1 #include <linux/kernel.h>
2 #include <linux/sched.h>
3 #include <linux/init.h>
4 #include <linux/module.h>
5 #include <linux/timer.h>
6 #include <linux/acpi_pmtmr.h>
7 #include <linux/cpufreq.h>
9 #include <linux/delay.h>
10 #include <linux/clocksource.h>
11 #include <linux/percpu.h>
14 #include <asm/timer.h>
15 #include <asm/vgtod.h>
17 #include <asm/delay.h>
18 #include <asm/hypervisor.h>
20 unsigned int cpu_khz; /* TSC clocks / usec, not used here */
21 EXPORT_SYMBOL(cpu_khz);
23 EXPORT_SYMBOL(tsc_khz);
26 * TSC can be unstable due to cpufreq or due to unsynced TSCs
28 static int tsc_unstable;
30 /* native_sched_clock() is called before tsc_init(), so
31 we must start with the TSC soft disabled to prevent
32 erroneous rdtsc usage on !cpu_has_tsc processors */
33 static int tsc_disabled = -1;
35 static int tsc_clocksource_reliable;
37 * Scheduler clock - returns current time in nanosec units.
39 u64 native_sched_clock(void)
44 * Fall back to jiffies if there's no TSC available:
45 * ( But note that we still use it if the TSC is marked
46 * unstable. We do this because unlike Time Of Day,
47 * the scheduler clock tolerates small errors and it's
48 * very important for it to be as fast as the platform
51 if (unlikely(tsc_disabled)) {
52 /* No locking but a rare wrong value is not a big deal: */
53 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
56 /* read the Time Stamp Counter: */
59 /* return the value in ns */
60 return __cycles_2_ns(this_offset);
63 /* We need to define a real function for sched_clock, to override the
64 weak default version */
65 #ifdef CONFIG_PARAVIRT
66 unsigned long long sched_clock(void)
68 return paravirt_sched_clock();
72 sched_clock(void) __attribute__((alias("native_sched_clock")));
75 int check_tsc_unstable(void)
79 EXPORT_SYMBOL_GPL(check_tsc_unstable);
82 int __init notsc_setup(char *str)
84 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
85 "cannot disable TSC completely.\n");
91 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
94 int __init notsc_setup(char *str)
96 setup_clear_cpu_cap(X86_FEATURE_TSC);
101 __setup("notsc", notsc_setup);
103 static int __init tsc_setup(char *str)
105 if (!strcmp(str, "reliable"))
106 tsc_clocksource_reliable = 1;
110 __setup("tsc=", tsc_setup);
112 #define MAX_RETRIES 5
113 #define SMI_TRESHOLD 50000
116 * Read TSC and the reference counters. Take care of SMI disturbance
118 static u64 tsc_read_refs(u64 *p, int hpet)
123 for (i = 0; i < MAX_RETRIES; i++) {
126 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
128 *p = acpi_pm_read_early();
130 if ((t2 - t1) < SMI_TRESHOLD)
137 * Calculate the TSC frequency from HPET reference
139 static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
144 hpet2 += 0x100000000ULL;
146 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
147 do_div(tmp, 1000000);
148 do_div(deltatsc, tmp);
150 return (unsigned long) deltatsc;
154 * Calculate the TSC frequency from PMTimer reference
156 static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
164 pm2 += (u64)ACPI_PM_OVRRUN;
166 tmp = pm2 * 1000000000LL;
167 do_div(tmp, PMTMR_TICKS_PER_SEC);
168 do_div(deltatsc, tmp);
170 return (unsigned long) deltatsc;
174 #define CAL_LATCH (CLOCK_TICK_RATE / (1000 / CAL_MS))
175 #define CAL_PIT_LOOPS 1000
178 #define CAL2_LATCH (CLOCK_TICK_RATE / (1000 / CAL2_MS))
179 #define CAL2_PIT_LOOPS 5000
183 * Try to calibrate the TSC against the Programmable
184 * Interrupt Timer and return the frequency of the TSC
187 * Return ULONG_MAX on failure to calibrate.
189 static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
191 u64 tsc, t1, t2, delta;
192 unsigned long tscmin, tscmax;
195 /* Set the Gate high, disable speaker */
196 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
199 * Setup CTC channel 2* for mode 0, (interrupt on terminal
200 * count mode), binary count. Set the latch register to 50ms
201 * (LSB then MSB) to begin countdown.
204 outb(latch & 0xff, 0x42);
205 outb(latch >> 8, 0x42);
207 tsc = t1 = t2 = get_cycles();
212 while ((inb(0x61) & 0x20) == 0) {
216 if ((unsigned long) delta < tscmin)
217 tscmin = (unsigned int) delta;
218 if ((unsigned long) delta > tscmax)
219 tscmax = (unsigned int) delta;
226 * If we were not able to read the PIT more than loopmin
227 * times, then we have been hit by a massive SMI
229 * If the maximum is 10 times larger than the minimum,
230 * then we got hit by an SMI as well.
232 if (pitcnt < loopmin || tscmax > 10 * tscmin)
235 /* Calculate the PIT value */
242 * This reads the current MSB of the PIT counter, and
243 * checks if we are running on sufficiently fast and
244 * non-virtualized hardware.
246 * Our expectations are:
248 * - the PIT is running at roughly 1.19MHz
250 * - each IO is going to take about 1us on real hardware,
251 * but we allow it to be much faster (by a factor of 10) or
252 * _slightly_ slower (ie we allow up to a 2us read+counter
253 * update - anything else implies a unacceptably slow CPU
254 * or PIT for the fast calibration to work.
256 * - with 256 PIT ticks to read the value, we have 214us to
257 * see the same MSB (and overhead like doing a single TSC
258 * read per MSB value etc).
260 * - We're doing 2 reads per loop (LSB, MSB), and we expect
261 * them each to take about a microsecond on real hardware.
262 * So we expect a count value of around 100. But we'll be
263 * generous, and accept anything over 50.
265 * - if the PIT is stuck, and we see *many* more reads, we
266 * return early (and the next caller of pit_expect_msb()
267 * then consider it a failure when they don't see the
268 * next expected value).
270 * These expectations mean that we know that we have seen the
271 * transition from one expected value to another with a fairly
272 * high accuracy, and we didn't miss any events. We can thus
273 * use the TSC value at the transitions to calculate a pretty
274 * good value for the TSC frequencty.
276 static inline int pit_expect_msb(unsigned char val)
280 for (count = 0; count < 50000; count++) {
283 if (inb(0x42) != val)
290 * How many MSB values do we want to see? We aim for a
291 * 15ms calibration, which assuming a 2us counter read
292 * error should give us roughly 150 ppm precision for
295 #define QUICK_PIT_MS 15
296 #define QUICK_PIT_ITERATIONS (QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
298 static unsigned long quick_pit_calibrate(void)
300 /* Set the Gate high, disable speaker */
301 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
304 * Counter 2, mode 0 (one-shot), binary count
306 * NOTE! Mode 2 decrements by two (and then the
307 * output is flipped each time, giving the same
308 * final output frequency as a decrement-by-one),
309 * so mode 0 is much better when looking at the
314 /* Start at 0xffff */
318 if (pit_expect_msb(0xff)) {
321 unsigned char expect = 0xfe;
324 for (i = 0; i < QUICK_PIT_ITERATIONS; i++, expect--) {
325 if (!pit_expect_msb(expect))
331 * Make sure we can rely on the second TSC timestamp:
333 if (!pit_expect_msb(expect))
337 * Ok, if we get here, then we've seen the
338 * MSB of the PIT decrement QUICK_PIT_ITERATIONS
339 * times, and each MSB had many hits, so we never
340 * had any sudden jumps.
342 * As a result, we can depend on there not being
343 * any odd delays anywhere, and the TSC reads are
346 * kHz = ticks / time-in-seconds / 1000;
347 * kHz = (t2 - t1) / (QPI * 256 / PIT_TICK_RATE) / 1000
348 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (QPI * 256 * 1000)
350 delta = (t2 - t1)*PIT_TICK_RATE;
351 do_div(delta, QUICK_PIT_ITERATIONS*256*1000);
352 printk("Fast TSC calibration using PIT\n");
360 * native_calibrate_tsc - calibrate the tsc on boot
362 unsigned long native_calibrate_tsc(void)
364 u64 tsc1, tsc2, delta, ref1, ref2;
365 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
366 unsigned long flags, latch, ms, fast_calibrate, tsc_khz;
367 int hpet = is_hpet_enabled(), i, loopmin;
369 tsc_khz = get_hypervisor_tsc_freq();
371 printk(KERN_INFO "TSC: Frequency read from the hypervisor\n");
375 local_irq_save(flags);
376 fast_calibrate = quick_pit_calibrate();
377 local_irq_restore(flags);
379 return fast_calibrate;
382 * Run 5 calibration loops to get the lowest frequency value
383 * (the best estimate). We use two different calibration modes
386 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
387 * load a timeout of 50ms. We read the time right after we
388 * started the timer and wait until the PIT count down reaches
389 * zero. In each wait loop iteration we read the TSC and check
390 * the delta to the previous read. We keep track of the min
391 * and max values of that delta. The delta is mostly defined
392 * by the IO time of the PIT access, so we can detect when a
393 * SMI/SMM disturbance happend between the two reads. If the
394 * maximum time is significantly larger than the minimum time,
395 * then we discard the result and have another try.
397 * 2) Reference counter. If available we use the HPET or the
398 * PMTIMER as a reference to check the sanity of that value.
399 * We use separate TSC readouts and check inside of the
400 * reference read for a SMI/SMM disturbance. We dicard
401 * disturbed values here as well. We do that around the PIT
402 * calibration delay loop as we have to wait for a certain
403 * amount of time anyway.
406 /* Preset PIT loop values */
409 loopmin = CAL_PIT_LOOPS;
411 for (i = 0; i < 3; i++) {
412 unsigned long tsc_pit_khz;
415 * Read the start value and the reference count of
416 * hpet/pmtimer when available. Then do the PIT
417 * calibration, which will take at least 50ms, and
418 * read the end value.
420 local_irq_save(flags);
421 tsc1 = tsc_read_refs(&ref1, hpet);
422 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
423 tsc2 = tsc_read_refs(&ref2, hpet);
424 local_irq_restore(flags);
426 /* Pick the lowest PIT TSC calibration so far */
427 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
429 /* hpet or pmtimer available ? */
430 if (!hpet && !ref1 && !ref2)
433 /* Check, whether the sampling was disturbed by an SMI */
434 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
437 tsc2 = (tsc2 - tsc1) * 1000000LL;
439 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
441 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
443 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
445 /* Check the reference deviation */
446 delta = ((u64) tsc_pit_min) * 100;
447 do_div(delta, tsc_ref_min);
450 * If both calibration results are inside a 10% window
451 * then we can be sure, that the calibration
452 * succeeded. We break out of the loop right away. We
453 * use the reference value, as it is more precise.
455 if (delta >= 90 && delta <= 110) {
457 "TSC: PIT calibration matches %s. %d loops\n",
458 hpet ? "HPET" : "PMTIMER", i + 1);
463 * Check whether PIT failed more than once. This
464 * happens in virtualized environments. We need to
465 * give the virtual PC a slightly longer timeframe for
466 * the HPET/PMTIMER to make the result precise.
468 if (i == 1 && tsc_pit_min == ULONG_MAX) {
471 loopmin = CAL2_PIT_LOOPS;
476 * Now check the results.
478 if (tsc_pit_min == ULONG_MAX) {
479 /* PIT gave no useful value */
480 printk(KERN_WARNING "TSC: Unable to calibrate against PIT\n");
482 /* We don't have an alternative source, disable TSC */
483 if (!hpet && !ref1 && !ref2) {
484 printk("TSC: No reference (HPET/PMTIMER) available\n");
488 /* The alternative source failed as well, disable TSC */
489 if (tsc_ref_min == ULONG_MAX) {
490 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration "
495 /* Use the alternative source */
496 printk(KERN_INFO "TSC: using %s reference calibration\n",
497 hpet ? "HPET" : "PMTIMER");
502 /* We don't have an alternative source, use the PIT calibration value */
503 if (!hpet && !ref1 && !ref2) {
504 printk(KERN_INFO "TSC: Using PIT calibration value\n");
508 /* The alternative source failed, use the PIT calibration value */
509 if (tsc_ref_min == ULONG_MAX) {
510 printk(KERN_WARNING "TSC: HPET/PMTIMER calibration failed. "
511 "Using PIT calibration\n");
516 * The calibration values differ too much. In doubt, we use
517 * the PIT value as we know that there are PMTIMERs around
518 * running at double speed. At least we let the user know:
520 printk(KERN_WARNING "TSC: PIT calibration deviates from %s: %lu %lu.\n",
521 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
522 printk(KERN_INFO "TSC: Using PIT calibration value\n");
527 /* Only called from the Powernow K7 cpu freq driver */
528 int recalibrate_cpu_khz(void)
531 unsigned long cpu_khz_old = cpu_khz;
534 tsc_khz = calibrate_tsc();
536 cpu_data(0).loops_per_jiffy =
537 cpufreq_scale(cpu_data(0).loops_per_jiffy,
538 cpu_khz_old, cpu_khz);
547 EXPORT_SYMBOL(recalibrate_cpu_khz);
549 #endif /* CONFIG_X86_32 */
551 /* Accelerators for sched_clock()
552 * convert from cycles(64bits) => nanoseconds (64bits)
554 * ns = cycles / (freq / ns_per_sec)
555 * ns = cycles * (ns_per_sec / freq)
556 * ns = cycles * (10^9 / (cpu_khz * 10^3))
557 * ns = cycles * (10^6 / cpu_khz)
559 * Then we use scaling math (suggested by george@mvista.com) to get:
560 * ns = cycles * (10^6 * SC / cpu_khz) / SC
561 * ns = cycles * cyc2ns_scale / SC
563 * And since SC is a constant power of two, we can convert the div
566 * We can use khz divisor instead of mhz to keep a better precision, since
567 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
568 * (mathieu.desnoyers@polymtl.ca)
570 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
573 DEFINE_PER_CPU(unsigned long, cyc2ns);
575 static void set_cyc2ns_scale(unsigned long cpu_khz, int cpu)
577 unsigned long long tsc_now, ns_now;
578 unsigned long flags, *scale;
580 local_irq_save(flags);
581 sched_clock_idle_sleep_event();
583 scale = &per_cpu(cyc2ns, cpu);
586 ns_now = __cycles_2_ns(tsc_now);
589 *scale = (NSEC_PER_MSEC << CYC2NS_SCALE_FACTOR)/cpu_khz;
591 sched_clock_idle_wakeup_event(0);
592 local_irq_restore(flags);
595 #ifdef CONFIG_CPU_FREQ
597 /* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
600 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
601 * not that important because current Opteron setups do not support
602 * scaling on SMP anyroads.
604 * Should fix up last_tsc too. Currently gettimeofday in the
605 * first tick after the change will be slightly wrong.
608 static unsigned int ref_freq;
609 static unsigned long loops_per_jiffy_ref;
610 static unsigned long tsc_khz_ref;
612 static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
615 struct cpufreq_freqs *freq = data;
616 unsigned long *lpj, dummy;
618 if (cpu_has(&cpu_data(freq->cpu), X86_FEATURE_CONSTANT_TSC))
622 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
624 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
626 lpj = &boot_cpu_data.loops_per_jiffy;
630 ref_freq = freq->old;
631 loops_per_jiffy_ref = *lpj;
632 tsc_khz_ref = tsc_khz;
634 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
635 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
636 (val == CPUFREQ_RESUMECHANGE)) {
637 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
639 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
640 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
641 mark_tsc_unstable("cpufreq changes");
644 set_cyc2ns_scale(tsc_khz, freq->cpu);
649 static struct notifier_block time_cpufreq_notifier_block = {
650 .notifier_call = time_cpufreq_notifier
653 static int __init cpufreq_tsc(void)
657 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
659 cpufreq_register_notifier(&time_cpufreq_notifier_block,
660 CPUFREQ_TRANSITION_NOTIFIER);
664 core_initcall(cpufreq_tsc);
666 #endif /* CONFIG_CPU_FREQ */
668 /* clocksource code */
670 static struct clocksource clocksource_tsc;
673 * We compare the TSC to the cycle_last value in the clocksource
674 * structure to avoid a nasty time-warp. This can be observed in a
675 * very small window right after one CPU updated cycle_last under
676 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
677 * is smaller than the cycle_last reference value due to a TSC which
678 * is slighty behind. This delta is nowhere else observable, but in
679 * that case it results in a forward time jump in the range of hours
680 * due to the unsigned delta calculation of the time keeping core
681 * code, which is necessary to support wrapping clocksources like pm
684 static cycle_t read_tsc(void)
686 cycle_t ret = (cycle_t)get_cycles();
688 return ret >= clocksource_tsc.cycle_last ?
689 ret : clocksource_tsc.cycle_last;
693 static cycle_t __vsyscall_fn vread_tsc(void)
695 cycle_t ret = (cycle_t)vget_cycles();
697 return ret >= __vsyscall_gtod_data.clock.cycle_last ?
698 ret : __vsyscall_gtod_data.clock.cycle_last;
702 static struct clocksource clocksource_tsc = {
706 .mask = CLOCKSOURCE_MASK(64),
708 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
709 CLOCK_SOURCE_MUST_VERIFY,
715 void mark_tsc_unstable(char *reason)
719 printk("Marking TSC unstable due to %s\n", reason);
720 /* Change only the rating, when not registered */
721 if (clocksource_tsc.mult)
722 clocksource_change_rating(&clocksource_tsc, 0);
724 clocksource_tsc.rating = 0;
728 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
730 static int __init dmi_mark_tsc_unstable(const struct dmi_system_id *d)
732 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
738 /* List of systems that have known TSC problems */
739 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
741 .callback = dmi_mark_tsc_unstable,
742 .ident = "IBM Thinkpad 380XD",
744 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
745 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
751 static void __init check_system_tsc_reliable(void)
753 #ifdef CONFIG_MGEODE_LX
754 /* RTSC counts during suspend */
755 #define RTSC_SUSP 0x100
756 unsigned long res_low, res_high;
758 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
759 /* Geode_LX - the OLPC CPU has a possibly a very reliable TSC */
760 if (res_low & RTSC_SUSP)
761 tsc_clocksource_reliable = 1;
763 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
764 tsc_clocksource_reliable = 1;
768 * Make an educated guess if the TSC is trustworthy and synchronized
771 __cpuinit int unsynchronized_tsc(void)
773 if (!cpu_has_tsc || tsc_unstable)
777 if (apic_is_clustered_box())
781 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
784 * Intel systems are normally all synchronized.
785 * Exceptions must mark TSC as unstable:
787 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
788 /* assume multi socket systems are not synchronized: */
789 if (num_possible_cpus() > 1)
796 static void __init init_tsc_clocksource(void)
798 clocksource_tsc.mult = clocksource_khz2mult(tsc_khz,
799 clocksource_tsc.shift);
800 if (tsc_clocksource_reliable)
801 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
802 /* lower the rating if we already know its unstable: */
803 if (check_tsc_unstable()) {
804 clocksource_tsc.rating = 0;
805 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
807 clocksource_register(&clocksource_tsc);
810 void __init tsc_init(void)
818 tsc_khz = calibrate_tsc();
822 mark_tsc_unstable("could not calculate TSC khz");
827 if (cpu_has(&boot_cpu_data, X86_FEATURE_CONSTANT_TSC) &&
828 (boot_cpu_data.x86_vendor == X86_VENDOR_AMD))
829 cpu_khz = calibrate_cpu();
832 printk("Detected %lu.%03lu MHz processor.\n",
833 (unsigned long)cpu_khz / 1000,
834 (unsigned long)cpu_khz % 1000);
837 * Secondary CPUs do not run through tsc_init(), so set up
838 * all the scale factors for all CPUs, assuming the same
839 * speed as the bootup CPU. (cpufreq notifiers will fix this
840 * up if their speed diverges)
842 for_each_possible_cpu(cpu)
843 set_cyc2ns_scale(cpu_khz, cpu);
845 if (tsc_disabled > 0)
848 /* now allow native_sched_clock() to use rdtsc */
851 lpj = ((u64)tsc_khz * 1000);
856 /* Check and install the TSC clocksource */
857 dmi_check_system(bad_tsc_dmi_table);
859 if (unsynchronized_tsc())
860 mark_tsc_unstable("TSCs unsynchronized");
862 check_system_tsc_reliable();
863 init_tsc_clocksource();