USB: use GFP_NOIO in reset path
[linux-2.6] / drivers / usb / core / usb.c
1 /*
2  * drivers/usb/core/usb.c
3  *
4  * (C) Copyright Linus Torvalds 1999
5  * (C) Copyright Johannes Erdfelt 1999-2001
6  * (C) Copyright Andreas Gal 1999
7  * (C) Copyright Gregory P. Smith 1999
8  * (C) Copyright Deti Fliegl 1999 (new USB architecture)
9  * (C) Copyright Randy Dunlap 2000
10  * (C) Copyright David Brownell 2000-2004
11  * (C) Copyright Yggdrasil Computing, Inc. 2000
12  *     (usb_device_id matching changes by Adam J. Richter)
13  * (C) Copyright Greg Kroah-Hartman 2002-2003
14  *
15  * NOTE! This is not actually a driver at all, rather this is
16  * just a collection of helper routines that implement the
17  * generic USB things that the real drivers can use..
18  *
19  * Think of this as a "USB library" rather than anything else.
20  * It should be considered a slave, with no callbacks. Callbacks
21  * are evil.
22  */
23
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/string.h>
27 #include <linux/bitops.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>  /* for in_interrupt() */
30 #include <linux/kmod.h>
31 #include <linux/init.h>
32 #include <linux/spinlock.h>
33 #include <linux/errno.h>
34 #include <linux/usb.h>
35 #include <linux/mutex.h>
36 #include <linux/workqueue.h>
37
38 #include <asm/io.h>
39 #include <linux/scatterlist.h>
40 #include <linux/mm.h>
41 #include <linux/dma-mapping.h>
42
43 #include "hcd.h"
44 #include "usb.h"
45
46
47 const char *usbcore_name = "usbcore";
48
49 static int nousb;       /* Disable USB when built into kernel image */
50
51 /* Workqueue for autosuspend and for remote wakeup of root hubs */
52 struct workqueue_struct *ksuspend_usb_wq;
53
54 #ifdef  CONFIG_USB_SUSPEND
55 static int usb_autosuspend_delay = 2;           /* Default delay value,
56                                                  * in seconds */
57 module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
58 MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
59
60 #else
61 #define usb_autosuspend_delay           0
62 #endif
63
64
65 /**
66  * usb_ifnum_to_if - get the interface object with a given interface number
67  * @dev: the device whose current configuration is considered
68  * @ifnum: the desired interface
69  *
70  * This walks the device descriptor for the currently active configuration
71  * and returns a pointer to the interface with that particular interface
72  * number, or null.
73  *
74  * Note that configuration descriptors are not required to assign interface
75  * numbers sequentially, so that it would be incorrect to assume that
76  * the first interface in that descriptor corresponds to interface zero.
77  * This routine helps device drivers avoid such mistakes.
78  * However, you should make sure that you do the right thing with any
79  * alternate settings available for this interfaces.
80  *
81  * Don't call this function unless you are bound to one of the interfaces
82  * on this device or you have locked the device!
83  */
84 struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
85                                       unsigned ifnum)
86 {
87         struct usb_host_config *config = dev->actconfig;
88         int i;
89
90         if (!config)
91                 return NULL;
92         for (i = 0; i < config->desc.bNumInterfaces; i++)
93                 if (config->interface[i]->altsetting[0]
94                                 .desc.bInterfaceNumber == ifnum)
95                         return config->interface[i];
96
97         return NULL;
98 }
99
100 /**
101  * usb_altnum_to_altsetting - get the altsetting structure with a given
102  *      alternate setting number.
103  * @intf: the interface containing the altsetting in question
104  * @altnum: the desired alternate setting number
105  *
106  * This searches the altsetting array of the specified interface for
107  * an entry with the correct bAlternateSetting value and returns a pointer
108  * to that entry, or null.
109  *
110  * Note that altsettings need not be stored sequentially by number, so
111  * it would be incorrect to assume that the first altsetting entry in
112  * the array corresponds to altsetting zero.  This routine helps device
113  * drivers avoid such mistakes.
114  *
115  * Don't call this function unless you are bound to the intf interface
116  * or you have locked the device!
117  */
118 struct usb_host_interface *usb_altnum_to_altsetting(const struct usb_interface *intf,
119                                                     unsigned int altnum)
120 {
121         int i;
122
123         for (i = 0; i < intf->num_altsetting; i++) {
124                 if (intf->altsetting[i].desc.bAlternateSetting == altnum)
125                         return &intf->altsetting[i];
126         }
127         return NULL;
128 }
129
130 struct find_interface_arg {
131         int minor;
132         struct usb_interface *interface;
133 };
134
135 static int __find_interface(struct device * dev, void * data)
136 {
137         struct find_interface_arg *arg = data;
138         struct usb_interface *intf;
139
140         /* can't look at usb devices, only interfaces */
141         if (is_usb_device(dev))
142                 return 0;
143
144         intf = to_usb_interface(dev);
145         if (intf->minor != -1 && intf->minor == arg->minor) {
146                 arg->interface = intf;
147                 return 1;
148         }
149         return 0;
150 }
151
152 /**
153  * usb_find_interface - find usb_interface pointer for driver and device
154  * @drv: the driver whose current configuration is considered
155  * @minor: the minor number of the desired device
156  *
157  * This walks the driver device list and returns a pointer to the interface 
158  * with the matching minor.  Note, this only works for devices that share the
159  * USB major number.
160  */
161 struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
162 {
163         struct find_interface_arg argb;
164         int retval;
165
166         argb.minor = minor;
167         argb.interface = NULL;
168         /* eat the error, it will be in argb.interface */
169         retval = driver_for_each_device(&drv->drvwrap.driver, NULL, &argb,
170                                         __find_interface);
171         return argb.interface;
172 }
173
174 /**
175  * usb_release_dev - free a usb device structure when all users of it are finished.
176  * @dev: device that's been disconnected
177  *
178  * Will be called only by the device core when all users of this usb device are
179  * done.
180  */
181 static void usb_release_dev(struct device *dev)
182 {
183         struct usb_device *udev;
184
185         udev = to_usb_device(dev);
186
187         usb_destroy_configuration(udev);
188         usb_put_hcd(bus_to_hcd(udev->bus));
189         kfree(udev->product);
190         kfree(udev->manufacturer);
191         kfree(udev->serial);
192         kfree(udev);
193 }
194
195 #ifdef  CONFIG_HOTPLUG
196 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
197 {
198         struct usb_device *usb_dev;
199
200         usb_dev = to_usb_device(dev);
201
202         if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
203                 return -ENOMEM;
204
205         if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
206                 return -ENOMEM;
207
208         return 0;
209 }
210
211 #else
212
213 static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
214 {
215         return -ENODEV;
216 }
217 #endif  /* CONFIG_HOTPLUG */
218
219 struct device_type usb_device_type = {
220         .name =         "usb_device",
221         .release =      usb_release_dev,
222         .uevent =       usb_dev_uevent,
223 };
224
225 #ifdef  CONFIG_PM
226
227 static int ksuspend_usb_init(void)
228 {
229         /* This workqueue is supposed to be both freezable and
230          * singlethreaded.  Its job doesn't justify running on more
231          * than one CPU.
232          */
233         ksuspend_usb_wq = create_freezeable_workqueue("ksuspend_usbd");
234         if (!ksuspend_usb_wq)
235                 return -ENOMEM;
236         return 0;
237 }
238
239 static void ksuspend_usb_cleanup(void)
240 {
241         destroy_workqueue(ksuspend_usb_wq);
242 }
243
244 #else
245
246 #define ksuspend_usb_init()     0
247 #define ksuspend_usb_cleanup()  do {} while (0)
248
249 #endif  /* CONFIG_PM */
250
251
252 /* Returns 1 if @usb_bus is WUSB, 0 otherwise */
253 static unsigned usb_bus_is_wusb(struct usb_bus *bus)
254 {
255         struct usb_hcd *hcd = container_of(bus, struct usb_hcd, self);
256         return hcd->wireless;
257 }
258
259
260 /**
261  * usb_alloc_dev - usb device constructor (usbcore-internal)
262  * @parent: hub to which device is connected; null to allocate a root hub
263  * @bus: bus used to access the device
264  * @port1: one-based index of port; ignored for root hubs
265  * Context: !in_interrupt()
266  *
267  * Only hub drivers (including virtual root hub drivers for host
268  * controllers) should ever call this.
269  *
270  * This call may not be used in a non-sleeping context.
271  */
272 struct usb_device *
273 usb_alloc_dev(struct usb_device *parent, struct usb_bus *bus, unsigned port1)
274 {
275         struct usb_device *dev;
276         struct usb_hcd *usb_hcd = container_of(bus, struct usb_hcd, self);
277         unsigned root_hub = 0;
278
279         dev = kzalloc(sizeof(*dev), GFP_KERNEL);
280         if (!dev)
281                 return NULL;
282
283         if (!usb_get_hcd(bus_to_hcd(bus))) {
284                 kfree(dev);
285                 return NULL;
286         }
287
288         device_initialize(&dev->dev);
289         dev->dev.bus = &usb_bus_type;
290         dev->dev.type = &usb_device_type;
291         dev->dev.dma_mask = bus->controller->dma_mask;
292         set_dev_node(&dev->dev, dev_to_node(bus->controller));
293         dev->state = USB_STATE_ATTACHED;
294         atomic_set(&dev->urbnum, 0);
295
296         INIT_LIST_HEAD(&dev->ep0.urb_list);
297         dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
298         dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
299         /* ep0 maxpacket comes later, from device descriptor */
300         usb_enable_endpoint(dev, &dev->ep0);
301         dev->can_submit = 1;
302
303         /* Save readable and stable topology id, distinguishing devices
304          * by location for diagnostics, tools, driver model, etc.  The
305          * string is a path along hub ports, from the root.  Each device's
306          * dev->devpath will be stable until USB is re-cabled, and hubs
307          * are often labeled with these port numbers.  The bus_id isn't
308          * as stable:  bus->busnum changes easily from modprobe order,
309          * cardbus or pci hotplugging, and so on.
310          */
311         if (unlikely(!parent)) {
312                 dev->devpath[0] = '0';
313
314                 dev->dev.parent = bus->controller;
315                 sprintf(&dev->dev.bus_id[0], "usb%d", bus->busnum);
316                 root_hub = 1;
317         } else {
318                 /* match any labeling on the hubs; it's one-based */
319                 if (parent->devpath[0] == '0')
320                         snprintf(dev->devpath, sizeof dev->devpath,
321                                 "%d", port1);
322                 else
323                         snprintf(dev->devpath, sizeof dev->devpath,
324                                 "%s.%d", parent->devpath, port1);
325
326                 dev->dev.parent = &parent->dev;
327                 sprintf(&dev->dev.bus_id[0], "%d-%s",
328                         bus->busnum, dev->devpath);
329
330                 /* hub driver sets up TT records */
331         }
332
333         dev->portnum = port1;
334         dev->bus = bus;
335         dev->parent = parent;
336         INIT_LIST_HEAD(&dev->filelist);
337
338 #ifdef  CONFIG_PM
339         mutex_init(&dev->pm_mutex);
340         INIT_DELAYED_WORK(&dev->autosuspend, usb_autosuspend_work);
341         dev->autosuspend_delay = usb_autosuspend_delay * HZ;
342 #endif
343         if (root_hub)   /* Root hub always ok [and always wired] */
344                 dev->authorized = 1;
345         else {
346                 dev->authorized = usb_hcd->authorized_default;
347                 dev->wusb = usb_bus_is_wusb(bus)? 1 : 0;
348         }
349         return dev;
350 }
351
352 /**
353  * usb_get_dev - increments the reference count of the usb device structure
354  * @dev: the device being referenced
355  *
356  * Each live reference to a device should be refcounted.
357  *
358  * Drivers for USB interfaces should normally record such references in
359  * their probe() methods, when they bind to an interface, and release
360  * them by calling usb_put_dev(), in their disconnect() methods.
361  *
362  * A pointer to the device with the incremented reference counter is returned.
363  */
364 struct usb_device *usb_get_dev(struct usb_device *dev)
365 {
366         if (dev)
367                 get_device(&dev->dev);
368         return dev;
369 }
370
371 /**
372  * usb_put_dev - release a use of the usb device structure
373  * @dev: device that's been disconnected
374  *
375  * Must be called when a user of a device is finished with it.  When the last
376  * user of the device calls this function, the memory of the device is freed.
377  */
378 void usb_put_dev(struct usb_device *dev)
379 {
380         if (dev)
381                 put_device(&dev->dev);
382 }
383
384 /**
385  * usb_get_intf - increments the reference count of the usb interface structure
386  * @intf: the interface being referenced
387  *
388  * Each live reference to a interface must be refcounted.
389  *
390  * Drivers for USB interfaces should normally record such references in
391  * their probe() methods, when they bind to an interface, and release
392  * them by calling usb_put_intf(), in their disconnect() methods.
393  *
394  * A pointer to the interface with the incremented reference counter is
395  * returned.
396  */
397 struct usb_interface *usb_get_intf(struct usb_interface *intf)
398 {
399         if (intf)
400                 get_device(&intf->dev);
401         return intf;
402 }
403
404 /**
405  * usb_put_intf - release a use of the usb interface structure
406  * @intf: interface that's been decremented
407  *
408  * Must be called when a user of an interface is finished with it.  When the
409  * last user of the interface calls this function, the memory of the interface
410  * is freed.
411  */
412 void usb_put_intf(struct usb_interface *intf)
413 {
414         if (intf)
415                 put_device(&intf->dev);
416 }
417
418
419 /*                      USB device locking
420  *
421  * USB devices and interfaces are locked using the semaphore in their
422  * embedded struct device.  The hub driver guarantees that whenever a
423  * device is connected or disconnected, drivers are called with the
424  * USB device locked as well as their particular interface.
425  *
426  * Complications arise when several devices are to be locked at the same
427  * time.  Only hub-aware drivers that are part of usbcore ever have to
428  * do this; nobody else needs to worry about it.  The rule for locking
429  * is simple:
430  *
431  *      When locking both a device and its parent, always lock the
432  *      the parent first.
433  */
434
435 /**
436  * usb_lock_device_for_reset - cautiously acquire the lock for a
437  *      usb device structure
438  * @udev: device that's being locked
439  * @iface: interface bound to the driver making the request (optional)
440  *
441  * Attempts to acquire the device lock, but fails if the device is
442  * NOTATTACHED or SUSPENDED, or if iface is specified and the interface
443  * is neither BINDING nor BOUND.  Rather than sleeping to wait for the
444  * lock, the routine polls repeatedly.  This is to prevent deadlock with
445  * disconnect; in some drivers (such as usb-storage) the disconnect()
446  * or suspend() method will block waiting for a device reset to complete.
447  *
448  * Returns a negative error code for failure, otherwise 1 or 0 to indicate
449  * that the device will or will not have to be unlocked.  (0 can be
450  * returned when an interface is given and is BINDING, because in that
451  * case the driver already owns the device lock.)
452  */
453 int usb_lock_device_for_reset(struct usb_device *udev,
454                               const struct usb_interface *iface)
455 {
456         unsigned long jiffies_expire = jiffies + HZ;
457
458         if (udev->state == USB_STATE_NOTATTACHED)
459                 return -ENODEV;
460         if (udev->state == USB_STATE_SUSPENDED)
461                 return -EHOSTUNREACH;
462         if (iface) {
463                 switch (iface->condition) {
464                   case USB_INTERFACE_BINDING:
465                         return 0;
466                   case USB_INTERFACE_BOUND:
467                         break;
468                   default:
469                         return -EINTR;
470                 }
471         }
472
473         while (usb_trylock_device(udev) != 0) {
474
475                 /* If we can't acquire the lock after waiting one second,
476                  * we're probably deadlocked */
477                 if (time_after(jiffies, jiffies_expire))
478                         return -EBUSY;
479
480                 msleep(15);
481                 if (udev->state == USB_STATE_NOTATTACHED)
482                         return -ENODEV;
483                 if (udev->state == USB_STATE_SUSPENDED)
484                         return -EHOSTUNREACH;
485                 if (iface && iface->condition != USB_INTERFACE_BOUND)
486                         return -EINTR;
487         }
488         return 1;
489 }
490
491
492 static struct usb_device *match_device(struct usb_device *dev,
493                                        u16 vendor_id, u16 product_id)
494 {
495         struct usb_device *ret_dev = NULL;
496         int child;
497
498         dev_dbg(&dev->dev, "check for vendor %04x, product %04x ...\n",
499             le16_to_cpu(dev->descriptor.idVendor),
500             le16_to_cpu(dev->descriptor.idProduct));
501
502         /* see if this device matches */
503         if ((vendor_id == le16_to_cpu(dev->descriptor.idVendor)) &&
504             (product_id == le16_to_cpu(dev->descriptor.idProduct))) {
505                 dev_dbg(&dev->dev, "matched this device!\n");
506                 ret_dev = usb_get_dev(dev);
507                 goto exit;
508         }
509
510         /* look through all of the children of this device */
511         for (child = 0; child < dev->maxchild; ++child) {
512                 if (dev->children[child]) {
513                         usb_lock_device(dev->children[child]);
514                         ret_dev = match_device(dev->children[child],
515                                                vendor_id, product_id);
516                         usb_unlock_device(dev->children[child]);
517                         if (ret_dev)
518                                 goto exit;
519                 }
520         }
521 exit:
522         return ret_dev;
523 }
524
525 /**
526  * usb_find_device - find a specific usb device in the system
527  * @vendor_id: the vendor id of the device to find
528  * @product_id: the product id of the device to find
529  *
530  * Returns a pointer to a struct usb_device if such a specified usb
531  * device is present in the system currently.  The usage count of the
532  * device will be incremented if a device is found.  Make sure to call
533  * usb_put_dev() when the caller is finished with the device.
534  *
535  * If a device with the specified vendor and product id is not found,
536  * NULL is returned.
537  */
538 struct usb_device *usb_find_device(u16 vendor_id, u16 product_id)
539 {
540         struct list_head *buslist;
541         struct usb_bus *bus;
542         struct usb_device *dev = NULL;
543         
544         mutex_lock(&usb_bus_list_lock);
545         for (buslist = usb_bus_list.next;
546              buslist != &usb_bus_list; 
547              buslist = buslist->next) {
548                 bus = container_of(buslist, struct usb_bus, bus_list);
549                 if (!bus->root_hub)
550                         continue;
551                 usb_lock_device(bus->root_hub);
552                 dev = match_device(bus->root_hub, vendor_id, product_id);
553                 usb_unlock_device(bus->root_hub);
554                 if (dev)
555                         goto exit;
556         }
557 exit:
558         mutex_unlock(&usb_bus_list_lock);
559         return dev;
560 }
561
562 /**
563  * usb_get_current_frame_number - return current bus frame number
564  * @dev: the device whose bus is being queried
565  *
566  * Returns the current frame number for the USB host controller
567  * used with the given USB device.  This can be used when scheduling
568  * isochronous requests.
569  *
570  * Note that different kinds of host controller have different
571  * "scheduling horizons".  While one type might support scheduling only
572  * 32 frames into the future, others could support scheduling up to
573  * 1024 frames into the future.
574  */
575 int usb_get_current_frame_number(struct usb_device *dev)
576 {
577         return usb_hcd_get_frame_number(dev);
578 }
579
580 /*-------------------------------------------------------------------*/
581 /*
582  * __usb_get_extra_descriptor() finds a descriptor of specific type in the
583  * extra field of the interface and endpoint descriptor structs.
584  */
585
586 int __usb_get_extra_descriptor(char *buffer, unsigned size,
587         unsigned char type, void **ptr)
588 {
589         struct usb_descriptor_header *header;
590
591         while (size >= sizeof(struct usb_descriptor_header)) {
592                 header = (struct usb_descriptor_header *)buffer;
593
594                 if (header->bLength < 2) {
595                         printk(KERN_ERR
596                                 "%s: bogus descriptor, type %d length %d\n",
597                                 usbcore_name,
598                                 header->bDescriptorType, 
599                                 header->bLength);
600                         return -1;
601                 }
602
603                 if (header->bDescriptorType == type) {
604                         *ptr = header;
605                         return 0;
606                 }
607
608                 buffer += header->bLength;
609                 size -= header->bLength;
610         }
611         return -1;
612 }
613
614 /**
615  * usb_buffer_alloc - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
616  * @dev: device the buffer will be used with
617  * @size: requested buffer size
618  * @mem_flags: affect whether allocation may block
619  * @dma: used to return DMA address of buffer
620  *
621  * Return value is either null (indicating no buffer could be allocated), or
622  * the cpu-space pointer to a buffer that may be used to perform DMA to the
623  * specified device.  Such cpu-space buffers are returned along with the DMA
624  * address (through the pointer provided).
625  *
626  * These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
627  * to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
628  * hardware during URB completion/resubmit.  The implementation varies between
629  * platforms, depending on details of how DMA will work to this device.
630  * Using these buffers also eliminates cacheline sharing problems on
631  * architectures where CPU caches are not DMA-coherent.  On systems without
632  * bus-snooping caches, these buffers are uncached.
633  *
634  * When the buffer is no longer used, free it with usb_buffer_free().
635  */
636 void *usb_buffer_alloc(
637         struct usb_device *dev,
638         size_t size,
639         gfp_t mem_flags,
640         dma_addr_t *dma
641 )
642 {
643         if (!dev || !dev->bus)
644                 return NULL;
645         return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
646 }
647
648 /**
649  * usb_buffer_free - free memory allocated with usb_buffer_alloc()
650  * @dev: device the buffer was used with
651  * @size: requested buffer size
652  * @addr: CPU address of buffer
653  * @dma: DMA address of buffer
654  *
655  * This reclaims an I/O buffer, letting it be reused.  The memory must have
656  * been allocated using usb_buffer_alloc(), and the parameters must match
657  * those provided in that allocation request.
658  */
659 void usb_buffer_free(
660         struct usb_device *dev,
661         size_t size,
662         void *addr,
663         dma_addr_t dma
664 )
665 {
666         if (!dev || !dev->bus)
667                 return;
668         if (!addr)
669                 return;
670         hcd_buffer_free(dev->bus, size, addr, dma);
671 }
672
673 /**
674  * usb_buffer_map - create DMA mapping(s) for an urb
675  * @urb: urb whose transfer_buffer/setup_packet will be mapped
676  *
677  * Return value is either null (indicating no buffer could be mapped), or
678  * the parameter.  URB_NO_TRANSFER_DMA_MAP and URB_NO_SETUP_DMA_MAP are
679  * added to urb->transfer_flags if the operation succeeds.  If the device
680  * is connected to this system through a non-DMA controller, this operation
681  * always succeeds.
682  *
683  * This call would normally be used for an urb which is reused, perhaps
684  * as the target of a large periodic transfer, with usb_buffer_dmasync()
685  * calls to synchronize memory and dma state.
686  *
687  * Reverse the effect of this call with usb_buffer_unmap().
688  */
689 #if 0
690 struct urb *usb_buffer_map(struct urb *urb)
691 {
692         struct usb_bus          *bus;
693         struct device           *controller;
694
695         if (!urb
696                         || !urb->dev
697                         || !(bus = urb->dev->bus)
698                         || !(controller = bus->controller))
699                 return NULL;
700
701         if (controller->dma_mask) {
702                 urb->transfer_dma = dma_map_single(controller,
703                         urb->transfer_buffer, urb->transfer_buffer_length,
704                         usb_pipein(urb->pipe)
705                                 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
706                 if (usb_pipecontrol(urb->pipe))
707                         urb->setup_dma = dma_map_single(controller,
708                                         urb->setup_packet,
709                                         sizeof(struct usb_ctrlrequest),
710                                         DMA_TO_DEVICE);
711         // FIXME generic api broken like pci, can't report errors
712         // if (urb->transfer_dma == DMA_ADDR_INVALID) return 0;
713         } else
714                 urb->transfer_dma = ~0;
715         urb->transfer_flags |= (URB_NO_TRANSFER_DMA_MAP
716                                 | URB_NO_SETUP_DMA_MAP);
717         return urb;
718 }
719 #endif  /*  0  */
720
721 /* XXX DISABLED, no users currently.  If you wish to re-enable this
722  * XXX please determine whether the sync is to transfer ownership of
723  * XXX the buffer from device to cpu or vice verse, and thusly use the
724  * XXX appropriate _for_{cpu,device}() method.  -DaveM
725  */
726 #if 0
727
728 /**
729  * usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
730  * @urb: urb whose transfer_buffer/setup_packet will be synchronized
731  */
732 void usb_buffer_dmasync(struct urb *urb)
733 {
734         struct usb_bus          *bus;
735         struct device           *controller;
736
737         if (!urb
738                         || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
739                         || !urb->dev
740                         || !(bus = urb->dev->bus)
741                         || !(controller = bus->controller))
742                 return;
743
744         if (controller->dma_mask) {
745                 dma_sync_single(controller,
746                         urb->transfer_dma, urb->transfer_buffer_length,
747                         usb_pipein(urb->pipe)
748                                 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
749                 if (usb_pipecontrol(urb->pipe))
750                         dma_sync_single(controller,
751                                         urb->setup_dma,
752                                         sizeof(struct usb_ctrlrequest),
753                                         DMA_TO_DEVICE);
754         }
755 }
756 #endif
757
758 /**
759  * usb_buffer_unmap - free DMA mapping(s) for an urb
760  * @urb: urb whose transfer_buffer will be unmapped
761  *
762  * Reverses the effect of usb_buffer_map().
763  */
764 #if 0
765 void usb_buffer_unmap(struct urb *urb)
766 {
767         struct usb_bus          *bus;
768         struct device           *controller;
769
770         if (!urb
771                         || !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
772                         || !urb->dev
773                         || !(bus = urb->dev->bus)
774                         || !(controller = bus->controller))
775                 return;
776
777         if (controller->dma_mask) {
778                 dma_unmap_single(controller,
779                         urb->transfer_dma, urb->transfer_buffer_length,
780                         usb_pipein(urb->pipe)
781                                 ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
782                 if (usb_pipecontrol(urb->pipe))
783                         dma_unmap_single(controller,
784                                         urb->setup_dma,
785                                         sizeof(struct usb_ctrlrequest),
786                                         DMA_TO_DEVICE);
787         }
788         urb->transfer_flags &= ~(URB_NO_TRANSFER_DMA_MAP
789                                 | URB_NO_SETUP_DMA_MAP);
790 }
791 #endif  /*  0  */
792
793 /**
794  * usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
795  * @dev: device to which the scatterlist will be mapped
796  * @is_in: mapping transfer direction
797  * @sg: the scatterlist to map
798  * @nents: the number of entries in the scatterlist
799  *
800  * Return value is either < 0 (indicating no buffers could be mapped), or
801  * the number of DMA mapping array entries in the scatterlist.
802  *
803  * The caller is responsible for placing the resulting DMA addresses from
804  * the scatterlist into URB transfer buffer pointers, and for setting the
805  * URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
806  *
807  * Top I/O rates come from queuing URBs, instead of waiting for each one
808  * to complete before starting the next I/O.   This is particularly easy
809  * to do with scatterlists.  Just allocate and submit one URB for each DMA
810  * mapping entry returned, stopping on the first error or when all succeed.
811  * Better yet, use the usb_sg_*() calls, which do that (and more) for you.
812  *
813  * This call would normally be used when translating scatterlist requests,
814  * rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
815  * may be able to coalesce mappings for improved I/O efficiency.
816  *
817  * Reverse the effect of this call with usb_buffer_unmap_sg().
818  */
819 int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
820                       struct scatterlist *sg, int nents)
821 {
822         struct usb_bus          *bus;
823         struct device           *controller;
824
825         if (!dev
826                         || !(bus = dev->bus)
827                         || !(controller = bus->controller)
828                         || !controller->dma_mask)
829                 return -1;
830
831         // FIXME generic api broken like pci, can't report errors
832         return dma_map_sg(controller, sg, nents,
833                         is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
834 }
835
836 /* XXX DISABLED, no users currently.  If you wish to re-enable this
837  * XXX please determine whether the sync is to transfer ownership of
838  * XXX the buffer from device to cpu or vice verse, and thusly use the
839  * XXX appropriate _for_{cpu,device}() method.  -DaveM
840  */
841 #if 0
842
843 /**
844  * usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
845  * @dev: device to which the scatterlist will be mapped
846  * @is_in: mapping transfer direction
847  * @sg: the scatterlist to synchronize
848  * @n_hw_ents: the positive return value from usb_buffer_map_sg
849  *
850  * Use this when you are re-using a scatterlist's data buffers for
851  * another USB request.
852  */
853 void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
854                            struct scatterlist *sg, int n_hw_ents)
855 {
856         struct usb_bus          *bus;
857         struct device           *controller;
858
859         if (!dev
860                         || !(bus = dev->bus)
861                         || !(controller = bus->controller)
862                         || !controller->dma_mask)
863                 return;
864
865         dma_sync_sg(controller, sg, n_hw_ents,
866                         is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
867 }
868 #endif
869
870 /**
871  * usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
872  * @dev: device to which the scatterlist will be mapped
873  * @is_in: mapping transfer direction
874  * @sg: the scatterlist to unmap
875  * @n_hw_ents: the positive return value from usb_buffer_map_sg
876  *
877  * Reverses the effect of usb_buffer_map_sg().
878  */
879 void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
880                          struct scatterlist *sg, int n_hw_ents)
881 {
882         struct usb_bus          *bus;
883         struct device           *controller;
884
885         if (!dev
886                         || !(bus = dev->bus)
887                         || !(controller = bus->controller)
888                         || !controller->dma_mask)
889                 return;
890
891         dma_unmap_sg(controller, sg, n_hw_ents,
892                         is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
893 }
894
895 /* format to disable USB on kernel command line is: nousb */
896 __module_param_call("", nousb, param_set_bool, param_get_bool, &nousb, 0444);
897
898 /*
899  * for external read access to <nousb>
900  */
901 int usb_disabled(void)
902 {
903         return nousb;
904 }
905
906 /*
907  * Init
908  */
909 static int __init usb_init(void)
910 {
911         int retval;
912         if (nousb) {
913                 pr_info("%s: USB support disabled\n", usbcore_name);
914                 return 0;
915         }
916
917         retval = ksuspend_usb_init();
918         if (retval)
919                 goto out;
920         retval = bus_register(&usb_bus_type);
921         if (retval) 
922                 goto bus_register_failed;
923         retval = usb_host_init();
924         if (retval)
925                 goto host_init_failed;
926         retval = usb_major_init();
927         if (retval)
928                 goto major_init_failed;
929         retval = usb_register(&usbfs_driver);
930         if (retval)
931                 goto driver_register_failed;
932         retval = usb_devio_init();
933         if (retval)
934                 goto usb_devio_init_failed;
935         retval = usbfs_init();
936         if (retval)
937                 goto fs_init_failed;
938         retval = usb_hub_init();
939         if (retval)
940                 goto hub_init_failed;
941         retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
942         if (!retval)
943                 goto out;
944
945         usb_hub_cleanup();
946 hub_init_failed:
947         usbfs_cleanup();
948 fs_init_failed:
949         usb_devio_cleanup();
950 usb_devio_init_failed:
951         usb_deregister(&usbfs_driver);
952 driver_register_failed:
953         usb_major_cleanup();
954 major_init_failed:
955         usb_host_cleanup();
956 host_init_failed:
957         bus_unregister(&usb_bus_type);
958 bus_register_failed:
959         ksuspend_usb_cleanup();
960 out:
961         return retval;
962 }
963
964 /*
965  * Cleanup
966  */
967 static void __exit usb_exit(void)
968 {
969         /* This will matter if shutdown/reboot does exitcalls. */
970         if (nousb)
971                 return;
972
973         usb_deregister_device_driver(&usb_generic_driver);
974         usb_major_cleanup();
975         usbfs_cleanup();
976         usb_deregister(&usbfs_driver);
977         usb_devio_cleanup();
978         usb_hub_cleanup();
979         usb_host_cleanup();
980         bus_unregister(&usb_bus_type);
981         ksuspend_usb_cleanup();
982 }
983
984 subsys_initcall(usb_init);
985 module_exit(usb_exit);
986
987 /*
988  * USB may be built into the kernel or be built as modules.
989  * These symbols are exported for device (or host controller)
990  * driver modules to use.
991  */
992
993 EXPORT_SYMBOL(usb_disabled);
994
995 EXPORT_SYMBOL_GPL(usb_get_intf);
996 EXPORT_SYMBOL_GPL(usb_put_intf);
997
998 EXPORT_SYMBOL(usb_put_dev);
999 EXPORT_SYMBOL(usb_get_dev);
1000 EXPORT_SYMBOL(usb_hub_tt_clear_buffer);
1001
1002 EXPORT_SYMBOL(usb_lock_device_for_reset);
1003
1004 EXPORT_SYMBOL(usb_find_interface);
1005 EXPORT_SYMBOL(usb_ifnum_to_if);
1006 EXPORT_SYMBOL(usb_altnum_to_altsetting);
1007
1008 EXPORT_SYMBOL(__usb_get_extra_descriptor);
1009
1010 EXPORT_SYMBOL(usb_get_current_frame_number);
1011
1012 EXPORT_SYMBOL(usb_buffer_alloc);
1013 EXPORT_SYMBOL(usb_buffer_free);
1014
1015 #if 0
1016 EXPORT_SYMBOL(usb_buffer_map);
1017 EXPORT_SYMBOL(usb_buffer_dmasync);
1018 EXPORT_SYMBOL(usb_buffer_unmap);
1019 #endif
1020
1021 EXPORT_SYMBOL(usb_buffer_map_sg);
1022 #if 0
1023 EXPORT_SYMBOL(usb_buffer_dmasync_sg);
1024 #endif
1025 EXPORT_SYMBOL(usb_buffer_unmap_sg);
1026
1027 MODULE_LICENSE("GPL");