2 * This code largely moved from arch/i386/kernel/timer/timer_tsc.c
3 * which was originally moved from arch/i386/kernel/time.c.
4 * See comments there for proper credits.
7 #include <linux/clocksource.h>
8 #include <linux/workqueue.h>
9 #include <linux/cpufreq.h>
10 #include <linux/jiffies.h>
11 #include <linux/init.h>
12 #include <linux/dmi.h>
14 #include <asm/delay.h>
16 #include <asm/delay.h>
19 #include "mach_timer.h"
22 * On some systems the TSC frequency does not
23 * change with the cpu frequency. So we need
24 * an extra value to store the TSC freq
28 int tsc_disable __cpuinitdata = 0;
31 static int __init tsc_setup(char *str)
33 printk(KERN_WARNING "notsc: Kernel compiled with CONFIG_X86_TSC, "
34 "cannot disable TSC.\n");
39 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
42 static int __init tsc_setup(char *str)
50 __setup("notsc", tsc_setup);
53 * code to mark and check if the TSC is unstable
54 * due to cpufreq or due to unsynced TSCs
56 static int tsc_unstable;
58 static inline int check_tsc_unstable(void)
63 void mark_tsc_unstable(void)
67 EXPORT_SYMBOL_GPL(mark_tsc_unstable);
69 /* Accellerators for sched_clock()
70 * convert from cycles(64bits) => nanoseconds (64bits)
72 * ns = cycles / (freq / ns_per_sec)
73 * ns = cycles * (ns_per_sec / freq)
74 * ns = cycles * (10^9 / (cpu_khz * 10^3))
75 * ns = cycles * (10^6 / cpu_khz)
77 * Then we use scaling math (suggested by george@mvista.com) to get:
78 * ns = cycles * (10^6 * SC / cpu_khz) / SC
79 * ns = cycles * cyc2ns_scale / SC
81 * And since SC is a constant power of two, we can convert the div
84 * We can use khz divisor instead of mhz to keep a better percision, since
85 * cyc2ns_scale is limited to 10^6 * 2^10, which fits in 32 bits.
86 * (mathieu.desnoyers@polymtl.ca)
88 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
90 static unsigned long cyc2ns_scale __read_mostly;
92 #define CYC2NS_SCALE_FACTOR 10 /* 2^10, carefully chosen */
94 static inline void set_cyc2ns_scale(unsigned long cpu_khz)
96 cyc2ns_scale = (1000000 << CYC2NS_SCALE_FACTOR)/cpu_khz;
99 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
101 return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
105 * Scheduler clock - returns current time in nanosec units.
107 unsigned long long sched_clock(void)
109 unsigned long long this_offset;
112 * in the NUMA case we dont use the TSC as they are not
113 * synchronized across all CPUs.
116 if (!cpu_khz || check_tsc_unstable())
118 /* no locking but a rare wrong value is not a big deal */
119 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
121 /* read the Time Stamp Counter: */
122 rdtscll(this_offset);
124 /* return the value in ns */
125 return cycles_2_ns(this_offset);
128 static unsigned long calculate_cpu_khz(void)
130 unsigned long long start, end;
136 local_irq_save(flags);
138 /* run 3 times to ensure the cache is warm */
139 for (i = 0; i < 3; i++) {
140 mach_prepare_counter();
142 mach_countup(&count);
146 * Error: ECTCNEVERSET
147 * The CTC wasn't reliable: we got a hit on the very first read,
148 * or the CPU was so fast/slow that the quotient wouldn't fit in
154 delta64 = end - start;
156 /* cpu freq too fast: */
157 if (delta64 > (1ULL<<32))
160 /* cpu freq too slow: */
161 if (delta64 <= CALIBRATE_TIME_MSEC)
164 delta64 += CALIBRATE_TIME_MSEC/2; /* round for do_div */
165 do_div(delta64,CALIBRATE_TIME_MSEC);
167 local_irq_restore(flags);
168 return (unsigned long)delta64;
170 local_irq_restore(flags);
174 int recalibrate_cpu_khz(void)
177 unsigned long cpu_khz_old = cpu_khz;
180 cpu_khz = calculate_cpu_khz();
182 cpu_data[0].loops_per_jiffy =
183 cpufreq_scale(cpu_data[0].loops_per_jiffy,
184 cpu_khz_old, cpu_khz);
193 EXPORT_SYMBOL(recalibrate_cpu_khz);
195 void __init tsc_init(void)
197 if (!cpu_has_tsc || tsc_disable)
200 cpu_khz = calculate_cpu_khz();
206 printk("Detected %lu.%03lu MHz processor.\n",
207 (unsigned long)cpu_khz / 1000,
208 (unsigned long)cpu_khz % 1000);
210 set_cyc2ns_scale(cpu_khz);
214 #ifdef CONFIG_CPU_FREQ
216 static unsigned int cpufreq_delayed_issched = 0;
217 static unsigned int cpufreq_init = 0;
218 static struct work_struct cpufreq_delayed_get_work;
220 static void handle_cpufreq_delayed_get(void *v)
224 for_each_online_cpu(cpu)
227 cpufreq_delayed_issched = 0;
231 * if we notice cpufreq oddness, schedule a call to cpufreq_get() as it tries
232 * to verify the CPU frequency the timing core thinks the CPU is running
233 * at is still correct.
235 static inline void cpufreq_delayed_get(void)
237 if (cpufreq_init && !cpufreq_delayed_issched) {
238 cpufreq_delayed_issched = 1;
239 printk(KERN_DEBUG "Checking if CPU frequency changed.\n");
240 schedule_work(&cpufreq_delayed_get_work);
245 * if the CPU frequency is scaled, TSC-based delays will need a different
246 * loops_per_jiffy value to function properly.
248 static unsigned int ref_freq = 0;
249 static unsigned long loops_per_jiffy_ref = 0;
250 static unsigned long cpu_khz_ref = 0;
253 time_cpufreq_notifier(struct notifier_block *nb, unsigned long val, void *data)
255 struct cpufreq_freqs *freq = data;
257 if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
258 write_seqlock_irq(&xtime_lock);
262 ref_freq = freq->new;
265 ref_freq = freq->old;
266 loops_per_jiffy_ref = cpu_data[freq->cpu].loops_per_jiffy;
267 cpu_khz_ref = cpu_khz;
270 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
271 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
272 (val == CPUFREQ_RESUMECHANGE)) {
273 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
274 cpu_data[freq->cpu].loops_per_jiffy =
275 cpufreq_scale(loops_per_jiffy_ref,
276 ref_freq, freq->new);
280 if (num_online_cpus() == 1)
281 cpu_khz = cpufreq_scale(cpu_khz_ref,
282 ref_freq, freq->new);
283 if (!(freq->flags & CPUFREQ_CONST_LOOPS)) {
285 set_cyc2ns_scale(cpu_khz);
287 * TSC based sched_clock turns
295 if (val != CPUFREQ_RESUMECHANGE && val != CPUFREQ_SUSPENDCHANGE)
296 write_sequnlock_irq(&xtime_lock);
301 static struct notifier_block time_cpufreq_notifier_block = {
302 .notifier_call = time_cpufreq_notifier
305 static int __init cpufreq_tsc(void)
309 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get, NULL);
310 ret = cpufreq_register_notifier(&time_cpufreq_notifier_block,
311 CPUFREQ_TRANSITION_NOTIFIER);
318 core_initcall(cpufreq_tsc);
322 /* clock source code */
324 static unsigned long current_tsc_khz = 0;
325 static int tsc_update_callback(void);
327 static cycle_t read_tsc(void)
336 static struct clocksource clocksource_tsc = {
340 .mask = CLOCKSOURCE_MASK(64),
341 .mult = 0, /* to be set */
343 .update_callback = tsc_update_callback,
347 static int tsc_update_callback(void)
351 /* check to see if we should switch to the safe clocksource: */
352 if (clocksource_tsc.rating != 50 && check_tsc_unstable()) {
353 clocksource_tsc.rating = 50;
354 clocksource_reselect();
358 /* only update if tsc_khz has changed: */
359 if (current_tsc_khz != tsc_khz) {
360 current_tsc_khz = tsc_khz;
361 clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
362 clocksource_tsc.shift);
369 static int __init dmi_mark_tsc_unstable(struct dmi_system_id *d)
371 printk(KERN_NOTICE "%s detected: marking TSC unstable.\n",
377 /* List of systems that have known TSC problems */
378 static struct dmi_system_id __initdata bad_tsc_dmi_table[] = {
380 .callback = dmi_mark_tsc_unstable,
381 .ident = "IBM Thinkpad 380XD",
383 DMI_MATCH(DMI_BOARD_VENDOR, "IBM"),
384 DMI_MATCH(DMI_BOARD_NAME, "2635FA0"),
390 #define TSC_FREQ_CHECK_INTERVAL (10*MSEC_PER_SEC) /* 10sec in MS */
391 static struct timer_list verify_tsc_freq_timer;
393 /* XXX - Probably should add locking */
394 static void verify_tsc_freq(unsigned long unused)
397 static unsigned long last_jiffies;
399 u64 now_tsc, interval_tsc;
400 unsigned long now_jiffies, interval_jiffies;
403 if (check_tsc_unstable())
407 now_jiffies = jiffies;
413 interval_jiffies = now_jiffies - last_jiffies;
414 interval_tsc = now_tsc - last_tsc;
416 do_div(interval_tsc, cpu_khz*1000);
418 if (interval_tsc < (interval_jiffies * 3 / 4)) {
419 printk("TSC appears to be running slowly. "
420 "Marking it as unstable\n");
427 last_jiffies = now_jiffies;
428 /* set us up to go off on the next interval: */
429 mod_timer(&verify_tsc_freq_timer,
430 jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL));
434 * Make an educated guess if the TSC is trustworthy and synchronized
437 static __init int unsynchronized_tsc(void)
440 * Intel systems are normally all synchronized.
441 * Exceptions must mark TSC as unstable:
443 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL)
446 /* assume multi socket systems are not synchronized: */
447 return num_possible_cpus() > 1;
450 static int __init init_tsc_clocksource(void)
453 if (cpu_has_tsc && tsc_khz && !tsc_disable) {
454 /* check blacklist */
455 dmi_check_system(bad_tsc_dmi_table);
457 if (unsynchronized_tsc()) /* mark unstable if unsynced */
459 current_tsc_khz = tsc_khz;
460 clocksource_tsc.mult = clocksource_khz2mult(current_tsc_khz,
461 clocksource_tsc.shift);
462 /* lower the rating if we already know its unstable: */
463 if (check_tsc_unstable())
464 clocksource_tsc.rating = 50;
466 init_timer(&verify_tsc_freq_timer);
467 verify_tsc_freq_timer.function = verify_tsc_freq;
468 verify_tsc_freq_timer.expires =
469 jiffies + msecs_to_jiffies(TSC_FREQ_CHECK_INTERVAL);
470 add_timer(&verify_tsc_freq_timer);
472 return clocksource_register(&clocksource_tsc);
478 module_init(init_tsc_clocksource);