2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <asm/param.h>
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/siginfo.h>
30 #include "audit.h" /* audit_signal_info() */
33 * SLAB caches for signal bits.
36 static kmem_cache_t *sigqueue_cachep;
39 * In POSIX a signal is sent either to a specific thread (Linux task)
40 * or to the process as a whole (Linux thread group). How the signal
41 * is sent determines whether it's to one thread or the whole group,
42 * which determines which signal mask(s) are involved in blocking it
43 * from being delivered until later. When the signal is delivered,
44 * either it's caught or ignored by a user handler or it has a default
45 * effect that applies to the whole thread group (POSIX process).
47 * The possible effects an unblocked signal set to SIG_DFL can have are:
48 * ignore - Nothing Happens
49 * terminate - kill the process, i.e. all threads in the group,
50 * similar to exit_group. The group leader (only) reports
51 * WIFSIGNALED status to its parent.
52 * coredump - write a core dump file describing all threads using
53 * the same mm and then kill all those threads
54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
57 * Other signals when not blocked and set to SIG_DFL behaves as follows.
58 * The job control signals also have other special effects.
60 * +--------------------+------------------+
61 * | POSIX signal | default action |
62 * +--------------------+------------------+
63 * | SIGHUP | terminate |
64 * | SIGINT | terminate |
65 * | SIGQUIT | coredump |
66 * | SIGILL | coredump |
67 * | SIGTRAP | coredump |
68 * | SIGABRT/SIGIOT | coredump |
69 * | SIGBUS | coredump |
70 * | SIGFPE | coredump |
71 * | SIGKILL | terminate(+) |
72 * | SIGUSR1 | terminate |
73 * | SIGSEGV | coredump |
74 * | SIGUSR2 | terminate |
75 * | SIGPIPE | terminate |
76 * | SIGALRM | terminate |
77 * | SIGTERM | terminate |
78 * | SIGCHLD | ignore |
79 * | SIGCONT | ignore(*) |
80 * | SIGSTOP | stop(*)(+) |
81 * | SIGTSTP | stop(*) |
82 * | SIGTTIN | stop(*) |
83 * | SIGTTOU | stop(*) |
85 * | SIGXCPU | coredump |
86 * | SIGXFSZ | coredump |
87 * | SIGVTALRM | terminate |
88 * | SIGPROF | terminate |
89 * | SIGPOLL/SIGIO | terminate |
90 * | SIGSYS/SIGUNUSED | coredump |
91 * | SIGSTKFLT | terminate |
92 * | SIGWINCH | ignore |
93 * | SIGPWR | terminate |
94 * | SIGRTMIN-SIGRTMAX | terminate |
95 * +--------------------+------------------+
96 * | non-POSIX signal | default action |
97 * +--------------------+------------------+
98 * | SIGEMT | coredump |
99 * +--------------------+------------------+
101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
102 * (*) Special job control effects:
103 * When SIGCONT is sent, it resumes the process (all threads in the group)
104 * from TASK_STOPPED state and also clears any pending/queued stop signals
105 * (any of those marked with "stop(*)"). This happens regardless of blocking,
106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
107 * any pending/queued SIGCONT signals; this happens regardless of blocking,
108 * catching, or ignored the stop signal, though (except for SIGSTOP) the
109 * default action of stopping the process may happen later or never.
113 #define M_SIGEMT M(SIGEMT)
118 #if SIGRTMIN > BITS_PER_LONG
119 #define M(sig) (1ULL << ((sig)-1))
121 #define M(sig) (1UL << ((sig)-1))
123 #define T(sig, mask) (M(sig) & (mask))
125 #define SIG_KERNEL_ONLY_MASK (\
126 M(SIGKILL) | M(SIGSTOP) )
128 #define SIG_KERNEL_STOP_MASK (\
129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131 #define SIG_KERNEL_COREDUMP_MASK (\
132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136 #define SIG_KERNEL_IGNORE_MASK (\
137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139 #define sig_kernel_only(sig) \
140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
141 #define sig_kernel_coredump(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
143 #define sig_kernel_ignore(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
145 #define sig_kernel_stop(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 static int sig_ignored(struct task_struct *t, int sig)
160 void __user * handler;
163 * Tracers always want to know about signals..
165 if (t->ptrace & PT_PTRACED)
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
173 if (sigismember(&t->blocked, sig))
176 /* Is it explicitly or implicitly ignored? */
177 handler = t->sighand->action[sig-1].sa.sa_handler;
178 return handler == SIG_IGN ||
179 (handler == SIG_DFL && sig_kernel_ignore(sig));
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
191 switch (_NSIG_WORDS) {
193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 ready |= signal->sig[i] &~ blocked->sig[i];
197 case 4: ready = signal->sig[3] &~ blocked->sig[3];
198 ready |= signal->sig[2] &~ blocked->sig[2];
199 ready |= signal->sig[1] &~ blocked->sig[1];
200 ready |= signal->sig[0] &~ blocked->sig[0];
203 case 2: ready = signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
207 case 1: ready = signal->sig[0] &~ blocked->sig[0];
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 if (t->signal->group_stop_count > 0 ||
218 PENDING(&t->pending, &t->blocked) ||
219 PENDING(&t->signal->shared_pending, &t->blocked))
220 set_tsk_thread_flag(t, TIF_SIGPENDING);
222 clear_tsk_thread_flag(t, TIF_SIGPENDING);
225 void recalc_sigpending(void)
227 recalc_sigpending_tsk(current);
230 /* Given the mask, find the first available signal that should be serviced. */
233 next_signal(struct sigpending *pending, sigset_t *mask)
235 unsigned long i, *s, *m, x;
238 s = pending->signal.sig;
240 switch (_NSIG_WORDS) {
242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 if ((x = *s &~ *m) != 0) {
244 sig = ffz(~x) + i*_NSIG_BPW + 1;
249 case 2: if ((x = s[0] &~ m[0]) != 0)
251 else if ((x = s[1] &~ m[1]) != 0)
258 case 1: if ((x = *s &~ *m) != 0)
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
269 struct sigqueue *q = NULL;
271 atomic_inc(&t->user->sigpending);
272 if (override_rlimit ||
273 atomic_read(&t->user->sigpending) <=
274 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
275 q = kmem_cache_alloc(sigqueue_cachep, flags);
276 if (unlikely(q == NULL)) {
277 atomic_dec(&t->user->sigpending);
279 INIT_LIST_HEAD(&q->list);
281 q->user = get_uid(t->user);
286 static void __sigqueue_free(struct sigqueue *q)
288 if (q->flags & SIGQUEUE_PREALLOC)
290 atomic_dec(&q->user->sigpending);
292 kmem_cache_free(sigqueue_cachep, q);
295 void flush_sigqueue(struct sigpending *queue)
299 sigemptyset(&queue->signal);
300 while (!list_empty(&queue->list)) {
301 q = list_entry(queue->list.next, struct sigqueue , list);
302 list_del_init(&q->list);
308 * Flush all pending signals for a task.
310 void flush_signals(struct task_struct *t)
314 spin_lock_irqsave(&t->sighand->siglock, flags);
315 clear_tsk_thread_flag(t,TIF_SIGPENDING);
316 flush_sigqueue(&t->pending);
317 flush_sigqueue(&t->signal->shared_pending);
318 spin_unlock_irqrestore(&t->sighand->siglock, flags);
322 * Flush all handlers for a task.
326 flush_signal_handlers(struct task_struct *t, int force_default)
329 struct k_sigaction *ka = &t->sighand->action[0];
330 for (i = _NSIG ; i != 0 ; i--) {
331 if (force_default || ka->sa.sa_handler != SIG_IGN)
332 ka->sa.sa_handler = SIG_DFL;
334 sigemptyset(&ka->sa.sa_mask);
340 /* Notify the system that a driver wants to block all signals for this
341 * process, and wants to be notified if any signals at all were to be
342 * sent/acted upon. If the notifier routine returns non-zero, then the
343 * signal will be acted upon after all. If the notifier routine returns 0,
344 * then then signal will be blocked. Only one block per process is
345 * allowed. priv is a pointer to private data that the notifier routine
346 * can use to determine if the signal should be blocked or not. */
349 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
353 spin_lock_irqsave(¤t->sighand->siglock, flags);
354 current->notifier_mask = mask;
355 current->notifier_data = priv;
356 current->notifier = notifier;
357 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
360 /* Notify the system that blocking has ended. */
363 unblock_all_signals(void)
367 spin_lock_irqsave(¤t->sighand->siglock, flags);
368 current->notifier = NULL;
369 current->notifier_data = NULL;
371 spin_unlock_irqrestore(¤t->sighand->siglock, flags);
374 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
376 struct sigqueue *q, *first = NULL;
377 int still_pending = 0;
379 if (unlikely(!sigismember(&list->signal, sig)))
383 * Collect the siginfo appropriate to this signal. Check if
384 * there is another siginfo for the same signal.
386 list_for_each_entry(q, &list->list, list) {
387 if (q->info.si_signo == sig) {
396 list_del_init(&first->list);
397 copy_siginfo(info, &first->info);
398 __sigqueue_free(first);
400 sigdelset(&list->signal, sig);
403 /* Ok, it wasn't in the queue. This must be
404 a fast-pathed signal or we must have been
405 out of queue space. So zero out the info.
407 sigdelset(&list->signal, sig);
408 info->si_signo = sig;
417 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
420 int sig = next_signal(pending, mask);
423 if (current->notifier) {
424 if (sigismember(current->notifier_mask, sig)) {
425 if (!(current->notifier)(current->notifier_data)) {
426 clear_thread_flag(TIF_SIGPENDING);
432 if (!collect_signal(sig, pending, info))
440 * Dequeue a signal and return the element to the caller, which is
441 * expected to free it.
443 * All callers have to hold the siglock.
445 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
447 int signr = __dequeue_signal(&tsk->pending, mask, info);
449 signr = __dequeue_signal(&tsk->signal->shared_pending,
451 recalc_sigpending_tsk(tsk);
452 if (signr && unlikely(sig_kernel_stop(signr))) {
454 * Set a marker that we have dequeued a stop signal. Our
455 * caller might release the siglock and then the pending
456 * stop signal it is about to process is no longer in the
457 * pending bitmasks, but must still be cleared by a SIGCONT
458 * (and overruled by a SIGKILL). So those cases clear this
459 * shared flag after we've set it. Note that this flag may
460 * remain set after the signal we return is ignored or
461 * handled. That doesn't matter because its only purpose
462 * is to alert stop-signal processing code when another
463 * processor has come along and cleared the flag.
465 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
466 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
469 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
470 info->si_sys_private){
472 * Release the siglock to ensure proper locking order
473 * of timer locks outside of siglocks. Note, we leave
474 * irqs disabled here, since the posix-timers code is
475 * about to disable them again anyway.
477 spin_unlock(&tsk->sighand->siglock);
478 do_schedule_next_timer(info);
479 spin_lock(&tsk->sighand->siglock);
485 * Tell a process that it has a new active signal..
487 * NOTE! we rely on the previous spin_lock to
488 * lock interrupts for us! We can only be called with
489 * "siglock" held, and the local interrupt must
490 * have been disabled when that got acquired!
492 * No need to set need_resched since signal event passing
493 * goes through ->blocked
495 void signal_wake_up(struct task_struct *t, int resume)
499 set_tsk_thread_flag(t, TIF_SIGPENDING);
502 * For SIGKILL, we want to wake it up in the stopped/traced case.
503 * We don't check t->state here because there is a race with it
504 * executing another processor and just now entering stopped state.
505 * By using wake_up_state, we ensure the process will wake up and
506 * handle its death signal.
508 mask = TASK_INTERRUPTIBLE;
510 mask |= TASK_STOPPED | TASK_TRACED;
511 if (!wake_up_state(t, mask))
516 * Remove signals in mask from the pending set and queue.
517 * Returns 1 if any signals were found.
519 * All callers must be holding the siglock.
521 * This version takes a sigset mask and looks at all signals,
522 * not just those in the first mask word.
524 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
526 struct sigqueue *q, *n;
529 sigandsets(&m, mask, &s->signal);
530 if (sigisemptyset(&m))
533 signandsets(&s->signal, &s->signal, mask);
534 list_for_each_entry_safe(q, n, &s->list, list) {
535 if (sigismember(mask, q->info.si_signo)) {
536 list_del_init(&q->list);
543 * Remove signals in mask from the pending set and queue.
544 * Returns 1 if any signals were found.
546 * All callers must be holding the siglock.
548 static int rm_from_queue(unsigned long mask, struct sigpending *s)
550 struct sigqueue *q, *n;
552 if (!sigtestsetmask(&s->signal, mask))
555 sigdelsetmask(&s->signal, mask);
556 list_for_each_entry_safe(q, n, &s->list, list) {
557 if (q->info.si_signo < SIGRTMIN &&
558 (mask & sigmask(q->info.si_signo))) {
559 list_del_init(&q->list);
567 * Bad permissions for sending the signal
569 static int check_kill_permission(int sig, struct siginfo *info,
570 struct task_struct *t)
573 if (!valid_signal(sig))
576 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
577 && ((sig != SIGCONT) ||
578 (current->signal->session != t->signal->session))
579 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
580 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
581 && !capable(CAP_KILL))
584 error = security_task_kill(t, info, sig, 0);
586 audit_signal_info(sig, t); /* Let audit system see the signal */
591 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
594 * Handle magic process-wide effects of stop/continue signals.
595 * Unlike the signal actions, these happen immediately at signal-generation
596 * time regardless of blocking, ignoring, or handling. This does the
597 * actual continuing for SIGCONT, but not the actual stopping for stop
598 * signals. The process stop is done as a signal action for SIG_DFL.
600 static void handle_stop_signal(int sig, struct task_struct *p)
602 struct task_struct *t;
604 if (p->signal->flags & SIGNAL_GROUP_EXIT)
606 * The process is in the middle of dying already.
610 if (sig_kernel_stop(sig)) {
612 * This is a stop signal. Remove SIGCONT from all queues.
614 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
617 rm_from_queue(sigmask(SIGCONT), &t->pending);
620 } else if (sig == SIGCONT) {
622 * Remove all stop signals from all queues,
623 * and wake all threads.
625 if (unlikely(p->signal->group_stop_count > 0)) {
627 * There was a group stop in progress. We'll
628 * pretend it finished before we got here. We are
629 * obliged to report it to the parent: if the
630 * SIGSTOP happened "after" this SIGCONT, then it
631 * would have cleared this pending SIGCONT. If it
632 * happened "before" this SIGCONT, then the parent
633 * got the SIGCHLD about the stop finishing before
634 * the continue happened. We do the notification
635 * now, and it's as if the stop had finished and
636 * the SIGCHLD was pending on entry to this kill.
638 p->signal->group_stop_count = 0;
639 p->signal->flags = SIGNAL_STOP_CONTINUED;
640 spin_unlock(&p->sighand->siglock);
641 do_notify_parent_cldstop(p, CLD_STOPPED);
642 spin_lock(&p->sighand->siglock);
644 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
648 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
651 * If there is a handler for SIGCONT, we must make
652 * sure that no thread returns to user mode before
653 * we post the signal, in case it was the only
654 * thread eligible to run the signal handler--then
655 * it must not do anything between resuming and
656 * running the handler. With the TIF_SIGPENDING
657 * flag set, the thread will pause and acquire the
658 * siglock that we hold now and until we've queued
659 * the pending signal.
661 * Wake up the stopped thread _after_ setting
664 state = TASK_STOPPED;
665 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
666 set_tsk_thread_flag(t, TIF_SIGPENDING);
667 state |= TASK_INTERRUPTIBLE;
669 wake_up_state(t, state);
674 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
676 * We were in fact stopped, and are now continued.
677 * Notify the parent with CLD_CONTINUED.
679 p->signal->flags = SIGNAL_STOP_CONTINUED;
680 p->signal->group_exit_code = 0;
681 spin_unlock(&p->sighand->siglock);
682 do_notify_parent_cldstop(p, CLD_CONTINUED);
683 spin_lock(&p->sighand->siglock);
686 * We are not stopped, but there could be a stop
687 * signal in the middle of being processed after
688 * being removed from the queue. Clear that too.
690 p->signal->flags = 0;
692 } else if (sig == SIGKILL) {
694 * Make sure that any pending stop signal already dequeued
695 * is undone by the wakeup for SIGKILL.
697 p->signal->flags = 0;
701 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
702 struct sigpending *signals)
704 struct sigqueue * q = NULL;
708 * fast-pathed signals for kernel-internal things like SIGSTOP
711 if (info == SEND_SIG_FORCED)
714 /* Real-time signals must be queued if sent by sigqueue, or
715 some other real-time mechanism. It is implementation
716 defined whether kill() does so. We attempt to do so, on
717 the principle of least surprise, but since kill is not
718 allowed to fail with EAGAIN when low on memory we just
719 make sure at least one signal gets delivered and don't
720 pass on the info struct. */
722 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
723 (is_si_special(info) ||
724 info->si_code >= 0)));
726 list_add_tail(&q->list, &signals->list);
727 switch ((unsigned long) info) {
728 case (unsigned long) SEND_SIG_NOINFO:
729 q->info.si_signo = sig;
730 q->info.si_errno = 0;
731 q->info.si_code = SI_USER;
732 q->info.si_pid = current->pid;
733 q->info.si_uid = current->uid;
735 case (unsigned long) SEND_SIG_PRIV:
736 q->info.si_signo = sig;
737 q->info.si_errno = 0;
738 q->info.si_code = SI_KERNEL;
743 copy_siginfo(&q->info, info);
746 } else if (!is_si_special(info)) {
747 if (sig >= SIGRTMIN && info->si_code != SI_USER)
749 * Queue overflow, abort. We may abort if the signal was rt
750 * and sent by user using something other than kill().
756 sigaddset(&signals->signal, sig);
760 #define LEGACY_QUEUE(sigptr, sig) \
761 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
765 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
769 BUG_ON(!irqs_disabled());
770 assert_spin_locked(&t->sighand->siglock);
772 /* Short-circuit ignored signals. */
773 if (sig_ignored(t, sig))
776 /* Support queueing exactly one non-rt signal, so that we
777 can get more detailed information about the cause of
779 if (LEGACY_QUEUE(&t->pending, sig))
782 ret = send_signal(sig, info, t, &t->pending);
783 if (!ret && !sigismember(&t->blocked, sig))
784 signal_wake_up(t, sig == SIGKILL);
790 * Force a signal that the process can't ignore: if necessary
791 * we unblock the signal and change any SIG_IGN to SIG_DFL.
793 * Note: If we unblock the signal, we always reset it to SIG_DFL,
794 * since we do not want to have a signal handler that was blocked
795 * be invoked when user space had explicitly blocked it.
797 * We don't want to have recursive SIGSEGV's etc, for example.
800 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
802 unsigned long int flags;
803 int ret, blocked, ignored;
804 struct k_sigaction *action;
806 spin_lock_irqsave(&t->sighand->siglock, flags);
807 action = &t->sighand->action[sig-1];
808 ignored = action->sa.sa_handler == SIG_IGN;
809 blocked = sigismember(&t->blocked, sig);
810 if (blocked || ignored) {
811 action->sa.sa_handler = SIG_DFL;
813 sigdelset(&t->blocked, sig);
814 recalc_sigpending_tsk(t);
817 ret = specific_send_sig_info(sig, info, t);
818 spin_unlock_irqrestore(&t->sighand->siglock, flags);
824 force_sig_specific(int sig, struct task_struct *t)
826 force_sig_info(sig, SEND_SIG_FORCED, t);
830 * Test if P wants to take SIG. After we've checked all threads with this,
831 * it's equivalent to finding no threads not blocking SIG. Any threads not
832 * blocking SIG were ruled out because they are not running and already
833 * have pending signals. Such threads will dequeue from the shared queue
834 * as soon as they're available, so putting the signal on the shared queue
835 * will be equivalent to sending it to one such thread.
837 static inline int wants_signal(int sig, struct task_struct *p)
839 if (sigismember(&p->blocked, sig))
841 if (p->flags & PF_EXITING)
845 if (p->state & (TASK_STOPPED | TASK_TRACED))
847 return task_curr(p) || !signal_pending(p);
851 __group_complete_signal(int sig, struct task_struct *p)
853 struct task_struct *t;
856 * Now find a thread we can wake up to take the signal off the queue.
858 * If the main thread wants the signal, it gets first crack.
859 * Probably the least surprising to the average bear.
861 if (wants_signal(sig, p))
863 else if (thread_group_empty(p))
865 * There is just one thread and it does not need to be woken.
866 * It will dequeue unblocked signals before it runs again.
871 * Otherwise try to find a suitable thread.
873 t = p->signal->curr_target;
875 /* restart balancing at this thread */
876 t = p->signal->curr_target = p;
878 while (!wants_signal(sig, t)) {
880 if (t == p->signal->curr_target)
882 * No thread needs to be woken.
883 * Any eligible threads will see
884 * the signal in the queue soon.
888 p->signal->curr_target = t;
892 * Found a killable thread. If the signal will be fatal,
893 * then start taking the whole group down immediately.
895 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
896 !sigismember(&t->real_blocked, sig) &&
897 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
899 * This signal will be fatal to the whole group.
901 if (!sig_kernel_coredump(sig)) {
903 * Start a group exit and wake everybody up.
904 * This way we don't have other threads
905 * running and doing things after a slower
906 * thread has the fatal signal pending.
908 p->signal->flags = SIGNAL_GROUP_EXIT;
909 p->signal->group_exit_code = sig;
910 p->signal->group_stop_count = 0;
913 sigaddset(&t->pending.signal, SIGKILL);
914 signal_wake_up(t, 1);
921 * There will be a core dump. We make all threads other
922 * than the chosen one go into a group stop so that nothing
923 * happens until it gets scheduled, takes the signal off
924 * the shared queue, and does the core dump. This is a
925 * little more complicated than strictly necessary, but it
926 * keeps the signal state that winds up in the core dump
927 * unchanged from the death state, e.g. which thread had
928 * the core-dump signal unblocked.
930 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
931 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
932 p->signal->group_stop_count = 0;
933 p->signal->group_exit_task = t;
936 p->signal->group_stop_count++;
937 signal_wake_up(t, 0);
940 wake_up_process(p->signal->group_exit_task);
945 * The signal is already in the shared-pending queue.
946 * Tell the chosen thread to wake up and dequeue it.
948 signal_wake_up(t, sig == SIGKILL);
953 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
957 assert_spin_locked(&p->sighand->siglock);
958 handle_stop_signal(sig, p);
960 /* Short-circuit ignored signals. */
961 if (sig_ignored(p, sig))
964 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
965 /* This is a non-RT signal and we already have one queued. */
969 * Put this signal on the shared-pending queue, or fail with EAGAIN.
970 * We always use the shared queue for process-wide signals,
971 * to avoid several races.
973 ret = send_signal(sig, info, p, &p->signal->shared_pending);
977 __group_complete_signal(sig, p);
982 * Nuke all other threads in the group.
984 void zap_other_threads(struct task_struct *p)
986 struct task_struct *t;
988 p->signal->flags = SIGNAL_GROUP_EXIT;
989 p->signal->group_stop_count = 0;
991 if (thread_group_empty(p))
994 for (t = next_thread(p); t != p; t = next_thread(t)) {
996 * Don't bother with already dead threads
1002 * We don't want to notify the parent, since we are
1003 * killed as part of a thread group due to another
1004 * thread doing an execve() or similar. So set the
1005 * exit signal to -1 to allow immediate reaping of
1006 * the process. But don't detach the thread group
1009 if (t != p->group_leader)
1010 t->exit_signal = -1;
1012 /* SIGKILL will be handled before any pending SIGSTOP */
1013 sigaddset(&t->pending.signal, SIGKILL);
1014 signal_wake_up(t, 1);
1019 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1021 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1023 struct sighand_struct *sighand;
1026 sighand = rcu_dereference(tsk->sighand);
1027 if (unlikely(sighand == NULL))
1030 spin_lock_irqsave(&sighand->siglock, *flags);
1031 if (likely(sighand == tsk->sighand))
1033 spin_unlock_irqrestore(&sighand->siglock, *flags);
1039 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1041 unsigned long flags;
1044 ret = check_kill_permission(sig, info, p);
1048 if (lock_task_sighand(p, &flags)) {
1049 ret = __group_send_sig_info(sig, info, p);
1050 unlock_task_sighand(p, &flags);
1058 * kill_pg_info() sends a signal to a process group: this is what the tty
1059 * control characters do (^C, ^Z etc)
1062 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1064 struct task_struct *p = NULL;
1065 int retval, success;
1072 do_each_task_pid(pgrp, PIDTYPE_PGID, p) {
1073 int err = group_send_sig_info(sig, info, p);
1076 } while_each_task_pid(pgrp, PIDTYPE_PGID, p);
1077 return success ? 0 : retval;
1081 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1085 read_lock(&tasklist_lock);
1086 retval = __kill_pg_info(sig, info, pgrp);
1087 read_unlock(&tasklist_lock);
1093 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1096 int acquired_tasklist_lock = 0;
1097 struct task_struct *p;
1100 if (unlikely(sig_needs_tasklist(sig))) {
1101 read_lock(&tasklist_lock);
1102 acquired_tasklist_lock = 1;
1104 p = find_task_by_pid(pid);
1107 error = group_send_sig_info(sig, info, p);
1108 if (unlikely(acquired_tasklist_lock))
1109 read_unlock(&tasklist_lock);
1114 /* like kill_proc_info(), but doesn't use uid/euid of "current" */
1115 int kill_proc_info_as_uid(int sig, struct siginfo *info, pid_t pid,
1116 uid_t uid, uid_t euid, u32 secid)
1119 struct task_struct *p;
1121 if (!valid_signal(sig))
1124 read_lock(&tasklist_lock);
1125 p = find_task_by_pid(pid);
1130 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1131 && (euid != p->suid) && (euid != p->uid)
1132 && (uid != p->suid) && (uid != p->uid)) {
1136 ret = security_task_kill(p, info, sig, secid);
1139 if (sig && p->sighand) {
1140 unsigned long flags;
1141 spin_lock_irqsave(&p->sighand->siglock, flags);
1142 ret = __group_send_sig_info(sig, info, p);
1143 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1146 read_unlock(&tasklist_lock);
1149 EXPORT_SYMBOL_GPL(kill_proc_info_as_uid);
1152 * kill_something_info() interprets pid in interesting ways just like kill(2).
1154 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1155 * is probably wrong. Should make it like BSD or SYSV.
1158 static int kill_something_info(int sig, struct siginfo *info, int pid)
1161 return kill_pg_info(sig, info, process_group(current));
1162 } else if (pid == -1) {
1163 int retval = 0, count = 0;
1164 struct task_struct * p;
1166 read_lock(&tasklist_lock);
1167 for_each_process(p) {
1168 if (p->pid > 1 && p->tgid != current->tgid) {
1169 int err = group_send_sig_info(sig, info, p);
1175 read_unlock(&tasklist_lock);
1176 return count ? retval : -ESRCH;
1177 } else if (pid < 0) {
1178 return kill_pg_info(sig, info, -pid);
1180 return kill_proc_info(sig, info, pid);
1185 * These are for backward compatibility with the rest of the kernel source.
1189 * These two are the most common entry points. They send a signal
1190 * just to the specific thread.
1193 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1196 unsigned long flags;
1199 * Make sure legacy kernel users don't send in bad values
1200 * (normal paths check this in check_kill_permission).
1202 if (!valid_signal(sig))
1206 * We need the tasklist lock even for the specific
1207 * thread case (when we don't need to follow the group
1208 * lists) in order to avoid races with "p->sighand"
1209 * going away or changing from under us.
1211 read_lock(&tasklist_lock);
1212 spin_lock_irqsave(&p->sighand->siglock, flags);
1213 ret = specific_send_sig_info(sig, info, p);
1214 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1215 read_unlock(&tasklist_lock);
1219 #define __si_special(priv) \
1220 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1223 send_sig(int sig, struct task_struct *p, int priv)
1225 return send_sig_info(sig, __si_special(priv), p);
1229 * This is the entry point for "process-wide" signals.
1230 * They will go to an appropriate thread in the thread group.
1233 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1236 read_lock(&tasklist_lock);
1237 ret = group_send_sig_info(sig, info, p);
1238 read_unlock(&tasklist_lock);
1243 force_sig(int sig, struct task_struct *p)
1245 force_sig_info(sig, SEND_SIG_PRIV, p);
1249 * When things go south during signal handling, we
1250 * will force a SIGSEGV. And if the signal that caused
1251 * the problem was already a SIGSEGV, we'll want to
1252 * make sure we don't even try to deliver the signal..
1255 force_sigsegv(int sig, struct task_struct *p)
1257 if (sig == SIGSEGV) {
1258 unsigned long flags;
1259 spin_lock_irqsave(&p->sighand->siglock, flags);
1260 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1261 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1263 force_sig(SIGSEGV, p);
1268 kill_pg(pid_t pgrp, int sig, int priv)
1270 return kill_pg_info(sig, __si_special(priv), pgrp);
1274 kill_proc(pid_t pid, int sig, int priv)
1276 return kill_proc_info(sig, __si_special(priv), pid);
1280 * These functions support sending signals using preallocated sigqueue
1281 * structures. This is needed "because realtime applications cannot
1282 * afford to lose notifications of asynchronous events, like timer
1283 * expirations or I/O completions". In the case of Posix Timers
1284 * we allocate the sigqueue structure from the timer_create. If this
1285 * allocation fails we are able to report the failure to the application
1286 * with an EAGAIN error.
1289 struct sigqueue *sigqueue_alloc(void)
1293 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1294 q->flags |= SIGQUEUE_PREALLOC;
1298 void sigqueue_free(struct sigqueue *q)
1300 unsigned long flags;
1301 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1303 * If the signal is still pending remove it from the
1306 if (unlikely(!list_empty(&q->list))) {
1307 spinlock_t *lock = ¤t->sighand->siglock;
1308 read_lock(&tasklist_lock);
1309 spin_lock_irqsave(lock, flags);
1310 if (!list_empty(&q->list))
1311 list_del_init(&q->list);
1312 spin_unlock_irqrestore(lock, flags);
1313 read_unlock(&tasklist_lock);
1315 q->flags &= ~SIGQUEUE_PREALLOC;
1319 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1321 unsigned long flags;
1324 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1327 * The rcu based delayed sighand destroy makes it possible to
1328 * run this without tasklist lock held. The task struct itself
1329 * cannot go away as create_timer did get_task_struct().
1331 * We return -1, when the task is marked exiting, so
1332 * posix_timer_event can redirect it to the group leader
1336 if (!likely(lock_task_sighand(p, &flags))) {
1341 if (unlikely(!list_empty(&q->list))) {
1343 * If an SI_TIMER entry is already queue just increment
1344 * the overrun count.
1346 BUG_ON(q->info.si_code != SI_TIMER);
1347 q->info.si_overrun++;
1350 /* Short-circuit ignored signals. */
1351 if (sig_ignored(p, sig)) {
1356 list_add_tail(&q->list, &p->pending.list);
1357 sigaddset(&p->pending.signal, sig);
1358 if (!sigismember(&p->blocked, sig))
1359 signal_wake_up(p, sig == SIGKILL);
1362 unlock_task_sighand(p, &flags);
1370 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1372 unsigned long flags;
1375 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1377 read_lock(&tasklist_lock);
1378 /* Since it_lock is held, p->sighand cannot be NULL. */
1379 spin_lock_irqsave(&p->sighand->siglock, flags);
1380 handle_stop_signal(sig, p);
1382 /* Short-circuit ignored signals. */
1383 if (sig_ignored(p, sig)) {
1388 if (unlikely(!list_empty(&q->list))) {
1390 * If an SI_TIMER entry is already queue just increment
1391 * the overrun count. Other uses should not try to
1392 * send the signal multiple times.
1394 BUG_ON(q->info.si_code != SI_TIMER);
1395 q->info.si_overrun++;
1400 * Put this signal on the shared-pending queue.
1401 * We always use the shared queue for process-wide signals,
1402 * to avoid several races.
1404 list_add_tail(&q->list, &p->signal->shared_pending.list);
1405 sigaddset(&p->signal->shared_pending.signal, sig);
1407 __group_complete_signal(sig, p);
1409 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1410 read_unlock(&tasklist_lock);
1415 * Wake up any threads in the parent blocked in wait* syscalls.
1417 static inline void __wake_up_parent(struct task_struct *p,
1418 struct task_struct *parent)
1420 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1424 * Let a parent know about the death of a child.
1425 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1428 void do_notify_parent(struct task_struct *tsk, int sig)
1430 struct siginfo info;
1431 unsigned long flags;
1432 struct sighand_struct *psig;
1436 /* do_notify_parent_cldstop should have been called instead. */
1437 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1439 BUG_ON(!tsk->ptrace &&
1440 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1442 info.si_signo = sig;
1444 info.si_pid = tsk->pid;
1445 info.si_uid = tsk->uid;
1447 /* FIXME: find out whether or not this is supposed to be c*time. */
1448 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1449 tsk->signal->utime));
1450 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1451 tsk->signal->stime));
1453 info.si_status = tsk->exit_code & 0x7f;
1454 if (tsk->exit_code & 0x80)
1455 info.si_code = CLD_DUMPED;
1456 else if (tsk->exit_code & 0x7f)
1457 info.si_code = CLD_KILLED;
1459 info.si_code = CLD_EXITED;
1460 info.si_status = tsk->exit_code >> 8;
1463 psig = tsk->parent->sighand;
1464 spin_lock_irqsave(&psig->siglock, flags);
1465 if (!tsk->ptrace && sig == SIGCHLD &&
1466 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1467 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1469 * We are exiting and our parent doesn't care. POSIX.1
1470 * defines special semantics for setting SIGCHLD to SIG_IGN
1471 * or setting the SA_NOCLDWAIT flag: we should be reaped
1472 * automatically and not left for our parent's wait4 call.
1473 * Rather than having the parent do it as a magic kind of
1474 * signal handler, we just set this to tell do_exit that we
1475 * can be cleaned up without becoming a zombie. Note that
1476 * we still call __wake_up_parent in this case, because a
1477 * blocked sys_wait4 might now return -ECHILD.
1479 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1480 * is implementation-defined: we do (if you don't want
1481 * it, just use SIG_IGN instead).
1483 tsk->exit_signal = -1;
1484 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1487 if (valid_signal(sig) && sig > 0)
1488 __group_send_sig_info(sig, &info, tsk->parent);
1489 __wake_up_parent(tsk, tsk->parent);
1490 spin_unlock_irqrestore(&psig->siglock, flags);
1493 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1495 struct siginfo info;
1496 unsigned long flags;
1497 struct task_struct *parent;
1498 struct sighand_struct *sighand;
1500 if (tsk->ptrace & PT_PTRACED)
1501 parent = tsk->parent;
1503 tsk = tsk->group_leader;
1504 parent = tsk->real_parent;
1507 info.si_signo = SIGCHLD;
1509 info.si_pid = tsk->pid;
1510 info.si_uid = tsk->uid;
1512 /* FIXME: find out whether or not this is supposed to be c*time. */
1513 info.si_utime = cputime_to_jiffies(tsk->utime);
1514 info.si_stime = cputime_to_jiffies(tsk->stime);
1519 info.si_status = SIGCONT;
1522 info.si_status = tsk->signal->group_exit_code & 0x7f;
1525 info.si_status = tsk->exit_code & 0x7f;
1531 sighand = parent->sighand;
1532 spin_lock_irqsave(&sighand->siglock, flags);
1533 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1534 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1535 __group_send_sig_info(SIGCHLD, &info, parent);
1537 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1539 __wake_up_parent(tsk, parent);
1540 spin_unlock_irqrestore(&sighand->siglock, flags);
1543 static inline int may_ptrace_stop(void)
1545 if (!likely(current->ptrace & PT_PTRACED))
1548 if (unlikely(current->parent == current->real_parent &&
1549 (current->ptrace & PT_ATTACHED)))
1552 if (unlikely(current->signal == current->parent->signal) &&
1553 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1557 * Are we in the middle of do_coredump?
1558 * If so and our tracer is also part of the coredump stopping
1559 * is a deadlock situation, and pointless because our tracer
1560 * is dead so don't allow us to stop.
1561 * If SIGKILL was already sent before the caller unlocked
1562 * ->siglock we must see ->core_waiters != 0. Otherwise it
1563 * is safe to enter schedule().
1565 if (unlikely(current->mm->core_waiters) &&
1566 unlikely(current->mm == current->parent->mm))
1573 * This must be called with current->sighand->siglock held.
1575 * This should be the path for all ptrace stops.
1576 * We always set current->last_siginfo while stopped here.
1577 * That makes it a way to test a stopped process for
1578 * being ptrace-stopped vs being job-control-stopped.
1580 * If we actually decide not to stop at all because the tracer is gone,
1581 * we leave nostop_code in current->exit_code.
1583 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1586 * If there is a group stop in progress,
1587 * we must participate in the bookkeeping.
1589 if (current->signal->group_stop_count > 0)
1590 --current->signal->group_stop_count;
1592 current->last_siginfo = info;
1593 current->exit_code = exit_code;
1595 /* Let the debugger run. */
1596 set_current_state(TASK_TRACED);
1597 spin_unlock_irq(¤t->sighand->siglock);
1599 read_lock(&tasklist_lock);
1600 if (may_ptrace_stop()) {
1601 do_notify_parent_cldstop(current, CLD_TRAPPED);
1602 read_unlock(&tasklist_lock);
1606 * By the time we got the lock, our tracer went away.
1609 read_unlock(&tasklist_lock);
1610 set_current_state(TASK_RUNNING);
1611 current->exit_code = nostop_code;
1615 * We are back. Now reacquire the siglock before touching
1616 * last_siginfo, so that we are sure to have synchronized with
1617 * any signal-sending on another CPU that wants to examine it.
1619 spin_lock_irq(¤t->sighand->siglock);
1620 current->last_siginfo = NULL;
1623 * Queued signals ignored us while we were stopped for tracing.
1624 * So check for any that we should take before resuming user mode.
1626 recalc_sigpending();
1629 void ptrace_notify(int exit_code)
1633 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1635 memset(&info, 0, sizeof info);
1636 info.si_signo = SIGTRAP;
1637 info.si_code = exit_code;
1638 info.si_pid = current->pid;
1639 info.si_uid = current->uid;
1641 /* Let the debugger run. */
1642 spin_lock_irq(¤t->sighand->siglock);
1643 ptrace_stop(exit_code, 0, &info);
1644 spin_unlock_irq(¤t->sighand->siglock);
1648 finish_stop(int stop_count)
1651 * If there are no other threads in the group, or if there is
1652 * a group stop in progress and we are the last to stop,
1653 * report to the parent. When ptraced, every thread reports itself.
1655 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1656 read_lock(&tasklist_lock);
1657 do_notify_parent_cldstop(current, CLD_STOPPED);
1658 read_unlock(&tasklist_lock);
1663 * Now we don't run again until continued.
1665 current->exit_code = 0;
1669 * This performs the stopping for SIGSTOP and other stop signals.
1670 * We have to stop all threads in the thread group.
1671 * Returns nonzero if we've actually stopped and released the siglock.
1672 * Returns zero if we didn't stop and still hold the siglock.
1674 static int do_signal_stop(int signr)
1676 struct signal_struct *sig = current->signal;
1679 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1682 if (sig->group_stop_count > 0) {
1684 * There is a group stop in progress. We don't need to
1685 * start another one.
1687 stop_count = --sig->group_stop_count;
1690 * There is no group stop already in progress.
1691 * We must initiate one now.
1693 struct task_struct *t;
1695 sig->group_exit_code = signr;
1698 for (t = next_thread(current); t != current; t = next_thread(t))
1700 * Setting state to TASK_STOPPED for a group
1701 * stop is always done with the siglock held,
1702 * so this check has no races.
1704 if (!t->exit_state &&
1705 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1707 signal_wake_up(t, 0);
1709 sig->group_stop_count = stop_count;
1712 if (stop_count == 0)
1713 sig->flags = SIGNAL_STOP_STOPPED;
1714 current->exit_code = sig->group_exit_code;
1715 __set_current_state(TASK_STOPPED);
1717 spin_unlock_irq(¤t->sighand->siglock);
1718 finish_stop(stop_count);
1723 * Do appropriate magic when group_stop_count > 0.
1724 * We return nonzero if we stopped, after releasing the siglock.
1725 * We return zero if we still hold the siglock and should look
1726 * for another signal without checking group_stop_count again.
1728 static int handle_group_stop(void)
1732 if (current->signal->group_exit_task == current) {
1734 * Group stop is so we can do a core dump,
1735 * We are the initiating thread, so get on with it.
1737 current->signal->group_exit_task = NULL;
1741 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1743 * Group stop is so another thread can do a core dump,
1744 * or else we are racing against a death signal.
1745 * Just punt the stop so we can get the next signal.
1750 * There is a group stop in progress. We stop
1751 * without any associated signal being in our queue.
1753 stop_count = --current->signal->group_stop_count;
1754 if (stop_count == 0)
1755 current->signal->flags = SIGNAL_STOP_STOPPED;
1756 current->exit_code = current->signal->group_exit_code;
1757 set_current_state(TASK_STOPPED);
1758 spin_unlock_irq(¤t->sighand->siglock);
1759 finish_stop(stop_count);
1763 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1764 struct pt_regs *regs, void *cookie)
1766 sigset_t *mask = ¤t->blocked;
1772 spin_lock_irq(¤t->sighand->siglock);
1774 struct k_sigaction *ka;
1776 if (unlikely(current->signal->group_stop_count > 0) &&
1777 handle_group_stop())
1780 signr = dequeue_signal(current, mask, info);
1783 break; /* will return 0 */
1785 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1786 ptrace_signal_deliver(regs, cookie);
1788 /* Let the debugger run. */
1789 ptrace_stop(signr, signr, info);
1791 /* We're back. Did the debugger cancel the sig? */
1792 signr = current->exit_code;
1796 current->exit_code = 0;
1798 /* Update the siginfo structure if the signal has
1799 changed. If the debugger wanted something
1800 specific in the siginfo structure then it should
1801 have updated *info via PTRACE_SETSIGINFO. */
1802 if (signr != info->si_signo) {
1803 info->si_signo = signr;
1805 info->si_code = SI_USER;
1806 info->si_pid = current->parent->pid;
1807 info->si_uid = current->parent->uid;
1810 /* If the (new) signal is now blocked, requeue it. */
1811 if (sigismember(¤t->blocked, signr)) {
1812 specific_send_sig_info(signr, info, current);
1817 ka = ¤t->sighand->action[signr-1];
1818 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1820 if (ka->sa.sa_handler != SIG_DFL) {
1821 /* Run the handler. */
1824 if (ka->sa.sa_flags & SA_ONESHOT)
1825 ka->sa.sa_handler = SIG_DFL;
1827 break; /* will return non-zero "signr" value */
1831 * Now we are doing the default action for this signal.
1833 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1836 /* Init gets no signals it doesn't want. */
1837 if (current == child_reaper)
1840 if (sig_kernel_stop(signr)) {
1842 * The default action is to stop all threads in
1843 * the thread group. The job control signals
1844 * do nothing in an orphaned pgrp, but SIGSTOP
1845 * always works. Note that siglock needs to be
1846 * dropped during the call to is_orphaned_pgrp()
1847 * because of lock ordering with tasklist_lock.
1848 * This allows an intervening SIGCONT to be posted.
1849 * We need to check for that and bail out if necessary.
1851 if (signr != SIGSTOP) {
1852 spin_unlock_irq(¤t->sighand->siglock);
1854 /* signals can be posted during this window */
1856 if (is_orphaned_pgrp(process_group(current)))
1859 spin_lock_irq(¤t->sighand->siglock);
1862 if (likely(do_signal_stop(signr))) {
1863 /* It released the siglock. */
1868 * We didn't actually stop, due to a race
1869 * with SIGCONT or something like that.
1874 spin_unlock_irq(¤t->sighand->siglock);
1877 * Anything else is fatal, maybe with a core dump.
1879 current->flags |= PF_SIGNALED;
1880 if (sig_kernel_coredump(signr)) {
1882 * If it was able to dump core, this kills all
1883 * other threads in the group and synchronizes with
1884 * their demise. If we lost the race with another
1885 * thread getting here, it set group_exit_code
1886 * first and our do_group_exit call below will use
1887 * that value and ignore the one we pass it.
1889 do_coredump((long)signr, signr, regs);
1893 * Death signals, no core dump.
1895 do_group_exit(signr);
1898 spin_unlock_irq(¤t->sighand->siglock);
1902 EXPORT_SYMBOL(recalc_sigpending);
1903 EXPORT_SYMBOL_GPL(dequeue_signal);
1904 EXPORT_SYMBOL(flush_signals);
1905 EXPORT_SYMBOL(force_sig);
1906 EXPORT_SYMBOL(kill_pg);
1907 EXPORT_SYMBOL(kill_proc);
1908 EXPORT_SYMBOL(ptrace_notify);
1909 EXPORT_SYMBOL(send_sig);
1910 EXPORT_SYMBOL(send_sig_info);
1911 EXPORT_SYMBOL(sigprocmask);
1912 EXPORT_SYMBOL(block_all_signals);
1913 EXPORT_SYMBOL(unblock_all_signals);
1917 * System call entry points.
1920 asmlinkage long sys_restart_syscall(void)
1922 struct restart_block *restart = ¤t_thread_info()->restart_block;
1923 return restart->fn(restart);
1926 long do_no_restart_syscall(struct restart_block *param)
1932 * We don't need to get the kernel lock - this is all local to this
1933 * particular thread.. (and that's good, because this is _heavily_
1934 * used by various programs)
1938 * This is also useful for kernel threads that want to temporarily
1939 * (or permanently) block certain signals.
1941 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1942 * interface happily blocks "unblockable" signals like SIGKILL
1945 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1949 spin_lock_irq(¤t->sighand->siglock);
1951 *oldset = current->blocked;
1956 sigorsets(¤t->blocked, ¤t->blocked, set);
1959 signandsets(¤t->blocked, ¤t->blocked, set);
1962 current->blocked = *set;
1967 recalc_sigpending();
1968 spin_unlock_irq(¤t->sighand->siglock);
1974 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
1976 int error = -EINVAL;
1977 sigset_t old_set, new_set;
1979 /* XXX: Don't preclude handling different sized sigset_t's. */
1980 if (sigsetsize != sizeof(sigset_t))
1985 if (copy_from_user(&new_set, set, sizeof(*set)))
1987 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
1989 error = sigprocmask(how, &new_set, &old_set);
1995 spin_lock_irq(¤t->sighand->siglock);
1996 old_set = current->blocked;
1997 spin_unlock_irq(¤t->sighand->siglock);
2001 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2009 long do_sigpending(void __user *set, unsigned long sigsetsize)
2011 long error = -EINVAL;
2014 if (sigsetsize > sizeof(sigset_t))
2017 spin_lock_irq(¤t->sighand->siglock);
2018 sigorsets(&pending, ¤t->pending.signal,
2019 ¤t->signal->shared_pending.signal);
2020 spin_unlock_irq(¤t->sighand->siglock);
2022 /* Outside the lock because only this thread touches it. */
2023 sigandsets(&pending, ¤t->blocked, &pending);
2026 if (!copy_to_user(set, &pending, sigsetsize))
2034 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2036 return do_sigpending(set, sigsetsize);
2039 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2041 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2045 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2047 if (from->si_code < 0)
2048 return __copy_to_user(to, from, sizeof(siginfo_t))
2051 * If you change siginfo_t structure, please be sure
2052 * this code is fixed accordingly.
2053 * It should never copy any pad contained in the structure
2054 * to avoid security leaks, but must copy the generic
2055 * 3 ints plus the relevant union member.
2057 err = __put_user(from->si_signo, &to->si_signo);
2058 err |= __put_user(from->si_errno, &to->si_errno);
2059 err |= __put_user((short)from->si_code, &to->si_code);
2060 switch (from->si_code & __SI_MASK) {
2062 err |= __put_user(from->si_pid, &to->si_pid);
2063 err |= __put_user(from->si_uid, &to->si_uid);
2066 err |= __put_user(from->si_tid, &to->si_tid);
2067 err |= __put_user(from->si_overrun, &to->si_overrun);
2068 err |= __put_user(from->si_ptr, &to->si_ptr);
2071 err |= __put_user(from->si_band, &to->si_band);
2072 err |= __put_user(from->si_fd, &to->si_fd);
2075 err |= __put_user(from->si_addr, &to->si_addr);
2076 #ifdef __ARCH_SI_TRAPNO
2077 err |= __put_user(from->si_trapno, &to->si_trapno);
2081 err |= __put_user(from->si_pid, &to->si_pid);
2082 err |= __put_user(from->si_uid, &to->si_uid);
2083 err |= __put_user(from->si_status, &to->si_status);
2084 err |= __put_user(from->si_utime, &to->si_utime);
2085 err |= __put_user(from->si_stime, &to->si_stime);
2087 case __SI_RT: /* This is not generated by the kernel as of now. */
2088 case __SI_MESGQ: /* But this is */
2089 err |= __put_user(from->si_pid, &to->si_pid);
2090 err |= __put_user(from->si_uid, &to->si_uid);
2091 err |= __put_user(from->si_ptr, &to->si_ptr);
2093 default: /* this is just in case for now ... */
2094 err |= __put_user(from->si_pid, &to->si_pid);
2095 err |= __put_user(from->si_uid, &to->si_uid);
2104 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2105 siginfo_t __user *uinfo,
2106 const struct timespec __user *uts,
2115 /* XXX: Don't preclude handling different sized sigset_t's. */
2116 if (sigsetsize != sizeof(sigset_t))
2119 if (copy_from_user(&these, uthese, sizeof(these)))
2123 * Invert the set of allowed signals to get those we
2126 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2130 if (copy_from_user(&ts, uts, sizeof(ts)))
2132 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2137 spin_lock_irq(¤t->sighand->siglock);
2138 sig = dequeue_signal(current, &these, &info);
2140 timeout = MAX_SCHEDULE_TIMEOUT;
2142 timeout = (timespec_to_jiffies(&ts)
2143 + (ts.tv_sec || ts.tv_nsec));
2146 /* None ready -- temporarily unblock those we're
2147 * interested while we are sleeping in so that we'll
2148 * be awakened when they arrive. */
2149 current->real_blocked = current->blocked;
2150 sigandsets(¤t->blocked, ¤t->blocked, &these);
2151 recalc_sigpending();
2152 spin_unlock_irq(¤t->sighand->siglock);
2154 timeout = schedule_timeout_interruptible(timeout);
2156 spin_lock_irq(¤t->sighand->siglock);
2157 sig = dequeue_signal(current, &these, &info);
2158 current->blocked = current->real_blocked;
2159 siginitset(¤t->real_blocked, 0);
2160 recalc_sigpending();
2163 spin_unlock_irq(¤t->sighand->siglock);
2168 if (copy_siginfo_to_user(uinfo, &info))
2181 sys_kill(int pid, int sig)
2183 struct siginfo info;
2185 info.si_signo = sig;
2187 info.si_code = SI_USER;
2188 info.si_pid = current->tgid;
2189 info.si_uid = current->uid;
2191 return kill_something_info(sig, &info, pid);
2194 static int do_tkill(int tgid, int pid, int sig)
2197 struct siginfo info;
2198 struct task_struct *p;
2201 info.si_signo = sig;
2203 info.si_code = SI_TKILL;
2204 info.si_pid = current->tgid;
2205 info.si_uid = current->uid;
2207 read_lock(&tasklist_lock);
2208 p = find_task_by_pid(pid);
2209 if (p && (tgid <= 0 || p->tgid == tgid)) {
2210 error = check_kill_permission(sig, &info, p);
2212 * The null signal is a permissions and process existence
2213 * probe. No signal is actually delivered.
2215 if (!error && sig && p->sighand) {
2216 spin_lock_irq(&p->sighand->siglock);
2217 handle_stop_signal(sig, p);
2218 error = specific_send_sig_info(sig, &info, p);
2219 spin_unlock_irq(&p->sighand->siglock);
2222 read_unlock(&tasklist_lock);
2228 * sys_tgkill - send signal to one specific thread
2229 * @tgid: the thread group ID of the thread
2230 * @pid: the PID of the thread
2231 * @sig: signal to be sent
2233 * This syscall also checks the tgid and returns -ESRCH even if the PID
2234 * exists but it's not belonging to the target process anymore. This
2235 * method solves the problem of threads exiting and PIDs getting reused.
2237 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2239 /* This is only valid for single tasks */
2240 if (pid <= 0 || tgid <= 0)
2243 return do_tkill(tgid, pid, sig);
2247 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2250 sys_tkill(int pid, int sig)
2252 /* This is only valid for single tasks */
2256 return do_tkill(0, pid, sig);
2260 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2264 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2267 /* Not even root can pretend to send signals from the kernel.
2268 Nor can they impersonate a kill(), which adds source info. */
2269 if (info.si_code >= 0)
2271 info.si_signo = sig;
2273 /* POSIX.1b doesn't mention process groups. */
2274 return kill_proc_info(sig, &info, pid);
2277 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2279 struct k_sigaction *k;
2282 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2285 k = ¤t->sighand->action[sig-1];
2287 spin_lock_irq(¤t->sighand->siglock);
2288 if (signal_pending(current)) {
2290 * If there might be a fatal signal pending on multiple
2291 * threads, make sure we take it before changing the action.
2293 spin_unlock_irq(¤t->sighand->siglock);
2294 return -ERESTARTNOINTR;
2301 sigdelsetmask(&act->sa.sa_mask,
2302 sigmask(SIGKILL) | sigmask(SIGSTOP));
2306 * "Setting a signal action to SIG_IGN for a signal that is
2307 * pending shall cause the pending signal to be discarded,
2308 * whether or not it is blocked."
2310 * "Setting a signal action to SIG_DFL for a signal that is
2311 * pending and whose default action is to ignore the signal
2312 * (for example, SIGCHLD), shall cause the pending signal to
2313 * be discarded, whether or not it is blocked"
2315 if (act->sa.sa_handler == SIG_IGN ||
2316 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2317 struct task_struct *t = current;
2319 sigaddset(&mask, sig);
2320 rm_from_queue_full(&mask, &t->signal->shared_pending);
2322 rm_from_queue_full(&mask, &t->pending);
2323 recalc_sigpending_tsk(t);
2325 } while (t != current);
2329 spin_unlock_irq(¤t->sighand->siglock);
2334 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2340 oss.ss_sp = (void __user *) current->sas_ss_sp;
2341 oss.ss_size = current->sas_ss_size;
2342 oss.ss_flags = sas_ss_flags(sp);
2351 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2352 || __get_user(ss_sp, &uss->ss_sp)
2353 || __get_user(ss_flags, &uss->ss_flags)
2354 || __get_user(ss_size, &uss->ss_size))
2358 if (on_sig_stack(sp))
2364 * Note - this code used to test ss_flags incorrectly
2365 * old code may have been written using ss_flags==0
2366 * to mean ss_flags==SS_ONSTACK (as this was the only
2367 * way that worked) - this fix preserves that older
2370 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2373 if (ss_flags == SS_DISABLE) {
2378 if (ss_size < MINSIGSTKSZ)
2382 current->sas_ss_sp = (unsigned long) ss_sp;
2383 current->sas_ss_size = ss_size;
2388 if (copy_to_user(uoss, &oss, sizeof(oss)))
2397 #ifdef __ARCH_WANT_SYS_SIGPENDING
2400 sys_sigpending(old_sigset_t __user *set)
2402 return do_sigpending(set, sizeof(*set));
2407 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2408 /* Some platforms have their own version with special arguments others
2409 support only sys_rt_sigprocmask. */
2412 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2415 old_sigset_t old_set, new_set;
2419 if (copy_from_user(&new_set, set, sizeof(*set)))
2421 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2423 spin_lock_irq(¤t->sighand->siglock);
2424 old_set = current->blocked.sig[0];
2432 sigaddsetmask(¤t->blocked, new_set);
2435 sigdelsetmask(¤t->blocked, new_set);
2438 current->blocked.sig[0] = new_set;
2442 recalc_sigpending();
2443 spin_unlock_irq(¤t->sighand->siglock);
2449 old_set = current->blocked.sig[0];
2452 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2459 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2461 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2463 sys_rt_sigaction(int sig,
2464 const struct sigaction __user *act,
2465 struct sigaction __user *oact,
2468 struct k_sigaction new_sa, old_sa;
2471 /* XXX: Don't preclude handling different sized sigset_t's. */
2472 if (sigsetsize != sizeof(sigset_t))
2476 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2480 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2483 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2489 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2491 #ifdef __ARCH_WANT_SYS_SGETMASK
2494 * For backwards compatibility. Functionality superseded by sigprocmask.
2500 return current->blocked.sig[0];
2504 sys_ssetmask(int newmask)
2508 spin_lock_irq(¤t->sighand->siglock);
2509 old = current->blocked.sig[0];
2511 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)|
2513 recalc_sigpending();
2514 spin_unlock_irq(¤t->sighand->siglock);
2518 #endif /* __ARCH_WANT_SGETMASK */
2520 #ifdef __ARCH_WANT_SYS_SIGNAL
2522 * For backwards compatibility. Functionality superseded by sigaction.
2524 asmlinkage unsigned long
2525 sys_signal(int sig, __sighandler_t handler)
2527 struct k_sigaction new_sa, old_sa;
2530 new_sa.sa.sa_handler = handler;
2531 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2532 sigemptyset(&new_sa.sa.sa_mask);
2534 ret = do_sigaction(sig, &new_sa, &old_sa);
2536 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2538 #endif /* __ARCH_WANT_SYS_SIGNAL */
2540 #ifdef __ARCH_WANT_SYS_PAUSE
2545 current->state = TASK_INTERRUPTIBLE;
2547 return -ERESTARTNOHAND;
2552 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2553 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2557 /* XXX: Don't preclude handling different sized sigset_t's. */
2558 if (sigsetsize != sizeof(sigset_t))
2561 if (copy_from_user(&newset, unewset, sizeof(newset)))
2563 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2565 spin_lock_irq(¤t->sighand->siglock);
2566 current->saved_sigmask = current->blocked;
2567 current->blocked = newset;
2568 recalc_sigpending();
2569 spin_unlock_irq(¤t->sighand->siglock);
2571 current->state = TASK_INTERRUPTIBLE;
2573 set_thread_flag(TIF_RESTORE_SIGMASK);
2574 return -ERESTARTNOHAND;
2576 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2578 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2583 void __init signals_init(void)
2586 kmem_cache_create("sigqueue",
2587 sizeof(struct sigqueue),
2588 __alignof__(struct sigqueue),
2589 SLAB_PANIC, NULL, NULL);