);
3616 safepos = conf->expand_lo;
3617 sector_div(safepos, data_disks);
3618 gap = conf->expand_progress - conf->expand_lo;
3620 if (writepos >= safepos ||
3621 gap > (new_data_disks)*3000*2 /*3Meg*/) {
3622 /* Cannot proceed until we've updated the superblock... */
3623 wait_event(conf->wait_for_overlap,
3624 atomic_read(&conf->reshape_stripes)==0);
3625 mddev->reshape_position = conf->expand_progress;
3626 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3627 md_wakeup_thread(mddev->thread);
3628 wait_event(mddev->sb_wait, mddev->flags == 0 ||
3629 kthread_should_stop());
3630 spin_lock_irq(&conf->device_lock);
3631 conf->expand_lo = mddev->reshape_position;
3632 spin_unlock_irq(&conf->device_lock);
3633 wake_up(&conf->wait_for_overlap);
3636 for (i=0; i < conf->chunk_size/512; i+= STRIPE_SECTORS) {
3639 pd_idx = stripe_to_pdidx(sector_nr+i, conf, conf->raid_disks);
3640 sh = get_active_stripe(conf, sector_nr+i,
3641 conf->raid_disks, pd_idx, 0);
3642 set_bit(STRIPE_EXPANDING, &sh->state);
3643 atomic_inc(&conf->reshape_stripes);
3644 /* If any of this stripe is beyond the end of the old
3645 * array, then we need to zero those blocks
3647 for (j=sh->disks; j--;) {
3649 if (j == sh->pd_idx)
3651 if (conf->level == 6 &&
3652 j == raid6_next_disk(sh->pd_idx, sh->disks))
3654 s = compute_blocknr(sh, j);
3655 if (s < (mddev->array_size<<1)) {
3659 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
3660 set_bit(R5_Expanded, &sh->dev[j].flags);
3661 set_bit(R5_UPTODATE, &sh->dev[j].flags);
3664 set_bit(STRIPE_EXPAND_READY, &sh->state);
3665 set_bit(STRIPE_HANDLE, &sh->state);
3669 spin_lock_irq(&conf->device_lock);
3670 conf->expand_progress = (sector_nr + i) * new_data_disks;
3671 spin_unlock_irq(&conf->device_lock);
3672 /* Ok, those stripe are ready. We can start scheduling
3673 * reads on the source stripes.
3674 * The source stripes are determined by mapping the first and last
3675 * block on the destination stripes.
3678 raid5_compute_sector(sector_nr*(new_data_disks),
3679 raid_disks, data_disks,
3680 &dd_idx, &pd_idx, conf);
3682 raid5_compute_sector((sector_nr+conf->chunk_size/512)
3683 *(new_data_disks) -1,
3684 raid_disks, data_disks,
3685 &dd_idx, &pd_idx, conf);
3686 if (last_sector >= (mddev->size<<1))
3687 last_sector = (mddev->size<<1)-1;
3688 while (first_sector <= last_sector) {
3689 pd_idx = stripe_to_pdidx(first_sector, conf,
3690 conf->previous_raid_disks);
3691 sh = get_active_stripe(conf, first_sector,
3692 conf->previous_raid_disks, pd_idx, 0);
3693 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3694 set_bit(STRIPE_HANDLE, &sh->state);
3696 first_sector += STRIPE_SECTORS;
3698 return conf->chunk_size>>9;
3701 /* FIXME go_faster isn't used */
3702 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
3704 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
3705 struct stripe_head *sh;
3707 int raid_disks = conf->raid_disks;
3708 sector_t max_sector = mddev->size << 1;
3710 int still_degraded = 0;
3713 if (sector_nr >= max_sector) {
3714 /* just being told to finish up .. nothing much to do */
3715 unplug_slaves(mddev);
3716 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
3721 if (mddev->curr_resync < max_sector) /* aborted */
3722 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
3724 else /* completed sync */
3726 bitmap_close_sync(mddev->bitmap);
3731 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
3732 return reshape_request(mddev, sector_nr, skipped);
3734 /* if there is too many failed drives and we are trying
3735 * to resync, then assert that we are finished, because there is
3736 * nothing we can do.
3738 if (mddev->degraded >= conf->max_degraded &&
3739 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
3740 sector_t rv = (mddev->size << 1) - sector_nr;
3744 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
3745 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
3746 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
3747 /* we can skip this block, and probably more */
3748 sync_blocks /= STRIPE_SECTORS;
3750 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
3753 pd_idx = stripe_to_pdidx(sector_nr, conf, raid_disks);
3754 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 1);
3756 sh = get_active_stripe(conf, sector_nr, raid_disks, pd_idx, 0);
3757 /* make sure we don't swamp the stripe cache if someone else
3758 * is trying to get access
3760 schedule_timeout_uninterruptible(1);
3762 /* Need to check if array will still be degraded after recovery/resync
3763 * We don't need to check the 'failed' flag as when that gets set,
3766 for (i=0; i<mddev->raid_disks; i++)
3767 if (conf->disks[i].rdev == NULL)
3770 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
3772 spin_lock(&sh->lock);
3773 set_bit(STRIPE_SYNCING, &sh->state);
3774 clear_bit(STRIPE_INSYNC, &sh->state);
3775 spin_unlock(&sh->lock);
3777 handle_stripe(sh, NULL);
3780 return STRIPE_SECTORS;
3783 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
3785 /* We may not be able to submit a whole bio at once as there
3786 * may not be enough stripe_heads available.
3787 * We cannot pre-allocate enough stripe_heads as we may need
3788 * more than exist in the cache (if we allow ever large chunks).
3789 * So we do one stripe head at a time and record in
3790 * ->bi_hw_segments how many have been done.
3792 * We *know* that this entire raid_bio is in one chunk, so
3793 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
3795 struct stripe_head *sh;
3797 sector_t sector, logical_sector, last_sector;
3802 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3803 sector = raid5_compute_sector( logical_sector,
3805 conf->raid_disks - conf->max_degraded,
3809 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
3811 for (; logical_sector < last_sector;
3812 logical_sector += STRIPE_SECTORS,
3813 sector += STRIPE_SECTORS,
3816 if (scnt < raid_bio->bi_hw_segments)
3817 /* already done this stripe */
3820 sh = get_active_stripe(conf, sector, conf->raid_disks, pd_idx, 1);
3823 /* failed to get a stripe - must wait */
3824 raid_bio->bi_hw_segments = scnt;
3825 conf->retry_read_aligned = raid_bio;
3829 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
3830 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
3832 raid_bio->bi_hw_segments = scnt;
3833 conf->retry_read_aligned = raid_bio;
3837 handle_stripe(sh, NULL);
3841 spin_lock_irq(&conf->device_lock);
3842 remaining = --raid_bio->bi_phys_segments;
3843 spin_unlock_irq(&conf->device_lock);
3844 if (remaining == 0) {
3846 raid_bio->bi_end_io(raid_bio,
3847 test_bit(BIO_UPTODATE, &raid_bio->bi_flags)
3850 if (atomic_dec_and_test(&conf->active_aligned_reads))
3851 wake_up(&conf->wait_for_stripe);
3858 * This is our raid5 kernel thread.
3860 * We scan the hash table for stripes which can be handled now.
3861 * During the scan, completed stripes are saved for us by the interrupt
3862 * handler, so that they will not have to wait for our next wakeup.
3864 static void raid5d (mddev_t *mddev)
3866 struct stripe_head *sh;
3867 raid5_conf_t *conf = mddev_to_conf(mddev);
3870 pr_debug("+++ raid5d active\n");
3872 md_check_recovery(mddev);
3875 spin_lock_irq(&conf->device_lock);
3877 struct list_head *first;
3880 if (conf->seq_flush != conf->seq_write) {
3881 int seq = conf->seq_flush;
3882 spin_unlock_irq(&conf->device_lock);
3883 bitmap_unplug(mddev->bitmap);
3884 spin_lock_irq(&conf->device_lock);
3885 conf->seq_write = seq;
3886 activate_bit_delay(conf);
3889 if (list_empty(&conf->handle_list) &&
3890 atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD &&
3891 !blk_queue_plugged(mddev->queue) &&
3892 !list_empty(&conf->delayed_list))
3893 raid5_activate_delayed(conf);
3895 while ((bio = remove_bio_from_retry(conf))) {
3897 spin_unlock_irq(&conf->device_lock);
3898 ok = retry_aligned_read(conf, bio);
3899 spin_lock_irq(&conf->device_lock);
3905 if (list_empty(&conf->handle_list)) {
3906 async_tx_issue_pending_all();
3910 first = conf->handle_list.next;
3911 sh = list_entry(first, struct stripe_head, lru);
3913 list_del_init(first);
3914 atomic_inc(&sh->count);
3915 BUG_ON(atomic_read(&sh->count)!= 1);
3916 spin_unlock_irq(&conf->device_lock);
3919 handle_stripe(sh, conf->spare_page);
3922 spin_lock_irq(&conf->device_lock);
3924 pr_debug("%d stripes handled\n", handled);
3926 spin_unlock_irq(&conf->device_lock);
3928 unplug_slaves(mddev);
3930 pr_debug("--- raid5d inactive\n");
3934 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
3936 raid5_conf_t *conf = mddev_to_conf(mddev);
3938 return sprintf(page, "%d\n", conf->max_nr_stripes);
3944 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
3946 raid5_conf_t *conf = mddev_to_conf(mddev);
3949 if (len >= PAGE_SIZE)
3954 new = simple_strtoul(page, &end, 10);
3955 if (!*page || (*end && *end != '\n') )
3957 if (new <= 16 || new > 32768)
3959 while (new < conf->max_nr_stripes) {
3960 if (drop_one_stripe(conf))
3961 conf->max_nr_stripes--;
3965 md_allow_write(mddev);
3966 while (new > conf->max_nr_stripes) {
3967 if (grow_one_stripe(conf))
3968 conf->max_nr_stripes++;
3974 static struct md_sysfs_entry
3975 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
3976 raid5_show_stripe_cache_size,
3977 raid5_store_stripe_cache_size);
3980 stripe_cache_active_show(mddev_t *mddev, char *page)
3982 raid5_conf_t *conf = mddev_to_conf(mddev);
3984 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
3989 static struct md_sysfs_entry
3990 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
3992 static struct attribute *raid5_attrs[] = {
3993 &raid5_stripecache_size.attr,
3994 &raid5_stripecache_active.attr,
3997 static struct attribute_group raid5_attrs_group = {
3999 .attrs = raid5_attrs,
4002 static int run(mddev_t *mddev)
4005 int raid_disk, memory;
4007 struct disk_info *disk;
4008 struct list_head *tmp;
4009 int working_disks = 0;
4011 if (mddev->level != 5 && mddev->level != 4 && mddev->level != 6) {
4012 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4013 mdname(mddev), mddev->level);
4017 if (mddev->reshape_position != MaxSector) {
4018 /* Check that we can continue the reshape.
4019 * Currently only disks can change, it must
4020 * increase, and we must be past the point where
4021 * a stripe over-writes itself
4023 sector_t here_new, here_old;
4025 int max_degraded = (mddev->level == 5 ? 1 : 2);
4027 if (mddev->new_level != mddev->level ||
4028 mddev->new_layout != mddev->layout ||
4029 mddev->new_chunk != mddev->chunk_size) {
4030 printk(KERN_ERR "raid5: %s: unsupported reshape "
4031 "required - aborting.\n",
4035 if (mddev->delta_disks <= 0) {
4036 printk(KERN_ERR "raid5: %s: unsupported reshape "
4037 "(reduce disks) required - aborting.\n",
4041 old_disks = mddev->raid_disks - mddev->delta_disks;
4042 /* reshape_position must be on a new-stripe boundary, and one
4043 * further up in new geometry must map after here in old
4046 here_new = mddev->reshape_position;
4047 if (sector_div(here_new, (mddev->chunk_size>>9)*
4048 (mddev->raid_disks - max_degraded))) {
4049 printk(KERN_ERR "raid5: reshape_position not "
4050 "on a stripe boundary\n");
4053 /* here_new is the stripe we will write to */
4054 here_old = mddev->reshape_position;
4055 sector_div(here_old, (mddev->chunk_size>>9)*
4056 (old_disks-max_degraded));
4057 /* here_old is the first stripe that we might need to read
4059 if (here_new >= here_old) {
4060 /* Reading from the same stripe as writing to - bad */
4061 printk(KERN_ERR "raid5: reshape_position too early for "
4062 "auto-recovery - aborting.\n");
4065 printk(KERN_INFO "raid5: reshape will continue\n");
4066 /* OK, we should be able to continue; */
4070 mddev->private = kzalloc(sizeof (raid5_conf_t), GFP_KERNEL);
4071 if ((conf = mddev->private) == NULL)
4073 if (mddev->reshape_position == MaxSector) {
4074 conf->previous_raid_disks = conf->raid_disks = mddev->raid_disks;
4076 conf->raid_disks = mddev->raid_disks;
4077 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4080 conf->disks = kzalloc(conf->raid_disks * sizeof(struct disk_info),
4085 conf->mddev = mddev;
4087 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4090 if (mddev->level == 6) {
4091 conf->spare_page = alloc_page(GFP_KERNEL);
4092 if (!conf->spare_page)
4095 spin_lock_init(&conf->device_lock);
4096 init_waitqueue_head(&conf->wait_for_stripe);
4097 init_waitqueue_head(&conf->wait_for_overlap);
4098 INIT_LIST_HEAD(&conf->handle_list);
4099 INIT_LIST_HEAD(&conf->delayed_list);
4100 INIT_LIST_HEAD(&conf->bitmap_list);
4101 INIT_LIST_HEAD(&conf->inactive_list);
4102 atomic_set(&conf->active_stripes, 0);
4103 atomic_set(&conf->preread_active_stripes, 0);
4104 atomic_set(&conf->active_aligned_reads, 0);
4106 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4108 ITERATE_RDEV(mddev,rdev,tmp) {
4109 raid_disk = rdev->raid_disk;
4110 if (raid_disk >= conf->raid_disks
4113 disk = conf->disks + raid_disk;
4117 if (test_bit(In_sync, &rdev->flags)) {
4118 char b[BDEVNAME_SIZE];
4119 printk(KERN_INFO "raid5: device %s operational as raid"
4120 " disk %d\n", bdevname(rdev->bdev,b),
4127 * 0 for a fully functional array, 1 or 2 for a degraded array.
4129 mddev->degraded = conf->raid_disks - working_disks;
4130 conf->mddev = mddev;
4131 conf->chunk_size = mddev->chunk_size;
4132 conf->level = mddev->level;
4133 if (conf->level == 6)
4134 conf->max_degraded = 2;
4136 conf->max_degraded = 1;
4137 conf->algorithm = mddev->layout;
4138 conf->max_nr_stripes = NR_STRIPES;
4139 conf->expand_progress = mddev->reshape_position;
4141 /* device size must be a multiple of chunk size */
4142 mddev->size &= ~(mddev->chunk_size/1024 -1);
4143 mddev->resync_max_sectors = mddev->size << 1;
4145 if (conf->level == 6 && conf->raid_disks < 4) {
4146 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4147 mdname(mddev), conf->raid_disks);
4150 if (!conf->chunk_size || conf->chunk_size % 4) {
4151 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4152 conf->chunk_size, mdname(mddev));
4155 if (conf->algorithm > ALGORITHM_RIGHT_SYMMETRIC) {
4157 "raid5: unsupported parity algorithm %d for %s\n",
4158 conf->algorithm, mdname(mddev));
4161 if (mddev->degraded > conf->max_degraded) {
4162 printk(KERN_ERR "raid5: not enough operational devices for %s"
4163 " (%d/%d failed)\n",
4164 mdname(mddev), mddev->degraded, conf->raid_disks);
4168 if (mddev->degraded > 0 &&
4169 mddev->recovery_cp != MaxSector) {
4170 if (mddev->ok_start_degraded)
4172 "raid5: starting dirty degraded array: %s"
4173 "- data corruption possible.\n",
4177 "raid5: cannot start dirty degraded array for %s\n",
4184 mddev->thread = md_register_thread(raid5d, mddev, "%s_raid5");
4185 if (!mddev->thread) {
4187 "raid5: couldn't allocate thread for %s\n",
4192 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4193 conf->raid_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4194 if (grow_stripes(conf, conf->max_nr_stripes)) {
4196 "raid5: couldn't allocate %dkB for buffers\n", memory);
4197 shrink_stripes(conf);
4198 md_unregister_thread(mddev->thread);
4201 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4202 memory, mdname(mddev));
4204 if (mddev->degraded == 0)
4205 printk("raid5: raid level %d set %s active with %d out of %d"
4206 " devices, algorithm %d\n", conf->level, mdname(mddev),
4207 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
4210 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
4211 " out of %d devices, algorithm %d\n", conf->level,
4212 mdname(mddev), mddev->raid_disks - mddev->degraded,
4213 mddev->raid_disks, conf->algorithm);
4215 print_raid5_conf(conf);
4217 if (conf->expand_progress != MaxSector) {
4218 printk("...ok start reshape thread\n");
4219 conf->expand_lo = conf->expand_progress;
4220 atomic_set(&conf->reshape_stripes, 0);
4221 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4222 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4223 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4224 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4225 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4229 /* read-ahead size must cover two whole stripes, which is
4230 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4233 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4234 int stripe = data_disks *
4235 (mddev->chunk_size / PAGE_SIZE);
4236 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4237 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4240 /* Ok, everything is just fine now */
4241 if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
4243 "raid5: failed to create sysfs attributes for %s\n",
4246 mddev->queue->unplug_fn = raid5_unplug_device;
4247 mddev->queue->backing_dev_info.congested_data = mddev;
4248 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
4250 mddev->array_size = mddev->size * (conf->previous_raid_disks -
4251 conf->max_degraded);
4253 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
4258 print_raid5_conf(conf);
4259 safe_put_page(conf->spare_page);
4261 kfree(conf->stripe_hashtbl);
4264 mddev->private = NULL;
4265 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
4271 static int stop(mddev_t *mddev)
4273 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4275 md_unregister_thread(mddev->thread);
4276 mddev->thread = NULL;
4277 shrink_stripes(conf);
4278 kfree(conf->stripe_hashtbl);
4279 mddev->queue->backing_dev_info.congested_fn = NULL;
4280 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
4281 sysfs_remove_group(&mddev->kobj, &raid5_attrs_group);
4284 mddev->private = NULL;
4289 static void print_sh (struct seq_file *seq, struct stripe_head *sh)
4293 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
4294 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
4295 seq_printf(seq, "sh %llu, count %d.\n",
4296 (unsigned long long)sh->sector, atomic_read(&sh->count));
4297 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
4298 for (i = 0; i < sh->disks; i++) {
4299 seq_printf(seq, "(cache%d: %p %ld) ",
4300 i, sh->dev[i].page, sh->dev[i].flags);
4302 seq_printf(seq, "\n");
4305 static void printall (struct seq_file *seq, raid5_conf_t *conf)
4307 struct stripe_head *sh;
4308 struct hlist_node *hn;
4311 spin_lock_irq(&conf->device_lock);
4312 for (i = 0; i < NR_HASH; i++) {
4313 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
4314 if (sh->raid_conf != conf)
4319 spin_unlock_irq(&conf->device_lock);
4323 static void status (struct seq_file *seq, mddev_t *mddev)
4325 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4328 seq_printf (seq, " level %d, %dk chunk, algorithm %d", mddev->level, mddev->chunk_size >> 10, mddev->layout);
4329 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
4330 for (i = 0; i < conf->raid_disks; i++)
4331 seq_printf (seq, "%s",
4332 conf->disks[i].rdev &&
4333 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
4334 seq_printf (seq, "]");
4336 seq_printf (seq, "\n");
4337 printall(seq, conf);
4341 static void print_raid5_conf (raid5_conf_t *conf)
4344 struct disk_info *tmp;
4346 printk("RAID5 conf printout:\n");
4348 printk("(conf==NULL)\n");
4351 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
4352 conf->raid_disks - conf->mddev->degraded);
4354 for (i = 0; i < conf->raid_disks; i++) {
4355 char b[BDEVNAME_SIZE];
4356 tmp = conf->disks + i;
4358 printk(" disk %d, o:%d, dev:%s\n",
4359 i, !test_bit(Faulty, &tmp->rdev->flags),
4360 bdevname(tmp->rdev->bdev,b));
4364 static int raid5_spare_active(mddev_t *mddev)
4367 raid5_conf_t *conf = mddev->private;
4368 struct disk_info *tmp;
4370 for (i = 0; i < conf->raid_disks; i++) {
4371 tmp = conf->disks + i;
4373 && !test_bit(Faulty, &tmp->rdev->flags)
4374 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
4375 unsigned long flags;
4376 spin_lock_irqsave(&conf->device_lock, flags);
4378 spin_unlock_irqrestore(&conf->device_lock, flags);
4381 print_raid5_conf(conf);
4385 static int raid5_remove_disk(mddev_t *mddev, int number)
4387 raid5_conf_t *conf = mddev->private;
4390 struct disk_info *p = conf->disks + number;
4392 print_raid5_conf(conf);
4395 if (test_bit(In_sync, &rdev->flags) ||
4396 atomic_read(&rdev->nr_pending)) {
4402 if (atomic_read(&rdev->nr_pending)) {
4403 /* lost the race, try later */
4410 print_raid5_conf(conf);
4414 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
4416 raid5_conf_t *conf = mddev->private;
4419 struct disk_info *p;
4421 if (mddev->degraded > conf->max_degraded)
4422 /* no point adding a device */
4426 * find the disk ... but prefer rdev->saved_raid_disk
4429 if (rdev->saved_raid_disk >= 0 &&
4430 conf->disks[rdev->saved_raid_disk].rdev == NULL)
4431 disk = rdev->saved_raid_disk;
4434 for ( ; disk < conf->raid_disks; disk++)
4435 if ((p=conf->disks + disk)->rdev == NULL) {
4436 clear_bit(In_sync, &rdev->flags);
4437 rdev->raid_disk = disk;
4439 if (rdev->saved_raid_disk != disk)
4441 rcu_assign_pointer(p->rdev, rdev);
4444 print_raid5_conf(conf);
4448 static int raid5_resize(mddev_t *mddev, sector_t sectors)
4450 /* no resync is happening, and there is enough space
4451 * on all devices, so we can resize.
4452 * We need to make sure resync covers any new space.
4453 * If the array is shrinking we should possibly wait until
4454 * any io in the removed space completes, but it hardly seems
4457 raid5_conf_t *conf = mddev_to_conf(mddev);
4459 sectors &= ~((sector_t)mddev->chunk_size/512 - 1);
4460 mddev->array_size = (sectors * (mddev->raid_disks-conf->max_degraded))>>1;
4461 set_capacity(mddev->gendisk, mddev->array_size << 1);
4463 if (sectors/2 > mddev->size && mddev->recovery_cp == MaxSector) {
4464 mddev->recovery_cp = mddev->size << 1;
4465 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4467 mddev->size = sectors /2;
4468 mddev->resync_max_sectors = sectors;
4472 #ifdef CONFIG_MD_RAID5_RESHAPE
4473 static int raid5_check_reshape(mddev_t *mddev)
4475 raid5_conf_t *conf = mddev_to_conf(mddev);
4478 if (mddev->delta_disks < 0 ||
4479 mddev->new_level != mddev->level)
4480 return -EINVAL; /* Cannot shrink array or change level yet */
4481 if (mddev->delta_disks == 0)
4482 return 0; /* nothing to do */
4484 /* Can only proceed if there are plenty of stripe_heads.
4485 * We need a minimum of one full stripe,, and for sensible progress
4486 * it is best to have about 4 times that.
4487 * If we require 4 times, then the default 256 4K stripe_heads will
4488 * allow for chunk sizes up to 256K, which is probably OK.
4489 * If the chunk size is greater, user-space should request more
4490 * stripe_heads first.
4492 if ((mddev->chunk_size / STRIPE_SIZE) * 4 > conf->max_nr_stripes ||
4493 (mddev->new_chunk / STRIPE_SIZE) * 4 > conf->max_nr_stripes) {
4494 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
4495 (mddev->chunk_size / STRIPE_SIZE)*4);
4499 err = resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
4503 if (mddev->degraded > conf->max_degraded)
4505 /* looks like we might be able to manage this */
4509 static int raid5_start_reshape(mddev_t *mddev)
4511 raid5_conf_t *conf = mddev_to_conf(mddev);
4513 struct list_head *rtmp;
4515 int added_devices = 0;
4516 unsigned long flags;
4518 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4521 ITERATE_RDEV(mddev, rdev, rtmp)
4522 if (rdev->raid_disk < 0 &&
4523 !test_bit(Faulty, &rdev->flags))
4526 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
4527 /* Not enough devices even to make a degraded array
4532 atomic_set(&conf->reshape_stripes, 0);
4533 spin_lock_irq(&conf->device_lock);
4534 conf->previous_raid_disks = conf->raid_disks;
4535 conf->raid_disks += mddev->delta_disks;
4536 conf->expand_progress = 0;
4537 conf->expand_lo = 0;
4538 spin_unlock_irq(&conf->device_lock);
4540 /* Add some new drives, as many as will fit.
4541 * We know there are enough to make the newly sized array work.
4543 ITERATE_RDEV(mddev, rdev, rtmp)
4544 if (rdev->raid_disk < 0 &&
4545 !test_bit(Faulty, &rdev->flags)) {
4546 if (raid5_add_disk(mddev, rdev)) {
4548 set_bit(In_sync, &rdev->flags);
4550 rdev->recovery_offset = 0;
4551 sprintf(nm, "rd%d", rdev->raid_disk);
4552 if (sysfs_create_link(&mddev->kobj,
4555 "raid5: failed to create "
4556 " link %s for %s\n",
4562 spin_lock_irqsave(&conf->device_lock, flags);
4563 mddev->degraded = (conf->raid_disks - conf->previous_raid_disks) - added_devices;
4564 spin_unlock_irqrestore(&conf->device_lock, flags);
4565 mddev->raid_disks = conf->raid_disks;
4566 mddev->reshape_position = 0;
4567 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4569 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4570 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4571 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
4572 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
4573 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
4575 if (!mddev->sync_thread) {
4576 mddev->recovery = 0;
4577 spin_lock_irq(&conf->device_lock);
4578 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
4579 conf->expand_progress = MaxSector;
4580 spin_unlock_irq(&conf->device_lock);
4583 md_wakeup_thread(mddev->sync_thread);
4584 md_new_event(mddev);
4589 static void end_reshape(raid5_conf_t *conf)
4591 struct block_device *bdev;
4593 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
4594 conf->mddev->array_size = conf->mddev->size *
4595 (conf->raid_disks - conf->max_degraded);
4596 set_capacity(conf->mddev->gendisk, conf->mddev->array_size << 1);
4597 conf->mddev->changed = 1;
4599 bdev = bdget_disk(conf->mddev->gendisk, 0);
4601 mutex_lock(&bdev->bd_inode->i_mutex);
4602 i_size_write(bdev->bd_inode, (loff_t)conf->mddev->array_size << 10);
4603 mutex_unlock(&bdev->bd_inode->i_mutex);
4606 spin_lock_irq(&conf->device_lock);
4607 conf->expand_progress = MaxSector;
4608 spin_unlock_irq(&conf->device_lock);
4609 conf->mddev->reshape_position = MaxSector;
4611 /* read-ahead size must cover two whole stripes, which is
4612 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
4615 int data_disks = conf->previous_raid_disks - conf->max_degraded;
4616 int stripe = data_disks *
4617 (conf->mddev->chunk_size / PAGE_SIZE);
4618 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
4619 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
4624 static void raid5_quiesce(mddev_t *mddev, int state)
4626 raid5_conf_t *conf = mddev_to_conf(mddev);
4629 case 2: /* resume for a suspend */
4630 wake_up(&conf->wait_for_overlap);
4633 case 1: /* stop all writes */
4634 spin_lock_irq(&conf->device_lock);
4636 wait_event_lock_irq(conf->wait_for_stripe,
4637 atomic_read(&conf->active_stripes) == 0 &&
4638 atomic_read(&conf->active_aligned_reads) == 0,
4639 conf->device_lock, /* nothing */);
4640 spin_unlock_irq(&conf->device_lock);
4643 case 0: /* re-enable writes */
4644 spin_lock_irq(&conf->device_lock);
4646 wake_up(&conf->wait_for_stripe);
4647 wake_up(&conf->wait_for_overlap);
4648 spin_unlock_irq(&conf->device_lock);
4653 static struct mdk_personality raid6_personality =
4657 .owner = THIS_MODULE,
4658 .make_request = make_request,
4662 .error_handler = error,
4663 .hot_add_disk = raid5_add_disk,
4664 .hot_remove_disk= raid5_remove_disk,
4665 .spare_active = raid5_spare_active,
4666 .sync_request = sync_request,
4667 .resize = raid5_resize,
4668 #ifdef CONFIG_MD_RAID5_RESHAPE
4669 .check_reshape = raid5_check_reshape,
4670 .start_reshape = raid5_start_reshape,
4672 .quiesce = raid5_quiesce,
4674 static struct mdk_personality raid5_personality =
4678 .owner = THIS_MODULE,
4679 .make_request = make_request,
4683 .error_handler = error,
4684 .hot_add_disk = raid5_add_disk,
4685 .hot_remove_disk= raid5_remove_disk,
4686 .spare_active = raid5_spare_active,
4687 .sync_request = sync_request,
4688 .resize = raid5_resize,
4689 #ifdef CONFIG_MD_RAID5_RESHAPE
4690 .check_reshape = raid5_check_reshape,
4691 .start_reshape = raid5_start_reshape,
4693 .quiesce = raid5_quiesce,
4696 static struct mdk_personality raid4_personality =
4700 .owner = THIS_MODULE,
4701 .make_request = make_request,
4705 .error_handler = error,
4706 .hot_add_disk = raid5_add_disk,
4707 .hot_remove_disk= raid5_remove_disk,
4708 .spare_active = raid5_spare_active,
4709 .sync_request = sync_request,
4710 .resize = raid5_resize,
4711 #ifdef CONFIG_MD_RAID5_RESHAPE
4712 .check_reshape = raid5_check_reshape,
4713 .start_reshape = raid5_start_reshape,
4715 .quiesce = raid5_quiesce,
4718 static int __init raid5_init(void)
4722 e = raid6_select_algo();
4725 register_md_personality(&raid6_personality);
4726 register_md_personality(&raid5_personality);
4727 register_md_personality(&raid4_personality);
4731 static void raid5_exit(void)
4733 unregister_md_personality(&raid6_personality);
4734 unregister_md_personality(&raid5_personality);
4735 unregister_md_personality(&raid4_personality);
4738 module_init(raid5_init);
4739 module_exit(raid5_exit);
4740 MODULE_LICENSE("GPL");
4741 MODULE_ALIAS("md-personality-4"); /* RAID5 */
4742 MODULE_ALIAS("md-raid5");
4743 MODULE_ALIAS("md-raid4");
4744 MODULE_ALIAS("md-level-5");
4745 MODULE_ALIAS("md-level-4");
4746 MODULE_ALIAS("md-personality-8"); /* RAID6 */
4747 MODULE_ALIAS("md-raid6");
4748 MODULE_ALIAS("md-level-6");
4750 /* This used to be two separate modules, they were: */
4751 MODULE_ALIAS("raid5");
4752 MODULE_ALIAS("raid6");