1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
30 #define MLOG_MASK_PREFIX ML_FILE_IO
31 #include <cluster/masklog.h>
38 #include "extent_map.h"
46 #include "buffer_head_io.h"
48 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
49 struct buffer_head *bh_result, int create)
53 struct ocfs2_dinode *fe = NULL;
54 struct buffer_head *bh = NULL;
55 struct buffer_head *buffer_cache_bh = NULL;
56 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
59 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
60 (unsigned long long)iblock, bh_result, create);
62 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
64 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
65 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
66 (unsigned long long)iblock);
70 status = ocfs2_read_block(OCFS2_SB(inode->i_sb),
71 OCFS2_I(inode)->ip_blkno,
72 &bh, OCFS2_BH_CACHED, inode);
77 fe = (struct ocfs2_dinode *) bh->b_data;
79 if (!OCFS2_IS_VALID_DINODE(fe)) {
80 mlog(ML_ERROR, "Invalid dinode #%llu: signature = %.*s\n",
81 (unsigned long long)le64_to_cpu(fe->i_blkno), 7,
86 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87 le32_to_cpu(fe->i_clusters))) {
88 mlog(ML_ERROR, "block offset is outside the allocated size: "
89 "%llu\n", (unsigned long long)iblock);
93 /* We don't use the page cache to create symlink data, so if
94 * need be, copy it over from the buffer cache. */
95 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
96 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98 buffer_cache_bh = sb_getblk(osb->sb, blkno);
99 if (!buffer_cache_bh) {
100 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
104 /* we haven't locked out transactions, so a commit
105 * could've happened. Since we've got a reference on
106 * the bh, even if it commits while we're doing the
107 * copy, the data is still good. */
108 if (buffer_jbd(buffer_cache_bh)
109 && ocfs2_inode_is_new(inode)) {
110 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
112 mlog(ML_ERROR, "couldn't kmap!\n");
115 memcpy(kaddr + (bh_result->b_size * iblock),
116 buffer_cache_bh->b_data,
118 kunmap_atomic(kaddr, KM_USER0);
119 set_buffer_uptodate(bh_result);
121 brelse(buffer_cache_bh);
124 map_bh(bh_result, inode->i_sb,
125 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
137 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
138 struct buffer_head *bh_result, int create)
141 unsigned int ext_flags;
142 u64 p_blkno, past_eof;
143 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
146 (unsigned long long)iblock, bh_result, create);
148 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
149 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
150 inode, inode->i_ino);
152 if (S_ISLNK(inode->i_mode)) {
153 /* this always does I/O for some reason. */
154 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
158 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, NULL,
161 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
162 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
163 (unsigned long long)p_blkno);
168 * ocfs2 never allocates in this function - the only time we
169 * need to use BH_New is when we're extending i_size on a file
170 * system which doesn't support holes, in which case BH_New
171 * allows block_prepare_write() to zero.
173 mlog_bug_on_msg(create && p_blkno == 0 && ocfs2_sparse_alloc(osb),
174 "ino %lu, iblock %llu\n", inode->i_ino,
175 (unsigned long long)iblock);
177 /* Treat the unwritten extent as a hole for zeroing purposes. */
178 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
179 map_bh(bh_result, inode->i_sb, p_blkno);
181 if (!ocfs2_sparse_alloc(osb)) {
185 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
186 (unsigned long long)iblock,
187 (unsigned long long)p_blkno,
188 (unsigned long long)OCFS2_I(inode)->ip_blkno);
189 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
193 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
194 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
195 (unsigned long long)past_eof);
197 if (create && (iblock >= past_eof))
198 set_buffer_new(bh_result);
209 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
210 struct buffer_head *di_bh)
214 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
216 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
217 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
218 (unsigned long long)OCFS2_I(inode)->ip_blkno);
222 size = i_size_read(inode);
224 if (size > PAGE_CACHE_SIZE ||
225 size > ocfs2_max_inline_data(inode->i_sb)) {
226 ocfs2_error(inode->i_sb,
227 "Inode %llu has with inline data has bad size: %u",
228 (unsigned long long)OCFS2_I(inode)->ip_blkno, size);
232 kaddr = kmap_atomic(page, KM_USER0);
234 memcpy(kaddr, di->id2.i_data.id_data, size);
235 /* Clear the remaining part of the page */
236 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
237 flush_dcache_page(page);
238 kunmap_atomic(kaddr, KM_USER0);
240 SetPageUptodate(page);
245 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
248 struct buffer_head *di_bh = NULL;
249 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
251 BUG_ON(!PageLocked(page));
252 BUG_ON(!OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL);
254 ret = ocfs2_read_block(osb, OCFS2_I(inode)->ip_blkno, &di_bh,
255 OCFS2_BH_CACHED, inode);
261 ret = ocfs2_read_inline_data(inode, page, di_bh);
269 static int ocfs2_readpage(struct file *file, struct page *page)
271 struct inode *inode = page->mapping->host;
272 struct ocfs2_inode_info *oi = OCFS2_I(inode);
273 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
276 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
278 ret = ocfs2_meta_lock_with_page(inode, NULL, 0, page);
280 if (ret == AOP_TRUNCATED_PAGE)
286 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
287 ret = AOP_TRUNCATED_PAGE;
288 goto out_meta_unlock;
292 * i_size might have just been updated as we grabed the meta lock. We
293 * might now be discovering a truncate that hit on another node.
294 * block_read_full_page->get_block freaks out if it is asked to read
295 * beyond the end of a file, so we check here. Callers
296 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
297 * and notice that the page they just read isn't needed.
299 * XXX sys_readahead() seems to get that wrong?
301 if (start >= i_size_read(inode)) {
302 zero_user_page(page, 0, PAGE_SIZE, KM_USER0);
303 SetPageUptodate(page);
308 ret = ocfs2_data_lock_with_page(inode, 0, page);
310 if (ret == AOP_TRUNCATED_PAGE)
316 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
317 ret = ocfs2_readpage_inline(inode, page);
319 ret = block_read_full_page(page, ocfs2_get_block);
322 ocfs2_data_unlock(inode, 0);
324 up_read(&OCFS2_I(inode)->ip_alloc_sem);
326 ocfs2_meta_unlock(inode, 0);
334 /* Note: Because we don't support holes, our allocation has
335 * already happened (allocation writes zeros to the file data)
336 * so we don't have to worry about ordered writes in
339 * ->writepage is called during the process of invalidating the page cache
340 * during blocked lock processing. It can't block on any cluster locks
341 * to during block mapping. It's relying on the fact that the block
342 * mapping can't have disappeared under the dirty pages that it is
343 * being asked to write back.
345 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
349 mlog_entry("(0x%p)\n", page);
351 ret = block_write_full_page(page, ocfs2_get_block, wbc);
359 * This is called from ocfs2_write_zero_page() which has handled it's
360 * own cluster locking and has ensured allocation exists for those
361 * blocks to be written.
363 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
364 unsigned from, unsigned to)
368 ret = block_prepare_write(page, from, to, ocfs2_get_block);
373 /* Taken from ext3. We don't necessarily need the full blown
374 * functionality yet, but IMHO it's better to cut and paste the whole
375 * thing so we can avoid introducing our own bugs (and easily pick up
376 * their fixes when they happen) --Mark */
377 int walk_page_buffers( handle_t *handle,
378 struct buffer_head *head,
382 int (*fn)( handle_t *handle,
383 struct buffer_head *bh))
385 struct buffer_head *bh;
386 unsigned block_start, block_end;
387 unsigned blocksize = head->b_size;
389 struct buffer_head *next;
391 for ( bh = head, block_start = 0;
392 ret == 0 && (bh != head || !block_start);
393 block_start = block_end, bh = next)
395 next = bh->b_this_page;
396 block_end = block_start + blocksize;
397 if (block_end <= from || block_start >= to) {
398 if (partial && !buffer_uptodate(bh))
402 err = (*fn)(handle, bh);
409 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
414 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
415 handle_t *handle = NULL;
418 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
425 if (ocfs2_should_order_data(inode)) {
426 ret = walk_page_buffers(handle,
429 ocfs2_journal_dirty_data);
436 ocfs2_commit_trans(osb, handle);
437 handle = ERR_PTR(ret);
442 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
447 struct inode *inode = mapping->host;
449 mlog_entry("(block = %llu)\n", (unsigned long long)block);
451 /* We don't need to lock journal system files, since they aren't
452 * accessed concurrently from multiple nodes.
454 if (!INODE_JOURNAL(inode)) {
455 err = ocfs2_meta_lock(inode, NULL, 0);
461 down_read(&OCFS2_I(inode)->ip_alloc_sem);
464 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
465 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
468 if (!INODE_JOURNAL(inode)) {
469 up_read(&OCFS2_I(inode)->ip_alloc_sem);
470 ocfs2_meta_unlock(inode, 0);
474 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
475 (unsigned long long)block);
481 status = err ? 0 : p_blkno;
483 mlog_exit((int)status);
489 * TODO: Make this into a generic get_blocks function.
491 * From do_direct_io in direct-io.c:
492 * "So what we do is to permit the ->get_blocks function to populate
493 * bh.b_size with the size of IO which is permitted at this offset and
496 * This function is called directly from get_more_blocks in direct-io.c.
498 * called like this: dio->get_blocks(dio->inode, fs_startblk,
499 * fs_count, map_bh, dio->rw == WRITE);
501 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
502 struct buffer_head *bh_result, int create)
505 u64 p_blkno, inode_blocks, contig_blocks;
506 unsigned int ext_flags;
507 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
508 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
510 /* This function won't even be called if the request isn't all
511 * nicely aligned and of the right size, so there's no need
512 * for us to check any of that. */
514 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
517 * Any write past EOF is not allowed because we'd be extending.
519 if (create && (iblock + max_blocks) > inode_blocks) {
524 /* This figures out the size of the next contiguous block, and
525 * our logical offset */
526 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
527 &contig_blocks, &ext_flags);
529 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
530 (unsigned long long)iblock);
535 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno) {
536 ocfs2_error(inode->i_sb,
537 "Inode %llu has a hole at block %llu\n",
538 (unsigned long long)OCFS2_I(inode)->ip_blkno,
539 (unsigned long long)iblock);
545 * get_more_blocks() expects us to describe a hole by clearing
546 * the mapped bit on bh_result().
548 * Consider an unwritten extent as a hole.
550 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
551 map_bh(bh_result, inode->i_sb, p_blkno);
554 * ocfs2_prepare_inode_for_write() should have caught
555 * the case where we'd be filling a hole and triggered
556 * a buffered write instead.
564 clear_buffer_mapped(bh_result);
567 /* make sure we don't map more than max_blocks blocks here as
568 that's all the kernel will handle at this point. */
569 if (max_blocks < contig_blocks)
570 contig_blocks = max_blocks;
571 bh_result->b_size = contig_blocks << blocksize_bits;
577 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
578 * particularly interested in the aio/dio case. Like the core uses
579 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
580 * truncation on another.
582 static void ocfs2_dio_end_io(struct kiocb *iocb,
587 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
590 /* this io's submitter should not have unlocked this before we could */
591 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
593 ocfs2_iocb_clear_rw_locked(iocb);
595 level = ocfs2_iocb_rw_locked_level(iocb);
597 up_read(&inode->i_alloc_sem);
598 ocfs2_rw_unlock(inode, level);
602 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
603 * from ext3. PageChecked() bits have been removed as OCFS2 does not
604 * do journalled data.
606 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
608 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
610 journal_invalidatepage(journal, page, offset);
613 static int ocfs2_releasepage(struct page *page, gfp_t wait)
615 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
617 if (!page_has_buffers(page))
619 return journal_try_to_free_buffers(journal, page, wait);
622 static ssize_t ocfs2_direct_IO(int rw,
624 const struct iovec *iov,
626 unsigned long nr_segs)
628 struct file *file = iocb->ki_filp;
629 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
635 * Fallback to buffered I/O if we see an inode without
638 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
641 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) {
643 * We get PR data locks even for O_DIRECT. This
644 * allows concurrent O_DIRECT I/O but doesn't let
645 * O_DIRECT with extending and buffered zeroing writes
646 * race. If they did race then the buffered zeroing
647 * could be written back after the O_DIRECT I/O. It's
648 * one thing to tell people not to mix buffered and
649 * O_DIRECT writes, but expecting them to understand
650 * that file extension is also an implicit buffered
651 * write is too much. By getting the PR we force
652 * writeback of the buffered zeroing before
655 ret = ocfs2_data_lock(inode, 0);
660 ocfs2_data_unlock(inode, 0);
663 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
664 inode->i_sb->s_bdev, iov, offset,
666 ocfs2_direct_IO_get_blocks,
673 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
678 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
680 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
683 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
685 cluster_start = cpos % cpp;
686 cluster_start = cluster_start << osb->s_clustersize_bits;
688 cluster_end = cluster_start + osb->s_clustersize;
691 BUG_ON(cluster_start > PAGE_SIZE);
692 BUG_ON(cluster_end > PAGE_SIZE);
695 *start = cluster_start;
701 * 'from' and 'to' are the region in the page to avoid zeroing.
703 * If pagesize > clustersize, this function will avoid zeroing outside
704 * of the cluster boundary.
706 * from == to == 0 is code for "zero the entire cluster region"
708 static void ocfs2_clear_page_regions(struct page *page,
709 struct ocfs2_super *osb, u32 cpos,
710 unsigned from, unsigned to)
713 unsigned int cluster_start, cluster_end;
715 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
717 kaddr = kmap_atomic(page, KM_USER0);
720 if (from > cluster_start)
721 memset(kaddr + cluster_start, 0, from - cluster_start);
722 if (to < cluster_end)
723 memset(kaddr + to, 0, cluster_end - to);
725 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
728 kunmap_atomic(kaddr, KM_USER0);
732 * Some of this taken from block_prepare_write(). We already have our
733 * mapping by now though, and the entire write will be allocating or
734 * it won't, so not much need to use BH_New.
736 * This will also skip zeroing, which is handled externally.
738 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
739 struct inode *inode, unsigned int from,
740 unsigned int to, int new)
743 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
744 unsigned int block_end, block_start;
745 unsigned int bsize = 1 << inode->i_blkbits;
747 if (!page_has_buffers(page))
748 create_empty_buffers(page, bsize, 0);
750 head = page_buffers(page);
751 for (bh = head, block_start = 0; bh != head || !block_start;
752 bh = bh->b_this_page, block_start += bsize) {
753 block_end = block_start + bsize;
755 clear_buffer_new(bh);
758 * Ignore blocks outside of our i/o range -
759 * they may belong to unallocated clusters.
761 if (block_start >= to || block_end <= from) {
762 if (PageUptodate(page))
763 set_buffer_uptodate(bh);
768 * For an allocating write with cluster size >= page
769 * size, we always write the entire page.
774 if (!buffer_mapped(bh)) {
775 map_bh(bh, inode->i_sb, *p_blkno);
776 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
779 if (PageUptodate(page)) {
780 if (!buffer_uptodate(bh))
781 set_buffer_uptodate(bh);
782 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
784 (block_start < from || block_end > to)) {
785 ll_rw_block(READ, 1, &bh);
789 *p_blkno = *p_blkno + 1;
793 * If we issued read requests - let them complete.
795 while(wait_bh > wait) {
796 wait_on_buffer(*--wait_bh);
797 if (!buffer_uptodate(*wait_bh))
801 if (ret == 0 || !new)
805 * If we get -EIO above, zero out any newly allocated blocks
806 * to avoid exposing stale data.
811 block_end = block_start + bsize;
812 if (block_end <= from)
814 if (block_start >= to)
817 zero_user_page(page, block_start, bh->b_size, KM_USER0);
818 set_buffer_uptodate(bh);
819 mark_buffer_dirty(bh);
822 block_start = block_end;
823 bh = bh->b_this_page;
824 } while (bh != head);
829 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
830 #define OCFS2_MAX_CTXT_PAGES 1
832 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
835 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
838 * Describe the state of a single cluster to be written to.
840 struct ocfs2_write_cluster_desc {
844 * Give this a unique field because c_phys eventually gets
848 unsigned c_unwritten;
851 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
853 return d->c_new || d->c_unwritten;
856 struct ocfs2_write_ctxt {
857 /* Logical cluster position / len of write */
861 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
864 * This is true if page_size > cluster_size.
866 * It triggers a set of special cases during write which might
867 * have to deal with allocating writes to partial pages.
869 unsigned int w_large_pages;
872 * Pages involved in this write.
874 * w_target_page is the page being written to by the user.
876 * w_pages is an array of pages which always contains
877 * w_target_page, and in the case of an allocating write with
878 * page_size < cluster size, it will contain zero'd and mapped
879 * pages adjacent to w_target_page which need to be written
880 * out in so that future reads from that region will get
883 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
884 unsigned int w_num_pages;
885 struct page *w_target_page;
888 * ocfs2_write_end() uses this to know what the real range to
889 * write in the target should be.
891 unsigned int w_target_from;
892 unsigned int w_target_to;
895 * We could use journal_current_handle() but this is cleaner,
900 struct buffer_head *w_di_bh;
902 struct ocfs2_cached_dealloc_ctxt w_dealloc;
905 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
909 for(i = 0; i < num_pages; i++) {
911 unlock_page(pages[i]);
912 mark_page_accessed(pages[i]);
913 page_cache_release(pages[i]);
918 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
920 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
926 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
927 struct ocfs2_super *osb, loff_t pos,
928 unsigned len, struct buffer_head *di_bh)
931 struct ocfs2_write_ctxt *wc;
933 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
937 wc->w_cpos = pos >> osb->s_clustersize_bits;
938 cend = (pos + len - 1) >> osb->s_clustersize_bits;
939 wc->w_clen = cend - wc->w_cpos + 1;
943 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
944 wc->w_large_pages = 1;
946 wc->w_large_pages = 0;
948 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
956 * If a page has any new buffers, zero them out here, and mark them uptodate
957 * and dirty so they'll be written out (in order to prevent uninitialised
958 * block data from leaking). And clear the new bit.
960 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
962 unsigned int block_start, block_end;
963 struct buffer_head *head, *bh;
965 BUG_ON(!PageLocked(page));
966 if (!page_has_buffers(page))
969 bh = head = page_buffers(page);
972 block_end = block_start + bh->b_size;
974 if (buffer_new(bh)) {
975 if (block_end > from && block_start < to) {
976 if (!PageUptodate(page)) {
979 start = max(from, block_start);
980 end = min(to, block_end);
982 zero_user_page(page, start, end - start, KM_USER0);
983 set_buffer_uptodate(bh);
986 clear_buffer_new(bh);
987 mark_buffer_dirty(bh);
991 block_start = block_end;
992 bh = bh->b_this_page;
993 } while (bh != head);
997 * Only called when we have a failure during allocating write to write
998 * zero's to the newly allocated region.
1000 static void ocfs2_write_failure(struct inode *inode,
1001 struct ocfs2_write_ctxt *wc,
1002 loff_t user_pos, unsigned user_len)
1005 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1006 to = user_pos + user_len;
1007 struct page *tmppage;
1009 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1011 for(i = 0; i < wc->w_num_pages; i++) {
1012 tmppage = wc->w_pages[i];
1014 if (ocfs2_should_order_data(inode))
1015 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1017 ocfs2_journal_dirty_data);
1019 block_commit_write(tmppage, from, to);
1023 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1024 struct ocfs2_write_ctxt *wc,
1025 struct page *page, u32 cpos,
1026 loff_t user_pos, unsigned user_len,
1030 unsigned int map_from = 0, map_to = 0;
1031 unsigned int cluster_start, cluster_end;
1032 unsigned int user_data_from = 0, user_data_to = 0;
1034 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1035 &cluster_start, &cluster_end);
1037 if (page == wc->w_target_page) {
1038 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1039 map_to = map_from + user_len;
1042 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1043 cluster_start, cluster_end,
1046 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1047 map_from, map_to, new);
1053 user_data_from = map_from;
1054 user_data_to = map_to;
1056 map_from = cluster_start;
1057 map_to = cluster_end;
1061 * If we haven't allocated the new page yet, we
1062 * shouldn't be writing it out without copying user
1063 * data. This is likely a math error from the caller.
1067 map_from = cluster_start;
1068 map_to = cluster_end;
1070 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1071 cluster_start, cluster_end, new);
1079 * Parts of newly allocated pages need to be zero'd.
1081 * Above, we have also rewritten 'to' and 'from' - as far as
1082 * the rest of the function is concerned, the entire cluster
1083 * range inside of a page needs to be written.
1085 * We can skip this if the page is up to date - it's already
1086 * been zero'd from being read in as a hole.
1088 if (new && !PageUptodate(page))
1089 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1090 cpos, user_data_from, user_data_to);
1092 flush_dcache_page(page);
1099 * This function will only grab one clusters worth of pages.
1101 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1102 struct ocfs2_write_ctxt *wc,
1103 u32 cpos, loff_t user_pos, int new,
1104 struct page *mmap_page)
1107 unsigned long start, target_index, index;
1108 struct inode *inode = mapping->host;
1110 target_index = user_pos >> PAGE_CACHE_SHIFT;
1113 * Figure out how many pages we'll be manipulating here. For
1114 * non allocating write, we just change the one
1115 * page. Otherwise, we'll need a whole clusters worth.
1118 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1119 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1121 wc->w_num_pages = 1;
1122 start = target_index;
1125 for(i = 0; i < wc->w_num_pages; i++) {
1128 if (index == target_index && mmap_page) {
1130 * ocfs2_pagemkwrite() is a little different
1131 * and wants us to directly use the page
1134 lock_page(mmap_page);
1136 if (mmap_page->mapping != mapping) {
1137 unlock_page(mmap_page);
1139 * Sanity check - the locking in
1140 * ocfs2_pagemkwrite() should ensure
1141 * that this code doesn't trigger.
1148 page_cache_get(mmap_page);
1149 wc->w_pages[i] = mmap_page;
1151 wc->w_pages[i] = find_or_create_page(mapping, index,
1153 if (!wc->w_pages[i]) {
1160 if (index == target_index)
1161 wc->w_target_page = wc->w_pages[i];
1168 * Prepare a single cluster for write one cluster into the file.
1170 static int ocfs2_write_cluster(struct address_space *mapping,
1171 u32 phys, unsigned int unwritten,
1172 struct ocfs2_alloc_context *data_ac,
1173 struct ocfs2_alloc_context *meta_ac,
1174 struct ocfs2_write_ctxt *wc, u32 cpos,
1175 loff_t user_pos, unsigned user_len)
1177 int ret, i, new, should_zero = 0;
1178 u64 v_blkno, p_blkno;
1179 struct inode *inode = mapping->host;
1181 new = phys == 0 ? 1 : 0;
1182 if (new || unwritten)
1189 * This is safe to call with the page locks - it won't take
1190 * any additional semaphores or cluster locks.
1193 ret = ocfs2_do_extend_allocation(OCFS2_SB(inode->i_sb), inode,
1194 &tmp_pos, 1, 0, wc->w_di_bh,
1195 wc->w_handle, data_ac,
1198 * This shouldn't happen because we must have already
1199 * calculated the correct meta data allocation required. The
1200 * internal tree allocation code should know how to increase
1201 * transaction credits itself.
1203 * If need be, we could handle -EAGAIN for a
1204 * RESTART_TRANS here.
1206 mlog_bug_on_msg(ret == -EAGAIN,
1207 "Inode %llu: EAGAIN return during allocation.\n",
1208 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1213 } else if (unwritten) {
1214 ret = ocfs2_mark_extent_written(inode, wc->w_di_bh,
1215 wc->w_handle, cpos, 1, phys,
1216 meta_ac, &wc->w_dealloc);
1224 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1226 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1229 * The only reason this should fail is due to an inability to
1230 * find the extent added.
1232 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1235 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1236 "at logical block %llu",
1237 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1238 (unsigned long long)v_blkno);
1242 BUG_ON(p_blkno == 0);
1244 for(i = 0; i < wc->w_num_pages; i++) {
1247 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1248 wc->w_pages[i], cpos,
1259 * We only have cleanup to do in case of allocating write.
1262 ocfs2_write_failure(inode, wc, user_pos, user_len);
1269 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1270 struct ocfs2_alloc_context *data_ac,
1271 struct ocfs2_alloc_context *meta_ac,
1272 struct ocfs2_write_ctxt *wc,
1273 loff_t pos, unsigned len)
1277 unsigned int local_len = len;
1278 struct ocfs2_write_cluster_desc *desc;
1279 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1281 for (i = 0; i < wc->w_clen; i++) {
1282 desc = &wc->w_desc[i];
1285 * We have to make sure that the total write passed in
1286 * doesn't extend past a single cluster.
1289 cluster_off = pos & (osb->s_clustersize - 1);
1290 if ((cluster_off + local_len) > osb->s_clustersize)
1291 local_len = osb->s_clustersize - cluster_off;
1293 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1294 desc->c_unwritten, data_ac, meta_ac,
1295 wc, desc->c_cpos, pos, local_len);
1311 * ocfs2_write_end() wants to know which parts of the target page it
1312 * should complete the write on. It's easiest to compute them ahead of
1313 * time when a more complete view of the write is available.
1315 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1316 struct ocfs2_write_ctxt *wc,
1317 loff_t pos, unsigned len, int alloc)
1319 struct ocfs2_write_cluster_desc *desc;
1321 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1322 wc->w_target_to = wc->w_target_from + len;
1328 * Allocating write - we may have different boundaries based
1329 * on page size and cluster size.
1331 * NOTE: We can no longer compute one value from the other as
1332 * the actual write length and user provided length may be
1336 if (wc->w_large_pages) {
1338 * We only care about the 1st and last cluster within
1339 * our range and whether they should be zero'd or not. Either
1340 * value may be extended out to the start/end of a
1341 * newly allocated cluster.
1343 desc = &wc->w_desc[0];
1344 if (ocfs2_should_zero_cluster(desc))
1345 ocfs2_figure_cluster_boundaries(osb,
1350 desc = &wc->w_desc[wc->w_clen - 1];
1351 if (ocfs2_should_zero_cluster(desc))
1352 ocfs2_figure_cluster_boundaries(osb,
1357 wc->w_target_from = 0;
1358 wc->w_target_to = PAGE_CACHE_SIZE;
1363 * Populate each single-cluster write descriptor in the write context
1364 * with information about the i/o to be done.
1366 * Returns the number of clusters that will have to be allocated, as
1367 * well as a worst case estimate of the number of extent records that
1368 * would have to be created during a write to an unwritten region.
1370 static int ocfs2_populate_write_desc(struct inode *inode,
1371 struct ocfs2_write_ctxt *wc,
1372 unsigned int *clusters_to_alloc,
1373 unsigned int *extents_to_split)
1376 struct ocfs2_write_cluster_desc *desc;
1377 unsigned int num_clusters = 0;
1378 unsigned int ext_flags = 0;
1382 *clusters_to_alloc = 0;
1383 *extents_to_split = 0;
1385 for (i = 0; i < wc->w_clen; i++) {
1386 desc = &wc->w_desc[i];
1387 desc->c_cpos = wc->w_cpos + i;
1389 if (num_clusters == 0) {
1391 * Need to look up the next extent record.
1393 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1394 &num_clusters, &ext_flags);
1401 * Assume worst case - that we're writing in
1402 * the middle of the extent.
1404 * We can assume that the write proceeds from
1405 * left to right, in which case the extent
1406 * insert code is smart enough to coalesce the
1407 * next splits into the previous records created.
1409 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1410 *extents_to_split = *extents_to_split + 2;
1413 * Only increment phys if it doesn't describe
1419 desc->c_phys = phys;
1422 *clusters_to_alloc = *clusters_to_alloc + 1;
1424 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1425 desc->c_unwritten = 1;
1435 static int ocfs2_write_begin_inline(struct address_space *mapping,
1436 struct inode *inode,
1437 struct ocfs2_write_ctxt *wc)
1440 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1443 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1445 page = find_or_create_page(mapping, 0, GFP_NOFS);
1452 * If we don't set w_num_pages then this page won't get unlocked
1453 * and freed on cleanup of the write context.
1455 wc->w_pages[0] = wc->w_target_page = page;
1456 wc->w_num_pages = 1;
1458 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1459 if (IS_ERR(handle)) {
1460 ret = PTR_ERR(handle);
1465 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1466 OCFS2_JOURNAL_ACCESS_WRITE);
1468 ocfs2_commit_trans(osb, handle);
1474 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1475 ocfs2_set_inode_data_inline(inode, di);
1477 if (!PageUptodate(page)) {
1478 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1480 ocfs2_commit_trans(osb, handle);
1486 wc->w_handle = handle;
1491 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1493 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1495 if (new_size < le16_to_cpu(di->id2.i_data.id_count))
1500 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1501 struct inode *inode, loff_t pos,
1502 unsigned len, struct page *mmap_page,
1503 struct ocfs2_write_ctxt *wc)
1505 int ret, written = 0;
1506 loff_t end = pos + len;
1507 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1509 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1510 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1511 oi->ip_dyn_features);
1514 * Handle inodes which already have inline data 1st.
1516 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1517 if (mmap_page == NULL &&
1518 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1519 goto do_inline_write;
1522 * The write won't fit - we have to give this inode an
1523 * inline extent list now.
1525 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1532 * Check whether the inode can accept inline data.
1534 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1538 * Check whether the write can fit.
1540 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1544 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1551 * This signals to the caller that the data can be written
1556 return written ? written : ret;
1560 * This function only does anything for file systems which can't
1561 * handle sparse files.
1563 * What we want to do here is fill in any hole between the current end
1564 * of allocation and the end of our write. That way the rest of the
1565 * write path can treat it as an non-allocating write, which has no
1566 * special case code for sparse/nonsparse files.
1568 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1570 struct ocfs2_write_ctxt *wc)
1573 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1574 loff_t newsize = pos + len;
1576 if (ocfs2_sparse_alloc(osb))
1579 if (newsize <= i_size_read(inode))
1582 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1589 int ocfs2_write_begin_nolock(struct address_space *mapping,
1590 loff_t pos, unsigned len, unsigned flags,
1591 struct page **pagep, void **fsdata,
1592 struct buffer_head *di_bh, struct page *mmap_page)
1594 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1595 unsigned int clusters_to_alloc, extents_to_split;
1596 struct ocfs2_write_ctxt *wc;
1597 struct inode *inode = mapping->host;
1598 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1599 struct ocfs2_dinode *di;
1600 struct ocfs2_alloc_context *data_ac = NULL;
1601 struct ocfs2_alloc_context *meta_ac = NULL;
1604 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1610 if (ocfs2_supports_inline_data(osb)) {
1611 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1623 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1629 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1636 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1639 * We set w_target_from, w_target_to here so that
1640 * ocfs2_write_end() knows which range in the target page to
1641 * write out. An allocation requires that we write the entire
1644 if (clusters_to_alloc || extents_to_split) {
1646 * XXX: We are stretching the limits of
1647 * ocfs2_lock_allocators(). It greatly over-estimates
1648 * the work to be done.
1650 ret = ocfs2_lock_allocators(inode, di, clusters_to_alloc,
1651 extents_to_split, &data_ac, &meta_ac);
1657 credits = ocfs2_calc_extend_credits(inode->i_sb, di,
1662 ocfs2_set_target_boundaries(osb, wc, pos, len,
1663 clusters_to_alloc + extents_to_split);
1665 handle = ocfs2_start_trans(osb, credits);
1666 if (IS_ERR(handle)) {
1667 ret = PTR_ERR(handle);
1672 wc->w_handle = handle;
1675 * We don't want this to fail in ocfs2_write_end(), so do it
1678 ret = ocfs2_journal_access(handle, inode, wc->w_di_bh,
1679 OCFS2_JOURNAL_ACCESS_WRITE);
1686 * Fill our page array first. That way we've grabbed enough so
1687 * that we can zero and flush if we error after adding the
1690 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1691 clusters_to_alloc + extents_to_split,
1698 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1706 ocfs2_free_alloc_context(data_ac);
1708 ocfs2_free_alloc_context(meta_ac);
1711 *pagep = wc->w_target_page;
1715 ocfs2_commit_trans(osb, handle);
1718 ocfs2_free_write_ctxt(wc);
1721 ocfs2_free_alloc_context(data_ac);
1723 ocfs2_free_alloc_context(meta_ac);
1727 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1728 loff_t pos, unsigned len, unsigned flags,
1729 struct page **pagep, void **fsdata)
1732 struct buffer_head *di_bh = NULL;
1733 struct inode *inode = mapping->host;
1735 ret = ocfs2_meta_lock(inode, &di_bh, 1);
1742 * Take alloc sem here to prevent concurrent lookups. That way
1743 * the mapping, zeroing and tree manipulation within
1744 * ocfs2_write() will be safe against ->readpage(). This
1745 * should also serve to lock out allocation from a shared
1748 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1750 ret = ocfs2_data_lock(inode, 1);
1756 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1757 fsdata, di_bh, NULL);
1768 ocfs2_data_unlock(inode, 1);
1770 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1773 ocfs2_meta_unlock(inode, 1);
1778 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1779 unsigned len, unsigned *copied,
1780 struct ocfs2_dinode *di,
1781 struct ocfs2_write_ctxt *wc)
1785 if (unlikely(*copied < len)) {
1786 if (!PageUptodate(wc->w_target_page)) {
1792 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1793 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1794 kunmap_atomic(kaddr, KM_USER0);
1796 mlog(0, "Data written to inode at offset %llu. "
1797 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1798 (unsigned long long)pos, *copied,
1799 le16_to_cpu(di->id2.i_data.id_count),
1800 le16_to_cpu(di->i_dyn_features));
1803 int ocfs2_write_end_nolock(struct address_space *mapping,
1804 loff_t pos, unsigned len, unsigned copied,
1805 struct page *page, void *fsdata)
1808 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1809 struct inode *inode = mapping->host;
1810 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1811 struct ocfs2_write_ctxt *wc = fsdata;
1812 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1813 handle_t *handle = wc->w_handle;
1814 struct page *tmppage;
1816 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1817 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1818 goto out_write_size;
1821 if (unlikely(copied < len)) {
1822 if (!PageUptodate(wc->w_target_page))
1825 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1828 flush_dcache_page(wc->w_target_page);
1830 for(i = 0; i < wc->w_num_pages; i++) {
1831 tmppage = wc->w_pages[i];
1833 if (tmppage == wc->w_target_page) {
1834 from = wc->w_target_from;
1835 to = wc->w_target_to;
1837 BUG_ON(from > PAGE_CACHE_SIZE ||
1838 to > PAGE_CACHE_SIZE ||
1842 * Pages adjacent to the target (if any) imply
1843 * a hole-filling write in which case we want
1844 * to flush their entire range.
1847 to = PAGE_CACHE_SIZE;
1850 if (ocfs2_should_order_data(inode))
1851 walk_page_buffers(wc->w_handle, page_buffers(tmppage),
1853 ocfs2_journal_dirty_data);
1855 block_commit_write(tmppage, from, to);
1860 if (pos > inode->i_size) {
1861 i_size_write(inode, pos);
1862 mark_inode_dirty(inode);
1864 inode->i_blocks = ocfs2_inode_sector_count(inode);
1865 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1866 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1867 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1868 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1869 ocfs2_journal_dirty(handle, wc->w_di_bh);
1871 ocfs2_commit_trans(osb, handle);
1873 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1875 ocfs2_free_write_ctxt(wc);
1880 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1881 loff_t pos, unsigned len, unsigned copied,
1882 struct page *page, void *fsdata)
1885 struct inode *inode = mapping->host;
1887 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1889 ocfs2_data_unlock(inode, 1);
1890 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1891 ocfs2_meta_unlock(inode, 1);
1896 const struct address_space_operations ocfs2_aops = {
1897 .readpage = ocfs2_readpage,
1898 .writepage = ocfs2_writepage,
1899 .write_begin = ocfs2_write_begin,
1900 .write_end = ocfs2_write_end,
1902 .sync_page = block_sync_page,
1903 .direct_IO = ocfs2_direct_IO,
1904 .invalidatepage = ocfs2_invalidatepage,
1905 .releasepage = ocfs2_releasepage,
1906 .migratepage = buffer_migrate_page,