[PATCH] powerpc: Reroute interrupts from 0 + offset to PHYSICAL_START + offset
[linux-2.6] / arch / powerpc / kernel / prom.c
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras       August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  * 
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com 
9  *
10  *      This program is free software; you can redistribute it and/or
11  *      modify it under the terms of the GNU General Public License
12  *      as published by the Free Software Foundation; either version
13  *      2 of the License, or (at your option) any later version.
14  */
15
16 #undef DEBUG
17
18 #include <stdarg.h>
19 #include <linux/config.h>
20 #include <linux/kernel.h>
21 #include <linux/string.h>
22 #include <linux/init.h>
23 #include <linux/threads.h>
24 #include <linux/spinlock.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
31 #include <linux/module.h>
32
33 #include <asm/prom.h>
34 #include <asm/rtas.h>
35 #include <asm/lmb.h>
36 #include <asm/page.h>
37 #include <asm/processor.h>
38 #include <asm/irq.h>
39 #include <asm/io.h>
40 #include <asm/kdump.h>
41 #include <asm/smp.h>
42 #include <asm/system.h>
43 #include <asm/mmu.h>
44 #include <asm/pgtable.h>
45 #include <asm/pci.h>
46 #include <asm/iommu.h>
47 #include <asm/btext.h>
48 #include <asm/sections.h>
49 #include <asm/machdep.h>
50 #include <asm/pSeries_reconfig.h>
51 #include <asm/pci-bridge.h>
52
53 #ifdef DEBUG
54 #define DBG(fmt...) printk(KERN_ERR fmt)
55 #else
56 #define DBG(fmt...)
57 #endif
58
59 struct pci_reg_property {
60         struct pci_address addr;
61         u32 size_hi;
62         u32 size_lo;
63 };
64
65 struct isa_reg_property {
66         u32 space;
67         u32 address;
68         u32 size;
69 };
70
71
72 typedef int interpret_func(struct device_node *, unsigned long *,
73                            int, int, int);
74
75 static int __initdata dt_root_addr_cells;
76 static int __initdata dt_root_size_cells;
77
78 #ifdef CONFIG_PPC64
79 static int __initdata iommu_is_off;
80 int __initdata iommu_force_on;
81 unsigned long tce_alloc_start, tce_alloc_end;
82 #endif
83
84 typedef u32 cell_t;
85
86 #if 0
87 static struct boot_param_header *initial_boot_params __initdata;
88 #else
89 struct boot_param_header *initial_boot_params;
90 #endif
91
92 static struct device_node *allnodes = NULL;
93
94 /* use when traversing tree through the allnext, child, sibling,
95  * or parent members of struct device_node.
96  */
97 static DEFINE_RWLOCK(devtree_lock);
98
99 /* export that to outside world */
100 struct device_node *of_chosen;
101
102 struct device_node *dflt_interrupt_controller;
103 int num_interrupt_controllers;
104
105 /*
106  * Wrapper for allocating memory for various data that needs to be
107  * attached to device nodes as they are processed at boot or when
108  * added to the device tree later (e.g. DLPAR).  At boot there is
109  * already a region reserved so we just increment *mem_start by size;
110  * otherwise we call kmalloc.
111  */
112 static void * prom_alloc(unsigned long size, unsigned long *mem_start)
113 {
114         unsigned long tmp;
115
116         if (!mem_start)
117                 return kmalloc(size, GFP_KERNEL);
118
119         tmp = *mem_start;
120         *mem_start += size;
121         return (void *)tmp;
122 }
123
124 /*
125  * Find the device_node with a given phandle.
126  */
127 static struct device_node * find_phandle(phandle ph)
128 {
129         struct device_node *np;
130
131         for (np = allnodes; np != 0; np = np->allnext)
132                 if (np->linux_phandle == ph)
133                         return np;
134         return NULL;
135 }
136
137 /*
138  * Find the interrupt parent of a node.
139  */
140 static struct device_node * __devinit intr_parent(struct device_node *p)
141 {
142         phandle *parp;
143
144         parp = (phandle *) get_property(p, "interrupt-parent", NULL);
145         if (parp == NULL)
146                 return p->parent;
147         p = find_phandle(*parp);
148         if (p != NULL)
149                 return p;
150         /*
151          * On a powermac booted with BootX, we don't get to know the
152          * phandles for any nodes, so find_phandle will return NULL.
153          * Fortunately these machines only have one interrupt controller
154          * so there isn't in fact any ambiguity.  -- paulus
155          */
156         if (num_interrupt_controllers == 1)
157                 p = dflt_interrupt_controller;
158         return p;
159 }
160
161 /*
162  * Find out the size of each entry of the interrupts property
163  * for a node.
164  */
165 int __devinit prom_n_intr_cells(struct device_node *np)
166 {
167         struct device_node *p;
168         unsigned int *icp;
169
170         for (p = np; (p = intr_parent(p)) != NULL; ) {
171                 icp = (unsigned int *)
172                         get_property(p, "#interrupt-cells", NULL);
173                 if (icp != NULL)
174                         return *icp;
175                 if (get_property(p, "interrupt-controller", NULL) != NULL
176                     || get_property(p, "interrupt-map", NULL) != NULL) {
177                         printk("oops, node %s doesn't have #interrupt-cells\n",
178                                p->full_name);
179                         return 1;
180                 }
181         }
182 #ifdef DEBUG_IRQ
183         printk("prom_n_intr_cells failed for %s\n", np->full_name);
184 #endif
185         return 1;
186 }
187
188 /*
189  * Map an interrupt from a device up to the platform interrupt
190  * descriptor.
191  */
192 static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
193                                    struct device_node *np, unsigned int *ints,
194                                    int nintrc)
195 {
196         struct device_node *p, *ipar;
197         unsigned int *imap, *imask, *ip;
198         int i, imaplen, match;
199         int newintrc = 0, newaddrc = 0;
200         unsigned int *reg;
201         int naddrc;
202
203         reg = (unsigned int *) get_property(np, "reg", NULL);
204         naddrc = prom_n_addr_cells(np);
205         p = intr_parent(np);
206         while (p != NULL) {
207                 if (get_property(p, "interrupt-controller", NULL) != NULL)
208                         /* this node is an interrupt controller, stop here */
209                         break;
210                 imap = (unsigned int *)
211                         get_property(p, "interrupt-map", &imaplen);
212                 if (imap == NULL) {
213                         p = intr_parent(p);
214                         continue;
215                 }
216                 imask = (unsigned int *)
217                         get_property(p, "interrupt-map-mask", NULL);
218                 if (imask == NULL) {
219                         printk("oops, %s has interrupt-map but no mask\n",
220                                p->full_name);
221                         return 0;
222                 }
223                 imaplen /= sizeof(unsigned int);
224                 match = 0;
225                 ipar = NULL;
226                 while (imaplen > 0 && !match) {
227                         /* check the child-interrupt field */
228                         match = 1;
229                         for (i = 0; i < naddrc && match; ++i)
230                                 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
231                         for (; i < naddrc + nintrc && match; ++i)
232                                 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
233                         imap += naddrc + nintrc;
234                         imaplen -= naddrc + nintrc;
235                         /* grab the interrupt parent */
236                         ipar = find_phandle((phandle) *imap++);
237                         --imaplen;
238                         if (ipar == NULL && num_interrupt_controllers == 1)
239                                 /* cope with BootX not giving us phandles */
240                                 ipar = dflt_interrupt_controller;
241                         if (ipar == NULL) {
242                                 printk("oops, no int parent %x in map of %s\n",
243                                        imap[-1], p->full_name);
244                                 return 0;
245                         }
246                         /* find the parent's # addr and intr cells */
247                         ip = (unsigned int *)
248                                 get_property(ipar, "#interrupt-cells", NULL);
249                         if (ip == NULL) {
250                                 printk("oops, no #interrupt-cells on %s\n",
251                                        ipar->full_name);
252                                 return 0;
253                         }
254                         newintrc = *ip;
255                         ip = (unsigned int *)
256                                 get_property(ipar, "#address-cells", NULL);
257                         newaddrc = (ip == NULL)? 0: *ip;
258                         imap += newaddrc + newintrc;
259                         imaplen -= newaddrc + newintrc;
260                 }
261                 if (imaplen < 0) {
262                         printk("oops, error decoding int-map on %s, len=%d\n",
263                                p->full_name, imaplen);
264                         return 0;
265                 }
266                 if (!match) {
267 #ifdef DEBUG_IRQ
268                         printk("oops, no match in %s int-map for %s\n",
269                                p->full_name, np->full_name);
270 #endif
271                         return 0;
272                 }
273                 p = ipar;
274                 naddrc = newaddrc;
275                 nintrc = newintrc;
276                 ints = imap - nintrc;
277                 reg = ints - naddrc;
278         }
279         if (p == NULL) {
280 #ifdef DEBUG_IRQ
281                 printk("hmmm, int tree for %s doesn't have ctrler\n",
282                        np->full_name);
283 #endif
284                 return 0;
285         }
286         *irq = ints;
287         *ictrler = p;
288         return nintrc;
289 }
290
291 static unsigned char map_isa_senses[4] = {
292         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
293         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
294         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
295         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE
296 };
297
298 static unsigned char map_mpic_senses[4] = {
299         IRQ_SENSE_EDGE  | IRQ_POLARITY_POSITIVE,
300         IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE,
301         /* 2 seems to be used for the 8259 cascade... */
302         IRQ_SENSE_LEVEL | IRQ_POLARITY_POSITIVE,
303         IRQ_SENSE_EDGE  | IRQ_POLARITY_NEGATIVE,
304 };
305
306 static int __devinit finish_node_interrupts(struct device_node *np,
307                                             unsigned long *mem_start,
308                                             int measure_only)
309 {
310         unsigned int *ints;
311         int intlen, intrcells, intrcount;
312         int i, j, n, sense;
313         unsigned int *irq, virq;
314         struct device_node *ic;
315
316         if (num_interrupt_controllers == 0) {
317                 /*
318                  * Old machines just have a list of interrupt numbers
319                  * and no interrupt-controller nodes.
320                  */
321                 ints = (unsigned int *) get_property(np, "AAPL,interrupts",
322                                                      &intlen);
323                 /* XXX old interpret_pci_props looked in parent too */
324                 /* XXX old interpret_macio_props looked for interrupts
325                    before AAPL,interrupts */
326                 if (ints == NULL)
327                         ints = (unsigned int *) get_property(np, "interrupts",
328                                                              &intlen);
329                 if (ints == NULL)
330                         return 0;
331
332                 np->n_intrs = intlen / sizeof(unsigned int);
333                 np->intrs = prom_alloc(np->n_intrs * sizeof(np->intrs[0]),
334                                        mem_start);
335                 if (!np->intrs)
336                         return -ENOMEM;
337                 if (measure_only)
338                         return 0;
339
340                 for (i = 0; i < np->n_intrs; ++i) {
341                         np->intrs[i].line = *ints++;
342                         np->intrs[i].sense = IRQ_SENSE_LEVEL
343                                 | IRQ_POLARITY_NEGATIVE;
344                 }
345                 return 0;
346         }
347
348         ints = (unsigned int *) get_property(np, "interrupts", &intlen);
349         if (ints == NULL)
350                 return 0;
351         intrcells = prom_n_intr_cells(np);
352         intlen /= intrcells * sizeof(unsigned int);
353
354         np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
355         if (!np->intrs)
356                 return -ENOMEM;
357
358         if (measure_only)
359                 return 0;
360
361         intrcount = 0;
362         for (i = 0; i < intlen; ++i, ints += intrcells) {
363                 n = map_interrupt(&irq, &ic, np, ints, intrcells);
364                 if (n <= 0)
365                         continue;
366
367                 /* don't map IRQ numbers under a cascaded 8259 controller */
368                 if (ic && device_is_compatible(ic, "chrp,iic")) {
369                         np->intrs[intrcount].line = irq[0];
370                         sense = (n > 1)? (irq[1] & 3): 3;
371                         np->intrs[intrcount].sense = map_isa_senses[sense];
372                 } else {
373                         virq = virt_irq_create_mapping(irq[0]);
374 #ifdef CONFIG_PPC64
375                         if (virq == NO_IRQ) {
376                                 printk(KERN_CRIT "Could not allocate interrupt"
377                                        " number for %s\n", np->full_name);
378                                 continue;
379                         }
380 #endif
381                         np->intrs[intrcount].line = irq_offset_up(virq);
382                         sense = (n > 1)? (irq[1] & 3): 1;
383                         np->intrs[intrcount].sense = map_mpic_senses[sense];
384                 }
385
386 #ifdef CONFIG_PPC64
387                 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
388                 if (_machine == PLATFORM_POWERMAC && ic && ic->parent) {
389                         char *name = get_property(ic->parent, "name", NULL);
390                         if (name && !strcmp(name, "u3"))
391                                 np->intrs[intrcount].line += 128;
392                         else if (!(name && !strcmp(name, "mac-io")))
393                                 /* ignore other cascaded controllers, such as
394                                    the k2-sata-root */
395                                 break;
396                 }
397 #endif
398                 if (n > 2) {
399                         printk("hmmm, got %d intr cells for %s:", n,
400                                np->full_name);
401                         for (j = 0; j < n; ++j)
402                                 printk(" %d", irq[j]);
403                         printk("\n");
404                 }
405                 ++intrcount;
406         }
407         np->n_intrs = intrcount;
408
409         return 0;
410 }
411
412 static int __devinit interpret_pci_props(struct device_node *np,
413                                          unsigned long *mem_start,
414                                          int naddrc, int nsizec,
415                                          int measure_only)
416 {
417         struct address_range *adr;
418         struct pci_reg_property *pci_addrs;
419         int i, l, n_addrs;
420
421         pci_addrs = (struct pci_reg_property *)
422                 get_property(np, "assigned-addresses", &l);
423         if (!pci_addrs)
424                 return 0;
425
426         n_addrs = l / sizeof(*pci_addrs);
427
428         adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
429         if (!adr)
430                 return -ENOMEM;
431
432         if (measure_only)
433                 return 0;
434
435         np->addrs = adr;
436         np->n_addrs = n_addrs;
437
438         for (i = 0; i < n_addrs; i++) {
439                 adr[i].space = pci_addrs[i].addr.a_hi;
440                 adr[i].address = pci_addrs[i].addr.a_lo |
441                         ((u64)pci_addrs[i].addr.a_mid << 32);
442                 adr[i].size = pci_addrs[i].size_lo;
443         }
444
445         return 0;
446 }
447
448 static int __init interpret_dbdma_props(struct device_node *np,
449                                         unsigned long *mem_start,
450                                         int naddrc, int nsizec,
451                                         int measure_only)
452 {
453         struct reg_property32 *rp;
454         struct address_range *adr;
455         unsigned long base_address;
456         int i, l;
457         struct device_node *db;
458
459         base_address = 0;
460         if (!measure_only) {
461                 for (db = np->parent; db != NULL; db = db->parent) {
462                         if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
463                                 base_address = db->addrs[0].address;
464                                 break;
465                         }
466                 }
467         }
468
469         rp = (struct reg_property32 *) get_property(np, "reg", &l);
470         if (rp != 0 && l >= sizeof(struct reg_property32)) {
471                 i = 0;
472                 adr = (struct address_range *) (*mem_start);
473                 while ((l -= sizeof(struct reg_property32)) >= 0) {
474                         if (!measure_only) {
475                                 adr[i].space = 2;
476                                 adr[i].address = rp[i].address + base_address;
477                                 adr[i].size = rp[i].size;
478                         }
479                         ++i;
480                 }
481                 np->addrs = adr;
482                 np->n_addrs = i;
483                 (*mem_start) += i * sizeof(struct address_range);
484         }
485
486         return 0;
487 }
488
489 static int __init interpret_macio_props(struct device_node *np,
490                                         unsigned long *mem_start,
491                                         int naddrc, int nsizec,
492                                         int measure_only)
493 {
494         struct reg_property32 *rp;
495         struct address_range *adr;
496         unsigned long base_address;
497         int i, l;
498         struct device_node *db;
499
500         base_address = 0;
501         if (!measure_only) {
502                 for (db = np->parent; db != NULL; db = db->parent) {
503                         if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
504                                 base_address = db->addrs[0].address;
505                                 break;
506                         }
507                 }
508         }
509
510         rp = (struct reg_property32 *) get_property(np, "reg", &l);
511         if (rp != 0 && l >= sizeof(struct reg_property32)) {
512                 i = 0;
513                 adr = (struct address_range *) (*mem_start);
514                 while ((l -= sizeof(struct reg_property32)) >= 0) {
515                         if (!measure_only) {
516                                 adr[i].space = 2;
517                                 adr[i].address = rp[i].address + base_address;
518                                 adr[i].size = rp[i].size;
519                         }
520                         ++i;
521                 }
522                 np->addrs = adr;
523                 np->n_addrs = i;
524                 (*mem_start) += i * sizeof(struct address_range);
525         }
526
527         return 0;
528 }
529
530 static int __init interpret_isa_props(struct device_node *np,
531                                       unsigned long *mem_start,
532                                       int naddrc, int nsizec,
533                                       int measure_only)
534 {
535         struct isa_reg_property *rp;
536         struct address_range *adr;
537         int i, l;
538
539         rp = (struct isa_reg_property *) get_property(np, "reg", &l);
540         if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
541                 i = 0;
542                 adr = (struct address_range *) (*mem_start);
543                 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
544                         if (!measure_only) {
545                                 adr[i].space = rp[i].space;
546                                 adr[i].address = rp[i].address;
547                                 adr[i].size = rp[i].size;
548                         }
549                         ++i;
550                 }
551                 np->addrs = adr;
552                 np->n_addrs = i;
553                 (*mem_start) += i * sizeof(struct address_range);
554         }
555
556         return 0;
557 }
558
559 static int __init interpret_root_props(struct device_node *np,
560                                        unsigned long *mem_start,
561                                        int naddrc, int nsizec,
562                                        int measure_only)
563 {
564         struct address_range *adr;
565         int i, l;
566         unsigned int *rp;
567         int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
568
569         rp = (unsigned int *) get_property(np, "reg", &l);
570         if (rp != 0 && l >= rpsize) {
571                 i = 0;
572                 adr = (struct address_range *) (*mem_start);
573                 while ((l -= rpsize) >= 0) {
574                         if (!measure_only) {
575                                 adr[i].space = 0;
576                                 adr[i].address = rp[naddrc - 1];
577                                 adr[i].size = rp[naddrc + nsizec - 1];
578                         }
579                         ++i;
580                         rp += naddrc + nsizec;
581                 }
582                 np->addrs = adr;
583                 np->n_addrs = i;
584                 (*mem_start) += i * sizeof(struct address_range);
585         }
586
587         return 0;
588 }
589
590 static int __devinit finish_node(struct device_node *np,
591                                  unsigned long *mem_start,
592                                  interpret_func *ifunc,
593                                  int naddrc, int nsizec,
594                                  int measure_only)
595 {
596         struct device_node *child;
597         int *ip, rc = 0;
598
599         /* get the device addresses and interrupts */
600         if (ifunc != NULL)
601                 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
602         if (rc)
603                 goto out;
604
605         rc = finish_node_interrupts(np, mem_start, measure_only);
606         if (rc)
607                 goto out;
608
609         /* Look for #address-cells and #size-cells properties. */
610         ip = (int *) get_property(np, "#address-cells", NULL);
611         if (ip != NULL)
612                 naddrc = *ip;
613         ip = (int *) get_property(np, "#size-cells", NULL);
614         if (ip != NULL)
615                 nsizec = *ip;
616
617         if (!strcmp(np->name, "device-tree") || np->parent == NULL)
618                 ifunc = interpret_root_props;
619         else if (np->type == 0)
620                 ifunc = NULL;
621         else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
622                 ifunc = interpret_pci_props;
623         else if (!strcmp(np->type, "dbdma"))
624                 ifunc = interpret_dbdma_props;
625         else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
626                 ifunc = interpret_macio_props;
627         else if (!strcmp(np->type, "isa"))
628                 ifunc = interpret_isa_props;
629         else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
630                 ifunc = interpret_root_props;
631         else if (!((ifunc == interpret_dbdma_props
632                     || ifunc == interpret_macio_props)
633                    && (!strcmp(np->type, "escc")
634                        || !strcmp(np->type, "media-bay"))))
635                 ifunc = NULL;
636
637         for (child = np->child; child != NULL; child = child->sibling) {
638                 rc = finish_node(child, mem_start, ifunc,
639                                  naddrc, nsizec, measure_only);
640                 if (rc)
641                         goto out;
642         }
643 out:
644         return rc;
645 }
646
647 static void __init scan_interrupt_controllers(void)
648 {
649         struct device_node *np;
650         int n = 0;
651         char *name, *ic;
652         int iclen;
653
654         for (np = allnodes; np != NULL; np = np->allnext) {
655                 ic = get_property(np, "interrupt-controller", &iclen);
656                 name = get_property(np, "name", NULL);
657                 /* checking iclen makes sure we don't get a false
658                    match on /chosen.interrupt_controller */
659                 if ((name != NULL
660                      && strcmp(name, "interrupt-controller") == 0)
661                     || (ic != NULL && iclen == 0
662                         && strcmp(name, "AppleKiwi"))) {
663                         if (n == 0)
664                                 dflt_interrupt_controller = np;
665                         ++n;
666                 }
667         }
668         num_interrupt_controllers = n;
669 }
670
671 /**
672  * finish_device_tree is called once things are running normally
673  * (i.e. with text and data mapped to the address they were linked at).
674  * It traverses the device tree and fills in some of the additional,
675  * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
676  * mapping is also initialized at this point.
677  */
678 void __init finish_device_tree(void)
679 {
680         unsigned long start, end, size = 0;
681
682         DBG(" -> finish_device_tree\n");
683
684 #ifdef CONFIG_PPC64
685         /* Initialize virtual IRQ map */
686         virt_irq_init();
687 #endif
688         scan_interrupt_controllers();
689
690         /*
691          * Finish device-tree (pre-parsing some properties etc...)
692          * We do this in 2 passes. One with "measure_only" set, which
693          * will only measure the amount of memory needed, then we can
694          * allocate that memory, and call finish_node again. However,
695          * we must be careful as most routines will fail nowadays when
696          * prom_alloc() returns 0, so we must make sure our first pass
697          * doesn't start at 0. We pre-initialize size to 16 for that
698          * reason and then remove those additional 16 bytes
699          */
700         size = 16;
701         finish_node(allnodes, &size, NULL, 0, 0, 1);
702         size -= 16;
703         end = start = (unsigned long) __va(lmb_alloc(size, 128));
704         finish_node(allnodes, &end, NULL, 0, 0, 0);
705         BUG_ON(end != start + size);
706
707         DBG(" <- finish_device_tree\n");
708 }
709
710 static inline char *find_flat_dt_string(u32 offset)
711 {
712         return ((char *)initial_boot_params) +
713                 initial_boot_params->off_dt_strings + offset;
714 }
715
716 /**
717  * This function is used to scan the flattened device-tree, it is
718  * used to extract the memory informations at boot before we can
719  * unflatten the tree
720  */
721 int __init of_scan_flat_dt(int (*it)(unsigned long node,
722                                      const char *uname, int depth,
723                                      void *data),
724                            void *data)
725 {
726         unsigned long p = ((unsigned long)initial_boot_params) +
727                 initial_boot_params->off_dt_struct;
728         int rc = 0;
729         int depth = -1;
730
731         do {
732                 u32 tag = *((u32 *)p);
733                 char *pathp;
734                 
735                 p += 4;
736                 if (tag == OF_DT_END_NODE) {
737                         depth --;
738                         continue;
739                 }
740                 if (tag == OF_DT_NOP)
741                         continue;
742                 if (tag == OF_DT_END)
743                         break;
744                 if (tag == OF_DT_PROP) {
745                         u32 sz = *((u32 *)p);
746                         p += 8;
747                         if (initial_boot_params->version < 0x10)
748                                 p = _ALIGN(p, sz >= 8 ? 8 : 4);
749                         p += sz;
750                         p = _ALIGN(p, 4);
751                         continue;
752                 }
753                 if (tag != OF_DT_BEGIN_NODE) {
754                         printk(KERN_WARNING "Invalid tag %x scanning flattened"
755                                " device tree !\n", tag);
756                         return -EINVAL;
757                 }
758                 depth++;
759                 pathp = (char *)p;
760                 p = _ALIGN(p + strlen(pathp) + 1, 4);
761                 if ((*pathp) == '/') {
762                         char *lp, *np;
763                         for (lp = NULL, np = pathp; *np; np++)
764                                 if ((*np) == '/')
765                                         lp = np+1;
766                         if (lp != NULL)
767                                 pathp = lp;
768                 }
769                 rc = it(p, pathp, depth, data);
770                 if (rc != 0)
771                         break;          
772         } while(1);
773
774         return rc;
775 }
776
777 /**
778  * This  function can be used within scan_flattened_dt callback to get
779  * access to properties
780  */
781 void* __init of_get_flat_dt_prop(unsigned long node, const char *name,
782                                  unsigned long *size)
783 {
784         unsigned long p = node;
785
786         do {
787                 u32 tag = *((u32 *)p);
788                 u32 sz, noff;
789                 const char *nstr;
790
791                 p += 4;
792                 if (tag == OF_DT_NOP)
793                         continue;
794                 if (tag != OF_DT_PROP)
795                         return NULL;
796
797                 sz = *((u32 *)p);
798                 noff = *((u32 *)(p + 4));
799                 p += 8;
800                 if (initial_boot_params->version < 0x10)
801                         p = _ALIGN(p, sz >= 8 ? 8 : 4);
802
803                 nstr = find_flat_dt_string(noff);
804                 if (nstr == NULL) {
805                         printk(KERN_WARNING "Can't find property index"
806                                " name !\n");
807                         return NULL;
808                 }
809                 if (strcmp(name, nstr) == 0) {
810                         if (size)
811                                 *size = sz;
812                         return (void *)p;
813                 }
814                 p += sz;
815                 p = _ALIGN(p, 4);
816         } while(1);
817 }
818
819 static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
820                                        unsigned long align)
821 {
822         void *res;
823
824         *mem = _ALIGN(*mem, align);
825         res = (void *)*mem;
826         *mem += size;
827
828         return res;
829 }
830
831 static unsigned long __init unflatten_dt_node(unsigned long mem,
832                                               unsigned long *p,
833                                               struct device_node *dad,
834                                               struct device_node ***allnextpp,
835                                               unsigned long fpsize)
836 {
837         struct device_node *np;
838         struct property *pp, **prev_pp = NULL;
839         char *pathp;
840         u32 tag;
841         unsigned int l, allocl;
842         int has_name = 0;
843         int new_format = 0;
844
845         tag = *((u32 *)(*p));
846         if (tag != OF_DT_BEGIN_NODE) {
847                 printk("Weird tag at start of node: %x\n", tag);
848                 return mem;
849         }
850         *p += 4;
851         pathp = (char *)*p;
852         l = allocl = strlen(pathp) + 1;
853         *p = _ALIGN(*p + l, 4);
854
855         /* version 0x10 has a more compact unit name here instead of the full
856          * path. we accumulate the full path size using "fpsize", we'll rebuild
857          * it later. We detect this because the first character of the name is
858          * not '/'.
859          */
860         if ((*pathp) != '/') {
861                 new_format = 1;
862                 if (fpsize == 0) {
863                         /* root node: special case. fpsize accounts for path
864                          * plus terminating zero. root node only has '/', so
865                          * fpsize should be 2, but we want to avoid the first
866                          * level nodes to have two '/' so we use fpsize 1 here
867                          */
868                         fpsize = 1;
869                         allocl = 2;
870                 } else {
871                         /* account for '/' and path size minus terminal 0
872                          * already in 'l'
873                          */
874                         fpsize += l;
875                         allocl = fpsize;
876                 }
877         }
878
879
880         np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
881                                 __alignof__(struct device_node));
882         if (allnextpp) {
883                 memset(np, 0, sizeof(*np));
884                 np->full_name = ((char*)np) + sizeof(struct device_node);
885                 if (new_format) {
886                         char *p = np->full_name;
887                         /* rebuild full path for new format */
888                         if (dad && dad->parent) {
889                                 strcpy(p, dad->full_name);
890 #ifdef DEBUG
891                                 if ((strlen(p) + l + 1) != allocl) {
892                                         DBG("%s: p: %d, l: %d, a: %d\n",
893                                             pathp, strlen(p), l, allocl);
894                                 }
895 #endif
896                                 p += strlen(p);
897                         }
898                         *(p++) = '/';
899                         memcpy(p, pathp, l);
900                 } else
901                         memcpy(np->full_name, pathp, l);
902                 prev_pp = &np->properties;
903                 **allnextpp = np;
904                 *allnextpp = &np->allnext;
905                 if (dad != NULL) {
906                         np->parent = dad;
907                         /* we temporarily use the next field as `last_child'*/
908                         if (dad->next == 0)
909                                 dad->child = np;
910                         else
911                                 dad->next->sibling = np;
912                         dad->next = np;
913                 }
914                 kref_init(&np->kref);
915         }
916         while(1) {
917                 u32 sz, noff;
918                 char *pname;
919
920                 tag = *((u32 *)(*p));
921                 if (tag == OF_DT_NOP) {
922                         *p += 4;
923                         continue;
924                 }
925                 if (tag != OF_DT_PROP)
926                         break;
927                 *p += 4;
928                 sz = *((u32 *)(*p));
929                 noff = *((u32 *)((*p) + 4));
930                 *p += 8;
931                 if (initial_boot_params->version < 0x10)
932                         *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
933
934                 pname = find_flat_dt_string(noff);
935                 if (pname == NULL) {
936                         printk("Can't find property name in list !\n");
937                         break;
938                 }
939                 if (strcmp(pname, "name") == 0)
940                         has_name = 1;
941                 l = strlen(pname) + 1;
942                 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
943                                         __alignof__(struct property));
944                 if (allnextpp) {
945                         if (strcmp(pname, "linux,phandle") == 0) {
946                                 np->node = *((u32 *)*p);
947                                 if (np->linux_phandle == 0)
948                                         np->linux_phandle = np->node;
949                         }
950                         if (strcmp(pname, "ibm,phandle") == 0)
951                                 np->linux_phandle = *((u32 *)*p);
952                         pp->name = pname;
953                         pp->length = sz;
954                         pp->value = (void *)*p;
955                         *prev_pp = pp;
956                         prev_pp = &pp->next;
957                 }
958                 *p = _ALIGN((*p) + sz, 4);
959         }
960         /* with version 0x10 we may not have the name property, recreate
961          * it here from the unit name if absent
962          */
963         if (!has_name) {
964                 char *p = pathp, *ps = pathp, *pa = NULL;
965                 int sz;
966
967                 while (*p) {
968                         if ((*p) == '@')
969                                 pa = p;
970                         if ((*p) == '/')
971                                 ps = p + 1;
972                         p++;
973                 }
974                 if (pa < ps)
975                         pa = p;
976                 sz = (pa - ps) + 1;
977                 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
978                                         __alignof__(struct property));
979                 if (allnextpp) {
980                         pp->name = "name";
981                         pp->length = sz;
982                         pp->value = (unsigned char *)(pp + 1);
983                         *prev_pp = pp;
984                         prev_pp = &pp->next;
985                         memcpy(pp->value, ps, sz - 1);
986                         ((char *)pp->value)[sz - 1] = 0;
987                         DBG("fixed up name for %s -> %s\n", pathp, pp->value);
988                 }
989         }
990         if (allnextpp) {
991                 *prev_pp = NULL;
992                 np->name = get_property(np, "name", NULL);
993                 np->type = get_property(np, "device_type", NULL);
994
995                 if (!np->name)
996                         np->name = "<NULL>";
997                 if (!np->type)
998                         np->type = "<NULL>";
999         }
1000         while (tag == OF_DT_BEGIN_NODE) {
1001                 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
1002                 tag = *((u32 *)(*p));
1003         }
1004         if (tag != OF_DT_END_NODE) {
1005                 printk("Weird tag at end of node: %x\n", tag);
1006                 return mem;
1007         }
1008         *p += 4;
1009         return mem;
1010 }
1011
1012
1013 /**
1014  * unflattens the device-tree passed by the firmware, creating the
1015  * tree of struct device_node. It also fills the "name" and "type"
1016  * pointers of the nodes so the normal device-tree walking functions
1017  * can be used (this used to be done by finish_device_tree)
1018  */
1019 void __init unflatten_device_tree(void)
1020 {
1021         unsigned long start, mem, size;
1022         struct device_node **allnextp = &allnodes;
1023         char *p = NULL;
1024         int l = 0;
1025
1026         DBG(" -> unflatten_device_tree()\n");
1027
1028         /* First pass, scan for size */
1029         start = ((unsigned long)initial_boot_params) +
1030                 initial_boot_params->off_dt_struct;
1031         size = unflatten_dt_node(0, &start, NULL, NULL, 0);
1032         size = (size | 3) + 1;
1033
1034         DBG("  size is %lx, allocating...\n", size);
1035
1036         /* Allocate memory for the expanded device tree */
1037         mem = lmb_alloc(size + 4, __alignof__(struct device_node));
1038         if (!mem) {
1039                 DBG("Couldn't allocate memory with lmb_alloc()!\n");
1040                 panic("Couldn't allocate memory with lmb_alloc()!\n");
1041         }
1042         mem = (unsigned long) __va(mem);
1043
1044         ((u32 *)mem)[size / 4] = 0xdeadbeef;
1045
1046         DBG("  unflattening %lx...\n", mem);
1047
1048         /* Second pass, do actual unflattening */
1049         start = ((unsigned long)initial_boot_params) +
1050                 initial_boot_params->off_dt_struct;
1051         unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
1052         if (*((u32 *)start) != OF_DT_END)
1053                 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
1054         if (((u32 *)mem)[size / 4] != 0xdeadbeef)
1055                 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
1056                        ((u32 *)mem)[size / 4] );
1057         *allnextp = NULL;
1058
1059         /* Get pointer to OF "/chosen" node for use everywhere */
1060         of_chosen = of_find_node_by_path("/chosen");
1061         if (of_chosen == NULL)
1062                 of_chosen = of_find_node_by_path("/chosen@0");
1063
1064         /* Retreive command line */
1065         if (of_chosen != NULL) {
1066                 p = (char *)get_property(of_chosen, "bootargs", &l);
1067                 if (p != NULL && l > 0)
1068                         strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
1069         }
1070 #ifdef CONFIG_CMDLINE
1071         if (l == 0 || (l == 1 && (*p) == 0))
1072                 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
1073 #endif /* CONFIG_CMDLINE */
1074
1075         DBG("Command line is: %s\n", cmd_line);
1076
1077         DBG(" <- unflatten_device_tree()\n");
1078 }
1079
1080
1081 static int __init early_init_dt_scan_cpus(unsigned long node,
1082                                           const char *uname, int depth, void *data)
1083 {
1084         u32 *prop;
1085         unsigned long size;
1086         char *type = of_get_flat_dt_prop(node, "device_type", &size);
1087
1088         /* We are scanning "cpu" nodes only */
1089         if (type == NULL || strcmp(type, "cpu") != 0)
1090                 return 0;
1091
1092         boot_cpuid = 0;
1093         boot_cpuid_phys = 0;
1094         if (initial_boot_params && initial_boot_params->version >= 2) {
1095                 /* version 2 of the kexec param format adds the phys cpuid
1096                  * of booted proc.
1097                  */
1098                 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1099         } else {
1100                 /* Check if it's the boot-cpu, set it's hw index now */
1101                 if (of_get_flat_dt_prop(node,
1102                                         "linux,boot-cpu", NULL) != NULL) {
1103                         prop = of_get_flat_dt_prop(node, "reg", NULL);
1104                         if (prop != NULL)
1105                                 boot_cpuid_phys = *prop;
1106                 }
1107         }
1108         set_hard_smp_processor_id(0, boot_cpuid_phys);
1109
1110 #ifdef CONFIG_ALTIVEC
1111         /* Check if we have a VMX and eventually update CPU features */
1112         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,vmx", NULL);
1113         if (prop && (*prop) > 0) {
1114                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1115                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1116         }
1117
1118         /* Same goes for Apple's "altivec" property */
1119         prop = (u32 *)of_get_flat_dt_prop(node, "altivec", NULL);
1120         if (prop) {
1121                 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1122                 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1123         }
1124 #endif /* CONFIG_ALTIVEC */
1125
1126 #ifdef CONFIG_PPC_PSERIES
1127         /*
1128          * Check for an SMT capable CPU and set the CPU feature. We do
1129          * this by looking at the size of the ibm,ppc-interrupt-server#s
1130          * property
1131          */
1132         prop = (u32 *)of_get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1133                                        &size);
1134         cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1135         if (prop && ((size / sizeof(u32)) > 1))
1136                 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1137 #endif
1138
1139         return 0;
1140 }
1141
1142 static int __init early_init_dt_scan_chosen(unsigned long node,
1143                                             const char *uname, int depth, void *data)
1144 {
1145         u32 *prop;
1146         unsigned long *lprop;
1147
1148         DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1149
1150         if (depth != 1 ||
1151             (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0))
1152                 return 0;
1153
1154         /* get platform type */
1155         prop = (u32 *)of_get_flat_dt_prop(node, "linux,platform", NULL);
1156         if (prop == NULL)
1157                 return 0;
1158 #ifdef CONFIG_PPC_MULTIPLATFORM
1159         _machine = *prop;
1160 #endif
1161
1162 #ifdef CONFIG_PPC64
1163         /* check if iommu is forced on or off */
1164         if (of_get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1165                 iommu_is_off = 1;
1166         if (of_get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1167                 iommu_force_on = 1;
1168 #endif
1169
1170         lprop = of_get_flat_dt_prop(node, "linux,memory-limit", NULL);
1171         if (lprop)
1172                 memory_limit = *lprop;
1173
1174 #ifdef CONFIG_PPC64
1175         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1176         if (lprop)
1177                 tce_alloc_start = *lprop;
1178         lprop = of_get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1179         if (lprop)
1180                 tce_alloc_end = *lprop;
1181 #endif
1182
1183 #ifdef CONFIG_PPC_RTAS
1184         /* To help early debugging via the front panel, we retreive a minimal
1185          * set of RTAS infos now if available
1186          */
1187         {
1188                 u64 *basep, *entryp;
1189
1190                 basep = of_get_flat_dt_prop(node, "linux,rtas-base", NULL);
1191                 entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1192                 prop = of_get_flat_dt_prop(node, "linux,rtas-size", NULL);
1193                 if (basep && entryp && prop) {
1194                         rtas.base = *basep;
1195                         rtas.entry = *entryp;
1196                         rtas.size = *prop;
1197                 }
1198         }
1199 #endif /* CONFIG_PPC_RTAS */
1200
1201         /* break now */
1202         return 1;
1203 }
1204
1205 static int __init early_init_dt_scan_root(unsigned long node,
1206                                           const char *uname, int depth, void *data)
1207 {
1208         u32 *prop;
1209
1210         if (depth != 0)
1211                 return 0;
1212
1213         prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
1214         dt_root_size_cells = (prop == NULL) ? 1 : *prop;
1215         DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1216
1217         prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
1218         dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
1219         DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
1220         
1221         /* break now */
1222         return 1;
1223 }
1224
1225 static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1226 {
1227         cell_t *p = *cellp;
1228         unsigned long r;
1229
1230         /* Ignore more than 2 cells */
1231         while (s > sizeof(unsigned long) / 4) {
1232                 p++;
1233                 s--;
1234         }
1235         r = *p++;
1236 #ifdef CONFIG_PPC64
1237         if (s > 1) {
1238                 r <<= 32;
1239                 r |= *(p++);
1240                 s--;
1241         }
1242 #endif
1243
1244         *cellp = p;
1245         return r;
1246 }
1247
1248
1249 static int __init early_init_dt_scan_memory(unsigned long node,
1250                                             const char *uname, int depth, void *data)
1251 {
1252         char *type = of_get_flat_dt_prop(node, "device_type", NULL);
1253         cell_t *reg, *endp;
1254         unsigned long l;
1255
1256         /* We are scanning "memory" nodes only */
1257         if (type == NULL) {
1258                 /*
1259                  * The longtrail doesn't have a device_type on the
1260                  * /memory node, so look for the node called /memory@0.
1261                  */
1262                 if (depth != 1 || strcmp(uname, "memory@0") != 0)
1263                         return 0;
1264         } else if (strcmp(type, "memory") != 0)
1265                 return 0;
1266
1267         reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
1268         if (reg == NULL)
1269                 return 0;
1270
1271         endp = reg + (l / sizeof(cell_t));
1272
1273         DBG("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
1274             uname, l, reg[0], reg[1], reg[2], reg[3]);
1275
1276         while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1277                 unsigned long base, size;
1278
1279                 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1280                 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1281
1282                 if (size == 0)
1283                         continue;
1284                 DBG(" - %lx ,  %lx\n", base, size);
1285 #ifdef CONFIG_PPC64
1286                 if (iommu_is_off) {
1287                         if (base >= 0x80000000ul)
1288                                 continue;
1289                         if ((base + size) > 0x80000000ul)
1290                                 size = 0x80000000ul - base;
1291                 }
1292 #endif
1293                 lmb_add(base, size);
1294         }
1295         return 0;
1296 }
1297
1298 static void __init early_reserve_mem(void)
1299 {
1300         unsigned long base, size;
1301         unsigned long *reserve_map;
1302
1303         reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
1304                                         initial_boot_params->off_mem_rsvmap);
1305         while (1) {
1306                 base = *(reserve_map++);
1307                 size = *(reserve_map++);
1308                 if (size == 0)
1309                         break;
1310                 DBG("reserving: %lx -> %lx\n", base, size);
1311                 lmb_reserve(base, size);
1312         }
1313
1314 #if 0
1315         DBG("memory reserved, lmbs :\n");
1316         lmb_dump_all();
1317 #endif
1318 }
1319
1320 void __init early_init_devtree(void *params)
1321 {
1322         DBG(" -> early_init_devtree()\n");
1323
1324         /* Setup flat device-tree pointer */
1325         initial_boot_params = params;
1326
1327         /* Retrieve various informations from the /chosen node of the
1328          * device-tree, including the platform type, initrd location and
1329          * size, TCE reserve, and more ...
1330          */
1331         of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
1332
1333         /* Scan memory nodes and rebuild LMBs */
1334         lmb_init();
1335         of_scan_flat_dt(early_init_dt_scan_root, NULL);
1336         of_scan_flat_dt(early_init_dt_scan_memory, NULL);
1337         lmb_enforce_memory_limit(memory_limit);
1338         lmb_analyze();
1339
1340         DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
1341
1342         /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1343         lmb_reserve(PHYSICAL_START, __pa(klimit) - PHYSICAL_START);
1344 #ifdef CONFIG_CRASH_DUMP
1345         lmb_reserve(0, KDUMP_RESERVE_LIMIT);
1346 #endif
1347         early_reserve_mem();
1348
1349         DBG("Scanning CPUs ...\n");
1350
1351         /* Retreive CPU related informations from the flat tree
1352          * (altivec support, boot CPU ID, ...)
1353          */
1354         of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
1355
1356         DBG(" <- early_init_devtree()\n");
1357 }
1358
1359 #undef printk
1360
1361 int
1362 prom_n_addr_cells(struct device_node* np)
1363 {
1364         int* ip;
1365         do {
1366                 if (np->parent)
1367                         np = np->parent;
1368                 ip = (int *) get_property(np, "#address-cells", NULL);
1369                 if (ip != NULL)
1370                         return *ip;
1371         } while (np->parent);
1372         /* No #address-cells property for the root node, default to 1 */
1373         return 1;
1374 }
1375 EXPORT_SYMBOL(prom_n_addr_cells);
1376
1377 int
1378 prom_n_size_cells(struct device_node* np)
1379 {
1380         int* ip;
1381         do {
1382                 if (np->parent)
1383                         np = np->parent;
1384                 ip = (int *) get_property(np, "#size-cells", NULL);
1385                 if (ip != NULL)
1386                         return *ip;
1387         } while (np->parent);
1388         /* No #size-cells property for the root node, default to 1 */
1389         return 1;
1390 }
1391 EXPORT_SYMBOL(prom_n_size_cells);
1392
1393 /**
1394  * Work out the sense (active-low level / active-high edge)
1395  * of each interrupt from the device tree.
1396  */
1397 void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1398 {
1399         struct device_node *np;
1400         int i, j;
1401
1402         /* default to level-triggered */
1403         memset(senses, IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE, max - off);
1404
1405         for (np = allnodes; np != 0; np = np->allnext) {
1406                 for (j = 0; j < np->n_intrs; j++) {
1407                         i = np->intrs[j].line;
1408                         if (i >= off && i < max)
1409                                 senses[i-off] = np->intrs[j].sense;
1410                 }
1411         }
1412 }
1413
1414 /**
1415  * Construct and return a list of the device_nodes with a given name.
1416  */
1417 struct device_node *find_devices(const char *name)
1418 {
1419         struct device_node *head, **prevp, *np;
1420
1421         prevp = &head;
1422         for (np = allnodes; np != 0; np = np->allnext) {
1423                 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1424                         *prevp = np;
1425                         prevp = &np->next;
1426                 }
1427         }
1428         *prevp = NULL;
1429         return head;
1430 }
1431 EXPORT_SYMBOL(find_devices);
1432
1433 /**
1434  * Construct and return a list of the device_nodes with a given type.
1435  */
1436 struct device_node *find_type_devices(const char *type)
1437 {
1438         struct device_node *head, **prevp, *np;
1439
1440         prevp = &head;
1441         for (np = allnodes; np != 0; np = np->allnext) {
1442                 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1443                         *prevp = np;
1444                         prevp = &np->next;
1445                 }
1446         }
1447         *prevp = NULL;
1448         return head;
1449 }
1450 EXPORT_SYMBOL(find_type_devices);
1451
1452 /**
1453  * Returns all nodes linked together
1454  */
1455 struct device_node *find_all_nodes(void)
1456 {
1457         struct device_node *head, **prevp, *np;
1458
1459         prevp = &head;
1460         for (np = allnodes; np != 0; np = np->allnext) {
1461                 *prevp = np;
1462                 prevp = &np->next;
1463         }
1464         *prevp = NULL;
1465         return head;
1466 }
1467 EXPORT_SYMBOL(find_all_nodes);
1468
1469 /** Checks if the given "compat" string matches one of the strings in
1470  * the device's "compatible" property
1471  */
1472 int device_is_compatible(struct device_node *device, const char *compat)
1473 {
1474         const char* cp;
1475         int cplen, l;
1476
1477         cp = (char *) get_property(device, "compatible", &cplen);
1478         if (cp == NULL)
1479                 return 0;
1480         while (cplen > 0) {
1481                 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1482                         return 1;
1483                 l = strlen(cp) + 1;
1484                 cp += l;
1485                 cplen -= l;
1486         }
1487
1488         return 0;
1489 }
1490 EXPORT_SYMBOL(device_is_compatible);
1491
1492
1493 /**
1494  * Indicates whether the root node has a given value in its
1495  * compatible property.
1496  */
1497 int machine_is_compatible(const char *compat)
1498 {
1499         struct device_node *root;
1500         int rc = 0;
1501
1502         root = of_find_node_by_path("/");
1503         if (root) {
1504                 rc = device_is_compatible(root, compat);
1505                 of_node_put(root);
1506         }
1507         return rc;
1508 }
1509 EXPORT_SYMBOL(machine_is_compatible);
1510
1511 /**
1512  * Construct and return a list of the device_nodes with a given type
1513  * and compatible property.
1514  */
1515 struct device_node *find_compatible_devices(const char *type,
1516                                             const char *compat)
1517 {
1518         struct device_node *head, **prevp, *np;
1519
1520         prevp = &head;
1521         for (np = allnodes; np != 0; np = np->allnext) {
1522                 if (type != NULL
1523                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1524                         continue;
1525                 if (device_is_compatible(np, compat)) {
1526                         *prevp = np;
1527                         prevp = &np->next;
1528                 }
1529         }
1530         *prevp = NULL;
1531         return head;
1532 }
1533 EXPORT_SYMBOL(find_compatible_devices);
1534
1535 /**
1536  * Find the device_node with a given full_name.
1537  */
1538 struct device_node *find_path_device(const char *path)
1539 {
1540         struct device_node *np;
1541
1542         for (np = allnodes; np != 0; np = np->allnext)
1543                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1544                         return np;
1545         return NULL;
1546 }
1547 EXPORT_SYMBOL(find_path_device);
1548
1549 /*******
1550  *
1551  * New implementation of the OF "find" APIs, return a refcounted
1552  * object, call of_node_put() when done.  The device tree and list
1553  * are protected by a rw_lock.
1554  *
1555  * Note that property management will need some locking as well,
1556  * this isn't dealt with yet.
1557  *
1558  *******/
1559
1560 /**
1561  *      of_find_node_by_name - Find a node by its "name" property
1562  *      @from:  The node to start searching from or NULL, the node
1563  *              you pass will not be searched, only the next one
1564  *              will; typically, you pass what the previous call
1565  *              returned. of_node_put() will be called on it
1566  *      @name:  The name string to match against
1567  *
1568  *      Returns a node pointer with refcount incremented, use
1569  *      of_node_put() on it when done.
1570  */
1571 struct device_node *of_find_node_by_name(struct device_node *from,
1572         const char *name)
1573 {
1574         struct device_node *np;
1575
1576         read_lock(&devtree_lock);
1577         np = from ? from->allnext : allnodes;
1578         for (; np != 0; np = np->allnext)
1579                 if (np->name != 0 && strcasecmp(np->name, name) == 0
1580                     && of_node_get(np))
1581                         break;
1582         if (from)
1583                 of_node_put(from);
1584         read_unlock(&devtree_lock);
1585         return np;
1586 }
1587 EXPORT_SYMBOL(of_find_node_by_name);
1588
1589 /**
1590  *      of_find_node_by_type - Find a node by its "device_type" property
1591  *      @from:  The node to start searching from or NULL, the node
1592  *              you pass will not be searched, only the next one
1593  *              will; typically, you pass what the previous call
1594  *              returned. of_node_put() will be called on it
1595  *      @name:  The type string to match against
1596  *
1597  *      Returns a node pointer with refcount incremented, use
1598  *      of_node_put() on it when done.
1599  */
1600 struct device_node *of_find_node_by_type(struct device_node *from,
1601         const char *type)
1602 {
1603         struct device_node *np;
1604
1605         read_lock(&devtree_lock);
1606         np = from ? from->allnext : allnodes;
1607         for (; np != 0; np = np->allnext)
1608                 if (np->type != 0 && strcasecmp(np->type, type) == 0
1609                     && of_node_get(np))
1610                         break;
1611         if (from)
1612                 of_node_put(from);
1613         read_unlock(&devtree_lock);
1614         return np;
1615 }
1616 EXPORT_SYMBOL(of_find_node_by_type);
1617
1618 /**
1619  *      of_find_compatible_node - Find a node based on type and one of the
1620  *                                tokens in its "compatible" property
1621  *      @from:          The node to start searching from or NULL, the node
1622  *                      you pass will not be searched, only the next one
1623  *                      will; typically, you pass what the previous call
1624  *                      returned. of_node_put() will be called on it
1625  *      @type:          The type string to match "device_type" or NULL to ignore
1626  *      @compatible:    The string to match to one of the tokens in the device
1627  *                      "compatible" list.
1628  *
1629  *      Returns a node pointer with refcount incremented, use
1630  *      of_node_put() on it when done.
1631  */
1632 struct device_node *of_find_compatible_node(struct device_node *from,
1633         const char *type, const char *compatible)
1634 {
1635         struct device_node *np;
1636
1637         read_lock(&devtree_lock);
1638         np = from ? from->allnext : allnodes;
1639         for (; np != 0; np = np->allnext) {
1640                 if (type != NULL
1641                     && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1642                         continue;
1643                 if (device_is_compatible(np, compatible) && of_node_get(np))
1644                         break;
1645         }
1646         if (from)
1647                 of_node_put(from);
1648         read_unlock(&devtree_lock);
1649         return np;
1650 }
1651 EXPORT_SYMBOL(of_find_compatible_node);
1652
1653 /**
1654  *      of_find_node_by_path - Find a node matching a full OF path
1655  *      @path:  The full path to match
1656  *
1657  *      Returns a node pointer with refcount incremented, use
1658  *      of_node_put() on it when done.
1659  */
1660 struct device_node *of_find_node_by_path(const char *path)
1661 {
1662         struct device_node *np = allnodes;
1663
1664         read_lock(&devtree_lock);
1665         for (; np != 0; np = np->allnext) {
1666                 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1667                     && of_node_get(np))
1668                         break;
1669         }
1670         read_unlock(&devtree_lock);
1671         return np;
1672 }
1673 EXPORT_SYMBOL(of_find_node_by_path);
1674
1675 /**
1676  *      of_find_node_by_phandle - Find a node given a phandle
1677  *      @handle:        phandle of the node to find
1678  *
1679  *      Returns a node pointer with refcount incremented, use
1680  *      of_node_put() on it when done.
1681  */
1682 struct device_node *of_find_node_by_phandle(phandle handle)
1683 {
1684         struct device_node *np;
1685
1686         read_lock(&devtree_lock);
1687         for (np = allnodes; np != 0; np = np->allnext)
1688                 if (np->linux_phandle == handle)
1689                         break;
1690         if (np)
1691                 of_node_get(np);
1692         read_unlock(&devtree_lock);
1693         return np;
1694 }
1695 EXPORT_SYMBOL(of_find_node_by_phandle);
1696
1697 /**
1698  *      of_find_all_nodes - Get next node in global list
1699  *      @prev:  Previous node or NULL to start iteration
1700  *              of_node_put() will be called on it
1701  *
1702  *      Returns a node pointer with refcount incremented, use
1703  *      of_node_put() on it when done.
1704  */
1705 struct device_node *of_find_all_nodes(struct device_node *prev)
1706 {
1707         struct device_node *np;
1708
1709         read_lock(&devtree_lock);
1710         np = prev ? prev->allnext : allnodes;
1711         for (; np != 0; np = np->allnext)
1712                 if (of_node_get(np))
1713                         break;
1714         if (prev)
1715                 of_node_put(prev);
1716         read_unlock(&devtree_lock);
1717         return np;
1718 }
1719 EXPORT_SYMBOL(of_find_all_nodes);
1720
1721 /**
1722  *      of_get_parent - Get a node's parent if any
1723  *      @node:  Node to get parent
1724  *
1725  *      Returns a node pointer with refcount incremented, use
1726  *      of_node_put() on it when done.
1727  */
1728 struct device_node *of_get_parent(const struct device_node *node)
1729 {
1730         struct device_node *np;
1731
1732         if (!node)
1733                 return NULL;
1734
1735         read_lock(&devtree_lock);
1736         np = of_node_get(node->parent);
1737         read_unlock(&devtree_lock);
1738         return np;
1739 }
1740 EXPORT_SYMBOL(of_get_parent);
1741
1742 /**
1743  *      of_get_next_child - Iterate a node childs
1744  *      @node:  parent node
1745  *      @prev:  previous child of the parent node, or NULL to get first
1746  *
1747  *      Returns a node pointer with refcount incremented, use
1748  *      of_node_put() on it when done.
1749  */
1750 struct device_node *of_get_next_child(const struct device_node *node,
1751         struct device_node *prev)
1752 {
1753         struct device_node *next;
1754
1755         read_lock(&devtree_lock);
1756         next = prev ? prev->sibling : node->child;
1757         for (; next != 0; next = next->sibling)
1758                 if (of_node_get(next))
1759                         break;
1760         if (prev)
1761                 of_node_put(prev);
1762         read_unlock(&devtree_lock);
1763         return next;
1764 }
1765 EXPORT_SYMBOL(of_get_next_child);
1766
1767 /**
1768  *      of_node_get - Increment refcount of a node
1769  *      @node:  Node to inc refcount, NULL is supported to
1770  *              simplify writing of callers
1771  *
1772  *      Returns node.
1773  */
1774 struct device_node *of_node_get(struct device_node *node)
1775 {
1776         if (node)
1777                 kref_get(&node->kref);
1778         return node;
1779 }
1780 EXPORT_SYMBOL(of_node_get);
1781
1782 static inline struct device_node * kref_to_device_node(struct kref *kref)
1783 {
1784         return container_of(kref, struct device_node, kref);
1785 }
1786
1787 /**
1788  *      of_node_release - release a dynamically allocated node
1789  *      @kref:  kref element of the node to be released
1790  *
1791  *      In of_node_put() this function is passed to kref_put()
1792  *      as the destructor.
1793  */
1794 static void of_node_release(struct kref *kref)
1795 {
1796         struct device_node *node = kref_to_device_node(kref);
1797         struct property *prop = node->properties;
1798
1799         if (!OF_IS_DYNAMIC(node))
1800                 return;
1801         while (prop) {
1802                 struct property *next = prop->next;
1803                 kfree(prop->name);
1804                 kfree(prop->value);
1805                 kfree(prop);
1806                 prop = next;
1807         }
1808         kfree(node->intrs);
1809         kfree(node->addrs);
1810         kfree(node->full_name);
1811         kfree(node->data);
1812         kfree(node);
1813 }
1814
1815 /**
1816  *      of_node_put - Decrement refcount of a node
1817  *      @node:  Node to dec refcount, NULL is supported to
1818  *              simplify writing of callers
1819  *
1820  */
1821 void of_node_put(struct device_node *node)
1822 {
1823         if (node)
1824                 kref_put(&node->kref, of_node_release);
1825 }
1826 EXPORT_SYMBOL(of_node_put);
1827
1828 /*
1829  * Plug a device node into the tree and global list.
1830  */
1831 void of_attach_node(struct device_node *np)
1832 {
1833         write_lock(&devtree_lock);
1834         np->sibling = np->parent->child;
1835         np->allnext = allnodes;
1836         np->parent->child = np;
1837         allnodes = np;
1838         write_unlock(&devtree_lock);
1839 }
1840
1841 /*
1842  * "Unplug" a node from the device tree.  The caller must hold
1843  * a reference to the node.  The memory associated with the node
1844  * is not freed until its refcount goes to zero.
1845  */
1846 void of_detach_node(const struct device_node *np)
1847 {
1848         struct device_node *parent;
1849
1850         write_lock(&devtree_lock);
1851
1852         parent = np->parent;
1853
1854         if (allnodes == np)
1855                 allnodes = np->allnext;
1856         else {
1857                 struct device_node *prev;
1858                 for (prev = allnodes;
1859                      prev->allnext != np;
1860                      prev = prev->allnext)
1861                         ;
1862                 prev->allnext = np->allnext;
1863         }
1864
1865         if (parent->child == np)
1866                 parent->child = np->sibling;
1867         else {
1868                 struct device_node *prevsib;
1869                 for (prevsib = np->parent->child;
1870                      prevsib->sibling != np;
1871                      prevsib = prevsib->sibling)
1872                         ;
1873                 prevsib->sibling = np->sibling;
1874         }
1875
1876         write_unlock(&devtree_lock);
1877 }
1878
1879 #ifdef CONFIG_PPC_PSERIES
1880 /*
1881  * Fix up the uninitialized fields in a new device node:
1882  * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1883  *
1884  * A lot of boot-time code is duplicated here, because functions such
1885  * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1886  * slab allocator.
1887  *
1888  * This should probably be split up into smaller chunks.
1889  */
1890
1891 static int of_finish_dynamic_node(struct device_node *node,
1892                                   unsigned long *unused1, int unused2,
1893                                   int unused3, int unused4)
1894 {
1895         struct device_node *parent = of_get_parent(node);
1896         int err = 0;
1897         phandle *ibm_phandle;
1898
1899         node->name = get_property(node, "name", NULL);
1900         node->type = get_property(node, "device_type", NULL);
1901
1902         if (!parent) {
1903                 err = -ENODEV;
1904                 goto out;
1905         }
1906
1907         /* We don't support that function on PowerMac, at least
1908          * not yet
1909          */
1910         if (_machine == PLATFORM_POWERMAC)
1911                 return -ENODEV;
1912
1913         /* fix up new node's linux_phandle field */
1914         if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1915                 node->linux_phandle = *ibm_phandle;
1916
1917 out:
1918         of_node_put(parent);
1919         return err;
1920 }
1921
1922 static int prom_reconfig_notifier(struct notifier_block *nb,
1923                                   unsigned long action, void *node)
1924 {
1925         int err;
1926
1927         switch (action) {
1928         case PSERIES_RECONFIG_ADD:
1929                 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1930                 if (err < 0) {
1931                         printk(KERN_ERR "finish_node returned %d\n", err);
1932                         err = NOTIFY_BAD;
1933                 }
1934                 break;
1935         default:
1936                 err = NOTIFY_DONE;
1937                 break;
1938         }
1939         return err;
1940 }
1941
1942 static struct notifier_block prom_reconfig_nb = {
1943         .notifier_call = prom_reconfig_notifier,
1944         .priority = 10, /* This one needs to run first */
1945 };
1946
1947 static int __init prom_reconfig_setup(void)
1948 {
1949         return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1950 }
1951 __initcall(prom_reconfig_setup);
1952 #endif
1953
1954 /*
1955  * Find a property with a given name for a given node
1956  * and return the value.
1957  */
1958 unsigned char *get_property(struct device_node *np, const char *name,
1959                             int *lenp)
1960 {
1961         struct property *pp;
1962
1963         for (pp = np->properties; pp != 0; pp = pp->next)
1964                 if (strcmp(pp->name, name) == 0) {
1965                         if (lenp != 0)
1966                                 *lenp = pp->length;
1967                         return pp->value;
1968                 }
1969         return NULL;
1970 }
1971 EXPORT_SYMBOL(get_property);
1972
1973 /*
1974  * Add a property to a node
1975  */
1976 int prom_add_property(struct device_node* np, struct property* prop)
1977 {
1978         struct property **next;
1979
1980         prop->next = NULL;      
1981         write_lock(&devtree_lock);
1982         next = &np->properties;
1983         while (*next) {
1984                 if (strcmp(prop->name, (*next)->name) == 0) {
1985                         /* duplicate ! don't insert it */
1986                         write_unlock(&devtree_lock);
1987                         return -1;
1988                 }
1989                 next = &(*next)->next;
1990         }
1991         *next = prop;
1992         write_unlock(&devtree_lock);
1993
1994 #ifdef CONFIG_PROC_DEVICETREE
1995         /* try to add to proc as well if it was initialized */
1996         if (np->pde)
1997                 proc_device_tree_add_prop(np->pde, prop);
1998 #endif /* CONFIG_PROC_DEVICETREE */
1999
2000         return 0;
2001 }
2002
2003 /* I quickly hacked that one, check against spec ! */
2004 static inline unsigned long
2005 bus_space_to_resource_flags(unsigned int bus_space)
2006 {
2007         u8 space = (bus_space >> 24) & 0xf;
2008         if (space == 0)
2009                 space = 0x02;
2010         if (space == 0x02)
2011                 return IORESOURCE_MEM;
2012         else if (space == 0x01)
2013                 return IORESOURCE_IO;
2014         else {
2015                 printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
2016                         bus_space);
2017                 return 0;
2018         }
2019 }
2020
2021 #ifdef CONFIG_PCI
2022 static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
2023                                                  struct address_range *range)
2024 {
2025         unsigned long mask;
2026         int i;
2027
2028         /* Check this one */
2029         mask = bus_space_to_resource_flags(range->space);
2030         for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
2031                 if ((pdev->resource[i].flags & mask) == mask &&
2032                         pdev->resource[i].start <= range->address &&
2033                         pdev->resource[i].end > range->address) {
2034                                 if ((range->address + range->size - 1) > pdev->resource[i].end) {
2035                                         /* Add better message */
2036                                         printk(KERN_WARNING "PCI/OF resource overlap !\n");
2037                                         return NULL;
2038                                 }
2039                                 break;
2040                         }
2041         }
2042         if (i == DEVICE_COUNT_RESOURCE)
2043                 return NULL;
2044         return &pdev->resource[i];
2045 }
2046
2047 /*
2048  * Request an OF device resource. Currently handles child of PCI devices,
2049  * or other nodes attached to the root node. Ultimately, put some
2050  * link to resources in the OF node.
2051  */
2052 struct resource *request_OF_resource(struct device_node* node, int index,
2053                                      const char* name_postfix)
2054 {
2055         struct pci_dev* pcidev;
2056         u8 pci_bus, pci_devfn;
2057         unsigned long iomask;
2058         struct device_node* nd;
2059         struct resource* parent;
2060         struct resource *res = NULL;
2061         int nlen, plen;
2062
2063         if (index >= node->n_addrs)
2064                 goto fail;
2065
2066         /* Sanity check on bus space */
2067         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2068         if (iomask & IORESOURCE_MEM)
2069                 parent = &iomem_resource;
2070         else if (iomask & IORESOURCE_IO)
2071                 parent = &ioport_resource;
2072         else
2073                 goto fail;
2074
2075         /* Find a PCI parent if any */
2076         nd = node;
2077         pcidev = NULL;
2078         while (nd) {
2079                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2080                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2081                 if (pcidev) break;
2082                 nd = nd->parent;
2083         }
2084         if (pcidev)
2085                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2086         if (!parent) {
2087                 printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
2088                         node->name);
2089                 goto fail;
2090         }
2091
2092         res = __request_region(parent, node->addrs[index].address,
2093                                node->addrs[index].size, NULL);
2094         if (!res)
2095                 goto fail;
2096         nlen = strlen(node->name);
2097         plen = name_postfix ? strlen(name_postfix) : 0;
2098         res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
2099         if (res->name) {
2100                 strcpy((char *)res->name, node->name);
2101                 if (plen)
2102                         strcpy((char *)res->name+nlen, name_postfix);
2103         }
2104         return res;
2105 fail:
2106         return NULL;
2107 }
2108 EXPORT_SYMBOL(request_OF_resource);
2109
2110 int release_OF_resource(struct device_node *node, int index)
2111 {
2112         struct pci_dev* pcidev;
2113         u8 pci_bus, pci_devfn;
2114         unsigned long iomask, start, end;
2115         struct device_node* nd;
2116         struct resource* parent;
2117         struct resource *res = NULL;
2118
2119         if (index >= node->n_addrs)
2120                 return -EINVAL;
2121
2122         /* Sanity check on bus space */
2123         iomask = bus_space_to_resource_flags(node->addrs[index].space);
2124         if (iomask & IORESOURCE_MEM)
2125                 parent = &iomem_resource;
2126         else if (iomask & IORESOURCE_IO)
2127                 parent = &ioport_resource;
2128         else
2129                 return -EINVAL;
2130
2131         /* Find a PCI parent if any */
2132         nd = node;
2133         pcidev = NULL;
2134         while(nd) {
2135                 if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
2136                         pcidev = pci_find_slot(pci_bus, pci_devfn);
2137                 if (pcidev) break;
2138                 nd = nd->parent;
2139         }
2140         if (pcidev)
2141                 parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
2142         if (!parent) {
2143                 printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
2144                         node->name);
2145                 return -ENODEV;
2146         }
2147
2148         /* Find us in the parent and its childs */
2149         res = parent->child;
2150         start = node->addrs[index].address;
2151         end = start + node->addrs[index].size - 1;
2152         while (res) {
2153                 if (res->start == start && res->end == end &&
2154                     (res->flags & IORESOURCE_BUSY))
2155                         break;
2156                 if (res->start <= start && res->end >= end)
2157                         res = res->child;
2158                 else
2159                         res = res->sibling;
2160         }
2161         if (!res)
2162                 return -ENODEV;
2163
2164         if (res->name) {
2165                 kfree(res->name);
2166                 res->name = NULL;
2167         }
2168         release_resource(res);
2169         kfree(res);
2170
2171         return 0;
2172 }
2173 EXPORT_SYMBOL(release_OF_resource);
2174 #endif /* CONFIG_PCI */