4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/smp_lock.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 bh->b_end_io = handler;
54 bh->b_private = private;
57 static int sync_buffer(void *word)
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
66 blk_run_address_space(bd->bd_inode->i_mapping);
71 void fastcall __lock_buffer(struct buffer_head *bh)
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
76 EXPORT_SYMBOL(__lock_buffer);
78 void fastcall unlock_buffer(struct buffer_head *bh)
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head * bh)
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
96 __clear_page_buffers(struct page *page)
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
103 static void buffer_io_error(struct buffer_head *bh)
105 char b[BDEVNAME_SIZE];
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
119 set_buffer_uptodate(bh);
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 char b[BDEVNAME_SIZE];
133 set_buffer_uptodate(bh);
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 printk(KERN_WARNING "lost page write due to "
139 bdevname(bh->b_bdev, b));
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
152 int sync_blockdev(struct block_device *bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
160 EXPORT_SYMBOL(sync_blockdev);
163 * Write out and wait upon all dirty data associated with this
164 * device. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
167 int fsync_bdev(struct block_device *bdev)
169 struct super_block *sb = get_super(bdev);
171 int res = fsync_super(sb);
175 return sync_blockdev(bdev);
179 * freeze_bdev -- lock a filesystem and force it into a consistent state
180 * @bdev: blockdevice to lock
182 * This takes the block device bd_mount_mutex to make sure no new mounts
183 * happen on bdev until thaw_bdev() is called.
184 * If a superblock is found on this device, we take the s_umount semaphore
185 * on it to make sure nobody unmounts until the snapshot creation is done.
187 struct super_block *freeze_bdev(struct block_device *bdev)
189 struct super_block *sb;
191 mutex_lock(&bdev->bd_mount_mutex);
192 sb = get_super(bdev);
193 if (sb && !(sb->s_flags & MS_RDONLY)) {
194 sb->s_frozen = SB_FREEZE_WRITE;
199 sb->s_frozen = SB_FREEZE_TRANS;
202 sync_blockdev(sb->s_bdev);
204 if (sb->s_op->write_super_lockfs)
205 sb->s_op->write_super_lockfs(sb);
209 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
211 EXPORT_SYMBOL(freeze_bdev);
214 * thaw_bdev -- unlock filesystem
215 * @bdev: blockdevice to unlock
216 * @sb: associated superblock
218 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
220 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
223 BUG_ON(sb->s_bdev != bdev);
225 if (sb->s_op->unlockfs)
226 sb->s_op->unlockfs(sb);
227 sb->s_frozen = SB_UNFROZEN;
229 wake_up(&sb->s_wait_unfrozen);
233 mutex_unlock(&bdev->bd_mount_mutex);
235 EXPORT_SYMBOL(thaw_bdev);
238 * Various filesystems appear to want __find_get_block to be non-blocking.
239 * But it's the page lock which protects the buffers. To get around this,
240 * we get exclusion from try_to_free_buffers with the blockdev mapping's
243 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
244 * may be quite high. This code could TryLock the page, and if that
245 * succeeds, there is no need to take private_lock. (But if
246 * private_lock is contended then so is mapping->tree_lock).
248 static struct buffer_head *
249 __find_get_block_slow(struct block_device *bdev, sector_t block)
251 struct inode *bd_inode = bdev->bd_inode;
252 struct address_space *bd_mapping = bd_inode->i_mapping;
253 struct buffer_head *ret = NULL;
255 struct buffer_head *bh;
256 struct buffer_head *head;
260 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
261 page = find_get_page(bd_mapping, index);
265 spin_lock(&bd_mapping->private_lock);
266 if (!page_has_buffers(page))
268 head = page_buffers(page);
271 if (bh->b_blocknr == block) {
276 if (!buffer_mapped(bh))
278 bh = bh->b_this_page;
279 } while (bh != head);
281 /* we might be here because some of the buffers on this page are
282 * not mapped. This is due to various races between
283 * file io on the block device and getblk. It gets dealt with
284 * elsewhere, don't buffer_error if we had some unmapped buffers
287 printk("__find_get_block_slow() failed. "
288 "block=%llu, b_blocknr=%llu\n",
289 (unsigned long long)block,
290 (unsigned long long)bh->b_blocknr);
291 printk("b_state=0x%08lx, b_size=%zu\n",
292 bh->b_state, bh->b_size);
293 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
296 spin_unlock(&bd_mapping->private_lock);
297 page_cache_release(page);
302 /* If invalidate_buffers() will trash dirty buffers, it means some kind
303 of fs corruption is going on. Trashing dirty data always imply losing
304 information that was supposed to be just stored on the physical layer
307 Thus invalidate_buffers in general usage is not allwowed to trash
308 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
309 be preserved. These buffers are simply skipped.
311 We also skip buffers which are still in use. For example this can
312 happen if a userspace program is reading the block device.
314 NOTE: In the case where the user removed a removable-media-disk even if
315 there's still dirty data not synced on disk (due a bug in the device driver
316 or due an error of the user), by not destroying the dirty buffers we could
317 generate corruption also on the next media inserted, thus a parameter is
318 necessary to handle this case in the most safe way possible (trying
319 to not corrupt also the new disk inserted with the data belonging to
320 the old now corrupted disk). Also for the ramdisk the natural thing
321 to do in order to release the ramdisk memory is to destroy dirty buffers.
323 These are two special cases. Normal usage imply the device driver
324 to issue a sync on the device (without waiting I/O completion) and
325 then an invalidate_buffers call that doesn't trash dirty buffers.
327 For handling cache coherency with the blkdev pagecache the 'update' case
328 is been introduced. It is needed to re-read from disk any pinned
329 buffer. NOTE: re-reading from disk is destructive so we can do it only
330 when we assume nobody is changing the buffercache under our I/O and when
331 we think the disk contains more recent information than the buffercache.
332 The update == 1 pass marks the buffers we need to update, the update == 2
333 pass does the actual I/O. */
334 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
336 struct address_space *mapping = bdev->bd_inode->i_mapping;
338 if (mapping->nrpages == 0)
341 invalidate_bh_lrus();
343 * FIXME: what about destroy_dirty_buffers?
344 * We really want to use invalidate_inode_pages2() for
345 * that, but not until that's cleaned up.
347 invalidate_inode_pages(mapping);
351 * Kick pdflush then try to free up some ZONE_NORMAL memory.
353 static void free_more_memory(void)
358 wakeup_pdflush(1024);
361 for_each_online_pgdat(pgdat) {
362 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
364 try_to_free_pages(zones, GFP_NOFS);
369 * I/O completion handler for block_read_full_page() - pages
370 * which come unlocked at the end of I/O.
372 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
375 struct buffer_head *first;
376 struct buffer_head *tmp;
378 int page_uptodate = 1;
380 BUG_ON(!buffer_async_read(bh));
384 set_buffer_uptodate(bh);
386 clear_buffer_uptodate(bh);
387 if (printk_ratelimit())
393 * Be _very_ careful from here on. Bad things can happen if
394 * two buffer heads end IO at almost the same time and both
395 * decide that the page is now completely done.
397 first = page_buffers(page);
398 local_irq_save(flags);
399 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
400 clear_buffer_async_read(bh);
404 if (!buffer_uptodate(tmp))
406 if (buffer_async_read(tmp)) {
407 BUG_ON(!buffer_locked(tmp));
410 tmp = tmp->b_this_page;
412 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
413 local_irq_restore(flags);
416 * If none of the buffers had errors and they are all
417 * uptodate then we can set the page uptodate.
419 if (page_uptodate && !PageError(page))
420 SetPageUptodate(page);
425 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
426 local_irq_restore(flags);
431 * Completion handler for block_write_full_page() - pages which are unlocked
432 * during I/O, and which have PageWriteback cleared upon I/O completion.
434 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
436 char b[BDEVNAME_SIZE];
438 struct buffer_head *first;
439 struct buffer_head *tmp;
442 BUG_ON(!buffer_async_write(bh));
446 set_buffer_uptodate(bh);
448 if (printk_ratelimit()) {
450 printk(KERN_WARNING "lost page write due to "
452 bdevname(bh->b_bdev, b));
454 set_bit(AS_EIO, &page->mapping->flags);
455 clear_buffer_uptodate(bh);
459 first = page_buffers(page);
460 local_irq_save(flags);
461 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
463 clear_buffer_async_write(bh);
465 tmp = bh->b_this_page;
467 if (buffer_async_write(tmp)) {
468 BUG_ON(!buffer_locked(tmp));
471 tmp = tmp->b_this_page;
473 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
474 local_irq_restore(flags);
475 end_page_writeback(page);
479 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
480 local_irq_restore(flags);
485 * If a page's buffers are under async readin (end_buffer_async_read
486 * completion) then there is a possibility that another thread of
487 * control could lock one of the buffers after it has completed
488 * but while some of the other buffers have not completed. This
489 * locked buffer would confuse end_buffer_async_read() into not unlocking
490 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
491 * that this buffer is not under async I/O.
493 * The page comes unlocked when it has no locked buffer_async buffers
496 * PageLocked prevents anyone starting new async I/O reads any of
499 * PageWriteback is used to prevent simultaneous writeout of the same
502 * PageLocked prevents anyone from starting writeback of a page which is
503 * under read I/O (PageWriteback is only ever set against a locked page).
505 static void mark_buffer_async_read(struct buffer_head *bh)
507 bh->b_end_io = end_buffer_async_read;
508 set_buffer_async_read(bh);
511 void mark_buffer_async_write(struct buffer_head *bh)
513 bh->b_end_io = end_buffer_async_write;
514 set_buffer_async_write(bh);
516 EXPORT_SYMBOL(mark_buffer_async_write);
520 * fs/buffer.c contains helper functions for buffer-backed address space's
521 * fsync functions. A common requirement for buffer-based filesystems is
522 * that certain data from the backing blockdev needs to be written out for
523 * a successful fsync(). For example, ext2 indirect blocks need to be
524 * written back and waited upon before fsync() returns.
526 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
527 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
528 * management of a list of dependent buffers at ->i_mapping->private_list.
530 * Locking is a little subtle: try_to_free_buffers() will remove buffers
531 * from their controlling inode's queue when they are being freed. But
532 * try_to_free_buffers() will be operating against the *blockdev* mapping
533 * at the time, not against the S_ISREG file which depends on those buffers.
534 * So the locking for private_list is via the private_lock in the address_space
535 * which backs the buffers. Which is different from the address_space
536 * against which the buffers are listed. So for a particular address_space,
537 * mapping->private_lock does *not* protect mapping->private_list! In fact,
538 * mapping->private_list will always be protected by the backing blockdev's
541 * Which introduces a requirement: all buffers on an address_space's
542 * ->private_list must be from the same address_space: the blockdev's.
544 * address_spaces which do not place buffers at ->private_list via these
545 * utility functions are free to use private_lock and private_list for
546 * whatever they want. The only requirement is that list_empty(private_list)
547 * be true at clear_inode() time.
549 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
550 * filesystems should do that. invalidate_inode_buffers() should just go
551 * BUG_ON(!list_empty).
553 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
554 * take an address_space, not an inode. And it should be called
555 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
558 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
559 * list if it is already on a list. Because if the buffer is on a list,
560 * it *must* already be on the right one. If not, the filesystem is being
561 * silly. This will save a ton of locking. But first we have to ensure
562 * that buffers are taken *off* the old inode's list when they are freed
563 * (presumably in truncate). That requires careful auditing of all
564 * filesystems (do it inside bforget()). It could also be done by bringing
569 * The buffer's backing address_space's private_lock must be held
571 static inline void __remove_assoc_queue(struct buffer_head *bh)
573 list_del_init(&bh->b_assoc_buffers);
576 int inode_has_buffers(struct inode *inode)
578 return !list_empty(&inode->i_data.private_list);
582 * osync is designed to support O_SYNC io. It waits synchronously for
583 * all already-submitted IO to complete, but does not queue any new
584 * writes to the disk.
586 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
587 * you dirty the buffers, and then use osync_inode_buffers to wait for
588 * completion. Any other dirty buffers which are not yet queued for
589 * write will not be flushed to disk by the osync.
591 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
593 struct buffer_head *bh;
599 list_for_each_prev(p, list) {
601 if (buffer_locked(bh)) {
605 if (!buffer_uptodate(bh))
617 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
619 * @mapping: the mapping which wants those buffers written
621 * Starts I/O against the buffers at mapping->private_list, and waits upon
624 * Basically, this is a convenience function for fsync().
625 * @mapping is a file or directory which needs those buffers to be written for
626 * a successful fsync().
628 int sync_mapping_buffers(struct address_space *mapping)
630 struct address_space *buffer_mapping = mapping->assoc_mapping;
632 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
635 return fsync_buffers_list(&buffer_mapping->private_lock,
636 &mapping->private_list);
638 EXPORT_SYMBOL(sync_mapping_buffers);
641 * Called when we've recently written block `bblock', and it is known that
642 * `bblock' was for a buffer_boundary() buffer. This means that the block at
643 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
644 * dirty, schedule it for IO. So that indirects merge nicely with their data.
646 void write_boundary_block(struct block_device *bdev,
647 sector_t bblock, unsigned blocksize)
649 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
651 if (buffer_dirty(bh))
652 ll_rw_block(WRITE, 1, &bh);
657 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
659 struct address_space *mapping = inode->i_mapping;
660 struct address_space *buffer_mapping = bh->b_page->mapping;
662 mark_buffer_dirty(bh);
663 if (!mapping->assoc_mapping) {
664 mapping->assoc_mapping = buffer_mapping;
666 BUG_ON(mapping->assoc_mapping != buffer_mapping);
668 if (list_empty(&bh->b_assoc_buffers)) {
669 spin_lock(&buffer_mapping->private_lock);
670 list_move_tail(&bh->b_assoc_buffers,
671 &mapping->private_list);
672 spin_unlock(&buffer_mapping->private_lock);
675 EXPORT_SYMBOL(mark_buffer_dirty_inode);
678 * Add a page to the dirty page list.
680 * It is a sad fact of life that this function is called from several places
681 * deeply under spinlocking. It may not sleep.
683 * If the page has buffers, the uptodate buffers are set dirty, to preserve
684 * dirty-state coherency between the page and the buffers. It the page does
685 * not have buffers then when they are later attached they will all be set
688 * The buffers are dirtied before the page is dirtied. There's a small race
689 * window in which a writepage caller may see the page cleanness but not the
690 * buffer dirtiness. That's fine. If this code were to set the page dirty
691 * before the buffers, a concurrent writepage caller could clear the page dirty
692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693 * page on the dirty page list.
695 * We use private_lock to lock against try_to_free_buffers while using the
696 * page's buffer list. Also use this to protect against clean buffers being
697 * added to the page after it was set dirty.
699 * FIXME: may need to call ->reservepage here as well. That's rather up to the
700 * address_space though.
702 int __set_page_dirty_buffers(struct page *page)
704 struct address_space * const mapping = page_mapping(page);
706 if (unlikely(!mapping))
707 return !TestSetPageDirty(page);
709 spin_lock(&mapping->private_lock);
710 if (page_has_buffers(page)) {
711 struct buffer_head *head = page_buffers(page);
712 struct buffer_head *bh = head;
715 set_buffer_dirty(bh);
716 bh = bh->b_this_page;
717 } while (bh != head);
719 spin_unlock(&mapping->private_lock);
721 if (!TestSetPageDirty(page)) {
722 write_lock_irq(&mapping->tree_lock);
723 if (page->mapping) { /* Race with truncate? */
724 if (mapping_cap_account_dirty(mapping))
725 __inc_zone_page_state(page, NR_FILE_DIRTY);
726 radix_tree_tag_set(&mapping->page_tree,
728 PAGECACHE_TAG_DIRTY);
730 write_unlock_irq(&mapping->tree_lock);
731 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
736 EXPORT_SYMBOL(__set_page_dirty_buffers);
739 * Write out and wait upon a list of buffers.
741 * We have conflicting pressures: we want to make sure that all
742 * initially dirty buffers get waited on, but that any subsequently
743 * dirtied buffers don't. After all, we don't want fsync to last
744 * forever if somebody is actively writing to the file.
746 * Do this in two main stages: first we copy dirty buffers to a
747 * temporary inode list, queueing the writes as we go. Then we clean
748 * up, waiting for those writes to complete.
750 * During this second stage, any subsequent updates to the file may end
751 * up refiling the buffer on the original inode's dirty list again, so
752 * there is a chance we will end up with a buffer queued for write but
753 * not yet completed on that list. So, as a final cleanup we go through
754 * the osync code to catch these locked, dirty buffers without requeuing
755 * any newly dirty buffers for write.
757 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
759 struct buffer_head *bh;
760 struct list_head tmp;
763 INIT_LIST_HEAD(&tmp);
766 while (!list_empty(list)) {
767 bh = BH_ENTRY(list->next);
768 list_del_init(&bh->b_assoc_buffers);
769 if (buffer_dirty(bh) || buffer_locked(bh)) {
770 list_add(&bh->b_assoc_buffers, &tmp);
771 if (buffer_dirty(bh)) {
775 * Ensure any pending I/O completes so that
776 * ll_rw_block() actually writes the current
777 * contents - it is a noop if I/O is still in
778 * flight on potentially older contents.
780 ll_rw_block(SWRITE, 1, &bh);
787 while (!list_empty(&tmp)) {
788 bh = BH_ENTRY(tmp.prev);
789 __remove_assoc_queue(bh);
793 if (!buffer_uptodate(bh))
800 err2 = osync_buffers_list(lock, list);
808 * Invalidate any and all dirty buffers on a given inode. We are
809 * probably unmounting the fs, but that doesn't mean we have already
810 * done a sync(). Just drop the buffers from the inode list.
812 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
813 * assumes that all the buffers are against the blockdev. Not true
816 void invalidate_inode_buffers(struct inode *inode)
818 if (inode_has_buffers(inode)) {
819 struct address_space *mapping = &inode->i_data;
820 struct list_head *list = &mapping->private_list;
821 struct address_space *buffer_mapping = mapping->assoc_mapping;
823 spin_lock(&buffer_mapping->private_lock);
824 while (!list_empty(list))
825 __remove_assoc_queue(BH_ENTRY(list->next));
826 spin_unlock(&buffer_mapping->private_lock);
831 * Remove any clean buffers from the inode's buffer list. This is called
832 * when we're trying to free the inode itself. Those buffers can pin it.
834 * Returns true if all buffers were removed.
836 int remove_inode_buffers(struct inode *inode)
840 if (inode_has_buffers(inode)) {
841 struct address_space *mapping = &inode->i_data;
842 struct list_head *list = &mapping->private_list;
843 struct address_space *buffer_mapping = mapping->assoc_mapping;
845 spin_lock(&buffer_mapping->private_lock);
846 while (!list_empty(list)) {
847 struct buffer_head *bh = BH_ENTRY(list->next);
848 if (buffer_dirty(bh)) {
852 __remove_assoc_queue(bh);
854 spin_unlock(&buffer_mapping->private_lock);
860 * Create the appropriate buffers when given a page for data area and
861 * the size of each buffer.. Use the bh->b_this_page linked list to
862 * follow the buffers created. Return NULL if unable to create more
865 * The retry flag is used to differentiate async IO (paging, swapping)
866 * which may not fail from ordinary buffer allocations.
868 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
871 struct buffer_head *bh, *head;
877 while ((offset -= size) >= 0) {
878 bh = alloc_buffer_head(GFP_NOFS);
883 bh->b_this_page = head;
888 atomic_set(&bh->b_count, 0);
889 bh->b_private = NULL;
892 /* Link the buffer to its page */
893 set_bh_page(bh, page, offset);
895 init_buffer(bh, NULL, NULL);
899 * In case anything failed, we just free everything we got.
905 head = head->b_this_page;
906 free_buffer_head(bh);
911 * Return failure for non-async IO requests. Async IO requests
912 * are not allowed to fail, so we have to wait until buffer heads
913 * become available. But we don't want tasks sleeping with
914 * partially complete buffers, so all were released above.
919 /* We're _really_ low on memory. Now we just
920 * wait for old buffer heads to become free due to
921 * finishing IO. Since this is an async request and
922 * the reserve list is empty, we're sure there are
923 * async buffer heads in use.
928 EXPORT_SYMBOL_GPL(alloc_page_buffers);
931 link_dev_buffers(struct page *page, struct buffer_head *head)
933 struct buffer_head *bh, *tail;
938 bh = bh->b_this_page;
940 tail->b_this_page = head;
941 attach_page_buffers(page, head);
945 * Initialise the state of a blockdev page's buffers.
948 init_page_buffers(struct page *page, struct block_device *bdev,
949 sector_t block, int size)
951 struct buffer_head *head = page_buffers(page);
952 struct buffer_head *bh = head;
953 int uptodate = PageUptodate(page);
956 if (!buffer_mapped(bh)) {
957 init_buffer(bh, NULL, NULL);
959 bh->b_blocknr = block;
961 set_buffer_uptodate(bh);
962 set_buffer_mapped(bh);
965 bh = bh->b_this_page;
966 } while (bh != head);
970 * Create the page-cache page that contains the requested block.
972 * This is user purely for blockdev mappings.
975 grow_dev_page(struct block_device *bdev, sector_t block,
976 pgoff_t index, int size)
978 struct inode *inode = bdev->bd_inode;
980 struct buffer_head *bh;
982 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
986 BUG_ON(!PageLocked(page));
988 if (page_has_buffers(page)) {
989 bh = page_buffers(page);
990 if (bh->b_size == size) {
991 init_page_buffers(page, bdev, block, size);
994 if (!try_to_free_buffers(page))
999 * Allocate some buffers for this page
1001 bh = alloc_page_buffers(page, size, 0);
1006 * Link the page to the buffers and initialise them. Take the
1007 * lock to be atomic wrt __find_get_block(), which does not
1008 * run under the page lock.
1010 spin_lock(&inode->i_mapping->private_lock);
1011 link_dev_buffers(page, bh);
1012 init_page_buffers(page, bdev, block, size);
1013 spin_unlock(&inode->i_mapping->private_lock);
1019 page_cache_release(page);
1024 * Create buffers for the specified block device block's page. If
1025 * that page was dirty, the buffers are set dirty also.
1027 * Except that's a bug. Attaching dirty buffers to a dirty
1028 * blockdev's page can result in filesystem corruption, because
1029 * some of those buffers may be aliases of filesystem data.
1030 * grow_dev_page() will go BUG() if this happens.
1033 grow_buffers(struct block_device *bdev, sector_t block, int size)
1042 } while ((size << sizebits) < PAGE_SIZE);
1044 index = block >> sizebits;
1047 * Check for a block which wants to lie outside our maximum possible
1048 * pagecache index. (this comparison is done using sector_t types).
1050 if (unlikely(index != block >> sizebits)) {
1051 char b[BDEVNAME_SIZE];
1053 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1055 __FUNCTION__, (unsigned long long)block,
1059 block = index << sizebits;
1060 /* Create a page with the proper size buffers.. */
1061 page = grow_dev_page(bdev, block, index, size);
1065 page_cache_release(page);
1069 static struct buffer_head *
1070 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1072 /* Size must be multiple of hard sectorsize */
1073 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1074 (size < 512 || size > PAGE_SIZE))) {
1075 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1077 printk(KERN_ERR "hardsect size: %d\n",
1078 bdev_hardsect_size(bdev));
1085 struct buffer_head * bh;
1088 bh = __find_get_block(bdev, block, size);
1092 ret = grow_buffers(bdev, block, size);
1101 * The relationship between dirty buffers and dirty pages:
1103 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1104 * the page is tagged dirty in its radix tree.
1106 * At all times, the dirtiness of the buffers represents the dirtiness of
1107 * subsections of the page. If the page has buffers, the page dirty bit is
1108 * merely a hint about the true dirty state.
1110 * When a page is set dirty in its entirety, all its buffers are marked dirty
1111 * (if the page has buffers).
1113 * When a buffer is marked dirty, its page is dirtied, but the page's other
1116 * Also. When blockdev buffers are explicitly read with bread(), they
1117 * individually become uptodate. But their backing page remains not
1118 * uptodate - even if all of its buffers are uptodate. A subsequent
1119 * block_read_full_page() against that page will discover all the uptodate
1120 * buffers, will set the page uptodate and will perform no I/O.
1124 * mark_buffer_dirty - mark a buffer_head as needing writeout
1125 * @bh: the buffer_head to mark dirty
1127 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1128 * backing page dirty, then tag the page as dirty in its address_space's radix
1129 * tree and then attach the address_space's inode to its superblock's dirty
1132 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1133 * mapping->tree_lock and the global inode_lock.
1135 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1137 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1138 __set_page_dirty_nobuffers(bh->b_page);
1142 * Decrement a buffer_head's reference count. If all buffers against a page
1143 * have zero reference count, are clean and unlocked, and if the page is clean
1144 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1145 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1146 * a page but it ends up not being freed, and buffers may later be reattached).
1148 void __brelse(struct buffer_head * buf)
1150 if (atomic_read(&buf->b_count)) {
1154 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1159 * bforget() is like brelse(), except it discards any
1160 * potentially dirty data.
1162 void __bforget(struct buffer_head *bh)
1164 clear_buffer_dirty(bh);
1165 if (!list_empty(&bh->b_assoc_buffers)) {
1166 struct address_space *buffer_mapping = bh->b_page->mapping;
1168 spin_lock(&buffer_mapping->private_lock);
1169 list_del_init(&bh->b_assoc_buffers);
1170 spin_unlock(&buffer_mapping->private_lock);
1175 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1178 if (buffer_uptodate(bh)) {
1183 bh->b_end_io = end_buffer_read_sync;
1184 submit_bh(READ, bh);
1186 if (buffer_uptodate(bh))
1194 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1195 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1196 * refcount elevated by one when they're in an LRU. A buffer can only appear
1197 * once in a particular CPU's LRU. A single buffer can be present in multiple
1198 * CPU's LRUs at the same time.
1200 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1201 * sb_find_get_block().
1203 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1204 * a local interrupt disable for that.
1207 #define BH_LRU_SIZE 8
1210 struct buffer_head *bhs[BH_LRU_SIZE];
1213 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1216 #define bh_lru_lock() local_irq_disable()
1217 #define bh_lru_unlock() local_irq_enable()
1219 #define bh_lru_lock() preempt_disable()
1220 #define bh_lru_unlock() preempt_enable()
1223 static inline void check_irqs_on(void)
1225 #ifdef irqs_disabled
1226 BUG_ON(irqs_disabled());
1231 * The LRU management algorithm is dopey-but-simple. Sorry.
1233 static void bh_lru_install(struct buffer_head *bh)
1235 struct buffer_head *evictee = NULL;
1240 lru = &__get_cpu_var(bh_lrus);
1241 if (lru->bhs[0] != bh) {
1242 struct buffer_head *bhs[BH_LRU_SIZE];
1248 for (in = 0; in < BH_LRU_SIZE; in++) {
1249 struct buffer_head *bh2 = lru->bhs[in];
1254 if (out >= BH_LRU_SIZE) {
1255 BUG_ON(evictee != NULL);
1262 while (out < BH_LRU_SIZE)
1264 memcpy(lru->bhs, bhs, sizeof(bhs));
1273 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1275 static struct buffer_head *
1276 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1278 struct buffer_head *ret = NULL;
1284 lru = &__get_cpu_var(bh_lrus);
1285 for (i = 0; i < BH_LRU_SIZE; i++) {
1286 struct buffer_head *bh = lru->bhs[i];
1288 if (bh && bh->b_bdev == bdev &&
1289 bh->b_blocknr == block && bh->b_size == size) {
1292 lru->bhs[i] = lru->bhs[i - 1];
1307 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1308 * it in the LRU and mark it as accessed. If it is not present then return
1311 struct buffer_head *
1312 __find_get_block(struct block_device *bdev, sector_t block, int size)
1314 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1317 bh = __find_get_block_slow(bdev, block);
1325 EXPORT_SYMBOL(__find_get_block);
1328 * __getblk will locate (and, if necessary, create) the buffer_head
1329 * which corresponds to the passed block_device, block and size. The
1330 * returned buffer has its reference count incremented.
1332 * __getblk() cannot fail - it just keeps trying. If you pass it an
1333 * illegal block number, __getblk() will happily return a buffer_head
1334 * which represents the non-existent block. Very weird.
1336 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1337 * attempt is failing. FIXME, perhaps?
1339 struct buffer_head *
1340 __getblk(struct block_device *bdev, sector_t block, int size)
1342 struct buffer_head *bh = __find_get_block(bdev, block, size);
1346 bh = __getblk_slow(bdev, block, size);
1349 EXPORT_SYMBOL(__getblk);
1352 * Do async read-ahead on a buffer..
1354 void __breadahead(struct block_device *bdev, sector_t block, int size)
1356 struct buffer_head *bh = __getblk(bdev, block, size);
1358 ll_rw_block(READA, 1, &bh);
1362 EXPORT_SYMBOL(__breadahead);
1365 * __bread() - reads a specified block and returns the bh
1366 * @bdev: the block_device to read from
1367 * @block: number of block
1368 * @size: size (in bytes) to read
1370 * Reads a specified block, and returns buffer head that contains it.
1371 * It returns NULL if the block was unreadable.
1373 struct buffer_head *
1374 __bread(struct block_device *bdev, sector_t block, int size)
1376 struct buffer_head *bh = __getblk(bdev, block, size);
1378 if (likely(bh) && !buffer_uptodate(bh))
1379 bh = __bread_slow(bh);
1382 EXPORT_SYMBOL(__bread);
1385 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1386 * This doesn't race because it runs in each cpu either in irq
1387 * or with preempt disabled.
1389 static void invalidate_bh_lru(void *arg)
1391 struct bh_lru *b = &get_cpu_var(bh_lrus);
1394 for (i = 0; i < BH_LRU_SIZE; i++) {
1398 put_cpu_var(bh_lrus);
1401 static void invalidate_bh_lrus(void)
1403 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1406 void set_bh_page(struct buffer_head *bh,
1407 struct page *page, unsigned long offset)
1410 BUG_ON(offset >= PAGE_SIZE);
1411 if (PageHighMem(page))
1413 * This catches illegal uses and preserves the offset:
1415 bh->b_data = (char *)(0 + offset);
1417 bh->b_data = page_address(page) + offset;
1419 EXPORT_SYMBOL(set_bh_page);
1422 * Called when truncating a buffer on a page completely.
1424 static void discard_buffer(struct buffer_head * bh)
1427 clear_buffer_dirty(bh);
1429 clear_buffer_mapped(bh);
1430 clear_buffer_req(bh);
1431 clear_buffer_new(bh);
1432 clear_buffer_delay(bh);
1437 * block_invalidatepage - invalidate part of all of a buffer-backed page
1439 * @page: the page which is affected
1440 * @offset: the index of the truncation point
1442 * block_invalidatepage() is called when all or part of the page has become
1443 * invalidatedby a truncate operation.
1445 * block_invalidatepage() does not have to release all buffers, but it must
1446 * ensure that no dirty buffer is left outside @offset and that no I/O
1447 * is underway against any of the blocks which are outside the truncation
1448 * point. Because the caller is about to free (and possibly reuse) those
1451 void block_invalidatepage(struct page *page, unsigned long offset)
1453 struct buffer_head *head, *bh, *next;
1454 unsigned int curr_off = 0;
1456 BUG_ON(!PageLocked(page));
1457 if (!page_has_buffers(page))
1460 head = page_buffers(page);
1463 unsigned int next_off = curr_off + bh->b_size;
1464 next = bh->b_this_page;
1467 * is this block fully invalidated?
1469 if (offset <= curr_off)
1471 curr_off = next_off;
1473 } while (bh != head);
1476 * We release buffers only if the entire page is being invalidated.
1477 * The get_block cached value has been unconditionally invalidated,
1478 * so real IO is not possible anymore.
1481 try_to_release_page(page, 0);
1485 EXPORT_SYMBOL(block_invalidatepage);
1488 * We attach and possibly dirty the buffers atomically wrt
1489 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1490 * is already excluded via the page lock.
1492 void create_empty_buffers(struct page *page,
1493 unsigned long blocksize, unsigned long b_state)
1495 struct buffer_head *bh, *head, *tail;
1497 head = alloc_page_buffers(page, blocksize, 1);
1500 bh->b_state |= b_state;
1502 bh = bh->b_this_page;
1504 tail->b_this_page = head;
1506 spin_lock(&page->mapping->private_lock);
1507 if (PageUptodate(page) || PageDirty(page)) {
1510 if (PageDirty(page))
1511 set_buffer_dirty(bh);
1512 if (PageUptodate(page))
1513 set_buffer_uptodate(bh);
1514 bh = bh->b_this_page;
1515 } while (bh != head);
1517 attach_page_buffers(page, head);
1518 spin_unlock(&page->mapping->private_lock);
1520 EXPORT_SYMBOL(create_empty_buffers);
1523 * We are taking a block for data and we don't want any output from any
1524 * buffer-cache aliases starting from return from that function and
1525 * until the moment when something will explicitly mark the buffer
1526 * dirty (hopefully that will not happen until we will free that block ;-)
1527 * We don't even need to mark it not-uptodate - nobody can expect
1528 * anything from a newly allocated buffer anyway. We used to used
1529 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1530 * don't want to mark the alias unmapped, for example - it would confuse
1531 * anyone who might pick it with bread() afterwards...
1533 * Also.. Note that bforget() doesn't lock the buffer. So there can
1534 * be writeout I/O going on against recently-freed buffers. We don't
1535 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1536 * only if we really need to. That happens here.
1538 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1540 struct buffer_head *old_bh;
1544 old_bh = __find_get_block_slow(bdev, block);
1546 clear_buffer_dirty(old_bh);
1547 wait_on_buffer(old_bh);
1548 clear_buffer_req(old_bh);
1552 EXPORT_SYMBOL(unmap_underlying_metadata);
1555 * NOTE! All mapped/uptodate combinations are valid:
1557 * Mapped Uptodate Meaning
1559 * No No "unknown" - must do get_block()
1560 * No Yes "hole" - zero-filled
1561 * Yes No "allocated" - allocated on disk, not read in
1562 * Yes Yes "valid" - allocated and up-to-date in memory.
1564 * "Dirty" is valid only with the last case (mapped+uptodate).
1568 * While block_write_full_page is writing back the dirty buffers under
1569 * the page lock, whoever dirtied the buffers may decide to clean them
1570 * again at any time. We handle that by only looking at the buffer
1571 * state inside lock_buffer().
1573 * If block_write_full_page() is called for regular writeback
1574 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1575 * locked buffer. This only can happen if someone has written the buffer
1576 * directly, with submit_bh(). At the address_space level PageWriteback
1577 * prevents this contention from occurring.
1579 static int __block_write_full_page(struct inode *inode, struct page *page,
1580 get_block_t *get_block, struct writeback_control *wbc)
1584 sector_t last_block;
1585 struct buffer_head *bh, *head;
1586 const unsigned blocksize = 1 << inode->i_blkbits;
1587 int nr_underway = 0;
1589 BUG_ON(!PageLocked(page));
1591 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1593 if (!page_has_buffers(page)) {
1594 create_empty_buffers(page, blocksize,
1595 (1 << BH_Dirty)|(1 << BH_Uptodate));
1599 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1600 * here, and the (potentially unmapped) buffers may become dirty at
1601 * any time. If a buffer becomes dirty here after we've inspected it
1602 * then we just miss that fact, and the page stays dirty.
1604 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1605 * handle that here by just cleaning them.
1608 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1609 head = page_buffers(page);
1613 * Get all the dirty buffers mapped to disk addresses and
1614 * handle any aliases from the underlying blockdev's mapping.
1617 if (block > last_block) {
1619 * mapped buffers outside i_size will occur, because
1620 * this page can be outside i_size when there is a
1621 * truncate in progress.
1624 * The buffer was zeroed by block_write_full_page()
1626 clear_buffer_dirty(bh);
1627 set_buffer_uptodate(bh);
1628 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1629 WARN_ON(bh->b_size != blocksize);
1630 err = get_block(inode, block, bh, 1);
1633 if (buffer_new(bh)) {
1634 /* blockdev mappings never come here */
1635 clear_buffer_new(bh);
1636 unmap_underlying_metadata(bh->b_bdev,
1640 bh = bh->b_this_page;
1642 } while (bh != head);
1645 if (!buffer_mapped(bh))
1648 * If it's a fully non-blocking write attempt and we cannot
1649 * lock the buffer then redirty the page. Note that this can
1650 * potentially cause a busy-wait loop from pdflush and kswapd
1651 * activity, but those code paths have their own higher-level
1654 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1656 } else if (test_set_buffer_locked(bh)) {
1657 redirty_page_for_writepage(wbc, page);
1660 if (test_clear_buffer_dirty(bh)) {
1661 mark_buffer_async_write(bh);
1665 } while ((bh = bh->b_this_page) != head);
1668 * The page and its buffers are protected by PageWriteback(), so we can
1669 * drop the bh refcounts early.
1671 BUG_ON(PageWriteback(page));
1672 set_page_writeback(page);
1675 struct buffer_head *next = bh->b_this_page;
1676 if (buffer_async_write(bh)) {
1677 submit_bh(WRITE, bh);
1681 } while (bh != head);
1686 if (nr_underway == 0) {
1688 * The page was marked dirty, but the buffers were
1689 * clean. Someone wrote them back by hand with
1690 * ll_rw_block/submit_bh. A rare case.
1694 if (!buffer_uptodate(bh)) {
1698 bh = bh->b_this_page;
1699 } while (bh != head);
1701 SetPageUptodate(page);
1702 end_page_writeback(page);
1704 * The page and buffer_heads can be released at any time from
1707 wbc->pages_skipped++; /* We didn't write this page */
1713 * ENOSPC, or some other error. We may already have added some
1714 * blocks to the file, so we need to write these out to avoid
1715 * exposing stale data.
1716 * The page is currently locked and not marked for writeback
1719 /* Recovery: lock and submit the mapped buffers */
1721 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1723 mark_buffer_async_write(bh);
1726 * The buffer may have been set dirty during
1727 * attachment to a dirty page.
1729 clear_buffer_dirty(bh);
1731 } while ((bh = bh->b_this_page) != head);
1733 BUG_ON(PageWriteback(page));
1734 set_page_writeback(page);
1737 struct buffer_head *next = bh->b_this_page;
1738 if (buffer_async_write(bh)) {
1739 clear_buffer_dirty(bh);
1740 submit_bh(WRITE, bh);
1744 } while (bh != head);
1748 static int __block_prepare_write(struct inode *inode, struct page *page,
1749 unsigned from, unsigned to, get_block_t *get_block)
1751 unsigned block_start, block_end;
1754 unsigned blocksize, bbits;
1755 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1757 BUG_ON(!PageLocked(page));
1758 BUG_ON(from > PAGE_CACHE_SIZE);
1759 BUG_ON(to > PAGE_CACHE_SIZE);
1762 blocksize = 1 << inode->i_blkbits;
1763 if (!page_has_buffers(page))
1764 create_empty_buffers(page, blocksize, 0);
1765 head = page_buffers(page);
1767 bbits = inode->i_blkbits;
1768 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1770 for(bh = head, block_start = 0; bh != head || !block_start;
1771 block++, block_start=block_end, bh = bh->b_this_page) {
1772 block_end = block_start + blocksize;
1773 if (block_end <= from || block_start >= to) {
1774 if (PageUptodate(page)) {
1775 if (!buffer_uptodate(bh))
1776 set_buffer_uptodate(bh);
1781 clear_buffer_new(bh);
1782 if (!buffer_mapped(bh)) {
1783 WARN_ON(bh->b_size != blocksize);
1784 err = get_block(inode, block, bh, 1);
1787 if (buffer_new(bh)) {
1788 unmap_underlying_metadata(bh->b_bdev,
1790 if (PageUptodate(page)) {
1791 set_buffer_uptodate(bh);
1794 if (block_end > to || block_start < from) {
1797 kaddr = kmap_atomic(page, KM_USER0);
1801 if (block_start < from)
1802 memset(kaddr+block_start,
1803 0, from-block_start);
1804 flush_dcache_page(page);
1805 kunmap_atomic(kaddr, KM_USER0);
1810 if (PageUptodate(page)) {
1811 if (!buffer_uptodate(bh))
1812 set_buffer_uptodate(bh);
1815 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1816 (block_start < from || block_end > to)) {
1817 ll_rw_block(READ, 1, &bh);
1822 * If we issued read requests - let them complete.
1824 while(wait_bh > wait) {
1825 wait_on_buffer(*--wait_bh);
1826 if (!buffer_uptodate(*wait_bh))
1833 clear_buffer_new(bh);
1834 } while ((bh = bh->b_this_page) != head);
1839 * Zero out any newly allocated blocks to avoid exposing stale
1840 * data. If BH_New is set, we know that the block was newly
1841 * allocated in the above loop.
1846 block_end = block_start+blocksize;
1847 if (block_end <= from)
1849 if (block_start >= to)
1851 if (buffer_new(bh)) {
1854 clear_buffer_new(bh);
1855 kaddr = kmap_atomic(page, KM_USER0);
1856 memset(kaddr+block_start, 0, bh->b_size);
1857 flush_dcache_page(page);
1858 kunmap_atomic(kaddr, KM_USER0);
1859 set_buffer_uptodate(bh);
1860 mark_buffer_dirty(bh);
1863 block_start = block_end;
1864 bh = bh->b_this_page;
1865 } while (bh != head);
1869 static int __block_commit_write(struct inode *inode, struct page *page,
1870 unsigned from, unsigned to)
1872 unsigned block_start, block_end;
1875 struct buffer_head *bh, *head;
1877 blocksize = 1 << inode->i_blkbits;
1879 for(bh = head = page_buffers(page), block_start = 0;
1880 bh != head || !block_start;
1881 block_start=block_end, bh = bh->b_this_page) {
1882 block_end = block_start + blocksize;
1883 if (block_end <= from || block_start >= to) {
1884 if (!buffer_uptodate(bh))
1887 set_buffer_uptodate(bh);
1888 mark_buffer_dirty(bh);
1893 * If this is a partial write which happened to make all buffers
1894 * uptodate then we can optimize away a bogus readpage() for
1895 * the next read(). Here we 'discover' whether the page went
1896 * uptodate as a result of this (potentially partial) write.
1899 SetPageUptodate(page);
1904 * Generic "read page" function for block devices that have the normal
1905 * get_block functionality. This is most of the block device filesystems.
1906 * Reads the page asynchronously --- the unlock_buffer() and
1907 * set/clear_buffer_uptodate() functions propagate buffer state into the
1908 * page struct once IO has completed.
1910 int block_read_full_page(struct page *page, get_block_t *get_block)
1912 struct inode *inode = page->mapping->host;
1913 sector_t iblock, lblock;
1914 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
1915 unsigned int blocksize;
1917 int fully_mapped = 1;
1919 BUG_ON(!PageLocked(page));
1920 blocksize = 1 << inode->i_blkbits;
1921 if (!page_has_buffers(page))
1922 create_empty_buffers(page, blocksize, 0);
1923 head = page_buffers(page);
1925 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1926 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
1932 if (buffer_uptodate(bh))
1935 if (!buffer_mapped(bh)) {
1939 if (iblock < lblock) {
1940 WARN_ON(bh->b_size != blocksize);
1941 err = get_block(inode, iblock, bh, 0);
1945 if (!buffer_mapped(bh)) {
1946 void *kaddr = kmap_atomic(page, KM_USER0);
1947 memset(kaddr + i * blocksize, 0, blocksize);
1948 flush_dcache_page(page);
1949 kunmap_atomic(kaddr, KM_USER0);
1951 set_buffer_uptodate(bh);
1955 * get_block() might have updated the buffer
1958 if (buffer_uptodate(bh))
1962 } while (i++, iblock++, (bh = bh->b_this_page) != head);
1965 SetPageMappedToDisk(page);
1969 * All buffers are uptodate - we can set the page uptodate
1970 * as well. But not if get_block() returned an error.
1972 if (!PageError(page))
1973 SetPageUptodate(page);
1978 /* Stage two: lock the buffers */
1979 for (i = 0; i < nr; i++) {
1982 mark_buffer_async_read(bh);
1986 * Stage 3: start the IO. Check for uptodateness
1987 * inside the buffer lock in case another process reading
1988 * the underlying blockdev brought it uptodate (the sct fix).
1990 for (i = 0; i < nr; i++) {
1992 if (buffer_uptodate(bh))
1993 end_buffer_async_read(bh, 1);
1995 submit_bh(READ, bh);
2000 /* utility function for filesystems that need to do work on expanding
2001 * truncates. Uses prepare/commit_write to allow the filesystem to
2002 * deal with the hole.
2004 static int __generic_cont_expand(struct inode *inode, loff_t size,
2005 pgoff_t index, unsigned int offset)
2007 struct address_space *mapping = inode->i_mapping;
2009 unsigned long limit;
2013 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2014 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2015 send_sig(SIGXFSZ, current, 0);
2018 if (size > inode->i_sb->s_maxbytes)
2022 page = grab_cache_page(mapping, index);
2025 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2028 * ->prepare_write() may have instantiated a few blocks
2029 * outside i_size. Trim these off again.
2032 page_cache_release(page);
2033 vmtruncate(inode, inode->i_size);
2037 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2040 page_cache_release(page);
2047 int generic_cont_expand(struct inode *inode, loff_t size)
2050 unsigned int offset;
2052 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2054 /* ugh. in prepare/commit_write, if from==to==start of block, we
2055 ** skip the prepare. make sure we never send an offset for the start
2058 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2059 /* caller must handle this extra byte. */
2062 index = size >> PAGE_CACHE_SHIFT;
2064 return __generic_cont_expand(inode, size, index, offset);
2067 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2069 loff_t pos = size - 1;
2070 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2071 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2073 /* prepare/commit_write can handle even if from==to==start of block. */
2074 return __generic_cont_expand(inode, size, index, offset);
2078 * For moronic filesystems that do not allow holes in file.
2079 * We may have to extend the file.
2082 int cont_prepare_write(struct page *page, unsigned offset,
2083 unsigned to, get_block_t *get_block, loff_t *bytes)
2085 struct address_space *mapping = page->mapping;
2086 struct inode *inode = mapping->host;
2087 struct page *new_page;
2091 unsigned blocksize = 1 << inode->i_blkbits;
2094 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2096 new_page = grab_cache_page(mapping, pgpos);
2099 /* we might sleep */
2100 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2101 unlock_page(new_page);
2102 page_cache_release(new_page);
2105 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2106 if (zerofrom & (blocksize-1)) {
2107 *bytes |= (blocksize-1);
2110 status = __block_prepare_write(inode, new_page, zerofrom,
2111 PAGE_CACHE_SIZE, get_block);
2114 kaddr = kmap_atomic(new_page, KM_USER0);
2115 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2116 flush_dcache_page(new_page);
2117 kunmap_atomic(kaddr, KM_USER0);
2118 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2119 unlock_page(new_page);
2120 page_cache_release(new_page);
2123 if (page->index < pgpos) {
2124 /* completely inside the area */
2127 /* page covers the boundary, find the boundary offset */
2128 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2130 /* if we will expand the thing last block will be filled */
2131 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2132 *bytes |= (blocksize-1);
2136 /* starting below the boundary? Nothing to zero out */
2137 if (offset <= zerofrom)
2140 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2143 if (zerofrom < offset) {
2144 kaddr = kmap_atomic(page, KM_USER0);
2145 memset(kaddr+zerofrom, 0, offset-zerofrom);
2146 flush_dcache_page(page);
2147 kunmap_atomic(kaddr, KM_USER0);
2148 __block_commit_write(inode, page, zerofrom, offset);
2152 ClearPageUptodate(page);
2156 ClearPageUptodate(new_page);
2157 unlock_page(new_page);
2158 page_cache_release(new_page);
2163 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2164 get_block_t *get_block)
2166 struct inode *inode = page->mapping->host;
2167 int err = __block_prepare_write(inode, page, from, to, get_block);
2169 ClearPageUptodate(page);
2173 int block_commit_write(struct page *page, unsigned from, unsigned to)
2175 struct inode *inode = page->mapping->host;
2176 __block_commit_write(inode,page,from,to);
2180 int generic_commit_write(struct file *file, struct page *page,
2181 unsigned from, unsigned to)
2183 struct inode *inode = page->mapping->host;
2184 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2185 __block_commit_write(inode,page,from,to);
2187 * No need to use i_size_read() here, the i_size
2188 * cannot change under us because we hold i_mutex.
2190 if (pos > inode->i_size) {
2191 i_size_write(inode, pos);
2192 mark_inode_dirty(inode);
2199 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2200 * immediately, while under the page lock. So it needs a special end_io
2201 * handler which does not touch the bh after unlocking it.
2203 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2204 * a race there is benign: unlock_buffer() only use the bh's address for
2205 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2208 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2211 set_buffer_uptodate(bh);
2213 /* This happens, due to failed READA attempts. */
2214 clear_buffer_uptodate(bh);
2220 * On entry, the page is fully not uptodate.
2221 * On exit the page is fully uptodate in the areas outside (from,to)
2223 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2224 get_block_t *get_block)
2226 struct inode *inode = page->mapping->host;
2227 const unsigned blkbits = inode->i_blkbits;
2228 const unsigned blocksize = 1 << blkbits;
2229 struct buffer_head map_bh;
2230 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2231 unsigned block_in_page;
2232 unsigned block_start;
2233 sector_t block_in_file;
2238 int is_mapped_to_disk = 1;
2241 if (PageMappedToDisk(page))
2244 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2245 map_bh.b_page = page;
2248 * We loop across all blocks in the page, whether or not they are
2249 * part of the affected region. This is so we can discover if the
2250 * page is fully mapped-to-disk.
2252 for (block_start = 0, block_in_page = 0;
2253 block_start < PAGE_CACHE_SIZE;
2254 block_in_page++, block_start += blocksize) {
2255 unsigned block_end = block_start + blocksize;
2260 if (block_start >= to)
2262 map_bh.b_size = blocksize;
2263 ret = get_block(inode, block_in_file + block_in_page,
2267 if (!buffer_mapped(&map_bh))
2268 is_mapped_to_disk = 0;
2269 if (buffer_new(&map_bh))
2270 unmap_underlying_metadata(map_bh.b_bdev,
2272 if (PageUptodate(page))
2274 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2275 kaddr = kmap_atomic(page, KM_USER0);
2276 if (block_start < from) {
2277 memset(kaddr+block_start, 0, from-block_start);
2280 if (block_end > to) {
2281 memset(kaddr + to, 0, block_end - to);
2284 flush_dcache_page(page);
2285 kunmap_atomic(kaddr, KM_USER0);
2288 if (buffer_uptodate(&map_bh))
2289 continue; /* reiserfs does this */
2290 if (block_start < from || block_end > to) {
2291 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2297 bh->b_state = map_bh.b_state;
2298 atomic_set(&bh->b_count, 0);
2299 bh->b_this_page = NULL;
2301 bh->b_blocknr = map_bh.b_blocknr;
2302 bh->b_size = blocksize;
2303 bh->b_data = (char *)(long)block_start;
2304 bh->b_bdev = map_bh.b_bdev;
2305 bh->b_private = NULL;
2306 read_bh[nr_reads++] = bh;
2311 struct buffer_head *bh;
2314 * The page is locked, so these buffers are protected from
2315 * any VM or truncate activity. Hence we don't need to care
2316 * for the buffer_head refcounts.
2318 for (i = 0; i < nr_reads; i++) {
2321 bh->b_end_io = end_buffer_read_nobh;
2322 submit_bh(READ, bh);
2324 for (i = 0; i < nr_reads; i++) {
2327 if (!buffer_uptodate(bh))
2329 free_buffer_head(bh);
2336 if (is_mapped_to_disk)
2337 SetPageMappedToDisk(page);
2338 SetPageUptodate(page);
2341 * Setting the page dirty here isn't necessary for the prepare_write
2342 * function - commit_write will do that. But if/when this function is
2343 * used within the pagefault handler to ensure that all mmapped pages
2344 * have backing space in the filesystem, we will need to dirty the page
2345 * if its contents were altered.
2348 set_page_dirty(page);
2353 for (i = 0; i < nr_reads; i++) {
2355 free_buffer_head(read_bh[i]);
2359 * Error recovery is pretty slack. Clear the page and mark it dirty
2360 * so we'll later zero out any blocks which _were_ allocated.
2362 kaddr = kmap_atomic(page, KM_USER0);
2363 memset(kaddr, 0, PAGE_CACHE_SIZE);
2364 flush_dcache_page(page);
2365 kunmap_atomic(kaddr, KM_USER0);
2366 SetPageUptodate(page);
2367 set_page_dirty(page);
2370 EXPORT_SYMBOL(nobh_prepare_write);
2372 int nobh_commit_write(struct file *file, struct page *page,
2373 unsigned from, unsigned to)
2375 struct inode *inode = page->mapping->host;
2376 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2378 set_page_dirty(page);
2379 if (pos > inode->i_size) {
2380 i_size_write(inode, pos);
2381 mark_inode_dirty(inode);
2385 EXPORT_SYMBOL(nobh_commit_write);
2388 * nobh_writepage() - based on block_full_write_page() except
2389 * that it tries to operate without attaching bufferheads to
2392 int nobh_writepage(struct page *page, get_block_t *get_block,
2393 struct writeback_control *wbc)
2395 struct inode * const inode = page->mapping->host;
2396 loff_t i_size = i_size_read(inode);
2397 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2402 /* Is the page fully inside i_size? */
2403 if (page->index < end_index)
2406 /* Is the page fully outside i_size? (truncate in progress) */
2407 offset = i_size & (PAGE_CACHE_SIZE-1);
2408 if (page->index >= end_index+1 || !offset) {
2410 * The page may have dirty, unmapped buffers. For example,
2411 * they may have been added in ext3_writepage(). Make them
2412 * freeable here, so the page does not leak.
2415 /* Not really sure about this - do we need this ? */
2416 if (page->mapping->a_ops->invalidatepage)
2417 page->mapping->a_ops->invalidatepage(page, offset);
2420 return 0; /* don't care */
2424 * The page straddles i_size. It must be zeroed out on each and every
2425 * writepage invocation because it may be mmapped. "A file is mapped
2426 * in multiples of the page size. For a file that is not a multiple of
2427 * the page size, the remaining memory is zeroed when mapped, and
2428 * writes to that region are not written out to the file."
2430 kaddr = kmap_atomic(page, KM_USER0);
2431 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2432 flush_dcache_page(page);
2433 kunmap_atomic(kaddr, KM_USER0);
2435 ret = mpage_writepage(page, get_block, wbc);
2437 ret = __block_write_full_page(inode, page, get_block, wbc);
2440 EXPORT_SYMBOL(nobh_writepage);
2443 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2445 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2447 struct inode *inode = mapping->host;
2448 unsigned blocksize = 1 << inode->i_blkbits;
2449 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2450 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2453 const struct address_space_operations *a_ops = mapping->a_ops;
2457 if ((offset & (blocksize - 1)) == 0)
2461 page = grab_cache_page(mapping, index);
2465 to = (offset + blocksize) & ~(blocksize - 1);
2466 ret = a_ops->prepare_write(NULL, page, offset, to);
2468 kaddr = kmap_atomic(page, KM_USER0);
2469 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2470 flush_dcache_page(page);
2471 kunmap_atomic(kaddr, KM_USER0);
2472 set_page_dirty(page);
2475 page_cache_release(page);
2479 EXPORT_SYMBOL(nobh_truncate_page);
2481 int block_truncate_page(struct address_space *mapping,
2482 loff_t from, get_block_t *get_block)
2484 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2485 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2488 unsigned length, pos;
2489 struct inode *inode = mapping->host;
2491 struct buffer_head *bh;
2495 blocksize = 1 << inode->i_blkbits;
2496 length = offset & (blocksize - 1);
2498 /* Block boundary? Nothing to do */
2502 length = blocksize - length;
2503 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2505 page = grab_cache_page(mapping, index);
2510 if (!page_has_buffers(page))
2511 create_empty_buffers(page, blocksize, 0);
2513 /* Find the buffer that contains "offset" */
2514 bh = page_buffers(page);
2516 while (offset >= pos) {
2517 bh = bh->b_this_page;
2523 if (!buffer_mapped(bh)) {
2524 WARN_ON(bh->b_size != blocksize);
2525 err = get_block(inode, iblock, bh, 0);
2528 /* unmapped? It's a hole - nothing to do */
2529 if (!buffer_mapped(bh))
2533 /* Ok, it's mapped. Make sure it's up-to-date */
2534 if (PageUptodate(page))
2535 set_buffer_uptodate(bh);
2537 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2539 ll_rw_block(READ, 1, &bh);
2541 /* Uhhuh. Read error. Complain and punt. */
2542 if (!buffer_uptodate(bh))
2546 kaddr = kmap_atomic(page, KM_USER0);
2547 memset(kaddr + offset, 0, length);
2548 flush_dcache_page(page);
2549 kunmap_atomic(kaddr, KM_USER0);
2551 mark_buffer_dirty(bh);
2556 page_cache_release(page);
2562 * The generic ->writepage function for buffer-backed address_spaces
2564 int block_write_full_page(struct page *page, get_block_t *get_block,
2565 struct writeback_control *wbc)
2567 struct inode * const inode = page->mapping->host;
2568 loff_t i_size = i_size_read(inode);
2569 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2573 /* Is the page fully inside i_size? */
2574 if (page->index < end_index)
2575 return __block_write_full_page(inode, page, get_block, wbc);
2577 /* Is the page fully outside i_size? (truncate in progress) */
2578 offset = i_size & (PAGE_CACHE_SIZE-1);
2579 if (page->index >= end_index+1 || !offset) {
2581 * The page may have dirty, unmapped buffers. For example,
2582 * they may have been added in ext3_writepage(). Make them
2583 * freeable here, so the page does not leak.
2585 do_invalidatepage(page, 0);
2587 return 0; /* don't care */
2591 * The page straddles i_size. It must be zeroed out on each and every
2592 * writepage invokation because it may be mmapped. "A file is mapped
2593 * in multiples of the page size. For a file that is not a multiple of
2594 * the page size, the remaining memory is zeroed when mapped, and
2595 * writes to that region are not written out to the file."
2597 kaddr = kmap_atomic(page, KM_USER0);
2598 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2599 flush_dcache_page(page);
2600 kunmap_atomic(kaddr, KM_USER0);
2601 return __block_write_full_page(inode, page, get_block, wbc);
2604 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2605 get_block_t *get_block)
2607 struct buffer_head tmp;
2608 struct inode *inode = mapping->host;
2611 tmp.b_size = 1 << inode->i_blkbits;
2612 get_block(inode, block, &tmp, 0);
2613 return tmp.b_blocknr;
2616 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2618 struct buffer_head *bh = bio->bi_private;
2623 if (err == -EOPNOTSUPP) {
2624 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2625 set_bit(BH_Eopnotsupp, &bh->b_state);
2628 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2633 int submit_bh(int rw, struct buffer_head * bh)
2638 BUG_ON(!buffer_locked(bh));
2639 BUG_ON(!buffer_mapped(bh));
2640 BUG_ON(!bh->b_end_io);
2642 if (buffer_ordered(bh) && (rw == WRITE))
2646 * Only clear out a write error when rewriting, should this
2647 * include WRITE_SYNC as well?
2649 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2650 clear_buffer_write_io_error(bh);
2653 * from here on down, it's all bio -- do the initial mapping,
2654 * submit_bio -> generic_make_request may further map this bio around
2656 bio = bio_alloc(GFP_NOIO, 1);
2658 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2659 bio->bi_bdev = bh->b_bdev;
2660 bio->bi_io_vec[0].bv_page = bh->b_page;
2661 bio->bi_io_vec[0].bv_len = bh->b_size;
2662 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2666 bio->bi_size = bh->b_size;
2668 bio->bi_end_io = end_bio_bh_io_sync;
2669 bio->bi_private = bh;
2672 submit_bio(rw, bio);
2674 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2682 * ll_rw_block: low-level access to block devices (DEPRECATED)
2683 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2684 * @nr: number of &struct buffer_heads in the array
2685 * @bhs: array of pointers to &struct buffer_head
2687 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2688 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2689 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2690 * are sent to disk. The fourth %READA option is described in the documentation
2691 * for generic_make_request() which ll_rw_block() calls.
2693 * This function drops any buffer that it cannot get a lock on (with the
2694 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2695 * clean when doing a write request, and any buffer that appears to be
2696 * up-to-date when doing read request. Further it marks as clean buffers that
2697 * are processed for writing (the buffer cache won't assume that they are
2698 * actually clean until the buffer gets unlocked).
2700 * ll_rw_block sets b_end_io to simple completion handler that marks
2701 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2704 * All of the buffers must be for the same device, and must also be a
2705 * multiple of the current approved size for the device.
2707 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2711 for (i = 0; i < nr; i++) {
2712 struct buffer_head *bh = bhs[i];
2716 else if (test_set_buffer_locked(bh))
2719 if (rw == WRITE || rw == SWRITE) {
2720 if (test_clear_buffer_dirty(bh)) {
2721 bh->b_end_io = end_buffer_write_sync;
2723 submit_bh(WRITE, bh);
2727 if (!buffer_uptodate(bh)) {
2728 bh->b_end_io = end_buffer_read_sync;
2739 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2740 * and then start new I/O and then wait upon it. The caller must have a ref on
2743 int sync_dirty_buffer(struct buffer_head *bh)
2747 WARN_ON(atomic_read(&bh->b_count) < 1);
2749 if (test_clear_buffer_dirty(bh)) {
2751 bh->b_end_io = end_buffer_write_sync;
2752 ret = submit_bh(WRITE, bh);
2754 if (buffer_eopnotsupp(bh)) {
2755 clear_buffer_eopnotsupp(bh);
2758 if (!ret && !buffer_uptodate(bh))
2767 * try_to_free_buffers() checks if all the buffers on this particular page
2768 * are unused, and releases them if so.
2770 * Exclusion against try_to_free_buffers may be obtained by either
2771 * locking the page or by holding its mapping's private_lock.
2773 * If the page is dirty but all the buffers are clean then we need to
2774 * be sure to mark the page clean as well. This is because the page
2775 * may be against a block device, and a later reattachment of buffers
2776 * to a dirty page will set *all* buffers dirty. Which would corrupt
2777 * filesystem data on the same device.
2779 * The same applies to regular filesystem pages: if all the buffers are
2780 * clean then we set the page clean and proceed. To do that, we require
2781 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2784 * try_to_free_buffers() is non-blocking.
2786 static inline int buffer_busy(struct buffer_head *bh)
2788 return atomic_read(&bh->b_count) |
2789 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2793 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2795 struct buffer_head *head = page_buffers(page);
2796 struct buffer_head *bh;
2800 if (buffer_write_io_error(bh) && page->mapping)
2801 set_bit(AS_EIO, &page->mapping->flags);
2802 if (buffer_busy(bh))
2804 bh = bh->b_this_page;
2805 } while (bh != head);
2808 struct buffer_head *next = bh->b_this_page;
2810 if (!list_empty(&bh->b_assoc_buffers))
2811 __remove_assoc_queue(bh);
2813 } while (bh != head);
2814 *buffers_to_free = head;
2815 __clear_page_buffers(page);
2821 int try_to_free_buffers(struct page *page)
2823 struct address_space * const mapping = page->mapping;
2824 struct buffer_head *buffers_to_free = NULL;
2827 BUG_ON(!PageLocked(page));
2828 if (PageWriteback(page))
2831 if (mapping == NULL) { /* can this still happen? */
2832 ret = drop_buffers(page, &buffers_to_free);
2836 spin_lock(&mapping->private_lock);
2837 ret = drop_buffers(page, &buffers_to_free);
2838 spin_unlock(&mapping->private_lock);
2841 * If the filesystem writes its buffers by hand (eg ext3)
2842 * then we can have clean buffers against a dirty page. We
2843 * clean the page here; otherwise later reattachment of buffers
2844 * could encounter a non-uptodate page, which is unresolvable.
2845 * This only applies in the rare case where try_to_free_buffers
2846 * succeeds but the page is not freed.
2848 clear_page_dirty(page);
2851 if (buffers_to_free) {
2852 struct buffer_head *bh = buffers_to_free;
2855 struct buffer_head *next = bh->b_this_page;
2856 free_buffer_head(bh);
2858 } while (bh != buffers_to_free);
2862 EXPORT_SYMBOL(try_to_free_buffers);
2864 void block_sync_page(struct page *page)
2866 struct address_space *mapping;
2869 mapping = page_mapping(page);
2871 blk_run_backing_dev(mapping->backing_dev_info, page);
2875 * There are no bdflush tunables left. But distributions are
2876 * still running obsolete flush daemons, so we terminate them here.
2878 * Use of bdflush() is deprecated and will be removed in a future kernel.
2879 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
2881 asmlinkage long sys_bdflush(int func, long data)
2883 static int msg_count;
2885 if (!capable(CAP_SYS_ADMIN))
2888 if (msg_count < 5) {
2891 "warning: process `%s' used the obsolete bdflush"
2892 " system call\n", current->comm);
2893 printk(KERN_INFO "Fix your initscripts?\n");
2902 * Buffer-head allocation
2904 static kmem_cache_t *bh_cachep;
2907 * Once the number of bh's in the machine exceeds this level, we start
2908 * stripping them in writeback.
2910 static int max_buffer_heads;
2912 int buffer_heads_over_limit;
2914 struct bh_accounting {
2915 int nr; /* Number of live bh's */
2916 int ratelimit; /* Limit cacheline bouncing */
2919 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
2921 static void recalc_bh_state(void)
2926 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
2928 __get_cpu_var(bh_accounting).ratelimit = 0;
2929 for_each_online_cpu(i)
2930 tot += per_cpu(bh_accounting, i).nr;
2931 buffer_heads_over_limit = (tot > max_buffer_heads);
2934 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
2936 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
2938 get_cpu_var(bh_accounting).nr++;
2940 put_cpu_var(bh_accounting);
2944 EXPORT_SYMBOL(alloc_buffer_head);
2946 void free_buffer_head(struct buffer_head *bh)
2948 BUG_ON(!list_empty(&bh->b_assoc_buffers));
2949 kmem_cache_free(bh_cachep, bh);
2950 get_cpu_var(bh_accounting).nr--;
2952 put_cpu_var(bh_accounting);
2954 EXPORT_SYMBOL(free_buffer_head);
2957 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
2959 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
2960 SLAB_CTOR_CONSTRUCTOR) {
2961 struct buffer_head * bh = (struct buffer_head *)data;
2963 memset(bh, 0, sizeof(*bh));
2964 INIT_LIST_HEAD(&bh->b_assoc_buffers);
2968 #ifdef CONFIG_HOTPLUG_CPU
2969 static void buffer_exit_cpu(int cpu)
2972 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
2974 for (i = 0; i < BH_LRU_SIZE; i++) {
2978 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
2979 per_cpu(bh_accounting, cpu).nr = 0;
2980 put_cpu_var(bh_accounting);
2983 static int buffer_cpu_notify(struct notifier_block *self,
2984 unsigned long action, void *hcpu)
2986 if (action == CPU_DEAD)
2987 buffer_exit_cpu((unsigned long)hcpu);
2990 #endif /* CONFIG_HOTPLUG_CPU */
2992 void __init buffer_init(void)
2996 bh_cachep = kmem_cache_create("buffer_head",
2997 sizeof(struct buffer_head), 0,
2998 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3004 * Limit the bh occupancy to 10% of ZONE_NORMAL
3006 nrpages = (nr_free_buffer_pages() * 10) / 100;
3007 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3008 hotcpu_notifier(buffer_cpu_notify, 0);
3011 EXPORT_SYMBOL(__bforget);
3012 EXPORT_SYMBOL(__brelse);
3013 EXPORT_SYMBOL(__wait_on_buffer);
3014 EXPORT_SYMBOL(block_commit_write);
3015 EXPORT_SYMBOL(block_prepare_write);
3016 EXPORT_SYMBOL(block_read_full_page);
3017 EXPORT_SYMBOL(block_sync_page);
3018 EXPORT_SYMBOL(block_truncate_page);
3019 EXPORT_SYMBOL(block_write_full_page);
3020 EXPORT_SYMBOL(cont_prepare_write);
3021 EXPORT_SYMBOL(end_buffer_read_sync);
3022 EXPORT_SYMBOL(end_buffer_write_sync);
3023 EXPORT_SYMBOL(file_fsync);
3024 EXPORT_SYMBOL(fsync_bdev);
3025 EXPORT_SYMBOL(generic_block_bmap);
3026 EXPORT_SYMBOL(generic_commit_write);
3027 EXPORT_SYMBOL(generic_cont_expand);
3028 EXPORT_SYMBOL(generic_cont_expand_simple);
3029 EXPORT_SYMBOL(init_buffer);
3030 EXPORT_SYMBOL(invalidate_bdev);
3031 EXPORT_SYMBOL(ll_rw_block);
3032 EXPORT_SYMBOL(mark_buffer_dirty);
3033 EXPORT_SYMBOL(submit_bh);
3034 EXPORT_SYMBOL(sync_dirty_buffer);
3035 EXPORT_SYMBOL(unlock_buffer);