Merge branch 'for-linus' of git://linux-nfs.org/~bfields/linux
[linux-2.6] / arch / cris / arch-v32 / mach-fs / arbiter.c
1 /*
2  * Memory arbiter functions. Allocates bandwidth through the
3  * arbiter and sets up arbiter breakpoints.
4  *
5  * The algorithm first assigns slots to the clients that has specified
6  * bandwidth (e.g. ethernet) and then the remaining slots are divided
7  * on all the active clients.
8  *
9  * Copyright (c) 2004-2007 Axis Communications AB.
10  */
11
12 #include <hwregs/reg_map.h>
13 #include <hwregs/reg_rdwr.h>
14 #include <hwregs/marb_defs.h>
15 #include <arbiter.h>
16 #include <hwregs/intr_vect.h>
17 #include <linux/interrupt.h>
18 #include <linux/signal.h>
19 #include <linux/errno.h>
20 #include <linux/spinlock.h>
21 #include <asm/io.h>
22 #include <asm/irq_regs.h>
23
24 struct crisv32_watch_entry {
25         unsigned long instance;
26         watch_callback *cb;
27         unsigned long start;
28         unsigned long end;
29         int used;
30 };
31
32 #define NUMBER_OF_BP 4
33 #define NBR_OF_CLIENTS 14
34 #define NBR_OF_SLOTS 64
35 #define SDRAM_BANDWIDTH 100000000       /* Some kind of expected value */
36 #define INTMEM_BANDWIDTH 400000000
37 #define NBR_OF_REGIONS 2
38
39 static struct crisv32_watch_entry watches[NUMBER_OF_BP] = {
40         {regi_marb_bp0},
41         {regi_marb_bp1},
42         {regi_marb_bp2},
43         {regi_marb_bp3}
44 };
45
46 static u8 requested_slots[NBR_OF_REGIONS][NBR_OF_CLIENTS];
47 static u8 active_clients[NBR_OF_REGIONS][NBR_OF_CLIENTS];
48 static int max_bandwidth[NBR_OF_REGIONS] =
49     { SDRAM_BANDWIDTH, INTMEM_BANDWIDTH };
50
51 DEFINE_SPINLOCK(arbiter_lock);
52
53 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id);
54
55 /*
56  * "I'm the arbiter, I know the score.
57  *  From square one I'll be watching all 64."
58  * (memory arbiter slots, that is)
59  *
60  *  Or in other words:
61  * Program the memory arbiter slots for "region" according to what's
62  * in requested_slots[] and active_clients[], while minimizing
63  * latency. A caller may pass a non-zero positive amount for
64  * "unused_slots", which must then be the unallocated, remaining
65  * number of slots, free to hand out to any client.
66  */
67
68 static void crisv32_arbiter_config(int region, int unused_slots)
69 {
70         int slot;
71         int client;
72         int interval = 0;
73
74         /*
75          * This vector corresponds to the hardware arbiter slots (see
76          * the hardware documentation for semantics). We initialize
77          * each slot with a suitable sentinel value outside the valid
78          * range {0 .. NBR_OF_CLIENTS - 1} and replace them with
79          * client indexes. Then it's fed to the hardware.
80          */
81         s8 val[NBR_OF_SLOTS];
82
83         for (slot = 0; slot < NBR_OF_SLOTS; slot++)
84                 val[slot] = -1;
85
86         for (client = 0; client < NBR_OF_CLIENTS; client++) {
87                 int pos;
88                 /* Allocate the requested non-zero number of slots, but
89                  * also give clients with zero-requests one slot each
90                  * while stocks last. We do the latter here, in client
91                  * order. This makes sure zero-request clients are the
92                  * first to get to any spare slots, else those slots
93                  * could, when bandwidth is allocated close to the limit,
94                  * all be allocated to low-index non-zero-request clients
95                  * in the default-fill loop below. Another positive but
96                  * secondary effect is a somewhat better spread of the
97                  * zero-bandwidth clients in the vector, avoiding some of
98                  * the latency that could otherwise be caused by the
99                  * partitioning of non-zero-bandwidth clients at low
100                  * indexes and zero-bandwidth clients at high
101                  * indexes. (Note that this spreading can only affect the
102                  * unallocated bandwidth.)  All the above only matters for
103                  * memory-intensive situations, of course.
104                  */
105                 if (!requested_slots[region][client]) {
106                         /*
107                          * Skip inactive clients. Also skip zero-slot
108                          * allocations in this pass when there are no known
109                          * free slots.
110                          */
111                         if (!active_clients[region][client]
112                             || unused_slots <= 0)
113                                 continue;
114
115                         unused_slots--;
116
117                         /* Only allocate one slot for this client. */
118                         interval = NBR_OF_SLOTS;
119                 } else
120                         interval =
121                             NBR_OF_SLOTS / requested_slots[region][client];
122
123                 pos = 0;
124                 while (pos < NBR_OF_SLOTS) {
125                         if (val[pos] >= 0)
126                                 pos++;
127                         else {
128                                 val[pos] = client;
129                                 pos += interval;
130                         }
131                 }
132         }
133
134         client = 0;
135         for (slot = 0; slot < NBR_OF_SLOTS; slot++) {
136                 /*
137                  * Allocate remaining slots in round-robin
138                  * client-number order for active clients. For this
139                  * pass, we ignore requested bandwidth and previous
140                  * allocations.
141                  */
142                 if (val[slot] < 0) {
143                         int first = client;
144                         while (!active_clients[region][client]) {
145                                 client = (client + 1) % NBR_OF_CLIENTS;
146                                 if (client == first)
147                                         break;
148                         }
149                         val[slot] = client;
150                         client = (client + 1) % NBR_OF_CLIENTS;
151                 }
152                 if (region == EXT_REGION)
153                         REG_WR_INT_VECT(marb, regi_marb, rw_ext_slots, slot,
154                                         val[slot]);
155                 else if (region == INT_REGION)
156                         REG_WR_INT_VECT(marb, regi_marb, rw_int_slots, slot,
157                                         val[slot]);
158         }
159 }
160
161 extern char _stext, _etext;
162
163 static void crisv32_arbiter_init(void)
164 {
165         static int initialized;
166
167         if (initialized)
168                 return;
169
170         initialized = 1;
171
172         /*
173          * CPU caches are always set to active, but with zero
174          * bandwidth allocated. It should be ok to allocate zero
175          * bandwidth for the caches, because DMA for other channels
176          * will supposedly finish, once their programmed amount is
177          * done, and then the caches will get access according to the
178          * "fixed scheme" for unclaimed slots. Though, if for some
179          * use-case somewhere, there's a maximum CPU latency for
180          * e.g. some interrupt, we have to start allocating specific
181          * bandwidth for the CPU caches too.
182          */
183         active_clients[EXT_REGION][10] = active_clients[EXT_REGION][11] = 1;
184         crisv32_arbiter_config(EXT_REGION, 0);
185         crisv32_arbiter_config(INT_REGION, 0);
186
187         if (request_irq(MEMARB_INTR_VECT, crisv32_arbiter_irq, IRQF_DISABLED,
188                         "arbiter", NULL))
189                 printk(KERN_ERR "Couldn't allocate arbiter IRQ\n");
190
191 #ifndef CONFIG_ETRAX_KGDB
192         /* Global watch for writes to kernel text segment. */
193         crisv32_arbiter_watch(virt_to_phys(&_stext), &_etext - &_stext,
194                               arbiter_all_clients, arbiter_all_write, NULL);
195 #endif
196 }
197
198 /* Main entry for bandwidth allocation. */
199
200 int crisv32_arbiter_allocate_bandwidth(int client, int region,
201                                        unsigned long bandwidth)
202 {
203         int i;
204         int total_assigned = 0;
205         int total_clients = 0;
206         int req;
207
208         crisv32_arbiter_init();
209
210         for (i = 0; i < NBR_OF_CLIENTS; i++) {
211                 total_assigned += requested_slots[region][i];
212                 total_clients += active_clients[region][i];
213         }
214
215         /* Avoid division by 0 for 0-bandwidth requests. */
216         req = bandwidth == 0
217             ? 0 : NBR_OF_SLOTS / (max_bandwidth[region] / bandwidth);
218
219         /*
220          * We make sure that there are enough slots only for non-zero
221          * requests. Requesting 0 bandwidth *may* allocate slots,
222          * though if all bandwidth is allocated, such a client won't
223          * get any and will have to rely on getting memory access
224          * according to the fixed scheme that's the default when one
225          * of the slot-allocated clients doesn't claim their slot.
226          */
227         if (total_assigned + req > NBR_OF_SLOTS)
228                 return -ENOMEM;
229
230         active_clients[region][client] = 1;
231         requested_slots[region][client] = req;
232         crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
233
234         return 0;
235 }
236
237 /*
238  * Main entry for bandwidth deallocation.
239  *
240  * Strictly speaking, for a somewhat constant set of clients where
241  * each client gets a constant bandwidth and is just enabled or
242  * disabled (somewhat dynamically), no action is necessary here to
243  * avoid starvation for non-zero-allocation clients, as the allocated
244  * slots will just be unused. However, handing out those unused slots
245  * to active clients avoids needless latency if the "fixed scheme"
246  * would give unclaimed slots to an eager low-index client.
247  */
248
249 void crisv32_arbiter_deallocate_bandwidth(int client, int region)
250 {
251         int i;
252         int total_assigned = 0;
253
254         requested_slots[region][client] = 0;
255         active_clients[region][client] = 0;
256
257         for (i = 0; i < NBR_OF_CLIENTS; i++)
258                 total_assigned += requested_slots[region][i];
259
260         crisv32_arbiter_config(region, NBR_OF_SLOTS - total_assigned);
261 }
262
263 int crisv32_arbiter_watch(unsigned long start, unsigned long size,
264                           unsigned long clients, unsigned long accesses,
265                           watch_callback *cb)
266 {
267         int i;
268
269         crisv32_arbiter_init();
270
271         if (start > 0x80000000) {
272                 printk(KERN_ERR "Arbiter: %lX doesn't look like a "
273                         "physical address", start);
274                 return -EFAULT;
275         }
276
277         spin_lock(&arbiter_lock);
278
279         for (i = 0; i < NUMBER_OF_BP; i++) {
280                 if (!watches[i].used) {
281                         reg_marb_rw_intr_mask intr_mask =
282                             REG_RD(marb, regi_marb, rw_intr_mask);
283
284                         watches[i].used = 1;
285                         watches[i].start = start;
286                         watches[i].end = start + size;
287                         watches[i].cb = cb;
288
289                         REG_WR_INT(marb_bp, watches[i].instance, rw_first_addr,
290                                    watches[i].start);
291                         REG_WR_INT(marb_bp, watches[i].instance, rw_last_addr,
292                                    watches[i].end);
293                         REG_WR_INT(marb_bp, watches[i].instance, rw_op,
294                                    accesses);
295                         REG_WR_INT(marb_bp, watches[i].instance, rw_clients,
296                                    clients);
297
298                         if (i == 0)
299                                 intr_mask.bp0 = regk_marb_yes;
300                         else if (i == 1)
301                                 intr_mask.bp1 = regk_marb_yes;
302                         else if (i == 2)
303                                 intr_mask.bp2 = regk_marb_yes;
304                         else if (i == 3)
305                                 intr_mask.bp3 = regk_marb_yes;
306
307                         REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
308                         spin_unlock(&arbiter_lock);
309
310                         return i;
311                 }
312         }
313         spin_unlock(&arbiter_lock);
314         return -ENOMEM;
315 }
316
317 int crisv32_arbiter_unwatch(int id)
318 {
319         reg_marb_rw_intr_mask intr_mask = REG_RD(marb, regi_marb, rw_intr_mask);
320
321         crisv32_arbiter_init();
322
323         spin_lock(&arbiter_lock);
324
325         if ((id < 0) || (id >= NUMBER_OF_BP) || (!watches[id].used)) {
326                 spin_unlock(&arbiter_lock);
327                 return -EINVAL;
328         }
329
330         memset(&watches[id], 0, sizeof(struct crisv32_watch_entry));
331
332         if (id == 0)
333                 intr_mask.bp0 = regk_marb_no;
334         else if (id == 1)
335                 intr_mask.bp2 = regk_marb_no;
336         else if (id == 2)
337                 intr_mask.bp2 = regk_marb_no;
338         else if (id == 3)
339                 intr_mask.bp3 = regk_marb_no;
340
341         REG_WR(marb, regi_marb, rw_intr_mask, intr_mask);
342
343         spin_unlock(&arbiter_lock);
344         return 0;
345 }
346
347 extern void show_registers(struct pt_regs *regs);
348
349 static irqreturn_t crisv32_arbiter_irq(int irq, void *dev_id)
350 {
351         reg_marb_r_masked_intr masked_intr =
352             REG_RD(marb, regi_marb, r_masked_intr);
353         reg_marb_bp_r_brk_clients r_clients;
354         reg_marb_bp_r_brk_addr r_addr;
355         reg_marb_bp_r_brk_op r_op;
356         reg_marb_bp_r_brk_first_client r_first;
357         reg_marb_bp_r_brk_size r_size;
358         reg_marb_bp_rw_ack ack = { 0 };
359         reg_marb_rw_ack_intr ack_intr = {
360                 .bp0 = 1, .bp1 = 1, .bp2 = 1, .bp3 = 1
361         };
362         struct crisv32_watch_entry *watch;
363
364         if (masked_intr.bp0) {
365                 watch = &watches[0];
366                 ack_intr.bp0 = regk_marb_yes;
367         } else if (masked_intr.bp1) {
368                 watch = &watches[1];
369                 ack_intr.bp1 = regk_marb_yes;
370         } else if (masked_intr.bp2) {
371                 watch = &watches[2];
372                 ack_intr.bp2 = regk_marb_yes;
373         } else if (masked_intr.bp3) {
374                 watch = &watches[3];
375                 ack_intr.bp3 = regk_marb_yes;
376         } else {
377                 return IRQ_NONE;
378         }
379
380         /* Retrieve all useful information and print it. */
381         r_clients = REG_RD(marb_bp, watch->instance, r_brk_clients);
382         r_addr = REG_RD(marb_bp, watch->instance, r_brk_addr);
383         r_op = REG_RD(marb_bp, watch->instance, r_brk_op);
384         r_first = REG_RD(marb_bp, watch->instance, r_brk_first_client);
385         r_size = REG_RD(marb_bp, watch->instance, r_brk_size);
386
387         printk(KERN_INFO "Arbiter IRQ\n");
388         printk(KERN_INFO "Clients %X addr %X op %X first %X size %X\n",
389                REG_TYPE_CONV(int, reg_marb_bp_r_brk_clients, r_clients),
390                REG_TYPE_CONV(int, reg_marb_bp_r_brk_addr, r_addr),
391                REG_TYPE_CONV(int, reg_marb_bp_r_brk_op, r_op),
392                REG_TYPE_CONV(int, reg_marb_bp_r_brk_first_client, r_first),
393                REG_TYPE_CONV(int, reg_marb_bp_r_brk_size, r_size));
394
395         REG_WR(marb_bp, watch->instance, rw_ack, ack);
396         REG_WR(marb, regi_marb, rw_ack_intr, ack_intr);
397
398         printk(KERN_INFO "IRQ occured at %lX\n", get_irq_regs()->erp);
399
400         if (watch->cb)
401                 watch->cb();
402
403         return IRQ_HANDLED;
404 }