1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
31 char e1000_driver_name[] = "e1000";
32 static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
33 #ifndef CONFIG_E1000_NAPI
36 #define DRIVERNAPI "-NAPI"
38 #define DRV_VERSION "7.2.9-k4"DRIVERNAPI
39 char e1000_driver_version[] = DRV_VERSION;
40 static char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
42 /* e1000_pci_tbl - PCI Device ID Table
44 * Last entry must be all 0s
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
49 static struct pci_device_id e1000_pci_tbl[] = {
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1049),
76 INTEL_E1000_ETHERNET_DEVICE(0x104A),
77 INTEL_E1000_ETHERNET_DEVICE(0x104B),
78 INTEL_E1000_ETHERNET_DEVICE(0x104C),
79 INTEL_E1000_ETHERNET_DEVICE(0x104D),
80 INTEL_E1000_ETHERNET_DEVICE(0x105E),
81 INTEL_E1000_ETHERNET_DEVICE(0x105F),
82 INTEL_E1000_ETHERNET_DEVICE(0x1060),
83 INTEL_E1000_ETHERNET_DEVICE(0x1075),
84 INTEL_E1000_ETHERNET_DEVICE(0x1076),
85 INTEL_E1000_ETHERNET_DEVICE(0x1077),
86 INTEL_E1000_ETHERNET_DEVICE(0x1078),
87 INTEL_E1000_ETHERNET_DEVICE(0x1079),
88 INTEL_E1000_ETHERNET_DEVICE(0x107A),
89 INTEL_E1000_ETHERNET_DEVICE(0x107B),
90 INTEL_E1000_ETHERNET_DEVICE(0x107C),
91 INTEL_E1000_ETHERNET_DEVICE(0x107D),
92 INTEL_E1000_ETHERNET_DEVICE(0x107E),
93 INTEL_E1000_ETHERNET_DEVICE(0x107F),
94 INTEL_E1000_ETHERNET_DEVICE(0x108A),
95 INTEL_E1000_ETHERNET_DEVICE(0x108B),
96 INTEL_E1000_ETHERNET_DEVICE(0x108C),
97 INTEL_E1000_ETHERNET_DEVICE(0x1096),
98 INTEL_E1000_ETHERNET_DEVICE(0x1098),
99 INTEL_E1000_ETHERNET_DEVICE(0x1099),
100 INTEL_E1000_ETHERNET_DEVICE(0x109A),
101 INTEL_E1000_ETHERNET_DEVICE(0x10A4),
102 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
103 INTEL_E1000_ETHERNET_DEVICE(0x10B9),
104 INTEL_E1000_ETHERNET_DEVICE(0x10BA),
105 INTEL_E1000_ETHERNET_DEVICE(0x10BB),
106 /* required last entry */
110 MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
112 int e1000_up(struct e1000_adapter *adapter);
113 void e1000_down(struct e1000_adapter *adapter);
114 void e1000_reinit_locked(struct e1000_adapter *adapter);
115 void e1000_reset(struct e1000_adapter *adapter);
116 int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx);
117 int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
118 int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
119 void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
120 void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
121 static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
122 struct e1000_tx_ring *txdr);
123 static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
124 struct e1000_rx_ring *rxdr);
125 static void e1000_free_tx_resources(struct e1000_adapter *adapter,
126 struct e1000_tx_ring *tx_ring);
127 static void e1000_free_rx_resources(struct e1000_adapter *adapter,
128 struct e1000_rx_ring *rx_ring);
129 void e1000_update_stats(struct e1000_adapter *adapter);
131 static int e1000_init_module(void);
132 static void e1000_exit_module(void);
133 static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
134 static void __devexit e1000_remove(struct pci_dev *pdev);
135 static int e1000_alloc_queues(struct e1000_adapter *adapter);
136 static int e1000_sw_init(struct e1000_adapter *adapter);
137 static int e1000_open(struct net_device *netdev);
138 static int e1000_close(struct net_device *netdev);
139 static void e1000_configure_tx(struct e1000_adapter *adapter);
140 static void e1000_configure_rx(struct e1000_adapter *adapter);
141 static void e1000_setup_rctl(struct e1000_adapter *adapter);
142 static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
143 static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
144 static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
145 struct e1000_tx_ring *tx_ring);
146 static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
147 struct e1000_rx_ring *rx_ring);
148 static void e1000_set_multi(struct net_device *netdev);
149 static void e1000_update_phy_info(unsigned long data);
150 static void e1000_watchdog(unsigned long data);
151 static void e1000_82547_tx_fifo_stall(unsigned long data);
152 static int e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
153 static struct net_device_stats * e1000_get_stats(struct net_device *netdev);
154 static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
155 static int e1000_set_mac(struct net_device *netdev, void *p);
156 static irqreturn_t e1000_intr(int irq, void *data);
157 static boolean_t e1000_clean_tx_irq(struct e1000_adapter *adapter,
158 struct e1000_tx_ring *tx_ring);
159 #ifdef CONFIG_E1000_NAPI
160 static int e1000_clean(struct net_device *poll_dev, int *budget);
161 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
162 struct e1000_rx_ring *rx_ring,
163 int *work_done, int work_to_do);
164 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
165 struct e1000_rx_ring *rx_ring,
166 int *work_done, int work_to_do);
168 static boolean_t e1000_clean_rx_irq(struct e1000_adapter *adapter,
169 struct e1000_rx_ring *rx_ring);
170 static boolean_t e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
171 struct e1000_rx_ring *rx_ring);
173 static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
174 struct e1000_rx_ring *rx_ring,
176 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
177 struct e1000_rx_ring *rx_ring,
179 static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
180 static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
182 void e1000_set_ethtool_ops(struct net_device *netdev);
183 static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
184 static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
185 static void e1000_tx_timeout(struct net_device *dev);
186 static void e1000_reset_task(struct net_device *dev);
187 static void e1000_smartspeed(struct e1000_adapter *adapter);
188 static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
189 struct sk_buff *skb);
191 static void e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp);
192 static void e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid);
193 static void e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid);
194 static void e1000_restore_vlan(struct e1000_adapter *adapter);
196 static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
198 static int e1000_resume(struct pci_dev *pdev);
200 static void e1000_shutdown(struct pci_dev *pdev);
202 #ifdef CONFIG_NET_POLL_CONTROLLER
203 /* for netdump / net console */
204 static void e1000_netpoll (struct net_device *netdev);
207 extern void e1000_check_options(struct e1000_adapter *adapter);
209 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
210 pci_channel_state_t state);
211 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
212 static void e1000_io_resume(struct pci_dev *pdev);
214 static struct pci_error_handlers e1000_err_handler = {
215 .error_detected = e1000_io_error_detected,
216 .slot_reset = e1000_io_slot_reset,
217 .resume = e1000_io_resume,
220 static struct pci_driver e1000_driver = {
221 .name = e1000_driver_name,
222 .id_table = e1000_pci_tbl,
223 .probe = e1000_probe,
224 .remove = __devexit_p(e1000_remove),
226 /* Power Managment Hooks */
227 .suspend = e1000_suspend,
228 .resume = e1000_resume,
230 .shutdown = e1000_shutdown,
231 .err_handler = &e1000_err_handler
234 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
235 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
236 MODULE_LICENSE("GPL");
237 MODULE_VERSION(DRV_VERSION);
239 static int debug = NETIF_MSG_DRV | NETIF_MSG_PROBE;
240 module_param(debug, int, 0);
241 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
244 * e1000_init_module - Driver Registration Routine
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
251 e1000_init_module(void)
254 printk(KERN_INFO "%s - version %s\n",
255 e1000_driver_string, e1000_driver_version);
257 printk(KERN_INFO "%s\n", e1000_copyright);
259 ret = pci_register_driver(&e1000_driver);
264 module_init(e1000_init_module);
267 * e1000_exit_module - Driver Exit Cleanup Routine
269 * e1000_exit_module is called just before the driver is removed
274 e1000_exit_module(void)
276 pci_unregister_driver(&e1000_driver);
279 module_exit(e1000_exit_module);
281 static int e1000_request_irq(struct e1000_adapter *adapter)
283 struct net_device *netdev = adapter->netdev;
287 #ifdef CONFIG_PCI_MSI
288 if (adapter->hw.mac_type > e1000_82547_rev_2) {
289 adapter->have_msi = TRUE;
290 if ((err = pci_enable_msi(adapter->pdev))) {
292 "Unable to allocate MSI interrupt Error: %d\n", err);
293 adapter->have_msi = FALSE;
296 if (adapter->have_msi)
297 flags &= ~IRQF_SHARED;
299 if ((err = request_irq(adapter->pdev->irq, &e1000_intr, flags,
300 netdev->name, netdev)))
302 "Unable to allocate interrupt Error: %d\n", err);
307 static void e1000_free_irq(struct e1000_adapter *adapter)
309 struct net_device *netdev = adapter->netdev;
311 free_irq(adapter->pdev->irq, netdev);
313 #ifdef CONFIG_PCI_MSI
314 if (adapter->have_msi)
315 pci_disable_msi(adapter->pdev);
320 * e1000_irq_disable - Mask off interrupt generation on the NIC
321 * @adapter: board private structure
325 e1000_irq_disable(struct e1000_adapter *adapter)
327 atomic_inc(&adapter->irq_sem);
328 E1000_WRITE_REG(&adapter->hw, IMC, ~0);
329 E1000_WRITE_FLUSH(&adapter->hw);
330 synchronize_irq(adapter->pdev->irq);
334 * e1000_irq_enable - Enable default interrupt generation settings
335 * @adapter: board private structure
339 e1000_irq_enable(struct e1000_adapter *adapter)
341 if (likely(atomic_dec_and_test(&adapter->irq_sem))) {
342 E1000_WRITE_REG(&adapter->hw, IMS, IMS_ENABLE_MASK);
343 E1000_WRITE_FLUSH(&adapter->hw);
348 e1000_update_mng_vlan(struct e1000_adapter *adapter)
350 struct net_device *netdev = adapter->netdev;
351 uint16_t vid = adapter->hw.mng_cookie.vlan_id;
352 uint16_t old_vid = adapter->mng_vlan_id;
353 if (adapter->vlgrp) {
354 if (!adapter->vlgrp->vlan_devices[vid]) {
355 if (adapter->hw.mng_cookie.status &
356 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
357 e1000_vlan_rx_add_vid(netdev, vid);
358 adapter->mng_vlan_id = vid;
360 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
362 if ((old_vid != (uint16_t)E1000_MNG_VLAN_NONE) &&
364 !adapter->vlgrp->vlan_devices[old_vid])
365 e1000_vlan_rx_kill_vid(netdev, old_vid);
367 adapter->mng_vlan_id = vid;
372 * e1000_release_hw_control - release control of the h/w to f/w
373 * @adapter: address of board private structure
375 * e1000_release_hw_control resets {CTRL_EXT|FWSM}:DRV_LOAD bit.
376 * For ASF and Pass Through versions of f/w this means that the
377 * driver is no longer loaded. For AMT version (only with 82573) i
378 * of the f/w this means that the netowrk i/f is closed.
383 e1000_release_hw_control(struct e1000_adapter *adapter)
389 /* Let firmware taken over control of h/w */
390 switch (adapter->hw.mac_type) {
393 case e1000_80003es2lan:
394 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
395 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
396 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
399 swsm = E1000_READ_REG(&adapter->hw, SWSM);
400 E1000_WRITE_REG(&adapter->hw, SWSM,
401 swsm & ~E1000_SWSM_DRV_LOAD);
403 extcnf = E1000_READ_REG(&adapter->hw, CTRL_EXT);
404 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
405 extcnf & ~E1000_CTRL_EXT_DRV_LOAD);
413 * e1000_get_hw_control - get control of the h/w from f/w
414 * @adapter: address of board private structure
416 * e1000_get_hw_control sets {CTRL_EXT|FWSM}:DRV_LOAD bit.
417 * For ASF and Pass Through versions of f/w this means that
418 * the driver is loaded. For AMT version (only with 82573)
419 * of the f/w this means that the netowrk i/f is open.
424 e1000_get_hw_control(struct e1000_adapter *adapter)
429 /* Let firmware know the driver has taken over */
430 switch (adapter->hw.mac_type) {
433 case e1000_80003es2lan:
434 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
435 E1000_WRITE_REG(&adapter->hw, CTRL_EXT,
436 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
439 swsm = E1000_READ_REG(&adapter->hw, SWSM);
440 E1000_WRITE_REG(&adapter->hw, SWSM,
441 swsm | E1000_SWSM_DRV_LOAD);
444 extcnf = E1000_READ_REG(&adapter->hw, EXTCNF_CTRL);
445 E1000_WRITE_REG(&adapter->hw, EXTCNF_CTRL,
446 extcnf | E1000_EXTCNF_CTRL_SWFLAG);
454 e1000_up(struct e1000_adapter *adapter)
456 struct net_device *netdev = adapter->netdev;
459 /* hardware has been reset, we need to reload some things */
461 e1000_set_multi(netdev);
463 e1000_restore_vlan(adapter);
465 e1000_configure_tx(adapter);
466 e1000_setup_rctl(adapter);
467 e1000_configure_rx(adapter);
468 /* call E1000_DESC_UNUSED which always leaves
469 * at least 1 descriptor unused to make sure
470 * next_to_use != next_to_clean */
471 for (i = 0; i < adapter->num_rx_queues; i++) {
472 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
473 adapter->alloc_rx_buf(adapter, ring,
474 E1000_DESC_UNUSED(ring));
477 adapter->tx_queue_len = netdev->tx_queue_len;
479 #ifdef CONFIG_E1000_NAPI
480 netif_poll_enable(netdev);
482 e1000_irq_enable(adapter);
484 clear_bit(__E1000_DOWN, &adapter->flags);
486 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
491 * e1000_power_up_phy - restore link in case the phy was powered down
492 * @adapter: address of board private structure
494 * The phy may be powered down to save power and turn off link when the
495 * driver is unloaded and wake on lan is not enabled (among others)
496 * *** this routine MUST be followed by a call to e1000_reset ***
500 void e1000_power_up_phy(struct e1000_adapter *adapter)
502 uint16_t mii_reg = 0;
504 /* Just clear the power down bit to wake the phy back up */
505 if (adapter->hw.media_type == e1000_media_type_copper) {
506 /* according to the manual, the phy will retain its
507 * settings across a power-down/up cycle */
508 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
509 mii_reg &= ~MII_CR_POWER_DOWN;
510 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
514 static void e1000_power_down_phy(struct e1000_adapter *adapter)
516 /* Power down the PHY so no link is implied when interface is down *
517 * The PHY cannot be powered down if any of the following is TRUE *
520 * (c) SoL/IDER session is active */
521 if (!adapter->wol && adapter->hw.mac_type >= e1000_82540 &&
522 adapter->hw.media_type == e1000_media_type_copper) {
523 uint16_t mii_reg = 0;
525 switch (adapter->hw.mac_type) {
528 case e1000_82545_rev_3:
530 case e1000_82546_rev_3:
532 case e1000_82541_rev_2:
534 case e1000_82547_rev_2:
535 if (E1000_READ_REG(&adapter->hw, MANC) &
542 case e1000_80003es2lan:
544 if (e1000_check_mng_mode(&adapter->hw) ||
545 e1000_check_phy_reset_block(&adapter->hw))
551 e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &mii_reg);
552 mii_reg |= MII_CR_POWER_DOWN;
553 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, mii_reg);
561 e1000_down(struct e1000_adapter *adapter)
563 struct net_device *netdev = adapter->netdev;
565 /* signal that we're down so the interrupt handler does not
566 * reschedule our watchdog timer */
567 set_bit(__E1000_DOWN, &adapter->flags);
569 e1000_irq_disable(adapter);
571 del_timer_sync(&adapter->tx_fifo_stall_timer);
572 del_timer_sync(&adapter->watchdog_timer);
573 del_timer_sync(&adapter->phy_info_timer);
575 #ifdef CONFIG_E1000_NAPI
576 netif_poll_disable(netdev);
578 netdev->tx_queue_len = adapter->tx_queue_len;
579 adapter->link_speed = 0;
580 adapter->link_duplex = 0;
581 netif_carrier_off(netdev);
582 netif_stop_queue(netdev);
584 e1000_reset(adapter);
585 e1000_clean_all_tx_rings(adapter);
586 e1000_clean_all_rx_rings(adapter);
590 e1000_reinit_locked(struct e1000_adapter *adapter)
592 WARN_ON(in_interrupt());
593 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
597 clear_bit(__E1000_RESETTING, &adapter->flags);
601 e1000_reset(struct e1000_adapter *adapter)
607 uint16_t fc_high_water_mark = E1000_FC_HIGH_DIFF;
609 /* Repartition Pba for greater than 9k mtu
610 * To take effect CTRL.RST is required.
613 switch (adapter->hw.mac_type) {
615 case e1000_82547_rev_2:
620 case e1000_80003es2lan:
634 if ((adapter->hw.mac_type != e1000_82573) &&
635 (adapter->netdev->mtu > E1000_RXBUFFER_8192))
636 pba -= 8; /* allocate more FIFO for Tx */
639 if (adapter->hw.mac_type == e1000_82547) {
640 adapter->tx_fifo_head = 0;
641 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
642 adapter->tx_fifo_size =
643 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
644 atomic_set(&adapter->tx_fifo_stall, 0);
647 E1000_WRITE_REG(&adapter->hw, PBA, pba);
649 /* flow control settings */
650 /* Set the FC high water mark to 90% of the FIFO size.
651 * Required to clear last 3 LSB */
652 fc_high_water_mark = ((pba * 9216)/10) & 0xFFF8;
653 /* We can't use 90% on small FIFOs because the remainder
654 * would be less than 1 full frame. In this case, we size
655 * it to allow at least a full frame above the high water
657 if (pba < E1000_PBA_16K)
658 fc_high_water_mark = (pba * 1024) - 1600;
660 adapter->hw.fc_high_water = fc_high_water_mark;
661 adapter->hw.fc_low_water = fc_high_water_mark - 8;
662 if (adapter->hw.mac_type == e1000_80003es2lan)
663 adapter->hw.fc_pause_time = 0xFFFF;
665 adapter->hw.fc_pause_time = E1000_FC_PAUSE_TIME;
666 adapter->hw.fc_send_xon = 1;
667 adapter->hw.fc = adapter->hw.original_fc;
669 /* Allow time for pending master requests to run */
670 e1000_reset_hw(&adapter->hw);
671 if (adapter->hw.mac_type >= e1000_82544)
672 E1000_WRITE_REG(&adapter->hw, WUC, 0);
674 /* disable Multiple Reads in Transmit Control Register for debugging */
675 tctl = E1000_READ_REG(hw, TCTL);
676 E1000_WRITE_REG(hw, TCTL, tctl & ~E1000_TCTL_MULR);
679 if (e1000_init_hw(&adapter->hw))
680 DPRINTK(PROBE, ERR, "Hardware Error\n");
681 e1000_update_mng_vlan(adapter);
682 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
683 E1000_WRITE_REG(&adapter->hw, VET, ETHERNET_IEEE_VLAN_TYPE);
685 e1000_reset_adaptive(&adapter->hw);
686 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
688 if (!adapter->smart_power_down &&
689 (adapter->hw.mac_type == e1000_82571 ||
690 adapter->hw.mac_type == e1000_82572)) {
691 uint16_t phy_data = 0;
692 /* speed up time to link by disabling smart power down, ignore
693 * the return value of this function because there is nothing
694 * different we would do if it failed */
695 e1000_read_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
697 phy_data &= ~IGP02E1000_PM_SPD;
698 e1000_write_phy_reg(&adapter->hw, IGP02E1000_PHY_POWER_MGMT,
702 if ((adapter->en_mng_pt) &&
703 (adapter->hw.mac_type >= e1000_82540) &&
704 (adapter->hw.mac_type < e1000_82571) &&
705 (adapter->hw.media_type == e1000_media_type_copper)) {
706 manc = E1000_READ_REG(&adapter->hw, MANC);
707 manc |= (E1000_MANC_ARP_EN | E1000_MANC_EN_MNG2HOST);
708 E1000_WRITE_REG(&adapter->hw, MANC, manc);
713 * e1000_probe - Device Initialization Routine
714 * @pdev: PCI device information struct
715 * @ent: entry in e1000_pci_tbl
717 * Returns 0 on success, negative on failure
719 * e1000_probe initializes an adapter identified by a pci_dev structure.
720 * The OS initialization, configuring of the adapter private structure,
721 * and a hardware reset occur.
725 e1000_probe(struct pci_dev *pdev,
726 const struct pci_device_id *ent)
728 struct net_device *netdev;
729 struct e1000_adapter *adapter;
730 unsigned long mmio_start, mmio_len;
731 unsigned long flash_start, flash_len;
733 static int cards_found = 0;
734 static int global_quad_port_a = 0; /* global ksp3 port a indication */
735 int i, err, pci_using_dac;
736 uint16_t eeprom_data = 0;
737 uint16_t eeprom_apme_mask = E1000_EEPROM_APME;
738 if ((err = pci_enable_device(pdev)))
741 if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)) &&
742 !(err = pci_set_consistent_dma_mask(pdev, DMA_64BIT_MASK))) {
745 if ((err = pci_set_dma_mask(pdev, DMA_32BIT_MASK)) &&
746 (err = pci_set_consistent_dma_mask(pdev, DMA_32BIT_MASK))) {
747 E1000_ERR("No usable DMA configuration, aborting\n");
753 if ((err = pci_request_regions(pdev, e1000_driver_name)))
756 pci_set_master(pdev);
759 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
761 goto err_alloc_etherdev;
763 SET_MODULE_OWNER(netdev);
764 SET_NETDEV_DEV(netdev, &pdev->dev);
766 pci_set_drvdata(pdev, netdev);
767 adapter = netdev_priv(netdev);
768 adapter->netdev = netdev;
769 adapter->pdev = pdev;
770 adapter->hw.back = adapter;
771 adapter->msg_enable = (1 << debug) - 1;
773 mmio_start = pci_resource_start(pdev, BAR_0);
774 mmio_len = pci_resource_len(pdev, BAR_0);
777 adapter->hw.hw_addr = ioremap(mmio_start, mmio_len);
778 if (!adapter->hw.hw_addr)
781 for (i = BAR_1; i <= BAR_5; i++) {
782 if (pci_resource_len(pdev, i) == 0)
784 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
785 adapter->hw.io_base = pci_resource_start(pdev, i);
790 netdev->open = &e1000_open;
791 netdev->stop = &e1000_close;
792 netdev->hard_start_xmit = &e1000_xmit_frame;
793 netdev->get_stats = &e1000_get_stats;
794 netdev->set_multicast_list = &e1000_set_multi;
795 netdev->set_mac_address = &e1000_set_mac;
796 netdev->change_mtu = &e1000_change_mtu;
797 netdev->do_ioctl = &e1000_ioctl;
798 e1000_set_ethtool_ops(netdev);
799 netdev->tx_timeout = &e1000_tx_timeout;
800 netdev->watchdog_timeo = 5 * HZ;
801 #ifdef CONFIG_E1000_NAPI
802 netdev->poll = &e1000_clean;
805 netdev->vlan_rx_register = e1000_vlan_rx_register;
806 netdev->vlan_rx_add_vid = e1000_vlan_rx_add_vid;
807 netdev->vlan_rx_kill_vid = e1000_vlan_rx_kill_vid;
808 #ifdef CONFIG_NET_POLL_CONTROLLER
809 netdev->poll_controller = e1000_netpoll;
811 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
813 netdev->mem_start = mmio_start;
814 netdev->mem_end = mmio_start + mmio_len;
815 netdev->base_addr = adapter->hw.io_base;
817 adapter->bd_number = cards_found;
819 /* setup the private structure */
821 if ((err = e1000_sw_init(adapter)))
825 /* Flash BAR mapping must happen after e1000_sw_init
826 * because it depends on mac_type */
827 if ((adapter->hw.mac_type == e1000_ich8lan) &&
828 (pci_resource_flags(pdev, 1) & IORESOURCE_MEM)) {
829 flash_start = pci_resource_start(pdev, 1);
830 flash_len = pci_resource_len(pdev, 1);
831 adapter->hw.flash_address = ioremap(flash_start, flash_len);
832 if (!adapter->hw.flash_address)
836 if (e1000_check_phy_reset_block(&adapter->hw))
837 DPRINTK(PROBE, INFO, "PHY reset is blocked due to SOL/IDER session.\n");
839 if (adapter->hw.mac_type >= e1000_82543) {
840 netdev->features = NETIF_F_SG |
844 NETIF_F_HW_VLAN_FILTER;
845 if (adapter->hw.mac_type == e1000_ich8lan)
846 netdev->features &= ~NETIF_F_HW_VLAN_FILTER;
850 if ((adapter->hw.mac_type >= e1000_82544) &&
851 (adapter->hw.mac_type != e1000_82547))
852 netdev->features |= NETIF_F_TSO;
854 #ifdef NETIF_F_TSO_IPV6
855 if (adapter->hw.mac_type > e1000_82547_rev_2)
856 netdev->features |= NETIF_F_TSO_IPV6;
860 netdev->features |= NETIF_F_HIGHDMA;
862 netdev->features |= NETIF_F_LLTX;
864 adapter->en_mng_pt = e1000_enable_mng_pass_thru(&adapter->hw);
866 /* initialize eeprom parameters */
868 if (e1000_init_eeprom_params(&adapter->hw)) {
869 E1000_ERR("EEPROM initialization failed\n");
873 /* before reading the EEPROM, reset the controller to
874 * put the device in a known good starting state */
876 e1000_reset_hw(&adapter->hw);
878 /* make sure the EEPROM is good */
880 if (e1000_validate_eeprom_checksum(&adapter->hw) < 0) {
881 DPRINTK(PROBE, ERR, "The EEPROM Checksum Is Not Valid\n");
885 /* copy the MAC address out of the EEPROM */
887 if (e1000_read_mac_addr(&adapter->hw))
888 DPRINTK(PROBE, ERR, "EEPROM Read Error\n");
889 memcpy(netdev->dev_addr, adapter->hw.mac_addr, netdev->addr_len);
890 memcpy(netdev->perm_addr, adapter->hw.mac_addr, netdev->addr_len);
892 if (!is_valid_ether_addr(netdev->perm_addr)) {
893 DPRINTK(PROBE, ERR, "Invalid MAC Address\n");
897 e1000_get_bus_info(&adapter->hw);
899 init_timer(&adapter->tx_fifo_stall_timer);
900 adapter->tx_fifo_stall_timer.function = &e1000_82547_tx_fifo_stall;
901 adapter->tx_fifo_stall_timer.data = (unsigned long) adapter;
903 init_timer(&adapter->watchdog_timer);
904 adapter->watchdog_timer.function = &e1000_watchdog;
905 adapter->watchdog_timer.data = (unsigned long) adapter;
907 init_timer(&adapter->phy_info_timer);
908 adapter->phy_info_timer.function = &e1000_update_phy_info;
909 adapter->phy_info_timer.data = (unsigned long) adapter;
911 INIT_WORK(&adapter->reset_task,
912 (void (*)(void *))e1000_reset_task, netdev);
914 e1000_check_options(adapter);
916 /* Initial Wake on LAN setting
917 * If APM wake is enabled in the EEPROM,
918 * enable the ACPI Magic Packet filter
921 switch (adapter->hw.mac_type) {
922 case e1000_82542_rev2_0:
923 case e1000_82542_rev2_1:
927 e1000_read_eeprom(&adapter->hw,
928 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
929 eeprom_apme_mask = E1000_EEPROM_82544_APM;
932 e1000_read_eeprom(&adapter->hw,
933 EEPROM_INIT_CONTROL1_REG, 1, &eeprom_data);
934 eeprom_apme_mask = E1000_EEPROM_ICH8_APME;
937 case e1000_82546_rev_3:
939 case e1000_80003es2lan:
940 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1){
941 e1000_read_eeprom(&adapter->hw,
942 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
947 e1000_read_eeprom(&adapter->hw,
948 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
951 if (eeprom_data & eeprom_apme_mask)
952 adapter->eeprom_wol |= E1000_WUFC_MAG;
954 /* now that we have the eeprom settings, apply the special cases
955 * where the eeprom may be wrong or the board simply won't support
956 * wake on lan on a particular port */
957 switch (pdev->device) {
958 case E1000_DEV_ID_82546GB_PCIE:
959 adapter->eeprom_wol = 0;
961 case E1000_DEV_ID_82546EB_FIBER:
962 case E1000_DEV_ID_82546GB_FIBER:
963 case E1000_DEV_ID_82571EB_FIBER:
964 /* Wake events only supported on port A for dual fiber
965 * regardless of eeprom setting */
966 if (E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_FUNC_1)
967 adapter->eeprom_wol = 0;
969 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
970 case E1000_DEV_ID_82571EB_QUAD_COPPER:
971 /* if quad port adapter, disable WoL on all but port A */
972 if (global_quad_port_a != 0)
973 adapter->eeprom_wol = 0;
975 adapter->quad_port_a = 1;
976 /* Reset for multiple quad port adapters */
977 if (++global_quad_port_a == 4)
978 global_quad_port_a = 0;
982 /* initialize the wol settings based on the eeprom settings */
983 adapter->wol = adapter->eeprom_wol;
985 /* print bus type/speed/width info */
987 struct e1000_hw *hw = &adapter->hw;
988 DPRINTK(PROBE, INFO, "(PCI%s:%s:%s) ",
989 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" :
990 (hw->bus_type == e1000_bus_type_pci_express ? " Express":"")),
991 ((hw->bus_speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
992 (hw->bus_speed == e1000_bus_speed_133) ? "133MHz" :
993 (hw->bus_speed == e1000_bus_speed_120) ? "120MHz" :
994 (hw->bus_speed == e1000_bus_speed_100) ? "100MHz" :
995 (hw->bus_speed == e1000_bus_speed_66) ? "66MHz" : "33MHz"),
996 ((hw->bus_width == e1000_bus_width_64) ? "64-bit" :
997 (hw->bus_width == e1000_bus_width_pciex_4) ? "Width x4" :
998 (hw->bus_width == e1000_bus_width_pciex_1) ? "Width x1" :
1002 for (i = 0; i < 6; i++)
1003 printk("%2.2x%c", netdev->dev_addr[i], i == 5 ? '\n' : ':');
1005 /* reset the hardware with the new settings */
1006 e1000_reset(adapter);
1008 /* If the controller is 82573 and f/w is AMT, do not set
1009 * DRV_LOAD until the interface is up. For all other cases,
1010 * let the f/w know that the h/w is now under the control
1012 if (adapter->hw.mac_type != e1000_82573 ||
1013 !e1000_check_mng_mode(&adapter->hw))
1014 e1000_get_hw_control(adapter);
1016 strcpy(netdev->name, "eth%d");
1017 if ((err = register_netdev(netdev)))
1020 /* tell the stack to leave us alone until e1000_open() is called */
1021 netif_carrier_off(netdev);
1022 netif_stop_queue(netdev);
1024 DPRINTK(PROBE, INFO, "Intel(R) PRO/1000 Network Connection\n");
1030 e1000_release_hw_control(adapter);
1032 if (!e1000_check_phy_reset_block(&adapter->hw))
1033 e1000_phy_hw_reset(&adapter->hw);
1035 if (adapter->hw.flash_address)
1036 iounmap(adapter->hw.flash_address);
1038 #ifdef CONFIG_E1000_NAPI
1039 for (i = 0; i < adapter->num_rx_queues; i++)
1040 dev_put(&adapter->polling_netdev[i]);
1043 kfree(adapter->tx_ring);
1044 kfree(adapter->rx_ring);
1045 #ifdef CONFIG_E1000_NAPI
1046 kfree(adapter->polling_netdev);
1049 iounmap(adapter->hw.hw_addr);
1051 free_netdev(netdev);
1053 pci_release_regions(pdev);
1056 pci_disable_device(pdev);
1061 * e1000_remove - Device Removal Routine
1062 * @pdev: PCI device information struct
1064 * e1000_remove is called by the PCI subsystem to alert the driver
1065 * that it should release a PCI device. The could be caused by a
1066 * Hot-Plug event, or because the driver is going to be removed from
1070 static void __devexit
1071 e1000_remove(struct pci_dev *pdev)
1073 struct net_device *netdev = pci_get_drvdata(pdev);
1074 struct e1000_adapter *adapter = netdev_priv(netdev);
1076 #ifdef CONFIG_E1000_NAPI
1080 flush_scheduled_work();
1082 if (adapter->hw.mac_type >= e1000_82540 &&
1083 adapter->hw.mac_type < e1000_82571 &&
1084 adapter->hw.media_type == e1000_media_type_copper) {
1085 manc = E1000_READ_REG(&adapter->hw, MANC);
1086 if (manc & E1000_MANC_SMBUS_EN) {
1087 manc |= E1000_MANC_ARP_EN;
1088 E1000_WRITE_REG(&adapter->hw, MANC, manc);
1092 /* Release control of h/w to f/w. If f/w is AMT enabled, this
1093 * would have already happened in close and is redundant. */
1094 e1000_release_hw_control(adapter);
1096 unregister_netdev(netdev);
1097 #ifdef CONFIG_E1000_NAPI
1098 for (i = 0; i < adapter->num_rx_queues; i++)
1099 dev_put(&adapter->polling_netdev[i]);
1102 if (!e1000_check_phy_reset_block(&adapter->hw))
1103 e1000_phy_hw_reset(&adapter->hw);
1105 kfree(adapter->tx_ring);
1106 kfree(adapter->rx_ring);
1107 #ifdef CONFIG_E1000_NAPI
1108 kfree(adapter->polling_netdev);
1111 iounmap(adapter->hw.hw_addr);
1112 if (adapter->hw.flash_address)
1113 iounmap(adapter->hw.flash_address);
1114 pci_release_regions(pdev);
1116 free_netdev(netdev);
1118 pci_disable_device(pdev);
1122 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1123 * @adapter: board private structure to initialize
1125 * e1000_sw_init initializes the Adapter private data structure.
1126 * Fields are initialized based on PCI device information and
1127 * OS network device settings (MTU size).
1130 static int __devinit
1131 e1000_sw_init(struct e1000_adapter *adapter)
1133 struct e1000_hw *hw = &adapter->hw;
1134 struct net_device *netdev = adapter->netdev;
1135 struct pci_dev *pdev = adapter->pdev;
1136 #ifdef CONFIG_E1000_NAPI
1140 /* PCI config space info */
1142 hw->vendor_id = pdev->vendor;
1143 hw->device_id = pdev->device;
1144 hw->subsystem_vendor_id = pdev->subsystem_vendor;
1145 hw->subsystem_id = pdev->subsystem_device;
1147 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
1149 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
1151 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1152 adapter->rx_ps_bsize0 = E1000_RXBUFFER_128;
1153 hw->max_frame_size = netdev->mtu +
1154 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
1155 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
1157 /* identify the MAC */
1159 if (e1000_set_mac_type(hw)) {
1160 DPRINTK(PROBE, ERR, "Unknown MAC Type\n");
1164 switch (hw->mac_type) {
1169 case e1000_82541_rev_2:
1170 case e1000_82547_rev_2:
1171 hw->phy_init_script = 1;
1175 e1000_set_media_type(hw);
1177 hw->wait_autoneg_complete = FALSE;
1178 hw->tbi_compatibility_en = TRUE;
1179 hw->adaptive_ifs = TRUE;
1181 /* Copper options */
1183 if (hw->media_type == e1000_media_type_copper) {
1184 hw->mdix = AUTO_ALL_MODES;
1185 hw->disable_polarity_correction = FALSE;
1186 hw->master_slave = E1000_MASTER_SLAVE;
1189 adapter->num_tx_queues = 1;
1190 adapter->num_rx_queues = 1;
1192 if (e1000_alloc_queues(adapter)) {
1193 DPRINTK(PROBE, ERR, "Unable to allocate memory for queues\n");
1197 #ifdef CONFIG_E1000_NAPI
1198 for (i = 0; i < adapter->num_rx_queues; i++) {
1199 adapter->polling_netdev[i].priv = adapter;
1200 adapter->polling_netdev[i].poll = &e1000_clean;
1201 adapter->polling_netdev[i].weight = 64;
1202 dev_hold(&adapter->polling_netdev[i]);
1203 set_bit(__LINK_STATE_START, &adapter->polling_netdev[i].state);
1205 spin_lock_init(&adapter->tx_queue_lock);
1208 atomic_set(&adapter->irq_sem, 1);
1209 spin_lock_init(&adapter->stats_lock);
1211 set_bit(__E1000_DOWN, &adapter->flags);
1217 * e1000_alloc_queues - Allocate memory for all rings
1218 * @adapter: board private structure to initialize
1220 * We allocate one ring per queue at run-time since we don't know the
1221 * number of queues at compile-time. The polling_netdev array is
1222 * intended for Multiqueue, but should work fine with a single queue.
1225 static int __devinit
1226 e1000_alloc_queues(struct e1000_adapter *adapter)
1230 size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues;
1231 adapter->tx_ring = kmalloc(size, GFP_KERNEL);
1232 if (!adapter->tx_ring)
1234 memset(adapter->tx_ring, 0, size);
1236 size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues;
1237 adapter->rx_ring = kmalloc(size, GFP_KERNEL);
1238 if (!adapter->rx_ring) {
1239 kfree(adapter->tx_ring);
1242 memset(adapter->rx_ring, 0, size);
1244 #ifdef CONFIG_E1000_NAPI
1245 size = sizeof(struct net_device) * adapter->num_rx_queues;
1246 adapter->polling_netdev = kmalloc(size, GFP_KERNEL);
1247 if (!adapter->polling_netdev) {
1248 kfree(adapter->tx_ring);
1249 kfree(adapter->rx_ring);
1252 memset(adapter->polling_netdev, 0, size);
1255 return E1000_SUCCESS;
1259 * e1000_open - Called when a network interface is made active
1260 * @netdev: network interface device structure
1262 * Returns 0 on success, negative value on failure
1264 * The open entry point is called when a network interface is made
1265 * active by the system (IFF_UP). At this point all resources needed
1266 * for transmit and receive operations are allocated, the interrupt
1267 * handler is registered with the OS, the watchdog timer is started,
1268 * and the stack is notified that the interface is ready.
1272 e1000_open(struct net_device *netdev)
1274 struct e1000_adapter *adapter = netdev_priv(netdev);
1277 /* disallow open during test */
1278 if (test_bit(__E1000_TESTING, &adapter->flags))
1281 /* allocate transmit descriptors */
1283 if ((err = e1000_setup_all_tx_resources(adapter)))
1286 /* allocate receive descriptors */
1288 if ((err = e1000_setup_all_rx_resources(adapter)))
1291 err = e1000_request_irq(adapter);
1295 e1000_power_up_phy(adapter);
1297 if ((err = e1000_up(adapter)))
1299 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1300 if ((adapter->hw.mng_cookie.status &
1301 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1302 e1000_update_mng_vlan(adapter);
1305 /* If AMT is enabled, let the firmware know that the network
1306 * interface is now open */
1307 if (adapter->hw.mac_type == e1000_82573 &&
1308 e1000_check_mng_mode(&adapter->hw))
1309 e1000_get_hw_control(adapter);
1311 return E1000_SUCCESS;
1314 e1000_power_down_phy(adapter);
1315 e1000_free_irq(adapter);
1317 e1000_free_all_rx_resources(adapter);
1319 e1000_free_all_tx_resources(adapter);
1321 e1000_reset(adapter);
1327 * e1000_close - Disables a network interface
1328 * @netdev: network interface device structure
1330 * Returns 0, this is not allowed to fail
1332 * The close entry point is called when an interface is de-activated
1333 * by the OS. The hardware is still under the drivers control, but
1334 * needs to be disabled. A global MAC reset is issued to stop the
1335 * hardware, and all transmit and receive resources are freed.
1339 e1000_close(struct net_device *netdev)
1341 struct e1000_adapter *adapter = netdev_priv(netdev);
1343 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1344 e1000_down(adapter);
1345 e1000_power_down_phy(adapter);
1346 e1000_free_irq(adapter);
1348 e1000_free_all_tx_resources(adapter);
1349 e1000_free_all_rx_resources(adapter);
1351 /* kill manageability vlan ID if supported, but not if a vlan with
1352 * the same ID is registered on the host OS (let 8021q kill it) */
1353 if ((adapter->hw.mng_cookie.status &
1354 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1356 adapter->vlgrp->vlan_devices[adapter->mng_vlan_id])) {
1357 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
1360 /* If AMT is enabled, let the firmware know that the network
1361 * interface is now closed */
1362 if (adapter->hw.mac_type == e1000_82573 &&
1363 e1000_check_mng_mode(&adapter->hw))
1364 e1000_release_hw_control(adapter);
1370 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1371 * @adapter: address of board private structure
1372 * @start: address of beginning of memory
1373 * @len: length of memory
1376 e1000_check_64k_bound(struct e1000_adapter *adapter,
1377 void *start, unsigned long len)
1379 unsigned long begin = (unsigned long) start;
1380 unsigned long end = begin + len;
1382 /* First rev 82545 and 82546 need to not allow any memory
1383 * write location to cross 64k boundary due to errata 23 */
1384 if (adapter->hw.mac_type == e1000_82545 ||
1385 adapter->hw.mac_type == e1000_82546) {
1386 return ((begin ^ (end - 1)) >> 16) != 0 ? FALSE : TRUE;
1393 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1394 * @adapter: board private structure
1395 * @txdr: tx descriptor ring (for a specific queue) to setup
1397 * Return 0 on success, negative on failure
1401 e1000_setup_tx_resources(struct e1000_adapter *adapter,
1402 struct e1000_tx_ring *txdr)
1404 struct pci_dev *pdev = adapter->pdev;
1407 size = sizeof(struct e1000_buffer) * txdr->count;
1408 txdr->buffer_info = vmalloc(size);
1409 if (!txdr->buffer_info) {
1411 "Unable to allocate memory for the transmit descriptor ring\n");
1414 memset(txdr->buffer_info, 0, size);
1416 /* round up to nearest 4K */
1418 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1419 E1000_ROUNDUP(txdr->size, 4096);
1421 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1424 vfree(txdr->buffer_info);
1426 "Unable to allocate memory for the transmit descriptor ring\n");
1430 /* Fix for errata 23, can't cross 64kB boundary */
1431 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1432 void *olddesc = txdr->desc;
1433 dma_addr_t olddma = txdr->dma;
1434 DPRINTK(TX_ERR, ERR, "txdr align check failed: %u bytes "
1435 "at %p\n", txdr->size, txdr->desc);
1436 /* Try again, without freeing the previous */
1437 txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma);
1438 /* Failed allocation, critical failure */
1440 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1441 goto setup_tx_desc_die;
1444 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1446 pci_free_consistent(pdev, txdr->size, txdr->desc,
1448 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1450 "Unable to allocate aligned memory "
1451 "for the transmit descriptor ring\n");
1452 vfree(txdr->buffer_info);
1455 /* Free old allocation, new allocation was successful */
1456 pci_free_consistent(pdev, txdr->size, olddesc, olddma);
1459 memset(txdr->desc, 0, txdr->size);
1461 txdr->next_to_use = 0;
1462 txdr->next_to_clean = 0;
1463 spin_lock_init(&txdr->tx_lock);
1469 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1470 * (Descriptors) for all queues
1471 * @adapter: board private structure
1473 * Return 0 on success, negative on failure
1477 e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
1481 for (i = 0; i < adapter->num_tx_queues; i++) {
1482 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1485 "Allocation for Tx Queue %u failed\n", i);
1486 for (i-- ; i >= 0; i--)
1487 e1000_free_tx_resources(adapter,
1488 &adapter->tx_ring[i]);
1497 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1498 * @adapter: board private structure
1500 * Configure the Tx unit of the MAC after a reset.
1504 e1000_configure_tx(struct e1000_adapter *adapter)
1507 struct e1000_hw *hw = &adapter->hw;
1508 uint32_t tdlen, tctl, tipg, tarc;
1509 uint32_t ipgr1, ipgr2;
1511 /* Setup the HW Tx Head and Tail descriptor pointers */
1513 switch (adapter->num_tx_queues) {
1516 tdba = adapter->tx_ring[0].dma;
1517 tdlen = adapter->tx_ring[0].count *
1518 sizeof(struct e1000_tx_desc);
1519 E1000_WRITE_REG(hw, TDLEN, tdlen);
1520 E1000_WRITE_REG(hw, TDBAH, (tdba >> 32));
1521 E1000_WRITE_REG(hw, TDBAL, (tdba & 0x00000000ffffffffULL));
1522 E1000_WRITE_REG(hw, TDT, 0);
1523 E1000_WRITE_REG(hw, TDH, 0);
1524 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ? E1000_TDH : E1000_82542_TDH);
1525 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ? E1000_TDT : E1000_82542_TDT);
1529 /* Set the default values for the Tx Inter Packet Gap timer */
1531 if (hw->media_type == e1000_media_type_fiber ||
1532 hw->media_type == e1000_media_type_internal_serdes)
1533 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1535 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1537 switch (hw->mac_type) {
1538 case e1000_82542_rev2_0:
1539 case e1000_82542_rev2_1:
1540 tipg = DEFAULT_82542_TIPG_IPGT;
1541 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1542 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1544 case e1000_80003es2lan:
1545 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1546 ipgr2 = DEFAULT_80003ES2LAN_TIPG_IPGR2;
1549 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1550 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1553 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1554 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1555 E1000_WRITE_REG(hw, TIPG, tipg);
1557 /* Set the Tx Interrupt Delay register */
1559 E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay);
1560 if (hw->mac_type >= e1000_82540)
1561 E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay);
1563 /* Program the Transmit Control Register */
1565 tctl = E1000_READ_REG(hw, TCTL);
1566 tctl &= ~E1000_TCTL_CT;
1567 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1568 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1570 if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) {
1571 tarc = E1000_READ_REG(hw, TARC0);
1573 E1000_WRITE_REG(hw, TARC0, tarc);
1574 } else if (hw->mac_type == e1000_80003es2lan) {
1575 tarc = E1000_READ_REG(hw, TARC0);
1577 E1000_WRITE_REG(hw, TARC0, tarc);
1578 tarc = E1000_READ_REG(hw, TARC1);
1580 E1000_WRITE_REG(hw, TARC1, tarc);
1583 e1000_config_collision_dist(hw);
1585 /* Setup Transmit Descriptor Settings for eop descriptor */
1586 adapter->txd_cmd = E1000_TXD_CMD_IDE | E1000_TXD_CMD_EOP |
1589 if (hw->mac_type < e1000_82543)
1590 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1592 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1594 /* Cache if we're 82544 running in PCI-X because we'll
1595 * need this to apply a workaround later in the send path. */
1596 if (hw->mac_type == e1000_82544 &&
1597 hw->bus_type == e1000_bus_type_pcix)
1598 adapter->pcix_82544 = 1;
1600 E1000_WRITE_REG(hw, TCTL, tctl);
1605 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1606 * @adapter: board private structure
1607 * @rxdr: rx descriptor ring (for a specific queue) to setup
1609 * Returns 0 on success, negative on failure
1613 e1000_setup_rx_resources(struct e1000_adapter *adapter,
1614 struct e1000_rx_ring *rxdr)
1616 struct pci_dev *pdev = adapter->pdev;
1619 size = sizeof(struct e1000_buffer) * rxdr->count;
1620 rxdr->buffer_info = vmalloc(size);
1621 if (!rxdr->buffer_info) {
1623 "Unable to allocate memory for the receive descriptor ring\n");
1626 memset(rxdr->buffer_info, 0, size);
1628 size = sizeof(struct e1000_ps_page) * rxdr->count;
1629 rxdr->ps_page = kmalloc(size, GFP_KERNEL);
1630 if (!rxdr->ps_page) {
1631 vfree(rxdr->buffer_info);
1633 "Unable to allocate memory for the receive descriptor ring\n");
1636 memset(rxdr->ps_page, 0, size);
1638 size = sizeof(struct e1000_ps_page_dma) * rxdr->count;
1639 rxdr->ps_page_dma = kmalloc(size, GFP_KERNEL);
1640 if (!rxdr->ps_page_dma) {
1641 vfree(rxdr->buffer_info);
1642 kfree(rxdr->ps_page);
1644 "Unable to allocate memory for the receive descriptor ring\n");
1647 memset(rxdr->ps_page_dma, 0, size);
1649 if (adapter->hw.mac_type <= e1000_82547_rev_2)
1650 desc_len = sizeof(struct e1000_rx_desc);
1652 desc_len = sizeof(union e1000_rx_desc_packet_split);
1654 /* Round up to nearest 4K */
1656 rxdr->size = rxdr->count * desc_len;
1657 E1000_ROUNDUP(rxdr->size, 4096);
1659 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1663 "Unable to allocate memory for the receive descriptor ring\n");
1665 vfree(rxdr->buffer_info);
1666 kfree(rxdr->ps_page);
1667 kfree(rxdr->ps_page_dma);
1671 /* Fix for errata 23, can't cross 64kB boundary */
1672 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1673 void *olddesc = rxdr->desc;
1674 dma_addr_t olddma = rxdr->dma;
1675 DPRINTK(RX_ERR, ERR, "rxdr align check failed: %u bytes "
1676 "at %p\n", rxdr->size, rxdr->desc);
1677 /* Try again, without freeing the previous */
1678 rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma);
1679 /* Failed allocation, critical failure */
1681 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1683 "Unable to allocate memory "
1684 "for the receive descriptor ring\n");
1685 goto setup_rx_desc_die;
1688 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1690 pci_free_consistent(pdev, rxdr->size, rxdr->desc,
1692 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1694 "Unable to allocate aligned memory "
1695 "for the receive descriptor ring\n");
1696 goto setup_rx_desc_die;
1698 /* Free old allocation, new allocation was successful */
1699 pci_free_consistent(pdev, rxdr->size, olddesc, olddma);
1702 memset(rxdr->desc, 0, rxdr->size);
1704 rxdr->next_to_clean = 0;
1705 rxdr->next_to_use = 0;
1711 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1712 * (Descriptors) for all queues
1713 * @adapter: board private structure
1715 * Return 0 on success, negative on failure
1719 e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
1723 for (i = 0; i < adapter->num_rx_queues; i++) {
1724 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1727 "Allocation for Rx Queue %u failed\n", i);
1728 for (i-- ; i >= 0; i--)
1729 e1000_free_rx_resources(adapter,
1730 &adapter->rx_ring[i]);
1739 * e1000_setup_rctl - configure the receive control registers
1740 * @adapter: Board private structure
1742 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
1743 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
1745 e1000_setup_rctl(struct e1000_adapter *adapter)
1747 uint32_t rctl, rfctl;
1748 uint32_t psrctl = 0;
1749 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1753 rctl = E1000_READ_REG(&adapter->hw, RCTL);
1755 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1757 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM |
1758 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1759 (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT);
1761 if (adapter->hw.tbi_compatibility_on == 1)
1762 rctl |= E1000_RCTL_SBP;
1764 rctl &= ~E1000_RCTL_SBP;
1766 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1767 rctl &= ~E1000_RCTL_LPE;
1769 rctl |= E1000_RCTL_LPE;
1771 /* Setup buffer sizes */
1772 rctl &= ~E1000_RCTL_SZ_4096;
1773 rctl |= E1000_RCTL_BSEX;
1774 switch (adapter->rx_buffer_len) {
1775 case E1000_RXBUFFER_256:
1776 rctl |= E1000_RCTL_SZ_256;
1777 rctl &= ~E1000_RCTL_BSEX;
1779 case E1000_RXBUFFER_512:
1780 rctl |= E1000_RCTL_SZ_512;
1781 rctl &= ~E1000_RCTL_BSEX;
1783 case E1000_RXBUFFER_1024:
1784 rctl |= E1000_RCTL_SZ_1024;
1785 rctl &= ~E1000_RCTL_BSEX;
1787 case E1000_RXBUFFER_2048:
1789 rctl |= E1000_RCTL_SZ_2048;
1790 rctl &= ~E1000_RCTL_BSEX;
1792 case E1000_RXBUFFER_4096:
1793 rctl |= E1000_RCTL_SZ_4096;
1795 case E1000_RXBUFFER_8192:
1796 rctl |= E1000_RCTL_SZ_8192;
1798 case E1000_RXBUFFER_16384:
1799 rctl |= E1000_RCTL_SZ_16384;
1803 #ifndef CONFIG_E1000_DISABLE_PACKET_SPLIT
1804 /* 82571 and greater support packet-split where the protocol
1805 * header is placed in skb->data and the packet data is
1806 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
1807 * In the case of a non-split, skb->data is linearly filled,
1808 * followed by the page buffers. Therefore, skb->data is
1809 * sized to hold the largest protocol header.
1811 /* allocations using alloc_page take too long for regular MTU
1812 * so only enable packet split for jumbo frames */
1813 pages = PAGE_USE_COUNT(adapter->netdev->mtu);
1814 if ((adapter->hw.mac_type >= e1000_82571) && (pages <= 3) &&
1815 PAGE_SIZE <= 16384 && (rctl & E1000_RCTL_LPE))
1816 adapter->rx_ps_pages = pages;
1818 adapter->rx_ps_pages = 0;
1820 if (adapter->rx_ps_pages) {
1821 /* Configure extra packet-split registers */
1822 rfctl = E1000_READ_REG(&adapter->hw, RFCTL);
1823 rfctl |= E1000_RFCTL_EXTEN;
1824 /* disable IPv6 packet split support */
1825 rfctl |= E1000_RFCTL_IPV6_DIS;
1826 E1000_WRITE_REG(&adapter->hw, RFCTL, rfctl);
1828 rctl |= E1000_RCTL_DTYP_PS;
1830 psrctl |= adapter->rx_ps_bsize0 >>
1831 E1000_PSRCTL_BSIZE0_SHIFT;
1833 switch (adapter->rx_ps_pages) {
1835 psrctl |= PAGE_SIZE <<
1836 E1000_PSRCTL_BSIZE3_SHIFT;
1838 psrctl |= PAGE_SIZE <<
1839 E1000_PSRCTL_BSIZE2_SHIFT;
1841 psrctl |= PAGE_SIZE >>
1842 E1000_PSRCTL_BSIZE1_SHIFT;
1846 E1000_WRITE_REG(&adapter->hw, PSRCTL, psrctl);
1849 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
1853 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1854 * @adapter: board private structure
1856 * Configure the Rx unit of the MAC after a reset.
1860 e1000_configure_rx(struct e1000_adapter *adapter)
1863 struct e1000_hw *hw = &adapter->hw;
1864 uint32_t rdlen, rctl, rxcsum, ctrl_ext;
1866 if (adapter->rx_ps_pages) {
1867 /* this is a 32 byte descriptor */
1868 rdlen = adapter->rx_ring[0].count *
1869 sizeof(union e1000_rx_desc_packet_split);
1870 adapter->clean_rx = e1000_clean_rx_irq_ps;
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers_ps;
1873 rdlen = adapter->rx_ring[0].count *
1874 sizeof(struct e1000_rx_desc);
1875 adapter->clean_rx = e1000_clean_rx_irq;
1876 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1879 /* disable receives while setting up the descriptors */
1880 rctl = E1000_READ_REG(hw, RCTL);
1881 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
1883 /* set the Receive Delay Timer Register */
1884 E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay);
1886 if (hw->mac_type >= e1000_82540) {
1887 E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay);
1888 if (adapter->itr > 1)
1889 E1000_WRITE_REG(hw, ITR,
1890 1000000000 / (adapter->itr * 256));
1893 if (hw->mac_type >= e1000_82571) {
1894 ctrl_ext = E1000_READ_REG(hw, CTRL_EXT);
1895 /* Reset delay timers after every interrupt */
1896 ctrl_ext |= E1000_CTRL_EXT_INT_TIMER_CLR;
1897 #ifdef CONFIG_E1000_NAPI
1898 /* Auto-Mask interrupts upon ICR read. */
1899 ctrl_ext |= E1000_CTRL_EXT_IAME;
1901 E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext);
1902 E1000_WRITE_REG(hw, IAM, ~0);
1903 E1000_WRITE_FLUSH(hw);
1906 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1907 * the Base and Length of the Rx Descriptor Ring */
1908 switch (adapter->num_rx_queues) {
1911 rdba = adapter->rx_ring[0].dma;
1912 E1000_WRITE_REG(hw, RDLEN, rdlen);
1913 E1000_WRITE_REG(hw, RDBAH, (rdba >> 32));
1914 E1000_WRITE_REG(hw, RDBAL, (rdba & 0x00000000ffffffffULL));
1915 E1000_WRITE_REG(hw, RDT, 0);
1916 E1000_WRITE_REG(hw, RDH, 0);
1917 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ? E1000_RDH : E1000_82542_RDH);
1918 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ? E1000_RDT : E1000_82542_RDT);
1922 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1923 if (hw->mac_type >= e1000_82543) {
1924 rxcsum = E1000_READ_REG(hw, RXCSUM);
1925 if (adapter->rx_csum == TRUE) {
1926 rxcsum |= E1000_RXCSUM_TUOFL;
1928 /* Enable 82571 IPv4 payload checksum for UDP fragments
1929 * Must be used in conjunction with packet-split. */
1930 if ((hw->mac_type >= e1000_82571) &&
1931 (adapter->rx_ps_pages)) {
1932 rxcsum |= E1000_RXCSUM_IPPCSE;
1935 rxcsum &= ~E1000_RXCSUM_TUOFL;
1936 /* don't need to clear IPPCSE as it defaults to 0 */
1938 E1000_WRITE_REG(hw, RXCSUM, rxcsum);
1941 /* Enable Receives */
1942 E1000_WRITE_REG(hw, RCTL, rctl);
1946 * e1000_free_tx_resources - Free Tx Resources per Queue
1947 * @adapter: board private structure
1948 * @tx_ring: Tx descriptor ring for a specific queue
1950 * Free all transmit software resources
1954 e1000_free_tx_resources(struct e1000_adapter *adapter,
1955 struct e1000_tx_ring *tx_ring)
1957 struct pci_dev *pdev = adapter->pdev;
1959 e1000_clean_tx_ring(adapter, tx_ring);
1961 vfree(tx_ring->buffer_info);
1962 tx_ring->buffer_info = NULL;
1964 pci_free_consistent(pdev, tx_ring->size, tx_ring->desc, tx_ring->dma);
1966 tx_ring->desc = NULL;
1970 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1971 * @adapter: board private structure
1973 * Free all transmit software resources
1977 e1000_free_all_tx_resources(struct e1000_adapter *adapter)
1981 for (i = 0; i < adapter->num_tx_queues; i++)
1982 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1986 e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1987 struct e1000_buffer *buffer_info)
1989 if (buffer_info->dma) {
1990 pci_unmap_page(adapter->pdev,
1992 buffer_info->length,
1995 if (buffer_info->skb)
1996 dev_kfree_skb_any(buffer_info->skb);
1997 memset(buffer_info, 0, sizeof(struct e1000_buffer));
2001 * e1000_clean_tx_ring - Free Tx Buffers
2002 * @adapter: board private structure
2003 * @tx_ring: ring to be cleaned
2007 e1000_clean_tx_ring(struct e1000_adapter *adapter,
2008 struct e1000_tx_ring *tx_ring)
2010 struct e1000_buffer *buffer_info;
2014 /* Free all the Tx ring sk_buffs */
2016 for (i = 0; i < tx_ring->count; i++) {
2017 buffer_info = &tx_ring->buffer_info[i];
2018 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2021 size = sizeof(struct e1000_buffer) * tx_ring->count;
2022 memset(tx_ring->buffer_info, 0, size);
2024 /* Zero out the descriptor ring */
2026 memset(tx_ring->desc, 0, tx_ring->size);
2028 tx_ring->next_to_use = 0;
2029 tx_ring->next_to_clean = 0;
2030 tx_ring->last_tx_tso = 0;
2032 writel(0, adapter->hw.hw_addr + tx_ring->tdh);
2033 writel(0, adapter->hw.hw_addr + tx_ring->tdt);
2037 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2038 * @adapter: board private structure
2042 e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
2046 for (i = 0; i < adapter->num_tx_queues; i++)
2047 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
2051 * e1000_free_rx_resources - Free Rx Resources
2052 * @adapter: board private structure
2053 * @rx_ring: ring to clean the resources from
2055 * Free all receive software resources
2059 e1000_free_rx_resources(struct e1000_adapter *adapter,
2060 struct e1000_rx_ring *rx_ring)
2062 struct pci_dev *pdev = adapter->pdev;
2064 e1000_clean_rx_ring(adapter, rx_ring);
2066 vfree(rx_ring->buffer_info);
2067 rx_ring->buffer_info = NULL;
2068 kfree(rx_ring->ps_page);
2069 rx_ring->ps_page = NULL;
2070 kfree(rx_ring->ps_page_dma);
2071 rx_ring->ps_page_dma = NULL;
2073 pci_free_consistent(pdev, rx_ring->size, rx_ring->desc, rx_ring->dma);
2075 rx_ring->desc = NULL;
2079 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2080 * @adapter: board private structure
2082 * Free all receive software resources
2086 e1000_free_all_rx_resources(struct e1000_adapter *adapter)
2090 for (i = 0; i < adapter->num_rx_queues; i++)
2091 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2095 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2096 * @adapter: board private structure
2097 * @rx_ring: ring to free buffers from
2101 e1000_clean_rx_ring(struct e1000_adapter *adapter,
2102 struct e1000_rx_ring *rx_ring)
2104 struct e1000_buffer *buffer_info;
2105 struct e1000_ps_page *ps_page;
2106 struct e1000_ps_page_dma *ps_page_dma;
2107 struct pci_dev *pdev = adapter->pdev;
2111 /* Free all the Rx ring sk_buffs */
2112 for (i = 0; i < rx_ring->count; i++) {
2113 buffer_info = &rx_ring->buffer_info[i];
2114 if (buffer_info->skb) {
2115 pci_unmap_single(pdev,
2117 buffer_info->length,
2118 PCI_DMA_FROMDEVICE);
2120 dev_kfree_skb(buffer_info->skb);
2121 buffer_info->skb = NULL;
2123 ps_page = &rx_ring->ps_page[i];
2124 ps_page_dma = &rx_ring->ps_page_dma[i];
2125 for (j = 0; j < adapter->rx_ps_pages; j++) {
2126 if (!ps_page->ps_page[j]) break;
2127 pci_unmap_page(pdev,
2128 ps_page_dma->ps_page_dma[j],
2129 PAGE_SIZE, PCI_DMA_FROMDEVICE);
2130 ps_page_dma->ps_page_dma[j] = 0;
2131 put_page(ps_page->ps_page[j]);
2132 ps_page->ps_page[j] = NULL;
2136 size = sizeof(struct e1000_buffer) * rx_ring->count;
2137 memset(rx_ring->buffer_info, 0, size);
2138 size = sizeof(struct e1000_ps_page) * rx_ring->count;
2139 memset(rx_ring->ps_page, 0, size);
2140 size = sizeof(struct e1000_ps_page_dma) * rx_ring->count;
2141 memset(rx_ring->ps_page_dma, 0, size);
2143 /* Zero out the descriptor ring */
2145 memset(rx_ring->desc, 0, rx_ring->size);
2147 rx_ring->next_to_clean = 0;
2148 rx_ring->next_to_use = 0;
2150 writel(0, adapter->hw.hw_addr + rx_ring->rdh);
2151 writel(0, adapter->hw.hw_addr + rx_ring->rdt);
2155 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2156 * @adapter: board private structure
2160 e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
2164 for (i = 0; i < adapter->num_rx_queues; i++)
2165 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
2168 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2169 * and memory write and invalidate disabled for certain operations
2172 e1000_enter_82542_rst(struct e1000_adapter *adapter)
2174 struct net_device *netdev = adapter->netdev;
2177 e1000_pci_clear_mwi(&adapter->hw);
2179 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2180 rctl |= E1000_RCTL_RST;
2181 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2182 E1000_WRITE_FLUSH(&adapter->hw);
2185 if (netif_running(netdev))
2186 e1000_clean_all_rx_rings(adapter);
2190 e1000_leave_82542_rst(struct e1000_adapter *adapter)
2192 struct net_device *netdev = adapter->netdev;
2195 rctl = E1000_READ_REG(&adapter->hw, RCTL);
2196 rctl &= ~E1000_RCTL_RST;
2197 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
2198 E1000_WRITE_FLUSH(&adapter->hw);
2201 if (adapter->hw.pci_cmd_word & PCI_COMMAND_INVALIDATE)
2202 e1000_pci_set_mwi(&adapter->hw);
2204 if (netif_running(netdev)) {
2205 /* No need to loop, because 82542 supports only 1 queue */
2206 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
2207 e1000_configure_rx(adapter);
2208 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
2213 * e1000_set_mac - Change the Ethernet Address of the NIC
2214 * @netdev: network interface device structure
2215 * @p: pointer to an address structure
2217 * Returns 0 on success, negative on failure
2221 e1000_set_mac(struct net_device *netdev, void *p)
2223 struct e1000_adapter *adapter = netdev_priv(netdev);
2224 struct sockaddr *addr = p;
2226 if (!is_valid_ether_addr(addr->sa_data))
2227 return -EADDRNOTAVAIL;
2229 /* 82542 2.0 needs to be in reset to write receive address registers */
2231 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2232 e1000_enter_82542_rst(adapter);
2234 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
2235 memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len);
2237 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2239 /* With 82571 controllers, LAA may be overwritten (with the default)
2240 * due to controller reset from the other port. */
2241 if (adapter->hw.mac_type == e1000_82571) {
2242 /* activate the work around */
2243 adapter->hw.laa_is_present = 1;
2245 /* Hold a copy of the LAA in RAR[14] This is done so that
2246 * between the time RAR[0] gets clobbered and the time it
2247 * gets fixed (in e1000_watchdog), the actual LAA is in one
2248 * of the RARs and no incoming packets directed to this port
2249 * are dropped. Eventaully the LAA will be in RAR[0] and
2251 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr,
2252 E1000_RAR_ENTRIES - 1);
2255 if (adapter->hw.mac_type == e1000_82542_rev2_0)
2256 e1000_leave_82542_rst(adapter);
2262 * e1000_set_multi - Multicast and Promiscuous mode set
2263 * @netdev: network interface device structure
2265 * The set_multi entry point is called whenever the multicast address
2266 * list or the network interface flags are updated. This routine is
2267 * responsible for configuring the hardware for proper multicast,
2268 * promiscuous mode, and all-multi behavior.
2272 e1000_set_multi(struct net_device *netdev)
2274 struct e1000_adapter *adapter = netdev_priv(netdev);
2275 struct e1000_hw *hw = &adapter->hw;
2276 struct dev_mc_list *mc_ptr;
2278 uint32_t hash_value;
2279 int i, rar_entries = E1000_RAR_ENTRIES;
2280 int mta_reg_count = (hw->mac_type == e1000_ich8lan) ?
2281 E1000_NUM_MTA_REGISTERS_ICH8LAN :
2282 E1000_NUM_MTA_REGISTERS;
2284 if (adapter->hw.mac_type == e1000_ich8lan)
2285 rar_entries = E1000_RAR_ENTRIES_ICH8LAN;
2287 /* reserve RAR[14] for LAA over-write work-around */
2288 if (adapter->hw.mac_type == e1000_82571)
2291 /* Check for Promiscuous and All Multicast modes */
2293 rctl = E1000_READ_REG(hw, RCTL);
2295 if (netdev->flags & IFF_PROMISC) {
2296 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
2297 } else if (netdev->flags & IFF_ALLMULTI) {
2298 rctl |= E1000_RCTL_MPE;
2299 rctl &= ~E1000_RCTL_UPE;
2301 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE);
2304 E1000_WRITE_REG(hw, RCTL, rctl);
2306 /* 82542 2.0 needs to be in reset to write receive address registers */
2308 if (hw->mac_type == e1000_82542_rev2_0)
2309 e1000_enter_82542_rst(adapter);
2311 /* load the first 14 multicast address into the exact filters 1-14
2312 * RAR 0 is used for the station MAC adddress
2313 * if there are not 14 addresses, go ahead and clear the filters
2314 * -- with 82571 controllers only 0-13 entries are filled here
2316 mc_ptr = netdev->mc_list;
2318 for (i = 1; i < rar_entries; i++) {
2320 e1000_rar_set(hw, mc_ptr->dmi_addr, i);
2321 mc_ptr = mc_ptr->next;
2323 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2324 E1000_WRITE_FLUSH(hw);
2325 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2326 E1000_WRITE_FLUSH(hw);
2330 /* clear the old settings from the multicast hash table */
2332 for (i = 0; i < mta_reg_count; i++) {
2333 E1000_WRITE_REG_ARRAY(hw, MTA, i, 0);
2334 E1000_WRITE_FLUSH(hw);
2337 /* load any remaining addresses into the hash table */
2339 for (; mc_ptr; mc_ptr = mc_ptr->next) {
2340 hash_value = e1000_hash_mc_addr(hw, mc_ptr->dmi_addr);
2341 e1000_mta_set(hw, hash_value);
2344 if (hw->mac_type == e1000_82542_rev2_0)
2345 e1000_leave_82542_rst(adapter);
2348 /* Need to wait a few seconds after link up to get diagnostic information from
2352 e1000_update_phy_info(unsigned long data)
2354 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2355 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
2359 * e1000_82547_tx_fifo_stall - Timer Call-back
2360 * @data: pointer to adapter cast into an unsigned long
2364 e1000_82547_tx_fifo_stall(unsigned long data)
2366 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2367 struct net_device *netdev = adapter->netdev;
2370 if (atomic_read(&adapter->tx_fifo_stall)) {
2371 if ((E1000_READ_REG(&adapter->hw, TDT) ==
2372 E1000_READ_REG(&adapter->hw, TDH)) &&
2373 (E1000_READ_REG(&adapter->hw, TDFT) ==
2374 E1000_READ_REG(&adapter->hw, TDFH)) &&
2375 (E1000_READ_REG(&adapter->hw, TDFTS) ==
2376 E1000_READ_REG(&adapter->hw, TDFHS))) {
2377 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2378 E1000_WRITE_REG(&adapter->hw, TCTL,
2379 tctl & ~E1000_TCTL_EN);
2380 E1000_WRITE_REG(&adapter->hw, TDFT,
2381 adapter->tx_head_addr);
2382 E1000_WRITE_REG(&adapter->hw, TDFH,
2383 adapter->tx_head_addr);
2384 E1000_WRITE_REG(&adapter->hw, TDFTS,
2385 adapter->tx_head_addr);
2386 E1000_WRITE_REG(&adapter->hw, TDFHS,
2387 adapter->tx_head_addr);
2388 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2389 E1000_WRITE_FLUSH(&adapter->hw);
2391 adapter->tx_fifo_head = 0;
2392 atomic_set(&adapter->tx_fifo_stall, 0);
2393 netif_wake_queue(netdev);
2395 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
2401 * e1000_watchdog - Timer Call-back
2402 * @data: pointer to adapter cast into an unsigned long
2405 e1000_watchdog(unsigned long data)
2407 struct e1000_adapter *adapter = (struct e1000_adapter *) data;
2408 struct net_device *netdev = adapter->netdev;
2409 struct e1000_tx_ring *txdr = adapter->tx_ring;
2410 uint32_t link, tctl;
2413 ret_val = e1000_check_for_link(&adapter->hw);
2414 if ((ret_val == E1000_ERR_PHY) &&
2415 (adapter->hw.phy_type == e1000_phy_igp_3) &&
2416 (E1000_READ_REG(&adapter->hw, CTRL) & E1000_PHY_CTRL_GBE_DISABLE)) {
2417 /* See e1000_kumeran_lock_loss_workaround() */
2419 "Gigabit has been disabled, downgrading speed\n");
2421 if (adapter->hw.mac_type == e1000_82573) {
2422 e1000_enable_tx_pkt_filtering(&adapter->hw);
2423 if (adapter->mng_vlan_id != adapter->hw.mng_cookie.vlan_id)
2424 e1000_update_mng_vlan(adapter);
2427 if ((adapter->hw.media_type == e1000_media_type_internal_serdes) &&
2428 !(E1000_READ_REG(&adapter->hw, TXCW) & E1000_TXCW_ANE))
2429 link = !adapter->hw.serdes_link_down;
2431 link = E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU;
2434 if (!netif_carrier_ok(netdev)) {
2435 boolean_t txb2b = 1;
2436 e1000_get_speed_and_duplex(&adapter->hw,
2437 &adapter->link_speed,
2438 &adapter->link_duplex);
2440 DPRINTK(LINK, INFO, "NIC Link is Up %d Mbps %s\n",
2441 adapter->link_speed,
2442 adapter->link_duplex == FULL_DUPLEX ?
2443 "Full Duplex" : "Half Duplex");
2445 /* tweak tx_queue_len according to speed/duplex
2446 * and adjust the timeout factor */
2447 netdev->tx_queue_len = adapter->tx_queue_len;
2448 adapter->tx_timeout_factor = 1;
2449 switch (adapter->link_speed) {
2452 netdev->tx_queue_len = 10;
2453 adapter->tx_timeout_factor = 8;
2457 netdev->tx_queue_len = 100;
2458 /* maybe add some timeout factor ? */
2462 if ((adapter->hw.mac_type == e1000_82571 ||
2463 adapter->hw.mac_type == e1000_82572) &&
2465 #define SPEED_MODE_BIT (1 << 21)
2467 tarc0 = E1000_READ_REG(&adapter->hw, TARC0);
2468 tarc0 &= ~SPEED_MODE_BIT;
2469 E1000_WRITE_REG(&adapter->hw, TARC0, tarc0);
2473 /* disable TSO for pcie and 10/100 speeds, to avoid
2474 * some hardware issues */
2475 if (!adapter->tso_force &&
2476 adapter->hw.bus_type == e1000_bus_type_pci_express){
2477 switch (adapter->link_speed) {
2481 "10/100 speed: disabling TSO\n");
2482 netdev->features &= ~NETIF_F_TSO;
2485 netdev->features |= NETIF_F_TSO;
2494 /* enable transmits in the hardware, need to do this
2495 * after setting TARC0 */
2496 tctl = E1000_READ_REG(&adapter->hw, TCTL);
2497 tctl |= E1000_TCTL_EN;
2498 E1000_WRITE_REG(&adapter->hw, TCTL, tctl);
2500 netif_carrier_on(netdev);
2501 netif_wake_queue(netdev);
2502 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2503 adapter->smartspeed = 0;
2506 if (netif_carrier_ok(netdev)) {
2507 adapter->link_speed = 0;
2508 adapter->link_duplex = 0;
2509 DPRINTK(LINK, INFO, "NIC Link is Down\n");
2510 netif_carrier_off(netdev);
2511 netif_stop_queue(netdev);
2512 mod_timer(&adapter->phy_info_timer, jiffies + 2 * HZ);
2514 /* 80003ES2LAN workaround--
2515 * For packet buffer work-around on link down event;
2516 * disable receives in the ISR and
2517 * reset device here in the watchdog
2519 if (adapter->hw.mac_type == e1000_80003es2lan)
2521 schedule_work(&adapter->reset_task);
2524 e1000_smartspeed(adapter);
2527 e1000_update_stats(adapter);
2529 adapter->hw.tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
2530 adapter->tpt_old = adapter->stats.tpt;
2531 adapter->hw.collision_delta = adapter->stats.colc - adapter->colc_old;
2532 adapter->colc_old = adapter->stats.colc;
2534 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2535 adapter->gorcl_old = adapter->stats.gorcl;
2536 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2537 adapter->gotcl_old = adapter->stats.gotcl;
2539 e1000_update_adaptive(&adapter->hw);
2541 if (!netif_carrier_ok(netdev)) {
2542 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
2543 /* We've lost link, so the controller stops DMA,
2544 * but we've got queued Tx work that's never going
2545 * to get done, so reset controller to flush Tx.
2546 * (Do the reset outside of interrupt context). */
2547 adapter->tx_timeout_count++;
2548 schedule_work(&adapter->reset_task);
2552 /* Dynamic mode for Interrupt Throttle Rate (ITR) */
2553 if (adapter->hw.mac_type >= e1000_82540 && adapter->itr == 1) {
2554 /* Symmetric Tx/Rx gets a reduced ITR=2000; Total
2555 * asymmetrical Tx or Rx gets ITR=8000; everyone
2556 * else is between 2000-8000. */
2557 uint32_t goc = (adapter->gotcl + adapter->gorcl) / 10000;
2558 uint32_t dif = (adapter->gotcl > adapter->gorcl ?
2559 adapter->gotcl - adapter->gorcl :
2560 adapter->gorcl - adapter->gotcl) / 10000;
2561 uint32_t itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2562 E1000_WRITE_REG(&adapter->hw, ITR, 1000000000 / (itr * 256));
2565 /* Cause software interrupt to ensure rx ring is cleaned */
2566 E1000_WRITE_REG(&adapter->hw, ICS, E1000_ICS_RXDMT0);
2568 /* Force detection of hung controller every watchdog period */
2569 adapter->detect_tx_hung = TRUE;
2571 /* With 82571 controllers, LAA may be overwritten due to controller
2572 * reset from the other port. Set the appropriate LAA in RAR[0] */
2573 if (adapter->hw.mac_type == e1000_82571 && adapter->hw.laa_is_present)
2574 e1000_rar_set(&adapter->hw, adapter->hw.mac_addr, 0);
2576 /* Reset the timer */
2577 mod_timer(&adapter->watchdog_timer, jiffies + 2 * HZ);
2580 #define E1000_TX_FLAGS_CSUM 0x00000001
2581 #define E1000_TX_FLAGS_VLAN 0x00000002
2582 #define E1000_TX_FLAGS_TSO 0x00000004
2583 #define E1000_TX_FLAGS_IPV4 0x00000008
2584 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2585 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2588 e1000_tso(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2589 struct sk_buff *skb)
2592 struct e1000_context_desc *context_desc;
2593 struct e1000_buffer *buffer_info;
2595 uint32_t cmd_length = 0;
2596 uint16_t ipcse = 0, tucse, mss;
2597 uint8_t ipcss, ipcso, tucss, tucso, hdr_len;
2600 if (skb_is_gso(skb)) {
2601 if (skb_header_cloned(skb)) {
2602 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2607 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
2608 mss = skb_shinfo(skb)->gso_size;
2609 if (skb->protocol == htons(ETH_P_IP)) {
2610 skb->nh.iph->tot_len = 0;
2611 skb->nh.iph->check = 0;
2613 ~csum_tcpudp_magic(skb->nh.iph->saddr,
2618 cmd_length = E1000_TXD_CMD_IP;
2619 ipcse = skb->h.raw - skb->data - 1;
2620 #ifdef NETIF_F_TSO_IPV6
2621 } else if (skb->protocol == htons(ETH_P_IPV6)) {
2622 skb->nh.ipv6h->payload_len = 0;
2624 ~csum_ipv6_magic(&skb->nh.ipv6h->saddr,
2625 &skb->nh.ipv6h->daddr,
2632 ipcss = skb->nh.raw - skb->data;
2633 ipcso = (void *)&(skb->nh.iph->check) - (void *)skb->data;
2634 tucss = skb->h.raw - skb->data;
2635 tucso = (void *)&(skb->h.th->check) - (void *)skb->data;
2638 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2639 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
2641 i = tx_ring->next_to_use;
2642 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2643 buffer_info = &tx_ring->buffer_info[i];
2645 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2646 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2647 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2648 context_desc->upper_setup.tcp_fields.tucss = tucss;
2649 context_desc->upper_setup.tcp_fields.tucso = tucso;
2650 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2651 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2652 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2653 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2655 buffer_info->time_stamp = jiffies;
2657 if (++i == tx_ring->count) i = 0;
2658 tx_ring->next_to_use = i;
2668 e1000_tx_csum(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2669 struct sk_buff *skb)
2671 struct e1000_context_desc *context_desc;
2672 struct e1000_buffer *buffer_info;
2676 if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) {
2677 css = skb->h.raw - skb->data;
2679 i = tx_ring->next_to_use;
2680 buffer_info = &tx_ring->buffer_info[i];
2681 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
2683 context_desc->upper_setup.tcp_fields.tucss = css;
2684 context_desc->upper_setup.tcp_fields.tucso = css + skb->csum;
2685 context_desc->upper_setup.tcp_fields.tucse = 0;
2686 context_desc->tcp_seg_setup.data = 0;
2687 context_desc->cmd_and_length = cpu_to_le32(E1000_TXD_CMD_DEXT);
2689 buffer_info->time_stamp = jiffies;
2691 if (unlikely(++i == tx_ring->count)) i = 0;
2692 tx_ring->next_to_use = i;
2700 #define E1000_MAX_TXD_PWR 12
2701 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2704 e1000_tx_map(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2705 struct sk_buff *skb, unsigned int first, unsigned int max_per_txd,
2706 unsigned int nr_frags, unsigned int mss)
2708 struct e1000_buffer *buffer_info;
2709 unsigned int len = skb->len;
2710 unsigned int offset = 0, size, count = 0, i;
2712 len -= skb->data_len;
2714 i = tx_ring->next_to_use;
2717 buffer_info = &tx_ring->buffer_info[i];
2718 size = min(len, max_per_txd);
2720 /* Workaround for Controller erratum --
2721 * descriptor for non-tso packet in a linear SKB that follows a
2722 * tso gets written back prematurely before the data is fully
2723 * DMA'd to the controller */
2724 if (!skb->data_len && tx_ring->last_tx_tso &&
2726 tx_ring->last_tx_tso = 0;
2730 /* Workaround for premature desc write-backs
2731 * in TSO mode. Append 4-byte sentinel desc */
2732 if (unlikely(mss && !nr_frags && size == len && size > 8))
2735 /* work-around for errata 10 and it applies
2736 * to all controllers in PCI-X mode
2737 * The fix is to make sure that the first descriptor of a
2738 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2740 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
2741 (size > 2015) && count == 0))
2744 /* Workaround for potential 82544 hang in PCI-X. Avoid
2745 * terminating buffers within evenly-aligned dwords. */
2746 if (unlikely(adapter->pcix_82544 &&
2747 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2751 buffer_info->length = size;
2753 pci_map_single(adapter->pdev,
2757 buffer_info->time_stamp = jiffies;
2762 if (unlikely(++i == tx_ring->count)) i = 0;
2765 for (f = 0; f < nr_frags; f++) {
2766 struct skb_frag_struct *frag;
2768 frag = &skb_shinfo(skb)->frags[f];
2770 offset = frag->page_offset;
2773 buffer_info = &tx_ring->buffer_info[i];
2774 size = min(len, max_per_txd);
2776 /* Workaround for premature desc write-backs
2777 * in TSO mode. Append 4-byte sentinel desc */
2778 if (unlikely(mss && f == (nr_frags-1) && size == len && size > 8))
2781 /* Workaround for potential 82544 hang in PCI-X.
2782 * Avoid terminating buffers within evenly-aligned
2784 if (unlikely(adapter->pcix_82544 &&
2785 !((unsigned long)(frag->page+offset+size-1) & 4) &&
2789 buffer_info->length = size;
2791 pci_map_page(adapter->pdev,
2796 buffer_info->time_stamp = jiffies;
2801 if (unlikely(++i == tx_ring->count)) i = 0;
2805 i = (i == 0) ? tx_ring->count - 1 : i - 1;
2806 tx_ring->buffer_info[i].skb = skb;
2807 tx_ring->buffer_info[first].next_to_watch = i;
2813 e1000_tx_queue(struct e1000_adapter *adapter, struct e1000_tx_ring *tx_ring,
2814 int tx_flags, int count)
2816 struct e1000_tx_desc *tx_desc = NULL;
2817 struct e1000_buffer *buffer_info;
2818 uint32_t txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
2821 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
2822 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
2824 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2826 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2827 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
2830 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
2831 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
2832 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2835 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
2836 txd_lower |= E1000_TXD_CMD_VLE;
2837 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
2840 i = tx_ring->next_to_use;
2843 buffer_info = &tx_ring->buffer_info[i];
2844 tx_desc = E1000_TX_DESC(*tx_ring, i);
2845 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
2846 tx_desc->lower.data =
2847 cpu_to_le32(txd_lower | buffer_info->length);
2848 tx_desc->upper.data = cpu_to_le32(txd_upper);
2849 if (unlikely(++i == tx_ring->count)) i = 0;
2852 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
2854 /* Force memory writes to complete before letting h/w
2855 * know there are new descriptors to fetch. (Only
2856 * applicable for weak-ordered memory model archs,
2857 * such as IA-64). */
2860 tx_ring->next_to_use = i;
2861 writel(i, adapter->hw.hw_addr + tx_ring->tdt);
2865 * 82547 workaround to avoid controller hang in half-duplex environment.
2866 * The workaround is to avoid queuing a large packet that would span
2867 * the internal Tx FIFO ring boundary by notifying the stack to resend
2868 * the packet at a later time. This gives the Tx FIFO an opportunity to
2869 * flush all packets. When that occurs, we reset the Tx FIFO pointers
2870 * to the beginning of the Tx FIFO.
2873 #define E1000_FIFO_HDR 0x10
2874 #define E1000_82547_PAD_LEN 0x3E0
2877 e1000_82547_fifo_workaround(struct e1000_adapter *adapter, struct sk_buff *skb)
2879 uint32_t fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
2880 uint32_t skb_fifo_len = skb->len + E1000_FIFO_HDR;
2882 E1000_ROUNDUP(skb_fifo_len, E1000_FIFO_HDR);
2884 if (adapter->link_duplex != HALF_DUPLEX)
2885 goto no_fifo_stall_required;
2887 if (atomic_read(&adapter->tx_fifo_stall))
2890 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
2891 atomic_set(&adapter->tx_fifo_stall, 1);
2895 no_fifo_stall_required:
2896 adapter->tx_fifo_head += skb_fifo_len;
2897 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
2898 adapter->tx_fifo_head -= adapter->tx_fifo_size;
2902 #define MINIMUM_DHCP_PACKET_SIZE 282
2904 e1000_transfer_dhcp_info(struct e1000_adapter *adapter, struct sk_buff *skb)
2906 struct e1000_hw *hw = &adapter->hw;
2907 uint16_t length, offset;
2908 if (vlan_tx_tag_present(skb)) {
2909 if (!((vlan_tx_tag_get(skb) == adapter->hw.mng_cookie.vlan_id) &&
2910 ( adapter->hw.mng_cookie.status &
2911 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) )
2914 if (skb->len > MINIMUM_DHCP_PACKET_SIZE) {
2915 struct ethhdr *eth = (struct ethhdr *) skb->data;
2916 if ((htons(ETH_P_IP) == eth->h_proto)) {
2917 const struct iphdr *ip =
2918 (struct iphdr *)((uint8_t *)skb->data+14);
2919 if (IPPROTO_UDP == ip->protocol) {
2920 struct udphdr *udp =
2921 (struct udphdr *)((uint8_t *)ip +
2923 if (ntohs(udp->dest) == 67) {
2924 offset = (uint8_t *)udp + 8 - skb->data;
2925 length = skb->len - offset;
2927 return e1000_mng_write_dhcp_info(hw,
2937 static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
2939 struct e1000_adapter *adapter = netdev_priv(netdev);
2940 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
2942 netif_stop_queue(netdev);
2943 /* Herbert's original patch had:
2944 * smp_mb__after_netif_stop_queue();
2945 * but since that doesn't exist yet, just open code it. */
2948 /* We need to check again in a case another CPU has just
2949 * made room available. */
2950 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
2954 netif_start_queue(netdev);
2958 static int e1000_maybe_stop_tx(struct net_device *netdev,
2959 struct e1000_tx_ring *tx_ring, int size)
2961 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
2963 return __e1000_maybe_stop_tx(netdev, size);
2966 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
2968 e1000_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
2970 struct e1000_adapter *adapter = netdev_priv(netdev);
2971 struct e1000_tx_ring *tx_ring;
2972 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
2973 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
2974 unsigned int tx_flags = 0;
2975 unsigned int len = skb->len;
2976 unsigned long flags;
2977 unsigned int nr_frags = 0;
2978 unsigned int mss = 0;
2982 len -= skb->data_len;
2984 /* This goes back to the question of how to logically map a tx queue
2985 * to a flow. Right now, performance is impacted slightly negatively
2986 * if using multiple tx queues. If the stack breaks away from a
2987 * single qdisc implementation, we can look at this again. */
2988 tx_ring = adapter->tx_ring;
2990 if (unlikely(skb->len <= 0)) {
2991 dev_kfree_skb_any(skb);
2992 return NETDEV_TX_OK;
2995 /* 82571 and newer doesn't need the workaround that limited descriptor
2997 if (adapter->hw.mac_type >= e1000_82571)
3001 mss = skb_shinfo(skb)->gso_size;
3002 /* The controller does a simple calculation to
3003 * make sure there is enough room in the FIFO before
3004 * initiating the DMA for each buffer. The calc is:
3005 * 4 = ceil(buffer len/mss). To make sure we don't
3006 * overrun the FIFO, adjust the max buffer len if mss
3010 max_per_txd = min(mss << 2, max_per_txd);
3011 max_txd_pwr = fls(max_per_txd) - 1;
3013 /* TSO Workaround for 82571/2/3 Controllers -- if skb->data
3014 * points to just header, pull a few bytes of payload from
3015 * frags into skb->data */
3016 hdr_len = ((skb->h.raw - skb->data) + (skb->h.th->doff << 2));
3017 if (skb->data_len && (hdr_len == (skb->len - skb->data_len))) {
3018 switch (adapter->hw.mac_type) {
3019 unsigned int pull_size;
3024 pull_size = min((unsigned int)4, skb->data_len);
3025 if (!__pskb_pull_tail(skb, pull_size)) {
3027 "__pskb_pull_tail failed.\n");
3028 dev_kfree_skb_any(skb);
3029 return NETDEV_TX_OK;
3031 len = skb->len - skb->data_len;
3040 /* reserve a descriptor for the offload context */
3041 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
3045 if (skb->ip_summed == CHECKSUM_PARTIAL)
3050 /* Controller Erratum workaround */
3051 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
3055 count += TXD_USE_COUNT(len, max_txd_pwr);
3057 if (adapter->pcix_82544)
3060 /* work-around for errata 10 and it applies to all controllers
3061 * in PCI-X mode, so add one more descriptor to the count
3063 if (unlikely((adapter->hw.bus_type == e1000_bus_type_pcix) &&
3067 nr_frags = skb_shinfo(skb)->nr_frags;
3068 for (f = 0; f < nr_frags; f++)
3069 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size,
3071 if (adapter->pcix_82544)
3075 if (adapter->hw.tx_pkt_filtering &&
3076 (adapter->hw.mac_type == e1000_82573))
3077 e1000_transfer_dhcp_info(adapter, skb);
3079 local_irq_save(flags);
3080 if (!spin_trylock(&tx_ring->tx_lock)) {
3081 /* Collision - tell upper layer to requeue */
3082 local_irq_restore(flags);
3083 return NETDEV_TX_LOCKED;
3086 /* need: count + 2 desc gap to keep tail from touching
3087 * head, otherwise try next time */
3088 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2))) {
3089 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3090 return NETDEV_TX_BUSY;
3093 if (unlikely(adapter->hw.mac_type == e1000_82547)) {
3094 if (unlikely(e1000_82547_fifo_workaround(adapter, skb))) {
3095 netif_stop_queue(netdev);
3096 mod_timer(&adapter->tx_fifo_stall_timer, jiffies + 1);
3097 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3098 return NETDEV_TX_BUSY;
3102 if (unlikely(adapter->vlgrp && vlan_tx_tag_present(skb))) {
3103 tx_flags |= E1000_TX_FLAGS_VLAN;
3104 tx_flags |= (vlan_tx_tag_get(skb) << E1000_TX_FLAGS_VLAN_SHIFT);
3107 first = tx_ring->next_to_use;
3109 tso = e1000_tso(adapter, tx_ring, skb);
3111 dev_kfree_skb_any(skb);
3112 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3113 return NETDEV_TX_OK;
3117 tx_ring->last_tx_tso = 1;
3118 tx_flags |= E1000_TX_FLAGS_TSO;
3119 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb)))
3120 tx_flags |= E1000_TX_FLAGS_CSUM;
3122 /* Old method was to assume IPv4 packet by default if TSO was enabled.
3123 * 82571 hardware supports TSO capabilities for IPv6 as well...
3124 * no longer assume, we must. */
3125 if (likely(skb->protocol == htons(ETH_P_IP)))
3126 tx_flags |= E1000_TX_FLAGS_IPV4;
3128 e1000_tx_queue(adapter, tx_ring, tx_flags,
3129 e1000_tx_map(adapter, tx_ring, skb, first,
3130 max_per_txd, nr_frags, mss));
3132 netdev->trans_start = jiffies;
3134 /* Make sure there is space in the ring for the next send. */
3135 e1000_maybe_stop_tx(netdev, tx_ring, MAX_SKB_FRAGS + 2);
3137 spin_unlock_irqrestore(&tx_ring->tx_lock, flags);
3138 return NETDEV_TX_OK;
3142 * e1000_tx_timeout - Respond to a Tx Hang
3143 * @netdev: network interface device structure
3147 e1000_tx_timeout(struct net_device *netdev)
3149 struct e1000_adapter *adapter = netdev_priv(netdev);
3151 /* Do the reset outside of interrupt context */
3152 adapter->tx_timeout_count++;
3153 schedule_work(&adapter->reset_task);
3157 e1000_reset_task(struct net_device *netdev)
3159 struct e1000_adapter *adapter = netdev_priv(netdev);
3161 e1000_reinit_locked(adapter);
3165 * e1000_get_stats - Get System Network Statistics
3166 * @netdev: network interface device structure
3168 * Returns the address of the device statistics structure.
3169 * The statistics are actually updated from the timer callback.
3172 static struct net_device_stats *
3173 e1000_get_stats(struct net_device *netdev)
3175 struct e1000_adapter *adapter = netdev_priv(netdev);
3177 /* only return the current stats */
3178 return &adapter->net_stats;
3182 * e1000_change_mtu - Change the Maximum Transfer Unit
3183 * @netdev: network interface device structure
3184 * @new_mtu: new value for maximum frame size
3186 * Returns 0 on success, negative on failure
3190 e1000_change_mtu(struct net_device *netdev, int new_mtu)
3192 struct e1000_adapter *adapter = netdev_priv(netdev);
3193 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3194 uint16_t eeprom_data = 0;
3196 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3197 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
3198 DPRINTK(PROBE, ERR, "Invalid MTU setting\n");
3202 /* Adapter-specific max frame size limits. */
3203 switch (adapter->hw.mac_type) {
3204 case e1000_undefined ... e1000_82542_rev2_1:
3206 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3207 DPRINTK(PROBE, ERR, "Jumbo Frames not supported.\n");
3212 /* Jumbo Frames not supported if:
3213 * - this is not an 82573L device
3214 * - ASPM is enabled in any way (0x1A bits 3:2) */
3215 e1000_read_eeprom(&adapter->hw, EEPROM_INIT_3GIO_3, 1,
3217 if ((adapter->hw.device_id != E1000_DEV_ID_82573L) ||
3218 (eeprom_data & EEPROM_WORD1A_ASPM_MASK)) {
3219 if (max_frame > MAXIMUM_ETHERNET_FRAME_SIZE) {
3221 "Jumbo Frames not supported.\n");
3226 /* ERT will be enabled later to enable wire speed receives */
3228 /* fall through to get support */
3231 case e1000_80003es2lan:
3232 #define MAX_STD_JUMBO_FRAME_SIZE 9234
3233 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
3234 DPRINTK(PROBE, ERR, "MTU > 9216 not supported.\n");
3239 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3243 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3244 * means we reserve 2 more, this pushes us to allocate from the next
3246 * i.e. RXBUFFER_2048 --> size-4096 slab */
3248 if (max_frame <= E1000_RXBUFFER_256)
3249 adapter->rx_buffer_len = E1000_RXBUFFER_256;
3250 else if (max_frame <= E1000_RXBUFFER_512)
3251 adapter->rx_buffer_len = E1000_RXBUFFER_512;
3252 else if (max_frame <= E1000_RXBUFFER_1024)
3253 adapter->rx_buffer_len = E1000_RXBUFFER_1024;
3254 else if (max_frame <= E1000_RXBUFFER_2048)
3255 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
3256 else if (max_frame <= E1000_RXBUFFER_4096)
3257 adapter->rx_buffer_len = E1000_RXBUFFER_4096;
3258 else if (max_frame <= E1000_RXBUFFER_8192)
3259 adapter->rx_buffer_len = E1000_RXBUFFER_8192;
3260 else if (max_frame <= E1000_RXBUFFER_16384)
3261 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
3263 /* adjust allocation if LPE protects us, and we aren't using SBP */
3264 if (!adapter->hw.tbi_compatibility_on &&
3265 ((max_frame == MAXIMUM_ETHERNET_FRAME_SIZE) ||
3266 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3267 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
3269 netdev->mtu = new_mtu;
3271 if (netif_running(netdev))
3272 e1000_reinit_locked(adapter);
3274 adapter->hw.max_frame_size = max_frame;
3280 * e1000_update_stats - Update the board statistics counters
3281 * @adapter: board private structure
3285 e1000_update_stats(struct e1000_adapter *adapter)
3287 struct e1000_hw *hw = &adapter->hw;
3288 struct pci_dev *pdev = adapter->pdev;
3289 unsigned long flags;
3292 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3295 * Prevent stats update while adapter is being reset, or if the pci
3296 * connection is down.
3298 if (adapter->link_speed == 0)
3300 if (pdev->error_state && pdev->error_state != pci_channel_io_normal)
3303 spin_lock_irqsave(&adapter->stats_lock, flags);
3305 /* these counters are modified from e1000_adjust_tbi_stats,
3306 * called from the interrupt context, so they must only
3307 * be written while holding adapter->stats_lock
3310 adapter->stats.crcerrs += E1000_READ_REG(hw, CRCERRS);
3311 adapter->stats.gprc += E1000_READ_REG(hw, GPRC);
3312 adapter->stats.gorcl += E1000_READ_REG(hw, GORCL);
3313 adapter->stats.gorch += E1000_READ_REG(hw, GORCH);
3314 adapter->stats.bprc += E1000_READ_REG(hw, BPRC);
3315 adapter->stats.mprc += E1000_READ_REG(hw, MPRC);
3316 adapter->stats.roc += E1000_READ_REG(hw, ROC);
3318 if (adapter->hw.mac_type != e1000_ich8lan) {
3319 adapter->stats.prc64 += E1000_READ_REG(hw, PRC64);
3320 adapter->stats.prc127 += E1000_READ_REG(hw, PRC127);
3321 adapter->stats.prc255 += E1000_READ_REG(hw, PRC255);
3322 adapter->stats.prc511 += E1000_READ_REG(hw, PRC511);
3323 adapter->stats.prc1023 += E1000_READ_REG(hw, PRC1023);
3324 adapter->stats.prc1522 += E1000_READ_REG(hw, PRC1522);
3327 adapter->stats.symerrs += E1000_READ_REG(hw, SYMERRS);
3328 adapter->stats.mpc += E1000_READ_REG(hw, MPC);
3329 adapter->stats.scc += E1000_READ_REG(hw, SCC);
3330 adapter->stats.ecol += E1000_READ_REG(hw, ECOL);
3331 adapter->stats.mcc += E1000_READ_REG(hw, MCC);
3332 adapter->stats.latecol += E1000_READ_REG(hw, LATECOL);
3333 adapter->stats.dc += E1000_READ_REG(hw, DC);
3334 adapter->stats.sec += E1000_READ_REG(hw, SEC);
3335 adapter->stats.rlec += E1000_READ_REG(hw, RLEC);
3336 adapter->stats.xonrxc += E1000_READ_REG(hw, XONRXC);
3337 adapter->stats.xontxc += E1000_READ_REG(hw, XONTXC);
3338 adapter->stats.xoffrxc += E1000_READ_REG(hw, XOFFRXC);
3339 adapter->stats.xofftxc += E1000_READ_REG(hw, XOFFTXC);
3340 adapter->stats.fcruc += E1000_READ_REG(hw, FCRUC);
3341 adapter->stats.gptc += E1000_READ_REG(hw, GPTC);
3342 adapter->stats.gotcl += E1000_READ_REG(hw, GOTCL);
3343 adapter->stats.gotch += E1000_READ_REG(hw, GOTCH);
3344 adapter->stats.rnbc += E1000_READ_REG(hw, RNBC);
3345 adapter->stats.ruc += E1000_READ_REG(hw, RUC);
3346 adapter->stats.rfc += E1000_READ_REG(hw, RFC);
3347 adapter->stats.rjc += E1000_READ_REG(hw, RJC);
3348 adapter->stats.torl += E1000_READ_REG(hw, TORL);
3349 adapter->stats.torh += E1000_READ_REG(hw, TORH);
3350 adapter->stats.totl += E1000_READ_REG(hw, TOTL);
3351 adapter->stats.toth += E1000_READ_REG(hw, TOTH);
3352 adapter->stats.tpr += E1000_READ_REG(hw, TPR);
3354 if (adapter->hw.mac_type != e1000_ich8lan) {
3355 adapter->stats.ptc64 += E1000_READ_REG(hw, PTC64);
3356 adapter->stats.ptc127 += E1000_READ_REG(hw, PTC127);
3357 adapter->stats.ptc255 += E1000_READ_REG(hw, PTC255);
3358 adapter->stats.ptc511 += E1000_READ_REG(hw, PTC511);
3359 adapter->stats.ptc1023 += E1000_READ_REG(hw, PTC1023);
3360 adapter->stats.ptc1522 += E1000_READ_REG(hw, PTC1522);
3363 adapter->stats.mptc += E1000_READ_REG(hw, MPTC);
3364 adapter->stats.bptc += E1000_READ_REG(hw, BPTC);
3366 /* used for adaptive IFS */
3368 hw->tx_packet_delta = E1000_READ_REG(hw, TPT);
3369 adapter->stats.tpt += hw->tx_packet_delta;
3370 hw->collision_delta = E1000_READ_REG(hw, COLC);
3371 adapter->stats.colc += hw->collision_delta;
3373 if (hw->mac_type >= e1000_82543) {
3374 adapter->stats.algnerrc += E1000_READ_REG(hw, ALGNERRC);
3375 adapter->stats.rxerrc += E1000_READ_REG(hw, RXERRC);
3376 adapter->stats.tncrs += E1000_READ_REG(hw, TNCRS);
3377 adapter->stats.cexterr += E1000_READ_REG(hw, CEXTERR);
3378 adapter->stats.tsctc += E1000_READ_REG(hw, TSCTC);
3379 adapter->stats.tsctfc += E1000_READ_REG(hw, TSCTFC);
3381 if (hw->mac_type > e1000_82547_rev_2) {
3382 adapter->stats.iac += E1000_READ_REG(hw, IAC);
3383 adapter->stats.icrxoc += E1000_READ_REG(hw, ICRXOC);
3385 if (adapter->hw.mac_type != e1000_ich8lan) {
3386 adapter->stats.icrxptc += E1000_READ_REG(hw, ICRXPTC);
3387 adapter->stats.icrxatc += E1000_READ_REG(hw, ICRXATC);
3388 adapter->stats.ictxptc += E1000_READ_REG(hw, ICTXPTC);
3389 adapter->stats.ictxatc += E1000_READ_REG(hw, ICTXATC);
3390 adapter->stats.ictxqec += E1000_READ_REG(hw, ICTXQEC);
3391 adapter->stats.ictxqmtc += E1000_READ_REG(hw, ICTXQMTC);
3392 adapter->stats.icrxdmtc += E1000_READ_REG(hw, ICRXDMTC);
3396 /* Fill out the OS statistics structure */
3398 adapter->net_stats.rx_packets = adapter->stats.gprc;
3399 adapter->net_stats.tx_packets = adapter->stats.gptc;
3400 adapter->net_stats.rx_bytes = adapter->stats.gorcl;
3401 adapter->net_stats.tx_bytes = adapter->stats.gotcl;
3402 adapter->net_stats.multicast = adapter->stats.mprc;
3403 adapter->net_stats.collisions = adapter->stats.colc;
3407 /* RLEC on some newer hardware can be incorrect so build
3408 * our own version based on RUC and ROC */
3409 adapter->net_stats.rx_errors = adapter->stats.rxerrc +
3410 adapter->stats.crcerrs + adapter->stats.algnerrc +
3411 adapter->stats.ruc + adapter->stats.roc +
3412 adapter->stats.cexterr;
3413 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
3414 adapter->net_stats.rx_length_errors = adapter->stats.rlerrc;
3415 adapter->net_stats.rx_crc_errors = adapter->stats.crcerrs;
3416 adapter->net_stats.rx_frame_errors = adapter->stats.algnerrc;
3417 adapter->net_stats.rx_missed_errors = adapter->stats.mpc;
3420 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
3421 adapter->net_stats.tx_errors = adapter->stats.txerrc;
3422 adapter->net_stats.tx_aborted_errors = adapter->stats.ecol;
3423 adapter->net_stats.tx_window_errors = adapter->stats.latecol;
3424 adapter->net_stats.tx_carrier_errors = adapter->stats.tncrs;
3426 /* Tx Dropped needs to be maintained elsewhere */
3430 if (hw->media_type == e1000_media_type_copper) {
3431 if ((adapter->link_speed == SPEED_1000) &&
3432 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3433 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3434 adapter->phy_stats.idle_errors += phy_tmp;
3437 if ((hw->mac_type <= e1000_82546) &&
3438 (hw->phy_type == e1000_phy_m88) &&
3439 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3440 adapter->phy_stats.receive_errors += phy_tmp;
3443 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3447 * e1000_intr - Interrupt Handler
3448 * @irq: interrupt number
3449 * @data: pointer to a network interface device structure
3453 e1000_intr(int irq, void *data)
3455 struct net_device *netdev = data;
3456 struct e1000_adapter *adapter = netdev_priv(netdev);
3457 struct e1000_hw *hw = &adapter->hw;
3458 uint32_t rctl, icr = E1000_READ_REG(hw, ICR);
3459 #ifndef CONFIG_E1000_NAPI
3462 /* Interrupt Auto-Mask...upon reading ICR,
3463 * interrupts are masked. No need for the
3464 * IMC write, but it does mean we should
3465 * account for it ASAP. */
3466 if (likely(hw->mac_type >= e1000_82571))
3467 atomic_inc(&adapter->irq_sem);
3470 if (unlikely(!icr)) {
3471 #ifdef CONFIG_E1000_NAPI
3472 if (hw->mac_type >= e1000_82571)
3473 e1000_irq_enable(adapter);
3475 return IRQ_NONE; /* Not our interrupt */
3478 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
3479 hw->get_link_status = 1;
3480 /* 80003ES2LAN workaround--
3481 * For packet buffer work-around on link down event;
3482 * disable receives here in the ISR and
3483 * reset adapter in watchdog
3485 if (netif_carrier_ok(netdev) &&
3486 (adapter->hw.mac_type == e1000_80003es2lan)) {
3487 /* disable receives */
3488 rctl = E1000_READ_REG(hw, RCTL);
3489 E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN);
3491 /* guard against interrupt when we're going down */
3492 if (!test_bit(__E1000_DOWN, &adapter->flags))
3493 mod_timer(&adapter->watchdog_timer, jiffies + 1);
3496 #ifdef CONFIG_E1000_NAPI
3497 if (unlikely(hw->mac_type < e1000_82571)) {
3498 atomic_inc(&adapter->irq_sem);
3499 E1000_WRITE_REG(hw, IMC, ~0);
3500 E1000_WRITE_FLUSH(hw);
3502 if (likely(netif_rx_schedule_prep(netdev)))
3503 __netif_rx_schedule(netdev);
3505 e1000_irq_enable(adapter);
3507 /* Writing IMC and IMS is needed for 82547.
3508 * Due to Hub Link bus being occupied, an interrupt
3509 * de-assertion message is not able to be sent.
3510 * When an interrupt assertion message is generated later,
3511 * two messages are re-ordered and sent out.
3512 * That causes APIC to think 82547 is in de-assertion
3513 * state, while 82547 is in assertion state, resulting
3514 * in dead lock. Writing IMC forces 82547 into
3515 * de-assertion state.
3517 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2) {
3518 atomic_inc(&adapter->irq_sem);
3519 E1000_WRITE_REG(hw, IMC, ~0);
3522 for (i = 0; i < E1000_MAX_INTR; i++)
3523 if (unlikely(!adapter->clean_rx(adapter, adapter->rx_ring) &
3524 !e1000_clean_tx_irq(adapter, adapter->tx_ring)))
3527 if (hw->mac_type == e1000_82547 || hw->mac_type == e1000_82547_rev_2)
3528 e1000_irq_enable(adapter);
3535 #ifdef CONFIG_E1000_NAPI
3537 * e1000_clean - NAPI Rx polling callback
3538 * @adapter: board private structure
3542 e1000_clean(struct net_device *poll_dev, int *budget)
3544 struct e1000_adapter *adapter;
3545 int work_to_do = min(*budget, poll_dev->quota);
3546 int tx_cleaned = 0, work_done = 0;
3548 /* Must NOT use netdev_priv macro here. */
3549 adapter = poll_dev->priv;
3551 /* Keep link state information with original netdev */
3552 if (!netif_carrier_ok(poll_dev))
3555 /* e1000_clean is called per-cpu. This lock protects
3556 * tx_ring[0] from being cleaned by multiple cpus
3557 * simultaneously. A failure obtaining the lock means
3558 * tx_ring[0] is currently being cleaned anyway. */
3559 if (spin_trylock(&adapter->tx_queue_lock)) {
3560 tx_cleaned = e1000_clean_tx_irq(adapter,
3561 &adapter->tx_ring[0]);
3562 spin_unlock(&adapter->tx_queue_lock);
3565 adapter->clean_rx(adapter, &adapter->rx_ring[0],
3566 &work_done, work_to_do);
3568 *budget -= work_done;
3569 poll_dev->quota -= work_done;
3571 /* If no Tx and not enough Rx work done, exit the polling mode */
3572 if ((!tx_cleaned && (work_done == 0)) ||
3573 !netif_running(poll_dev)) {
3575 netif_rx_complete(poll_dev);
3576 e1000_irq_enable(adapter);
3585 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3586 * @adapter: board private structure
3590 e1000_clean_tx_irq(struct e1000_adapter *adapter,
3591 struct e1000_tx_ring *tx_ring)
3593 struct net_device *netdev = adapter->netdev;
3594 struct e1000_tx_desc *tx_desc, *eop_desc;
3595 struct e1000_buffer *buffer_info;
3596 unsigned int i, eop;
3597 #ifdef CONFIG_E1000_NAPI
3598 unsigned int count = 0;
3600 boolean_t cleaned = FALSE;
3602 i = tx_ring->next_to_clean;
3603 eop = tx_ring->buffer_info[i].next_to_watch;
3604 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3606 while (eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) {
3607 for (cleaned = FALSE; !cleaned; ) {
3608 tx_desc = E1000_TX_DESC(*tx_ring, i);
3609 buffer_info = &tx_ring->buffer_info[i];
3610 cleaned = (i == eop);
3612 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
3613 memset(tx_desc, 0, sizeof(struct e1000_tx_desc));
3615 if (unlikely(++i == tx_ring->count)) i = 0;
3619 eop = tx_ring->buffer_info[i].next_to_watch;
3620 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3621 #ifdef CONFIG_E1000_NAPI
3622 #define E1000_TX_WEIGHT 64
3623 /* weight of a sort for tx, to avoid endless transmit cleanup */
3624 if (count++ == E1000_TX_WEIGHT) break;
3628 tx_ring->next_to_clean = i;
3630 #define TX_WAKE_THRESHOLD 32
3631 if (unlikely(cleaned && netif_carrier_ok(netdev) &&
3632 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3633 /* Make sure that anybody stopping the queue after this
3634 * sees the new next_to_clean.
3637 if (netif_queue_stopped(netdev))
3638 netif_wake_queue(netdev);
3641 if (adapter->detect_tx_hung) {
3642 /* Detect a transmit hang in hardware, this serializes the
3643 * check with the clearing of time_stamp and movement of i */
3644 adapter->detect_tx_hung = FALSE;
3645 if (tx_ring->buffer_info[eop].dma &&
3646 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
3647 (adapter->tx_timeout_factor * HZ))
3648 && !(E1000_READ_REG(&adapter->hw, STATUS) &
3649 E1000_STATUS_TXOFF)) {
3651 /* detected Tx unit hang */
3652 DPRINTK(DRV, ERR, "Detected Tx Unit Hang\n"
3656 " next_to_use <%x>\n"
3657 " next_to_clean <%x>\n"
3658 "buffer_info[next_to_clean]\n"
3659 " time_stamp <%lx>\n"
3660 " next_to_watch <%x>\n"
3662 " next_to_watch.status <%x>\n",
3663 (unsigned long)((tx_ring - adapter->tx_ring) /
3664 sizeof(struct e1000_tx_ring)),
3665 readl(adapter->hw.hw_addr + tx_ring->tdh),
3666 readl(adapter->hw.hw_addr + tx_ring->tdt),
3667 tx_ring->next_to_use,
3668 tx_ring->next_to_clean,
3669 tx_ring->buffer_info[eop].time_stamp,
3672 eop_desc->upper.fields.status);
3673 netif_stop_queue(netdev);
3680 * e1000_rx_checksum - Receive Checksum Offload for 82543
3681 * @adapter: board private structure
3682 * @status_err: receive descriptor status and error fields
3683 * @csum: receive descriptor csum field
3684 * @sk_buff: socket buffer with received data
3688 e1000_rx_checksum(struct e1000_adapter *adapter,
3689 uint32_t status_err, uint32_t csum,
3690 struct sk_buff *skb)
3692 uint16_t status = (uint16_t)status_err;
3693 uint8_t errors = (uint8_t)(status_err >> 24);
3694 skb->ip_summed = CHECKSUM_NONE;
3696 /* 82543 or newer only */
3697 if (unlikely(adapter->hw.mac_type < e1000_82543)) return;
3698 /* Ignore Checksum bit is set */
3699 if (unlikely(status & E1000_RXD_STAT_IXSM)) return;
3700 /* TCP/UDP checksum error bit is set */
3701 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
3702 /* let the stack verify checksum errors */
3703 adapter->hw_csum_err++;
3706 /* TCP/UDP Checksum has not been calculated */
3707 if (adapter->hw.mac_type <= e1000_82547_rev_2) {
3708 if (!(status & E1000_RXD_STAT_TCPCS))
3711 if (!(status & (E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS)))
3714 /* It must be a TCP or UDP packet with a valid checksum */
3715 if (likely(status & E1000_RXD_STAT_TCPCS)) {
3716 /* TCP checksum is good */
3717 skb->ip_summed = CHECKSUM_UNNECESSARY;
3718 } else if (adapter->hw.mac_type > e1000_82547_rev_2) {
3719 /* IP fragment with UDP payload */
3720 /* Hardware complements the payload checksum, so we undo it
3721 * and then put the value in host order for further stack use.
3723 csum = ntohl(csum ^ 0xFFFF);
3725 skb->ip_summed = CHECKSUM_COMPLETE;
3727 adapter->hw_csum_good++;
3731 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3732 * @adapter: board private structure
3736 #ifdef CONFIG_E1000_NAPI
3737 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3738 struct e1000_rx_ring *rx_ring,
3739 int *work_done, int work_to_do)
3741 e1000_clean_rx_irq(struct e1000_adapter *adapter,
3742 struct e1000_rx_ring *rx_ring)
3745 struct net_device *netdev = adapter->netdev;
3746 struct pci_dev *pdev = adapter->pdev;
3747 struct e1000_rx_desc *rx_desc, *next_rxd;
3748 struct e1000_buffer *buffer_info, *next_buffer;
3749 unsigned long flags;
3753 int cleaned_count = 0;
3754 boolean_t cleaned = FALSE;
3756 i = rx_ring->next_to_clean;
3757 rx_desc = E1000_RX_DESC(*rx_ring, i);
3758 buffer_info = &rx_ring->buffer_info[i];
3760 while (rx_desc->status & E1000_RXD_STAT_DD) {
3761 struct sk_buff *skb;
3763 #ifdef CONFIG_E1000_NAPI
3764 if (*work_done >= work_to_do)
3768 status = rx_desc->status;
3769 skb = buffer_info->skb;
3770 buffer_info->skb = NULL;
3772 prefetch(skb->data - NET_IP_ALIGN);
3774 if (++i == rx_ring->count) i = 0;
3775 next_rxd = E1000_RX_DESC(*rx_ring, i);
3778 next_buffer = &rx_ring->buffer_info[i];
3782 pci_unmap_single(pdev,
3784 buffer_info->length,
3785 PCI_DMA_FROMDEVICE);
3787 length = le16_to_cpu(rx_desc->length);
3789 if (unlikely(!(status & E1000_RXD_STAT_EOP))) {
3790 /* All receives must fit into a single buffer */
3791 E1000_DBG("%s: Receive packet consumed multiple"
3792 " buffers\n", netdev->name);
3794 buffer_info->skb = skb;
3798 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
3799 last_byte = *(skb->data + length - 1);
3800 if (TBI_ACCEPT(&adapter->hw, status,
3801 rx_desc->errors, length, last_byte)) {
3802 spin_lock_irqsave(&adapter->stats_lock, flags);
3803 e1000_tbi_adjust_stats(&adapter->hw,
3806 spin_unlock_irqrestore(&adapter->stats_lock,
3811 buffer_info->skb = skb;
3816 /* adjust length to remove Ethernet CRC, this must be
3817 * done after the TBI_ACCEPT workaround above */
3820 /* code added for copybreak, this should improve
3821 * performance for small packets with large amounts
3822 * of reassembly being done in the stack */
3823 #define E1000_CB_LENGTH 256
3824 if (length < E1000_CB_LENGTH) {
3825 struct sk_buff *new_skb =
3826 netdev_alloc_skb(netdev, length + NET_IP_ALIGN);
3828 skb_reserve(new_skb, NET_IP_ALIGN);
3829 memcpy(new_skb->data - NET_IP_ALIGN,
3830 skb->data - NET_IP_ALIGN,
3831 length + NET_IP_ALIGN);
3832 /* save the skb in buffer_info as good */
3833 buffer_info->skb = skb;
3835 skb_put(skb, length);
3838 skb_put(skb, length);
3840 /* end copybreak code */
3842 /* Receive Checksum Offload */
3843 e1000_rx_checksum(adapter,
3844 (uint32_t)(status) |
3845 ((uint32_t)(rx_desc->errors) << 24),
3846 le16_to_cpu(rx_desc->csum), skb);
3848 skb->protocol = eth_type_trans(skb, netdev);
3849 #ifdef CONFIG_E1000_NAPI
3850 if (unlikely(adapter->vlgrp &&
3851 (status & E1000_RXD_STAT_VP))) {
3852 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
3853 le16_to_cpu(rx_desc->special) &
3854 E1000_RXD_SPC_VLAN_MASK);
3856 netif_receive_skb(skb);
3858 #else /* CONFIG_E1000_NAPI */
3859 if (unlikely(adapter->vlgrp &&
3860 (status & E1000_RXD_STAT_VP))) {
3861 vlan_hwaccel_rx(skb, adapter->vlgrp,
3862 le16_to_cpu(rx_desc->special) &
3863 E1000_RXD_SPC_VLAN_MASK);
3867 #endif /* CONFIG_E1000_NAPI */
3868 netdev->last_rx = jiffies;
3871 rx_desc->status = 0;
3873 /* return some buffers to hardware, one at a time is too slow */
3874 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
3875 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3879 /* use prefetched values */
3881 buffer_info = next_buffer;
3883 rx_ring->next_to_clean = i;
3885 cleaned_count = E1000_DESC_UNUSED(rx_ring);
3887 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
3893 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
3894 * @adapter: board private structure
3898 #ifdef CONFIG_E1000_NAPI
3899 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3900 struct e1000_rx_ring *rx_ring,
3901 int *work_done, int work_to_do)
3903 e1000_clean_rx_irq_ps(struct e1000_adapter *adapter,
3904 struct e1000_rx_ring *rx_ring)
3907 union e1000_rx_desc_packet_split *rx_desc, *next_rxd;
3908 struct net_device *netdev = adapter->netdev;
3909 struct pci_dev *pdev = adapter->pdev;
3910 struct e1000_buffer *buffer_info, *next_buffer;
3911 struct e1000_ps_page *ps_page;
3912 struct e1000_ps_page_dma *ps_page_dma;
3913 struct sk_buff *skb;
3915 uint32_t length, staterr;
3916 int cleaned_count = 0;
3917 boolean_t cleaned = FALSE;
3919 i = rx_ring->next_to_clean;
3920 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
3921 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
3922 buffer_info = &rx_ring->buffer_info[i];
3924 while (staterr & E1000_RXD_STAT_DD) {
3925 ps_page = &rx_ring->ps_page[i];
3926 ps_page_dma = &rx_ring->ps_page_dma[i];
3927 #ifdef CONFIG_E1000_NAPI
3928 if (unlikely(*work_done >= work_to_do))
3932 skb = buffer_info->skb;
3934 /* in the packet split case this is header only */
3935 prefetch(skb->data - NET_IP_ALIGN);
3937 if (++i == rx_ring->count) i = 0;
3938 next_rxd = E1000_RX_DESC_PS(*rx_ring, i);
3941 next_buffer = &rx_ring->buffer_info[i];
3945 pci_unmap_single(pdev, buffer_info->dma,
3946 buffer_info->length,
3947 PCI_DMA_FROMDEVICE);
3949 if (unlikely(!(staterr & E1000_RXD_STAT_EOP))) {
3950 E1000_DBG("%s: Packet Split buffers didn't pick up"
3951 " the full packet\n", netdev->name);
3952 dev_kfree_skb_irq(skb);
3956 if (unlikely(staterr & E1000_RXDEXT_ERR_FRAME_ERR_MASK)) {
3957 dev_kfree_skb_irq(skb);
3961 length = le16_to_cpu(rx_desc->wb.middle.length0);
3963 if (unlikely(!length)) {
3964 E1000_DBG("%s: Last part of the packet spanning"
3965 " multiple descriptors\n", netdev->name);
3966 dev_kfree_skb_irq(skb);
3971 skb_put(skb, length);
3974 /* this looks ugly, but it seems compiler issues make it
3975 more efficient than reusing j */
3976 int l1 = le16_to_cpu(rx_desc->wb.upper.length[0]);
3978 /* page alloc/put takes too long and effects small packet
3979 * throughput, so unsplit small packets and save the alloc/put*/
3980 if (l1 && ((length + l1) <= adapter->rx_ps_bsize0)) {
3982 /* there is no documentation about how to call
3983 * kmap_atomic, so we can't hold the mapping
3985 pci_dma_sync_single_for_cpu(pdev,
3986 ps_page_dma->ps_page_dma[0],
3988 PCI_DMA_FROMDEVICE);
3989 vaddr = kmap_atomic(ps_page->ps_page[0],
3990 KM_SKB_DATA_SOFTIRQ);
3991 memcpy(skb->tail, vaddr, l1);
3992 kunmap_atomic(vaddr, KM_SKB_DATA_SOFTIRQ);
3993 pci_dma_sync_single_for_device(pdev,
3994 ps_page_dma->ps_page_dma[0],
3995 PAGE_SIZE, PCI_DMA_FROMDEVICE);
3996 /* remove the CRC */
4003 for (j = 0; j < adapter->rx_ps_pages; j++) {
4004 if (!(length= le16_to_cpu(rx_desc->wb.upper.length[j])))
4006 pci_unmap_page(pdev, ps_page_dma->ps_page_dma[j],
4007 PAGE_SIZE, PCI_DMA_FROMDEVICE);
4008 ps_page_dma->ps_page_dma[j] = 0;
4009 skb_fill_page_desc(skb, j, ps_page->ps_page[j], 0,
4011 ps_page->ps_page[j] = NULL;
4013 skb->data_len += length;
4014 skb->truesize += length;
4017 /* strip the ethernet crc, problem is we're using pages now so
4018 * this whole operation can get a little cpu intensive */
4019 pskb_trim(skb, skb->len - 4);
4022 e1000_rx_checksum(adapter, staterr,
4023 le16_to_cpu(rx_desc->wb.lower.hi_dword.csum_ip.csum), skb);
4024 skb->protocol = eth_type_trans(skb, netdev);
4026 if (likely(rx_desc->wb.upper.header_status &
4027 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP)))
4028 adapter->rx_hdr_split++;
4029 #ifdef CONFIG_E1000_NAPI
4030 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4031 vlan_hwaccel_receive_skb(skb, adapter->vlgrp,
4032 le16_to_cpu(rx_desc->wb.middle.vlan) &
4033 E1000_RXD_SPC_VLAN_MASK);
4035 netif_receive_skb(skb);
4037 #else /* CONFIG_E1000_NAPI */
4038 if (unlikely(adapter->vlgrp && (staterr & E1000_RXD_STAT_VP))) {
4039 vlan_hwaccel_rx(skb, adapter->vlgrp,
4040 le16_to_cpu(rx_desc->wb.middle.vlan) &
4041 E1000_RXD_SPC_VLAN_MASK);
4045 #endif /* CONFIG_E1000_NAPI */
4046 netdev->last_rx = jiffies;
4049 rx_desc->wb.middle.status_error &= cpu_to_le32(~0xFF);
4050 buffer_info->skb = NULL;
4052 /* return some buffers to hardware, one at a time is too slow */
4053 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4054 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4058 /* use prefetched values */
4060 buffer_info = next_buffer;
4062 staterr = le32_to_cpu(rx_desc->wb.middle.status_error);
4064 rx_ring->next_to_clean = i;
4066 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4068 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4074 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4075 * @adapter: address of board private structure
4079 e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4080 struct e1000_rx_ring *rx_ring,
4083 struct net_device *netdev = adapter->netdev;
4084 struct pci_dev *pdev = adapter->pdev;
4085 struct e1000_rx_desc *rx_desc;
4086 struct e1000_buffer *buffer_info;
4087 struct sk_buff *skb;
4089 unsigned int bufsz = adapter->rx_buffer_len + NET_IP_ALIGN;
4091 i = rx_ring->next_to_use;
4092 buffer_info = &rx_ring->buffer_info[i];
4094 while (cleaned_count--) {
4095 skb = buffer_info->skb;
4101 skb = netdev_alloc_skb(netdev, bufsz);
4102 if (unlikely(!skb)) {
4103 /* Better luck next round */
4104 adapter->alloc_rx_buff_failed++;
4108 /* Fix for errata 23, can't cross 64kB boundary */
4109 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4110 struct sk_buff *oldskb = skb;
4111 DPRINTK(RX_ERR, ERR, "skb align check failed: %u bytes "
4112 "at %p\n", bufsz, skb->data);
4113 /* Try again, without freeing the previous */
4114 skb = netdev_alloc_skb(netdev, bufsz);
4115 /* Failed allocation, critical failure */
4117 dev_kfree_skb(oldskb);
4121 if (!e1000_check_64k_bound(adapter, skb->data, bufsz)) {
4124 dev_kfree_skb(oldskb);
4125 break; /* while !buffer_info->skb */
4128 /* Use new allocation */
4129 dev_kfree_skb(oldskb);
4131 /* Make buffer alignment 2 beyond a 16 byte boundary
4132 * this will result in a 16 byte aligned IP header after
4133 * the 14 byte MAC header is removed
4135 skb_reserve(skb, NET_IP_ALIGN);
4137 buffer_info->skb = skb;
4138 buffer_info->length = adapter->rx_buffer_len;
4140 buffer_info->dma = pci_map_single(pdev,
4142 adapter->rx_buffer_len,
4143 PCI_DMA_FROMDEVICE);
4145 /* Fix for errata 23, can't cross 64kB boundary */
4146 if (!e1000_check_64k_bound(adapter,
4147 (void *)(unsigned long)buffer_info->dma,
4148 adapter->rx_buffer_len)) {
4149 DPRINTK(RX_ERR, ERR,
4150 "dma align check failed: %u bytes at %p\n",
4151 adapter->rx_buffer_len,
4152 (void *)(unsigned long)buffer_info->dma);
4154 buffer_info->skb = NULL;
4156 pci_unmap_single(pdev, buffer_info->dma,
4157 adapter->rx_buffer_len,
4158 PCI_DMA_FROMDEVICE);
4160 break; /* while !buffer_info->skb */
4162 rx_desc = E1000_RX_DESC(*rx_ring, i);
4163 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4165 if (unlikely(++i == rx_ring->count))
4167 buffer_info = &rx_ring->buffer_info[i];
4170 if (likely(rx_ring->next_to_use != i)) {
4171 rx_ring->next_to_use = i;
4172 if (unlikely(i-- == 0))
4173 i = (rx_ring->count - 1);
4175 /* Force memory writes to complete before letting h/w
4176 * know there are new descriptors to fetch. (Only
4177 * applicable for weak-ordered memory model archs,
4178 * such as IA-64). */
4180 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4185 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
4186 * @adapter: address of board private structure
4190 e1000_alloc_rx_buffers_ps(struct e1000_adapter *adapter,
4191 struct e1000_rx_ring *rx_ring,
4194 struct net_device *netdev = adapter->netdev;
4195 struct pci_dev *pdev = adapter->pdev;
4196 union e1000_rx_desc_packet_split *rx_desc;
4197 struct e1000_buffer *buffer_info;
4198 struct e1000_ps_page *ps_page;
4199 struct e1000_ps_page_dma *ps_page_dma;
4200 struct sk_buff *skb;
4203 i = rx_ring->next_to_use;
4204 buffer_info = &rx_ring->buffer_info[i];
4205 ps_page = &rx_ring->ps_page[i];
4206 ps_page_dma = &rx_ring->ps_page_dma[i];
4208 while (cleaned_count--) {
4209 rx_desc = E1000_RX_DESC_PS(*rx_ring, i);
4211 for (j = 0; j < PS_PAGE_BUFFERS; j++) {
4212 if (j < adapter->rx_ps_pages) {
4213 if (likely(!ps_page->ps_page[j])) {
4214 ps_page->ps_page[j] =
4215 alloc_page(GFP_ATOMIC);
4216 if (unlikely(!ps_page->ps_page[j])) {
4217 adapter->alloc_rx_buff_failed++;
4220 ps_page_dma->ps_page_dma[j] =
4222 ps_page->ps_page[j],
4224 PCI_DMA_FROMDEVICE);
4226 /* Refresh the desc even if buffer_addrs didn't
4227 * change because each write-back erases
4230 rx_desc->read.buffer_addr[j+1] =
4231 cpu_to_le64(ps_page_dma->ps_page_dma[j]);
4233 rx_desc->read.buffer_addr[j+1] = ~0;
4236 skb = netdev_alloc_skb(netdev,
4237 adapter->rx_ps_bsize0 + NET_IP_ALIGN);
4239 if (unlikely(!skb)) {
4240 adapter->alloc_rx_buff_failed++;
4244 /* Make buffer alignment 2 beyond a 16 byte boundary
4245 * this will result in a 16 byte aligned IP header after
4246 * the 14 byte MAC header is removed
4248 skb_reserve(skb, NET_IP_ALIGN);
4250 buffer_info->skb = skb;
4251 buffer_info->length = adapter->rx_ps_bsize0;
4252 buffer_info->dma = pci_map_single(pdev, skb->data,
4253 adapter->rx_ps_bsize0,
4254 PCI_DMA_FROMDEVICE);
4256 rx_desc->read.buffer_addr[0] = cpu_to_le64(buffer_info->dma);
4258 if (unlikely(++i == rx_ring->count)) i = 0;
4259 buffer_info = &rx_ring->buffer_info[i];
4260 ps_page = &rx_ring->ps_page[i];
4261 ps_page_dma = &rx_ring->ps_page_dma[i];
4265 if (likely(rx_ring->next_to_use != i)) {
4266 rx_ring->next_to_use = i;
4267 if (unlikely(i-- == 0)) i = (rx_ring->count - 1);
4269 /* Force memory writes to complete before letting h/w
4270 * know there are new descriptors to fetch. (Only
4271 * applicable for weak-ordered memory model archs,
4272 * such as IA-64). */
4274 /* Hardware increments by 16 bytes, but packet split
4275 * descriptors are 32 bytes...so we increment tail
4278 writel(i<<1, adapter->hw.hw_addr + rx_ring->rdt);
4283 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4288 e1000_smartspeed(struct e1000_adapter *adapter)
4290 uint16_t phy_status;
4293 if ((adapter->hw.phy_type != e1000_phy_igp) || !adapter->hw.autoneg ||
4294 !(adapter->hw.autoneg_advertised & ADVERTISE_1000_FULL))
4297 if (adapter->smartspeed == 0) {
4298 /* If Master/Slave config fault is asserted twice,
4299 * we assume back-to-back */
4300 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4301 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4302 e1000_read_phy_reg(&adapter->hw, PHY_1000T_STATUS, &phy_status);
4303 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT)) return;
4304 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4305 if (phy_ctrl & CR_1000T_MS_ENABLE) {
4306 phy_ctrl &= ~CR_1000T_MS_ENABLE;
4307 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL,
4309 adapter->smartspeed++;
4310 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4311 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL,
4313 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4314 MII_CR_RESTART_AUTO_NEG);
4315 e1000_write_phy_reg(&adapter->hw, PHY_CTRL,
4320 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
4321 /* If still no link, perhaps using 2/3 pair cable */
4322 e1000_read_phy_reg(&adapter->hw, PHY_1000T_CTRL, &phy_ctrl);
4323 phy_ctrl |= CR_1000T_MS_ENABLE;
4324 e1000_write_phy_reg(&adapter->hw, PHY_1000T_CTRL, phy_ctrl);
4325 if (!e1000_phy_setup_autoneg(&adapter->hw) &&
4326 !e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_ctrl)) {
4327 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4328 MII_CR_RESTART_AUTO_NEG);
4329 e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_ctrl);
4332 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4333 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
4334 adapter->smartspeed = 0;
4345 e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4351 return e1000_mii_ioctl(netdev, ifr, cmd);
4365 e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
4367 struct e1000_adapter *adapter = netdev_priv(netdev);
4368 struct mii_ioctl_data *data = if_mii(ifr);
4372 unsigned long flags;
4374 if (adapter->hw.media_type != e1000_media_type_copper)
4379 data->phy_id = adapter->hw.phy_addr;
4382 if (!capable(CAP_NET_ADMIN))
4384 spin_lock_irqsave(&adapter->stats_lock, flags);
4385 if (e1000_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
4387 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4390 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4393 if (!capable(CAP_NET_ADMIN))
4395 if (data->reg_num & ~(0x1F))
4397 mii_reg = data->val_in;
4398 spin_lock_irqsave(&adapter->stats_lock, flags);
4399 if (e1000_write_phy_reg(&adapter->hw, data->reg_num,
4401 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4404 if (adapter->hw.media_type == e1000_media_type_copper) {
4405 switch (data->reg_num) {
4407 if (mii_reg & MII_CR_POWER_DOWN)
4409 if (mii_reg & MII_CR_AUTO_NEG_EN) {
4410 adapter->hw.autoneg = 1;
4411 adapter->hw.autoneg_advertised = 0x2F;
4414 spddplx = SPEED_1000;
4415 else if (mii_reg & 0x2000)
4416 spddplx = SPEED_100;
4419 spddplx += (mii_reg & 0x100)
4422 retval = e1000_set_spd_dplx(adapter,
4425 spin_unlock_irqrestore(
4426 &adapter->stats_lock,
4431 if (netif_running(adapter->netdev))
4432 e1000_reinit_locked(adapter);
4434 e1000_reset(adapter);
4436 case M88E1000_PHY_SPEC_CTRL:
4437 case M88E1000_EXT_PHY_SPEC_CTRL:
4438 if (e1000_phy_reset(&adapter->hw)) {
4439 spin_unlock_irqrestore(
4440 &adapter->stats_lock, flags);
4446 switch (data->reg_num) {
4448 if (mii_reg & MII_CR_POWER_DOWN)
4450 if (netif_running(adapter->netdev))
4451 e1000_reinit_locked(adapter);
4453 e1000_reset(adapter);
4457 spin_unlock_irqrestore(&adapter->stats_lock, flags);
4462 return E1000_SUCCESS;
4466 e1000_pci_set_mwi(struct e1000_hw *hw)
4468 struct e1000_adapter *adapter = hw->back;
4469 int ret_val = pci_set_mwi(adapter->pdev);
4472 DPRINTK(PROBE, ERR, "Error in setting MWI\n");
4476 e1000_pci_clear_mwi(struct e1000_hw *hw)
4478 struct e1000_adapter *adapter = hw->back;
4480 pci_clear_mwi(adapter->pdev);
4484 e1000_read_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4486 struct e1000_adapter *adapter = hw->back;
4488 pci_read_config_word(adapter->pdev, reg, value);
4492 e1000_write_pci_cfg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4494 struct e1000_adapter *adapter = hw->back;
4496 pci_write_config_word(adapter->pdev, reg, *value);
4500 e1000_read_pcie_cap_reg(struct e1000_hw *hw, uint32_t reg, uint16_t *value)
4502 struct e1000_adapter *adapter = hw->back;
4503 uint16_t cap_offset;
4505 cap_offset = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
4507 return -E1000_ERR_CONFIG;
4509 pci_read_config_word(adapter->pdev, cap_offset + reg, value);
4511 return E1000_SUCCESS;
4516 e1000_io_write(struct e1000_hw *hw, unsigned long port, uint32_t value)
4522 e1000_vlan_rx_register(struct net_device *netdev, struct vlan_group *grp)
4524 struct e1000_adapter *adapter = netdev_priv(netdev);
4525 uint32_t ctrl, rctl;
4527 e1000_irq_disable(adapter);
4528 adapter->vlgrp = grp;
4531 /* enable VLAN tag insert/strip */
4532 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4533 ctrl |= E1000_CTRL_VME;
4534 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4536 if (adapter->hw.mac_type != e1000_ich8lan) {
4537 /* enable VLAN receive filtering */
4538 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4539 rctl |= E1000_RCTL_VFE;
4540 rctl &= ~E1000_RCTL_CFIEN;
4541 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4542 e1000_update_mng_vlan(adapter);
4545 /* disable VLAN tag insert/strip */
4546 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4547 ctrl &= ~E1000_CTRL_VME;
4548 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4550 if (adapter->hw.mac_type != e1000_ich8lan) {
4551 /* disable VLAN filtering */
4552 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4553 rctl &= ~E1000_RCTL_VFE;
4554 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4555 if (adapter->mng_vlan_id != (uint16_t)E1000_MNG_VLAN_NONE) {
4556 e1000_vlan_rx_kill_vid(netdev, adapter->mng_vlan_id);
4557 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
4562 e1000_irq_enable(adapter);
4566 e1000_vlan_rx_add_vid(struct net_device *netdev, uint16_t vid)
4568 struct e1000_adapter *adapter = netdev_priv(netdev);
4569 uint32_t vfta, index;
4571 if ((adapter->hw.mng_cookie.status &
4572 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4573 (vid == adapter->mng_vlan_id))
4575 /* add VID to filter table */
4576 index = (vid >> 5) & 0x7F;
4577 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4578 vfta |= (1 << (vid & 0x1F));
4579 e1000_write_vfta(&adapter->hw, index, vfta);
4583 e1000_vlan_rx_kill_vid(struct net_device *netdev, uint16_t vid)
4585 struct e1000_adapter *adapter = netdev_priv(netdev);
4586 uint32_t vfta, index;
4588 e1000_irq_disable(adapter);
4591 adapter->vlgrp->vlan_devices[vid] = NULL;
4593 e1000_irq_enable(adapter);
4595 if ((adapter->hw.mng_cookie.status &
4596 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4597 (vid == adapter->mng_vlan_id)) {
4598 /* release control to f/w */
4599 e1000_release_hw_control(adapter);
4603 /* remove VID from filter table */
4604 index = (vid >> 5) & 0x7F;
4605 vfta = E1000_READ_REG_ARRAY(&adapter->hw, VFTA, index);
4606 vfta &= ~(1 << (vid & 0x1F));
4607 e1000_write_vfta(&adapter->hw, index, vfta);
4611 e1000_restore_vlan(struct e1000_adapter *adapter)
4613 e1000_vlan_rx_register(adapter->netdev, adapter->vlgrp);
4615 if (adapter->vlgrp) {
4617 for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
4618 if (!adapter->vlgrp->vlan_devices[vid])
4620 e1000_vlan_rx_add_vid(adapter->netdev, vid);
4626 e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx)
4628 adapter->hw.autoneg = 0;
4630 /* Fiber NICs only allow 1000 gbps Full duplex */
4631 if ((adapter->hw.media_type == e1000_media_type_fiber) &&
4632 spddplx != (SPEED_1000 + DUPLEX_FULL)) {
4633 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4638 case SPEED_10 + DUPLEX_HALF:
4639 adapter->hw.forced_speed_duplex = e1000_10_half;
4641 case SPEED_10 + DUPLEX_FULL:
4642 adapter->hw.forced_speed_duplex = e1000_10_full;
4644 case SPEED_100 + DUPLEX_HALF:
4645 adapter->hw.forced_speed_duplex = e1000_100_half;
4647 case SPEED_100 + DUPLEX_FULL:
4648 adapter->hw.forced_speed_duplex = e1000_100_full;
4650 case SPEED_1000 + DUPLEX_FULL:
4651 adapter->hw.autoneg = 1;
4652 adapter->hw.autoneg_advertised = ADVERTISE_1000_FULL;
4654 case SPEED_1000 + DUPLEX_HALF: /* not supported */
4656 DPRINTK(PROBE, ERR, "Unsupported Speed/Duplex configuration\n");
4663 /* Save/restore 16 or 64 dwords of PCI config space depending on which
4664 * bus we're on (PCI(X) vs. PCI-E)
4666 #define PCIE_CONFIG_SPACE_LEN 256
4667 #define PCI_CONFIG_SPACE_LEN 64
4669 e1000_pci_save_state(struct e1000_adapter *adapter)
4671 struct pci_dev *dev = adapter->pdev;
4675 if (adapter->hw.mac_type >= e1000_82571)
4676 size = PCIE_CONFIG_SPACE_LEN;
4678 size = PCI_CONFIG_SPACE_LEN;
4680 WARN_ON(adapter->config_space != NULL);
4682 adapter->config_space = kmalloc(size, GFP_KERNEL);
4683 if (!adapter->config_space) {
4684 DPRINTK(PROBE, ERR, "unable to allocate %d bytes\n", size);
4687 for (i = 0; i < (size / 4); i++)
4688 pci_read_config_dword(dev, i * 4, &adapter->config_space[i]);
4693 e1000_pci_restore_state(struct e1000_adapter *adapter)
4695 struct pci_dev *dev = adapter->pdev;
4699 if (adapter->config_space == NULL)
4702 if (adapter->hw.mac_type >= e1000_82571)
4703 size = PCIE_CONFIG_SPACE_LEN;
4705 size = PCI_CONFIG_SPACE_LEN;
4706 for (i = 0; i < (size / 4); i++)
4707 pci_write_config_dword(dev, i * 4, adapter->config_space[i]);
4708 kfree(adapter->config_space);
4709 adapter->config_space = NULL;
4712 #endif /* CONFIG_PM */
4715 e1000_suspend(struct pci_dev *pdev, pm_message_t state)
4717 struct net_device *netdev = pci_get_drvdata(pdev);
4718 struct e1000_adapter *adapter = netdev_priv(netdev);
4719 uint32_t ctrl, ctrl_ext, rctl, manc, status;
4720 uint32_t wufc = adapter->wol;
4725 netif_device_detach(netdev);
4727 if (netif_running(netdev)) {
4728 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
4729 e1000_down(adapter);
4733 /* Implement our own version of pci_save_state(pdev) because pci-
4734 * express adapters have 256-byte config spaces. */
4735 retval = e1000_pci_save_state(adapter);
4740 status = E1000_READ_REG(&adapter->hw, STATUS);
4741 if (status & E1000_STATUS_LU)
4742 wufc &= ~E1000_WUFC_LNKC;
4745 e1000_setup_rctl(adapter);
4746 e1000_set_multi(netdev);
4748 /* turn on all-multi mode if wake on multicast is enabled */
4749 if (wufc & E1000_WUFC_MC) {
4750 rctl = E1000_READ_REG(&adapter->hw, RCTL);
4751 rctl |= E1000_RCTL_MPE;
4752 E1000_WRITE_REG(&adapter->hw, RCTL, rctl);
4755 if (adapter->hw.mac_type >= e1000_82540) {
4756 ctrl = E1000_READ_REG(&adapter->hw, CTRL);
4757 /* advertise wake from D3Cold */
4758 #define E1000_CTRL_ADVD3WUC 0x00100000
4759 /* phy power management enable */
4760 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4761 ctrl |= E1000_CTRL_ADVD3WUC |
4762 E1000_CTRL_EN_PHY_PWR_MGMT;
4763 E1000_WRITE_REG(&adapter->hw, CTRL, ctrl);
4766 if (adapter->hw.media_type == e1000_media_type_fiber ||
4767 adapter->hw.media_type == e1000_media_type_internal_serdes) {
4768 /* keep the laser running in D3 */
4769 ctrl_ext = E1000_READ_REG(&adapter->hw, CTRL_EXT);
4770 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
4771 E1000_WRITE_REG(&adapter->hw, CTRL_EXT, ctrl_ext);
4774 /* Allow time for pending master requests to run */
4775 e1000_disable_pciex_master(&adapter->hw);
4777 E1000_WRITE_REG(&adapter->hw, WUC, E1000_WUC_PME_EN);
4778 E1000_WRITE_REG(&adapter->hw, WUFC, wufc);
4779 pci_enable_wake(pdev, PCI_D3hot, 1);
4780 pci_enable_wake(pdev, PCI_D3cold, 1);
4782 E1000_WRITE_REG(&adapter->hw, WUC, 0);
4783 E1000_WRITE_REG(&adapter->hw, WUFC, 0);
4784 pci_enable_wake(pdev, PCI_D3hot, 0);
4785 pci_enable_wake(pdev, PCI_D3cold, 0);
4788 if (adapter->hw.mac_type >= e1000_82540 &&
4789 adapter->hw.mac_type < e1000_82571 &&
4790 adapter->hw.media_type == e1000_media_type_copper) {
4791 manc = E1000_READ_REG(&adapter->hw, MANC);
4792 if (manc & E1000_MANC_SMBUS_EN) {
4793 manc |= E1000_MANC_ARP_EN;
4794 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4795 pci_enable_wake(pdev, PCI_D3hot, 1);
4796 pci_enable_wake(pdev, PCI_D3cold, 1);
4800 if (adapter->hw.phy_type == e1000_phy_igp_3)
4801 e1000_phy_powerdown_workaround(&adapter->hw);
4803 /* Release control of h/w to f/w. If f/w is AMT enabled, this
4804 * would have already happened in close and is redundant. */
4805 e1000_release_hw_control(adapter);
4807 pci_disable_device(pdev);
4809 pci_set_power_state(pdev, pci_choose_state(pdev, state));
4816 e1000_resume(struct pci_dev *pdev)
4818 struct net_device *netdev = pci_get_drvdata(pdev);
4819 struct e1000_adapter *adapter = netdev_priv(netdev);
4822 pci_set_power_state(pdev, PCI_D0);
4823 e1000_pci_restore_state(adapter);
4824 if ((err = pci_enable_device(pdev))) {
4825 printk(KERN_ERR "e1000: Cannot enable PCI device from suspend\n");
4828 pci_set_master(pdev);
4830 pci_enable_wake(pdev, PCI_D3hot, 0);
4831 pci_enable_wake(pdev, PCI_D3cold, 0);
4833 e1000_reset(adapter);
4834 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4836 if (netif_running(netdev))
4839 netif_device_attach(netdev);
4841 if (adapter->hw.mac_type >= e1000_82540 &&
4842 adapter->hw.mac_type < e1000_82571 &&
4843 adapter->hw.media_type == e1000_media_type_copper) {
4844 manc = E1000_READ_REG(&adapter->hw, MANC);
4845 manc &= ~(E1000_MANC_ARP_EN);
4846 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4849 /* If the controller is 82573 and f/w is AMT, do not set
4850 * DRV_LOAD until the interface is up. For all other cases,
4851 * let the f/w know that the h/w is now under the control
4853 if (adapter->hw.mac_type != e1000_82573 ||
4854 !e1000_check_mng_mode(&adapter->hw))
4855 e1000_get_hw_control(adapter);
4861 static void e1000_shutdown(struct pci_dev *pdev)
4863 e1000_suspend(pdev, PMSG_SUSPEND);
4866 #ifdef CONFIG_NET_POLL_CONTROLLER
4868 * Polling 'interrupt' - used by things like netconsole to send skbs
4869 * without having to re-enable interrupts. It's not called while
4870 * the interrupt routine is executing.
4873 e1000_netpoll(struct net_device *netdev)
4875 struct e1000_adapter *adapter = netdev_priv(netdev);
4877 disable_irq(adapter->pdev->irq);
4878 e1000_intr(adapter->pdev->irq, netdev);
4879 e1000_clean_tx_irq(adapter, adapter->tx_ring);
4880 #ifndef CONFIG_E1000_NAPI
4881 adapter->clean_rx(adapter, adapter->rx_ring);
4883 enable_irq(adapter->pdev->irq);
4888 * e1000_io_error_detected - called when PCI error is detected
4889 * @pdev: Pointer to PCI device
4890 * @state: The current pci conneection state
4892 * This function is called after a PCI bus error affecting
4893 * this device has been detected.
4895 static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state)
4897 struct net_device *netdev = pci_get_drvdata(pdev);
4898 struct e1000_adapter *adapter = netdev->priv;
4900 netif_device_detach(netdev);
4902 if (netif_running(netdev))
4903 e1000_down(adapter);
4904 pci_disable_device(pdev);
4906 /* Request a slot slot reset. */
4907 return PCI_ERS_RESULT_NEED_RESET;
4911 * e1000_io_slot_reset - called after the pci bus has been reset.
4912 * @pdev: Pointer to PCI device
4914 * Restart the card from scratch, as if from a cold-boot. Implementation
4915 * resembles the first-half of the e1000_resume routine.
4917 static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
4919 struct net_device *netdev = pci_get_drvdata(pdev);
4920 struct e1000_adapter *adapter = netdev->priv;
4922 if (pci_enable_device(pdev)) {
4923 printk(KERN_ERR "e1000: Cannot re-enable PCI device after reset.\n");
4924 return PCI_ERS_RESULT_DISCONNECT;
4926 pci_set_master(pdev);
4928 pci_enable_wake(pdev, PCI_D3hot, 0);
4929 pci_enable_wake(pdev, PCI_D3cold, 0);
4931 e1000_reset(adapter);
4932 E1000_WRITE_REG(&adapter->hw, WUS, ~0);
4934 return PCI_ERS_RESULT_RECOVERED;
4938 * e1000_io_resume - called when traffic can start flowing again.
4939 * @pdev: Pointer to PCI device
4941 * This callback is called when the error recovery driver tells us that
4942 * its OK to resume normal operation. Implementation resembles the
4943 * second-half of the e1000_resume routine.
4945 static void e1000_io_resume(struct pci_dev *pdev)
4947 struct net_device *netdev = pci_get_drvdata(pdev);
4948 struct e1000_adapter *adapter = netdev->priv;
4949 uint32_t manc, swsm;
4951 if (netif_running(netdev)) {
4952 if (e1000_up(adapter)) {
4953 printk("e1000: can't bring device back up after reset\n");
4958 netif_device_attach(netdev);
4960 if (adapter->hw.mac_type >= e1000_82540 &&
4961 adapter->hw.mac_type < e1000_82571 &&
4962 adapter->hw.media_type == e1000_media_type_copper) {
4963 manc = E1000_READ_REG(&adapter->hw, MANC);
4964 manc &= ~(E1000_MANC_ARP_EN);
4965 E1000_WRITE_REG(&adapter->hw, MANC, manc);
4968 switch (adapter->hw.mac_type) {
4970 swsm = E1000_READ_REG(&adapter->hw, SWSM);
4971 E1000_WRITE_REG(&adapter->hw, SWSM,
4972 swsm | E1000_SWSM_DRV_LOAD);
4978 if (netif_running(netdev))
4979 mod_timer(&adapter->watchdog_timer, jiffies);