2 * This file implements the perfmon-2 subsystem which is used
3 * to program the IA-64 Performance Monitoring Unit (PMU).
5 * The initial version of perfmon.c was written by
6 * Ganesh Venkitachalam, IBM Corp.
8 * Then it was modified for perfmon-1.x by Stephane Eranian and
9 * David Mosberger, Hewlett Packard Co.
11 * Version Perfmon-2.x is a rewrite of perfmon-1.x
12 * by Stephane Eranian, Hewlett Packard Co.
14 * Copyright (C) 1999-2005 Hewlett Packard Co
15 * Stephane Eranian <eranian@hpl.hp.com>
16 * David Mosberger-Tang <davidm@hpl.hp.com>
18 * More information about perfmon available at:
19 * http://www.hpl.hp.com/research/linux/perfmon
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/sched.h>
25 #include <linux/interrupt.h>
26 #include <linux/smp_lock.h>
27 #include <linux/proc_fs.h>
28 #include <linux/seq_file.h>
29 #include <linux/init.h>
30 #include <linux/vmalloc.h>
32 #include <linux/sysctl.h>
33 #include <linux/list.h>
34 #include <linux/file.h>
35 #include <linux/poll.h>
36 #include <linux/vfs.h>
37 #include <linux/smp.h>
38 #include <linux/pagemap.h>
39 #include <linux/mount.h>
40 #include <linux/bitops.h>
41 #include <linux/capability.h>
42 #include <linux/rcupdate.h>
43 #include <linux/completion.h>
45 #include <asm/errno.h>
46 #include <asm/intrinsics.h>
48 #include <asm/perfmon.h>
49 #include <asm/processor.h>
50 #include <asm/signal.h>
51 #include <asm/system.h>
52 #include <asm/uaccess.h>
53 #include <asm/delay.h>
57 * perfmon context state
59 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
60 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
61 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
62 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
64 #define PFM_INVALID_ACTIVATION (~0UL)
66 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
67 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
70 * depth of message queue
72 #define PFM_MAX_MSGS 32
73 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
76 * type of a PMU register (bitmask).
78 * bit0 : register implemented
81 * bit4 : pmc has pmc.pm
82 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
83 * bit6-7 : register type
86 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
87 #define PFM_REG_IMPL 0x1 /* register implemented */
88 #define PFM_REG_END 0x2 /* end marker */
89 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
90 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
91 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
92 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
93 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
95 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
96 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
98 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
100 /* i assumed unsigned */
101 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
102 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
104 /* XXX: these assume that register i is implemented */
105 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
106 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
107 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
108 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
110 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
111 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
112 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
113 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
115 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
116 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
118 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
119 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
120 #define PFM_CTX_TASK(h) (h)->ctx_task
122 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
124 /* XXX: does not support more than 64 PMDs */
125 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
126 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
128 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
130 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
131 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
132 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
133 #define PFM_CODE_RR 0 /* requesting code range restriction */
134 #define PFM_DATA_RR 1 /* requestion data range restriction */
136 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
137 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
138 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
140 #define RDEP(x) (1UL<<(x))
143 * context protection macros
145 * - we need to protect against CPU concurrency (spin_lock)
146 * - we need to protect against PMU overflow interrupts (local_irq_disable)
148 * - we need to protect against PMU overflow interrupts (local_irq_disable)
150 * spin_lock_irqsave()/spin_unlock_irqrestore():
151 * in SMP: local_irq_disable + spin_lock
152 * in UP : local_irq_disable
154 * spin_lock()/spin_lock():
155 * in UP : removed automatically
156 * in SMP: protect against context accesses from other CPU. interrupts
157 * are not masked. This is useful for the PMU interrupt handler
158 * because we know we will not get PMU concurrency in that code.
160 #define PROTECT_CTX(c, f) \
162 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, current->pid)); \
163 spin_lock_irqsave(&(c)->ctx_lock, f); \
164 DPRINT(("spinlocked ctx %p by [%d]\n", c, current->pid)); \
167 #define UNPROTECT_CTX(c, f) \
169 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, current->pid)); \
170 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
173 #define PROTECT_CTX_NOPRINT(c, f) \
175 spin_lock_irqsave(&(c)->ctx_lock, f); \
179 #define UNPROTECT_CTX_NOPRINT(c, f) \
181 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
185 #define PROTECT_CTX_NOIRQ(c) \
187 spin_lock(&(c)->ctx_lock); \
190 #define UNPROTECT_CTX_NOIRQ(c) \
192 spin_unlock(&(c)->ctx_lock); \
198 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
199 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
200 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
202 #else /* !CONFIG_SMP */
203 #define SET_ACTIVATION(t) do {} while(0)
204 #define GET_ACTIVATION(t) do {} while(0)
205 #define INC_ACTIVATION(t) do {} while(0)
206 #endif /* CONFIG_SMP */
208 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
209 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
210 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
212 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
213 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
215 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
218 * cmp0 must be the value of pmc0
220 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
222 #define PFMFS_MAGIC 0xa0b4d889
227 #define PFM_DEBUGGING 1
231 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
234 #define DPRINT_ovfl(a) \
236 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __FUNCTION__, __LINE__, smp_processor_id(), current->pid); printk a; } \
241 * 64-bit software counter structure
243 * the next_reset_type is applied to the next call to pfm_reset_regs()
246 unsigned long val; /* virtual 64bit counter value */
247 unsigned long lval; /* last reset value */
248 unsigned long long_reset; /* reset value on sampling overflow */
249 unsigned long short_reset; /* reset value on overflow */
250 unsigned long reset_pmds[4]; /* which other pmds to reset when this counter overflows */
251 unsigned long smpl_pmds[4]; /* which pmds are accessed when counter overflow */
252 unsigned long seed; /* seed for random-number generator */
253 unsigned long mask; /* mask for random-number generator */
254 unsigned int flags; /* notify/do not notify */
255 unsigned long eventid; /* overflow event identifier */
262 unsigned int block:1; /* when 1, task will blocked on user notifications */
263 unsigned int system:1; /* do system wide monitoring */
264 unsigned int using_dbreg:1; /* using range restrictions (debug registers) */
265 unsigned int is_sampling:1; /* true if using a custom format */
266 unsigned int excl_idle:1; /* exclude idle task in system wide session */
267 unsigned int going_zombie:1; /* context is zombie (MASKED+blocking) */
268 unsigned int trap_reason:2; /* reason for going into pfm_handle_work() */
269 unsigned int no_msg:1; /* no message sent on overflow */
270 unsigned int can_restart:1; /* allowed to issue a PFM_RESTART */
271 unsigned int reserved:22;
272 } pfm_context_flags_t;
274 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
275 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
276 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
280 * perfmon context: encapsulates all the state of a monitoring session
283 typedef struct pfm_context {
284 spinlock_t ctx_lock; /* context protection */
286 pfm_context_flags_t ctx_flags; /* bitmask of flags (block reason incl.) */
287 unsigned int ctx_state; /* state: active/inactive (no bitfield) */
289 struct task_struct *ctx_task; /* task to which context is attached */
291 unsigned long ctx_ovfl_regs[4]; /* which registers overflowed (notification) */
293 struct completion ctx_restart_done; /* use for blocking notification mode */
295 unsigned long ctx_used_pmds[4]; /* bitmask of PMD used */
296 unsigned long ctx_all_pmds[4]; /* bitmask of all accessible PMDs */
297 unsigned long ctx_reload_pmds[4]; /* bitmask of force reload PMD on ctxsw in */
299 unsigned long ctx_all_pmcs[4]; /* bitmask of all accessible PMCs */
300 unsigned long ctx_reload_pmcs[4]; /* bitmask of force reload PMC on ctxsw in */
301 unsigned long ctx_used_monitors[4]; /* bitmask of monitor PMC being used */
303 unsigned long ctx_pmcs[PFM_NUM_PMC_REGS]; /* saved copies of PMC values */
305 unsigned int ctx_used_ibrs[1]; /* bitmask of used IBR (speedup ctxsw in) */
306 unsigned int ctx_used_dbrs[1]; /* bitmask of used DBR (speedup ctxsw in) */
307 unsigned long ctx_dbrs[IA64_NUM_DBG_REGS]; /* DBR values (cache) when not loaded */
308 unsigned long ctx_ibrs[IA64_NUM_DBG_REGS]; /* IBR values (cache) when not loaded */
310 pfm_counter_t ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */
312 unsigned long th_pmcs[PFM_NUM_PMC_REGS]; /* PMC thread save state */
313 unsigned long th_pmds[PFM_NUM_PMD_REGS]; /* PMD thread save state */
315 u64 ctx_saved_psr_up; /* only contains psr.up value */
317 unsigned long ctx_last_activation; /* context last activation number for last_cpu */
318 unsigned int ctx_last_cpu; /* CPU id of current or last CPU used (SMP only) */
319 unsigned int ctx_cpu; /* cpu to which perfmon is applied (system wide) */
321 int ctx_fd; /* file descriptor used my this context */
322 pfm_ovfl_arg_t ctx_ovfl_arg; /* argument to custom buffer format handler */
324 pfm_buffer_fmt_t *ctx_buf_fmt; /* buffer format callbacks */
325 void *ctx_smpl_hdr; /* points to sampling buffer header kernel vaddr */
326 unsigned long ctx_smpl_size; /* size of sampling buffer */
327 void *ctx_smpl_vaddr; /* user level virtual address of smpl buffer */
329 wait_queue_head_t ctx_msgq_wait;
330 pfm_msg_t ctx_msgq[PFM_MAX_MSGS];
333 struct fasync_struct *ctx_async_queue;
335 wait_queue_head_t ctx_zombieq; /* termination cleanup wait queue */
339 * magic number used to verify that structure is really
342 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
344 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
347 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
348 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
350 #define SET_LAST_CPU(ctx, v) do {} while(0)
351 #define GET_LAST_CPU(ctx) do {} while(0)
355 #define ctx_fl_block ctx_flags.block
356 #define ctx_fl_system ctx_flags.system
357 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
358 #define ctx_fl_is_sampling ctx_flags.is_sampling
359 #define ctx_fl_excl_idle ctx_flags.excl_idle
360 #define ctx_fl_going_zombie ctx_flags.going_zombie
361 #define ctx_fl_trap_reason ctx_flags.trap_reason
362 #define ctx_fl_no_msg ctx_flags.no_msg
363 #define ctx_fl_can_restart ctx_flags.can_restart
365 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
366 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
369 * global information about all sessions
370 * mostly used to synchronize between system wide and per-process
373 spinlock_t pfs_lock; /* lock the structure */
375 unsigned int pfs_task_sessions; /* number of per task sessions */
376 unsigned int pfs_sys_sessions; /* number of per system wide sessions */
377 unsigned int pfs_sys_use_dbregs; /* incremented when a system wide session uses debug regs */
378 unsigned int pfs_ptrace_use_dbregs; /* incremented when a process uses debug regs */
379 struct task_struct *pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */
383 * information about a PMC or PMD.
384 * dep_pmd[]: a bitmask of dependent PMD registers
385 * dep_pmc[]: a bitmask of dependent PMC registers
387 typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs);
391 unsigned long default_value; /* power-on default value */
392 unsigned long reserved_mask; /* bitmask of reserved bits */
393 pfm_reg_check_t read_check;
394 pfm_reg_check_t write_check;
395 unsigned long dep_pmd[4];
396 unsigned long dep_pmc[4];
399 /* assume cnum is a valid monitor */
400 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
403 * This structure is initialized at boot time and contains
404 * a description of the PMU main characteristics.
406 * If the probe function is defined, detection is based
407 * on its return value:
408 * - 0 means recognized PMU
409 * - anything else means not supported
410 * When the probe function is not defined, then the pmu_family field
411 * is used and it must match the host CPU family such that:
412 * - cpu->family & config->pmu_family != 0
415 unsigned long ovfl_val; /* overflow value for counters */
417 pfm_reg_desc_t *pmc_desc; /* detailed PMC register dependencies descriptions */
418 pfm_reg_desc_t *pmd_desc; /* detailed PMD register dependencies descriptions */
420 unsigned int num_pmcs; /* number of PMCS: computed at init time */
421 unsigned int num_pmds; /* number of PMDS: computed at init time */
422 unsigned long impl_pmcs[4]; /* bitmask of implemented PMCS */
423 unsigned long impl_pmds[4]; /* bitmask of implemented PMDS */
425 char *pmu_name; /* PMU family name */
426 unsigned int pmu_family; /* cpuid family pattern used to identify pmu */
427 unsigned int flags; /* pmu specific flags */
428 unsigned int num_ibrs; /* number of IBRS: computed at init time */
429 unsigned int num_dbrs; /* number of DBRS: computed at init time */
430 unsigned int num_counters; /* PMC/PMD counting pairs : computed at init time */
431 int (*probe)(void); /* customized probe routine */
432 unsigned int use_rr_dbregs:1; /* set if debug registers used for range restriction */
437 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
440 * debug register related type definitions
443 unsigned long ibr_mask:56;
444 unsigned long ibr_plm:4;
445 unsigned long ibr_ig:3;
446 unsigned long ibr_x:1;
450 unsigned long dbr_mask:56;
451 unsigned long dbr_plm:4;
452 unsigned long dbr_ig:2;
453 unsigned long dbr_w:1;
454 unsigned long dbr_r:1;
465 * perfmon command descriptions
468 int (*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
471 unsigned int cmd_narg;
473 int (*cmd_getsize)(void *arg, size_t *sz);
476 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
477 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
478 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
479 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
482 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
483 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
484 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
485 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
486 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
488 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
491 unsigned long pfm_spurious_ovfl_intr_count; /* keep track of spurious ovfl interrupts */
492 unsigned long pfm_replay_ovfl_intr_count; /* keep track of replayed ovfl interrupts */
493 unsigned long pfm_ovfl_intr_count; /* keep track of ovfl interrupts */
494 unsigned long pfm_ovfl_intr_cycles; /* cycles spent processing ovfl interrupts */
495 unsigned long pfm_ovfl_intr_cycles_min; /* min cycles spent processing ovfl interrupts */
496 unsigned long pfm_ovfl_intr_cycles_max; /* max cycles spent processing ovfl interrupts */
497 unsigned long pfm_smpl_handler_calls;
498 unsigned long pfm_smpl_handler_cycles;
499 char pad[SMP_CACHE_BYTES] ____cacheline_aligned;
503 * perfmon internal variables
505 static pfm_stats_t pfm_stats[NR_CPUS];
506 static pfm_session_t pfm_sessions; /* global sessions information */
508 static DEFINE_SPINLOCK(pfm_alt_install_check);
509 static pfm_intr_handler_desc_t *pfm_alt_intr_handler;
511 static struct proc_dir_entry *perfmon_dir;
512 static pfm_uuid_t pfm_null_uuid = {0,};
514 static spinlock_t pfm_buffer_fmt_lock;
515 static LIST_HEAD(pfm_buffer_fmt_list);
517 static pmu_config_t *pmu_conf;
519 /* sysctl() controls */
520 pfm_sysctl_t pfm_sysctl;
521 EXPORT_SYMBOL(pfm_sysctl);
523 static ctl_table pfm_ctl_table[]={
525 .ctl_name = CTL_UNNUMBERED,
527 .data = &pfm_sysctl.debug,
528 .maxlen = sizeof(int),
530 .proc_handler = &proc_dointvec,
533 .ctl_name = CTL_UNNUMBERED,
534 .procname = "debug_ovfl",
535 .data = &pfm_sysctl.debug_ovfl,
536 .maxlen = sizeof(int),
538 .proc_handler = &proc_dointvec,
541 .ctl_name = CTL_UNNUMBERED,
542 .procname = "fastctxsw",
543 .data = &pfm_sysctl.fastctxsw,
544 .maxlen = sizeof(int),
546 .proc_handler = &proc_dointvec,
549 .ctl_name = CTL_UNNUMBERED,
550 .procname = "expert_mode",
551 .data = &pfm_sysctl.expert_mode,
552 .maxlen = sizeof(int),
554 .proc_handler = &proc_dointvec,
558 static ctl_table pfm_sysctl_dir[] = {
560 .ctl_name = CTL_UNNUMBERED,
561 .procname = "perfmon",
563 .child = pfm_ctl_table,
567 static ctl_table pfm_sysctl_root[] = {
569 .ctl_name = CTL_KERN,
570 .procname = "kernel",
572 .child = pfm_sysctl_dir,
576 static struct ctl_table_header *pfm_sysctl_header;
578 static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
580 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
581 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
584 pfm_put_task(struct task_struct *task)
586 if (task != current) put_task_struct(task);
590 pfm_set_task_notify(struct task_struct *task)
592 struct thread_info *info;
594 info = (struct thread_info *) ((char *) task + IA64_TASK_SIZE);
595 set_bit(TIF_NOTIFY_RESUME, &info->flags);
599 pfm_clear_task_notify(void)
601 clear_thread_flag(TIF_NOTIFY_RESUME);
605 pfm_reserve_page(unsigned long a)
607 SetPageReserved(vmalloc_to_page((void *)a));
610 pfm_unreserve_page(unsigned long a)
612 ClearPageReserved(vmalloc_to_page((void*)a));
615 static inline unsigned long
616 pfm_protect_ctx_ctxsw(pfm_context_t *x)
618 spin_lock(&(x)->ctx_lock);
623 pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f)
625 spin_unlock(&(x)->ctx_lock);
628 static inline unsigned int
629 pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct)
631 return do_munmap(mm, addr, len);
634 static inline unsigned long
635 pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec)
637 return get_unmapped_area(file, addr, len, pgoff, flags);
642 pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data,
643 struct vfsmount *mnt)
645 return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt);
648 static struct file_system_type pfm_fs_type = {
650 .get_sb = pfmfs_get_sb,
651 .kill_sb = kill_anon_super,
654 DEFINE_PER_CPU(unsigned long, pfm_syst_info);
655 DEFINE_PER_CPU(struct task_struct *, pmu_owner);
656 DEFINE_PER_CPU(pfm_context_t *, pmu_ctx);
657 DEFINE_PER_CPU(unsigned long, pmu_activation_number);
658 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info);
661 /* forward declaration */
662 static const struct file_operations pfm_file_ops;
665 * forward declarations
668 static void pfm_lazy_save_regs (struct task_struct *ta);
671 void dump_pmu_state(const char *);
672 static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
674 #include "perfmon_itanium.h"
675 #include "perfmon_mckinley.h"
676 #include "perfmon_montecito.h"
677 #include "perfmon_generic.h"
679 static pmu_config_t *pmu_confs[]={
683 &pmu_conf_gen, /* must be last */
688 static int pfm_end_notify_user(pfm_context_t *ctx);
691 pfm_clear_psr_pp(void)
693 ia64_rsm(IA64_PSR_PP);
700 ia64_ssm(IA64_PSR_PP);
705 pfm_clear_psr_up(void)
707 ia64_rsm(IA64_PSR_UP);
714 ia64_ssm(IA64_PSR_UP);
718 static inline unsigned long
722 tmp = ia64_getreg(_IA64_REG_PSR);
728 pfm_set_psr_l(unsigned long val)
730 ia64_setreg(_IA64_REG_PSR_L, val);
742 pfm_unfreeze_pmu(void)
749 pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs)
753 for (i=0; i < nibrs; i++) {
754 ia64_set_ibr(i, ibrs[i]);
755 ia64_dv_serialize_instruction();
761 pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs)
765 for (i=0; i < ndbrs; i++) {
766 ia64_set_dbr(i, dbrs[i]);
767 ia64_dv_serialize_data();
773 * PMD[i] must be a counter. no check is made
775 static inline unsigned long
776 pfm_read_soft_counter(pfm_context_t *ctx, int i)
778 return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val);
782 * PMD[i] must be a counter. no check is made
785 pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val)
787 unsigned long ovfl_val = pmu_conf->ovfl_val;
789 ctx->ctx_pmds[i].val = val & ~ovfl_val;
791 * writing to unimplemented part is ignore, so we do not need to
794 ia64_set_pmd(i, val & ovfl_val);
798 pfm_get_new_msg(pfm_context_t *ctx)
802 next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS;
804 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
805 if (next == ctx->ctx_msgq_head) return NULL;
807 idx = ctx->ctx_msgq_tail;
808 ctx->ctx_msgq_tail = next;
810 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx));
812 return ctx->ctx_msgq+idx;
816 pfm_get_next_msg(pfm_context_t *ctx)
820 DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
822 if (PFM_CTXQ_EMPTY(ctx)) return NULL;
827 msg = ctx->ctx_msgq+ctx->ctx_msgq_head;
832 ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS;
834 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type));
840 pfm_reset_msgq(pfm_context_t *ctx)
842 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
843 DPRINT(("ctx=%p msgq reset\n", ctx));
847 pfm_rvmalloc(unsigned long size)
852 size = PAGE_ALIGN(size);
855 //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem);
856 memset(mem, 0, size);
857 addr = (unsigned long)mem;
859 pfm_reserve_page(addr);
868 pfm_rvfree(void *mem, unsigned long size)
873 DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size));
874 addr = (unsigned long) mem;
875 while ((long) size > 0) {
876 pfm_unreserve_page(addr);
885 static pfm_context_t *
886 pfm_context_alloc(void)
891 * allocate context descriptor
892 * must be able to free with interrupts disabled
894 ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL);
896 DPRINT(("alloc ctx @%p\n", ctx));
902 pfm_context_free(pfm_context_t *ctx)
905 DPRINT(("free ctx @%p\n", ctx));
911 pfm_mask_monitoring(struct task_struct *task)
913 pfm_context_t *ctx = PFM_GET_CTX(task);
914 unsigned long mask, val, ovfl_mask;
917 DPRINT_ovfl(("masking monitoring for [%d]\n", task->pid));
919 ovfl_mask = pmu_conf->ovfl_val;
921 * monitoring can only be masked as a result of a valid
922 * counter overflow. In UP, it means that the PMU still
923 * has an owner. Note that the owner can be different
924 * from the current task. However the PMU state belongs
926 * In SMP, a valid overflow only happens when task is
927 * current. Therefore if we come here, we know that
928 * the PMU state belongs to the current task, therefore
929 * we can access the live registers.
931 * So in both cases, the live register contains the owner's
932 * state. We can ONLY touch the PMU registers and NOT the PSR.
934 * As a consequence to this call, the ctx->th_pmds[] array
935 * contains stale information which must be ignored
936 * when context is reloaded AND monitoring is active (see
939 mask = ctx->ctx_used_pmds[0];
940 for (i = 0; mask; i++, mask>>=1) {
941 /* skip non used pmds */
942 if ((mask & 0x1) == 0) continue;
943 val = ia64_get_pmd(i);
945 if (PMD_IS_COUNTING(i)) {
947 * we rebuild the full 64 bit value of the counter
949 ctx->ctx_pmds[i].val += (val & ovfl_mask);
951 ctx->ctx_pmds[i].val = val;
953 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
955 ctx->ctx_pmds[i].val,
959 * mask monitoring by setting the privilege level to 0
960 * we cannot use psr.pp/psr.up for this, it is controlled by
963 * if task is current, modify actual registers, otherwise modify
964 * thread save state, i.e., what will be restored in pfm_load_regs()
966 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
967 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
968 if ((mask & 0x1) == 0UL) continue;
969 ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL);
970 ctx->th_pmcs[i] &= ~0xfUL;
971 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
974 * make all of this visible
980 * must always be done with task == current
982 * context must be in MASKED state when calling
985 pfm_restore_monitoring(struct task_struct *task)
987 pfm_context_t *ctx = PFM_GET_CTX(task);
988 unsigned long mask, ovfl_mask;
989 unsigned long psr, val;
992 is_system = ctx->ctx_fl_system;
993 ovfl_mask = pmu_conf->ovfl_val;
995 if (task != current) {
996 printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task->pid, current->pid);
999 if (ctx->ctx_state != PFM_CTX_MASKED) {
1000 printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__,
1001 task->pid, current->pid, ctx->ctx_state);
1004 psr = pfm_get_psr();
1006 * monitoring is masked via the PMC.
1007 * As we restore their value, we do not want each counter to
1008 * restart right away. We stop monitoring using the PSR,
1009 * restore the PMC (and PMD) and then re-establish the psr
1010 * as it was. Note that there can be no pending overflow at
1011 * this point, because monitoring was MASKED.
1013 * system-wide session are pinned and self-monitoring
1015 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1016 /* disable dcr pp */
1017 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
1023 * first, we restore the PMD
1025 mask = ctx->ctx_used_pmds[0];
1026 for (i = 0; mask; i++, mask>>=1) {
1027 /* skip non used pmds */
1028 if ((mask & 0x1) == 0) continue;
1030 if (PMD_IS_COUNTING(i)) {
1032 * we split the 64bit value according to
1035 val = ctx->ctx_pmds[i].val & ovfl_mask;
1036 ctx->ctx_pmds[i].val &= ~ovfl_mask;
1038 val = ctx->ctx_pmds[i].val;
1040 ia64_set_pmd(i, val);
1042 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1044 ctx->ctx_pmds[i].val,
1050 mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER;
1051 for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) {
1052 if ((mask & 0x1) == 0UL) continue;
1053 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1054 ia64_set_pmc(i, ctx->th_pmcs[i]);
1055 DPRINT(("[%d] pmc[%d]=0x%lx\n", task->pid, i, ctx->th_pmcs[i]));
1060 * must restore DBR/IBR because could be modified while masked
1061 * XXX: need to optimize
1063 if (ctx->ctx_fl_using_dbreg) {
1064 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
1065 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
1071 if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) {
1073 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
1080 pfm_save_pmds(unsigned long *pmds, unsigned long mask)
1086 for (i=0; mask; i++, mask>>=1) {
1087 if (mask & 0x1) pmds[i] = ia64_get_pmd(i);
1092 * reload from thread state (used for ctxw only)
1095 pfm_restore_pmds(unsigned long *pmds, unsigned long mask)
1098 unsigned long val, ovfl_val = pmu_conf->ovfl_val;
1100 for (i=0; mask; i++, mask>>=1) {
1101 if ((mask & 0x1) == 0) continue;
1102 val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i];
1103 ia64_set_pmd(i, val);
1109 * propagate PMD from context to thread-state
1112 pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx)
1114 unsigned long ovfl_val = pmu_conf->ovfl_val;
1115 unsigned long mask = ctx->ctx_all_pmds[0];
1119 DPRINT(("mask=0x%lx\n", mask));
1121 for (i=0; mask; i++, mask>>=1) {
1123 val = ctx->ctx_pmds[i].val;
1126 * We break up the 64 bit value into 2 pieces
1127 * the lower bits go to the machine state in the
1128 * thread (will be reloaded on ctxsw in).
1129 * The upper part stays in the soft-counter.
1131 if (PMD_IS_COUNTING(i)) {
1132 ctx->ctx_pmds[i].val = val & ~ovfl_val;
1135 ctx->th_pmds[i] = val;
1137 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1140 ctx->ctx_pmds[i].val));
1145 * propagate PMC from context to thread-state
1148 pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx)
1150 unsigned long mask = ctx->ctx_all_pmcs[0];
1153 DPRINT(("mask=0x%lx\n", mask));
1155 for (i=0; mask; i++, mask>>=1) {
1156 /* masking 0 with ovfl_val yields 0 */
1157 ctx->th_pmcs[i] = ctx->ctx_pmcs[i];
1158 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i]));
1165 pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask)
1169 for (i=0; mask; i++, mask>>=1) {
1170 if ((mask & 0x1) == 0) continue;
1171 ia64_set_pmc(i, pmcs[i]);
1177 pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b)
1179 return memcmp(a, b, sizeof(pfm_uuid_t));
1183 pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs)
1186 if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs);
1191 pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size)
1194 if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size);
1200 pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags,
1204 if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg);
1209 pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags,
1213 if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg);
1218 pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1221 if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs);
1226 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs)
1229 if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs);
1233 static pfm_buffer_fmt_t *
1234 __pfm_find_buffer_fmt(pfm_uuid_t uuid)
1236 struct list_head * pos;
1237 pfm_buffer_fmt_t * entry;
1239 list_for_each(pos, &pfm_buffer_fmt_list) {
1240 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
1241 if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0)
1248 * find a buffer format based on its uuid
1250 static pfm_buffer_fmt_t *
1251 pfm_find_buffer_fmt(pfm_uuid_t uuid)
1253 pfm_buffer_fmt_t * fmt;
1254 spin_lock(&pfm_buffer_fmt_lock);
1255 fmt = __pfm_find_buffer_fmt(uuid);
1256 spin_unlock(&pfm_buffer_fmt_lock);
1261 pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt)
1265 /* some sanity checks */
1266 if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL;
1268 /* we need at least a handler */
1269 if (fmt->fmt_handler == NULL) return -EINVAL;
1272 * XXX: need check validity of fmt_arg_size
1275 spin_lock(&pfm_buffer_fmt_lock);
1277 if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) {
1278 printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name);
1282 list_add(&fmt->fmt_list, &pfm_buffer_fmt_list);
1283 printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name);
1286 spin_unlock(&pfm_buffer_fmt_lock);
1289 EXPORT_SYMBOL(pfm_register_buffer_fmt);
1292 pfm_unregister_buffer_fmt(pfm_uuid_t uuid)
1294 pfm_buffer_fmt_t *fmt;
1297 spin_lock(&pfm_buffer_fmt_lock);
1299 fmt = __pfm_find_buffer_fmt(uuid);
1301 printk(KERN_ERR "perfmon: cannot unregister format, not found\n");
1305 list_del_init(&fmt->fmt_list);
1306 printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name);
1309 spin_unlock(&pfm_buffer_fmt_lock);
1313 EXPORT_SYMBOL(pfm_unregister_buffer_fmt);
1315 extern void update_pal_halt_status(int);
1318 pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu)
1320 unsigned long flags;
1322 * validy checks on cpu_mask have been done upstream
1326 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1327 pfm_sessions.pfs_sys_sessions,
1328 pfm_sessions.pfs_task_sessions,
1329 pfm_sessions.pfs_sys_use_dbregs,
1335 * cannot mix system wide and per-task sessions
1337 if (pfm_sessions.pfs_task_sessions > 0UL) {
1338 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1339 pfm_sessions.pfs_task_sessions));
1343 if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict;
1345 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id()));
1347 pfm_sessions.pfs_sys_session[cpu] = task;
1349 pfm_sessions.pfs_sys_sessions++ ;
1352 if (pfm_sessions.pfs_sys_sessions) goto abort;
1353 pfm_sessions.pfs_task_sessions++;
1356 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1357 pfm_sessions.pfs_sys_sessions,
1358 pfm_sessions.pfs_task_sessions,
1359 pfm_sessions.pfs_sys_use_dbregs,
1364 * disable default_idle() to go to PAL_HALT
1366 update_pal_halt_status(0);
1373 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1374 pfm_sessions.pfs_sys_session[cpu]->pid,
1384 pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu)
1386 unsigned long flags;
1388 * validy checks on cpu_mask have been done upstream
1392 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1393 pfm_sessions.pfs_sys_sessions,
1394 pfm_sessions.pfs_task_sessions,
1395 pfm_sessions.pfs_sys_use_dbregs,
1401 pfm_sessions.pfs_sys_session[cpu] = NULL;
1403 * would not work with perfmon+more than one bit in cpu_mask
1405 if (ctx && ctx->ctx_fl_using_dbreg) {
1406 if (pfm_sessions.pfs_sys_use_dbregs == 0) {
1407 printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx);
1409 pfm_sessions.pfs_sys_use_dbregs--;
1412 pfm_sessions.pfs_sys_sessions--;
1414 pfm_sessions.pfs_task_sessions--;
1416 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1417 pfm_sessions.pfs_sys_sessions,
1418 pfm_sessions.pfs_task_sessions,
1419 pfm_sessions.pfs_sys_use_dbregs,
1424 * if possible, enable default_idle() to go into PAL_HALT
1426 if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0)
1427 update_pal_halt_status(1);
1435 * removes virtual mapping of the sampling buffer.
1436 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1437 * a PROTECT_CTX() section.
1440 pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size)
1445 if (task->mm == NULL || size == 0UL || vaddr == NULL) {
1446 printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task->pid, task->mm);
1450 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size));
1453 * does the actual unmapping
1455 down_write(&task->mm->mmap_sem);
1457 DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size));
1459 r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0);
1461 up_write(&task->mm->mmap_sem);
1463 printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task->pid, vaddr, size);
1466 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r));
1472 * free actual physical storage used by sampling buffer
1476 pfm_free_smpl_buffer(pfm_context_t *ctx)
1478 pfm_buffer_fmt_t *fmt;
1480 if (ctx->ctx_smpl_hdr == NULL) goto invalid_free;
1483 * we won't use the buffer format anymore
1485 fmt = ctx->ctx_buf_fmt;
1487 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1490 ctx->ctx_smpl_vaddr));
1492 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1497 pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size);
1499 ctx->ctx_smpl_hdr = NULL;
1500 ctx->ctx_smpl_size = 0UL;
1505 printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", current->pid);
1511 pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt)
1513 if (fmt == NULL) return;
1515 pfm_buf_fmt_exit(fmt, current, NULL, NULL);
1520 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1521 * no real gain from having the whole whorehouse mounted. So we don't need
1522 * any operations on the root directory. However, we need a non-trivial
1523 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1525 static struct vfsmount *pfmfs_mnt;
1530 int err = register_filesystem(&pfm_fs_type);
1532 pfmfs_mnt = kern_mount(&pfm_fs_type);
1533 err = PTR_ERR(pfmfs_mnt);
1534 if (IS_ERR(pfmfs_mnt))
1535 unregister_filesystem(&pfm_fs_type);
1545 unregister_filesystem(&pfm_fs_type);
1550 pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
1555 unsigned long flags;
1556 DECLARE_WAITQUEUE(wait, current);
1557 if (PFM_IS_FILE(filp) == 0) {
1558 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1562 ctx = (pfm_context_t *)filp->private_data;
1564 printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", current->pid);
1569 * check even when there is no message
1571 if (size < sizeof(pfm_msg_t)) {
1572 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t)));
1576 PROTECT_CTX(ctx, flags);
1579 * put ourselves on the wait queue
1581 add_wait_queue(&ctx->ctx_msgq_wait, &wait);
1589 set_current_state(TASK_INTERRUPTIBLE);
1591 DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail));
1594 if(PFM_CTXQ_EMPTY(ctx) == 0) break;
1596 UNPROTECT_CTX(ctx, flags);
1599 * check non-blocking read
1602 if(filp->f_flags & O_NONBLOCK) break;
1605 * check pending signals
1607 if(signal_pending(current)) {
1612 * no message, so wait
1616 PROTECT_CTX(ctx, flags);
1618 DPRINT(("[%d] back to running ret=%ld\n", current->pid, ret));
1619 set_current_state(TASK_RUNNING);
1620 remove_wait_queue(&ctx->ctx_msgq_wait, &wait);
1622 if (ret < 0) goto abort;
1625 msg = pfm_get_next_msg(ctx);
1627 printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, current->pid);
1631 DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type));
1634 if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t);
1637 UNPROTECT_CTX(ctx, flags);
1643 pfm_write(struct file *file, const char __user *ubuf,
1644 size_t size, loff_t *ppos)
1646 DPRINT(("pfm_write called\n"));
1651 pfm_poll(struct file *filp, poll_table * wait)
1654 unsigned long flags;
1655 unsigned int mask = 0;
1657 if (PFM_IS_FILE(filp) == 0) {
1658 printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", current->pid);
1662 ctx = (pfm_context_t *)filp->private_data;
1664 printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", current->pid);
1669 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd));
1671 poll_wait(filp, &ctx->ctx_msgq_wait, wait);
1673 PROTECT_CTX(ctx, flags);
1675 if (PFM_CTXQ_EMPTY(ctx) == 0)
1676 mask = POLLIN | POLLRDNORM;
1678 UNPROTECT_CTX(ctx, flags);
1680 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask));
1686 pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg)
1688 DPRINT(("pfm_ioctl called\n"));
1693 * interrupt cannot be masked when coming here
1696 pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on)
1700 ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue);
1702 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1706 ctx->ctx_async_queue, ret));
1712 pfm_fasync(int fd, struct file *filp, int on)
1717 if (PFM_IS_FILE(filp) == 0) {
1718 printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", current->pid);
1722 ctx = (pfm_context_t *)filp->private_data;
1724 printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", current->pid);
1728 * we cannot mask interrupts during this call because this may
1729 * may go to sleep if memory is not readily avalaible.
1731 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1732 * done in caller. Serialization of this function is ensured by caller.
1734 ret = pfm_do_fasync(fd, filp, ctx, on);
1737 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1740 ctx->ctx_async_queue, ret));
1747 * this function is exclusively called from pfm_close().
1748 * The context is not protected at that time, nor are interrupts
1749 * on the remote CPU. That's necessary to avoid deadlocks.
1752 pfm_syswide_force_stop(void *info)
1754 pfm_context_t *ctx = (pfm_context_t *)info;
1755 struct pt_regs *regs = task_pt_regs(current);
1756 struct task_struct *owner;
1757 unsigned long flags;
1760 if (ctx->ctx_cpu != smp_processor_id()) {
1761 printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1763 smp_processor_id());
1766 owner = GET_PMU_OWNER();
1767 if (owner != ctx->ctx_task) {
1768 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1770 owner->pid, ctx->ctx_task->pid);
1773 if (GET_PMU_CTX() != ctx) {
1774 printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1776 GET_PMU_CTX(), ctx);
1780 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), ctx->ctx_task->pid));
1782 * the context is already protected in pfm_close(), we simply
1783 * need to mask interrupts to avoid a PMU interrupt race on
1786 local_irq_save(flags);
1788 ret = pfm_context_unload(ctx, NULL, 0, regs);
1790 DPRINT(("context_unload returned %d\n", ret));
1794 * unmask interrupts, PMU interrupts are now spurious here
1796 local_irq_restore(flags);
1800 pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx)
1804 DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu));
1805 ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 0, 1);
1806 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret));
1808 #endif /* CONFIG_SMP */
1811 * called for each close(). Partially free resources.
1812 * When caller is self-monitoring, the context is unloaded.
1815 pfm_flush(struct file *filp, fl_owner_t id)
1818 struct task_struct *task;
1819 struct pt_regs *regs;
1820 unsigned long flags;
1821 unsigned long smpl_buf_size = 0UL;
1822 void *smpl_buf_vaddr = NULL;
1823 int state, is_system;
1825 if (PFM_IS_FILE(filp) == 0) {
1826 DPRINT(("bad magic for\n"));
1830 ctx = (pfm_context_t *)filp->private_data;
1832 printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", current->pid);
1837 * remove our file from the async queue, if we use this mode.
1838 * This can be done without the context being protected. We come
1839 * here when the context has become unreacheable by other tasks.
1841 * We may still have active monitoring at this point and we may
1842 * end up in pfm_overflow_handler(). However, fasync_helper()
1843 * operates with interrupts disabled and it cleans up the
1844 * queue. If the PMU handler is called prior to entering
1845 * fasync_helper() then it will send a signal. If it is
1846 * invoked after, it will find an empty queue and no
1847 * signal will be sent. In both case, we are safe
1849 if (filp->f_flags & FASYNC) {
1850 DPRINT(("cleaning up async_queue=%p\n", ctx->ctx_async_queue));
1851 pfm_do_fasync (-1, filp, ctx, 0);
1854 PROTECT_CTX(ctx, flags);
1856 state = ctx->ctx_state;
1857 is_system = ctx->ctx_fl_system;
1859 task = PFM_CTX_TASK(ctx);
1860 regs = task_pt_regs(task);
1862 DPRINT(("ctx_state=%d is_current=%d\n",
1864 task == current ? 1 : 0));
1867 * if state == UNLOADED, then task is NULL
1871 * we must stop and unload because we are losing access to the context.
1873 if (task == current) {
1876 * the task IS the owner but it migrated to another CPU: that's bad
1877 * but we must handle this cleanly. Unfortunately, the kernel does
1878 * not provide a mechanism to block migration (while the context is loaded).
1880 * We need to release the resource on the ORIGINAL cpu.
1882 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
1884 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
1886 * keep context protected but unmask interrupt for IPI
1888 local_irq_restore(flags);
1890 pfm_syswide_cleanup_other_cpu(ctx);
1893 * restore interrupt masking
1895 local_irq_save(flags);
1898 * context is unloaded at this point
1901 #endif /* CONFIG_SMP */
1904 DPRINT(("forcing unload\n"));
1906 * stop and unload, returning with state UNLOADED
1907 * and session unreserved.
1909 pfm_context_unload(ctx, NULL, 0, regs);
1911 DPRINT(("ctx_state=%d\n", ctx->ctx_state));
1916 * remove virtual mapping, if any, for the calling task.
1917 * cannot reset ctx field until last user is calling close().
1919 * ctx_smpl_vaddr must never be cleared because it is needed
1920 * by every task with access to the context
1922 * When called from do_exit(), the mm context is gone already, therefore
1923 * mm is NULL, i.e., the VMA is already gone and we do not have to
1926 if (ctx->ctx_smpl_vaddr && current->mm) {
1927 smpl_buf_vaddr = ctx->ctx_smpl_vaddr;
1928 smpl_buf_size = ctx->ctx_smpl_size;
1931 UNPROTECT_CTX(ctx, flags);
1934 * if there was a mapping, then we systematically remove it
1935 * at this point. Cannot be done inside critical section
1936 * because some VM function reenables interrupts.
1939 if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size);
1944 * called either on explicit close() or from exit_files().
1945 * Only the LAST user of the file gets to this point, i.e., it is
1948 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1949 * (fput()),i.e, last task to access the file. Nobody else can access the
1950 * file at this point.
1952 * When called from exit_files(), the VMA has been freed because exit_mm()
1953 * is executed before exit_files().
1955 * When called from exit_files(), the current task is not yet ZOMBIE but we
1956 * flush the PMU state to the context.
1959 pfm_close(struct inode *inode, struct file *filp)
1962 struct task_struct *task;
1963 struct pt_regs *regs;
1964 DECLARE_WAITQUEUE(wait, current);
1965 unsigned long flags;
1966 unsigned long smpl_buf_size = 0UL;
1967 void *smpl_buf_addr = NULL;
1968 int free_possible = 1;
1969 int state, is_system;
1971 DPRINT(("pfm_close called private=%p\n", filp->private_data));
1973 if (PFM_IS_FILE(filp) == 0) {
1974 DPRINT(("bad magic\n"));
1978 ctx = (pfm_context_t *)filp->private_data;
1980 printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", current->pid);
1984 PROTECT_CTX(ctx, flags);
1986 state = ctx->ctx_state;
1987 is_system = ctx->ctx_fl_system;
1989 task = PFM_CTX_TASK(ctx);
1990 regs = task_pt_regs(task);
1992 DPRINT(("ctx_state=%d is_current=%d\n",
1994 task == current ? 1 : 0));
1997 * if task == current, then pfm_flush() unloaded the context
1999 if (state == PFM_CTX_UNLOADED) goto doit;
2002 * context is loaded/masked and task != current, we need to
2003 * either force an unload or go zombie
2007 * The task is currently blocked or will block after an overflow.
2008 * we must force it to wakeup to get out of the
2009 * MASKED state and transition to the unloaded state by itself.
2011 * This situation is only possible for per-task mode
2013 if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) {
2016 * set a "partial" zombie state to be checked
2017 * upon return from down() in pfm_handle_work().
2019 * We cannot use the ZOMBIE state, because it is checked
2020 * by pfm_load_regs() which is called upon wakeup from down().
2021 * In such case, it would free the context and then we would
2022 * return to pfm_handle_work() which would access the
2023 * stale context. Instead, we set a flag invisible to pfm_load_regs()
2024 * but visible to pfm_handle_work().
2026 * For some window of time, we have a zombie context with
2027 * ctx_state = MASKED and not ZOMBIE
2029 ctx->ctx_fl_going_zombie = 1;
2032 * force task to wake up from MASKED state
2034 complete(&ctx->ctx_restart_done);
2036 DPRINT(("waking up ctx_state=%d\n", state));
2039 * put ourself to sleep waiting for the other
2040 * task to report completion
2042 * the context is protected by mutex, therefore there
2043 * is no risk of being notified of completion before
2044 * begin actually on the waitq.
2046 set_current_state(TASK_INTERRUPTIBLE);
2047 add_wait_queue(&ctx->ctx_zombieq, &wait);
2049 UNPROTECT_CTX(ctx, flags);
2052 * XXX: check for signals :
2053 * - ok for explicit close
2054 * - not ok when coming from exit_files()
2059 PROTECT_CTX(ctx, flags);
2062 remove_wait_queue(&ctx->ctx_zombieq, &wait);
2063 set_current_state(TASK_RUNNING);
2066 * context is unloaded at this point
2068 DPRINT(("after zombie wakeup ctx_state=%d for\n", state));
2070 else if (task != current) {
2073 * switch context to zombie state
2075 ctx->ctx_state = PFM_CTX_ZOMBIE;
2077 DPRINT(("zombie ctx for [%d]\n", task->pid));
2079 * cannot free the context on the spot. deferred until
2080 * the task notices the ZOMBIE state
2084 pfm_context_unload(ctx, NULL, 0, regs);
2089 /* reload state, may have changed during opening of critical section */
2090 state = ctx->ctx_state;
2093 * the context is still attached to a task (possibly current)
2094 * we cannot destroy it right now
2098 * we must free the sampling buffer right here because
2099 * we cannot rely on it being cleaned up later by the
2100 * monitored task. It is not possible to free vmalloc'ed
2101 * memory in pfm_load_regs(). Instead, we remove the buffer
2102 * now. should there be subsequent PMU overflow originally
2103 * meant for sampling, the will be converted to spurious
2104 * and that's fine because the monitoring tools is gone anyway.
2106 if (ctx->ctx_smpl_hdr) {
2107 smpl_buf_addr = ctx->ctx_smpl_hdr;
2108 smpl_buf_size = ctx->ctx_smpl_size;
2109 /* no more sampling */
2110 ctx->ctx_smpl_hdr = NULL;
2111 ctx->ctx_fl_is_sampling = 0;
2114 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2120 if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt);
2123 * UNLOADED that the session has already been unreserved.
2125 if (state == PFM_CTX_ZOMBIE) {
2126 pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu);
2130 * disconnect file descriptor from context must be done
2133 filp->private_data = NULL;
2136 * if we free on the spot, the context is now completely unreacheable
2137 * from the callers side. The monitored task side is also cut, so we
2140 * If we have a deferred free, only the caller side is disconnected.
2142 UNPROTECT_CTX(ctx, flags);
2145 * All memory free operations (especially for vmalloc'ed memory)
2146 * MUST be done with interrupts ENABLED.
2148 if (smpl_buf_addr) pfm_rvfree(smpl_buf_addr, smpl_buf_size);
2151 * return the memory used by the context
2153 if (free_possible) pfm_context_free(ctx);
2159 pfm_no_open(struct inode *irrelevant, struct file *dontcare)
2161 DPRINT(("pfm_no_open called\n"));
2167 static const struct file_operations pfm_file_ops = {
2168 .llseek = no_llseek,
2173 .open = pfm_no_open, /* special open code to disallow open via /proc */
2174 .fasync = pfm_fasync,
2175 .release = pfm_close,
2180 pfmfs_delete_dentry(struct dentry *dentry)
2185 static struct dentry_operations pfmfs_dentry_operations = {
2186 .d_delete = pfmfs_delete_dentry,
2191 pfm_alloc_fd(struct file **cfile)
2194 struct file *file = NULL;
2195 struct inode * inode;
2199 fd = get_unused_fd();
2200 if (fd < 0) return -ENFILE;
2204 file = get_empty_filp();
2205 if (!file) goto out;
2208 * allocate a new inode
2210 inode = new_inode(pfmfs_mnt->mnt_sb);
2211 if (!inode) goto out;
2213 DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode));
2215 inode->i_mode = S_IFCHR|S_IRUGO;
2216 inode->i_uid = current->fsuid;
2217 inode->i_gid = current->fsgid;
2219 sprintf(name, "[%lu]", inode->i_ino);
2221 this.len = strlen(name);
2222 this.hash = inode->i_ino;
2227 * allocate a new dcache entry
2229 file->f_path.dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this);
2230 if (!file->f_path.dentry) goto out;
2232 file->f_path.dentry->d_op = &pfmfs_dentry_operations;
2234 d_add(file->f_path.dentry, inode);
2235 file->f_path.mnt = mntget(pfmfs_mnt);
2236 file->f_mapping = inode->i_mapping;
2238 file->f_op = &pfm_file_ops;
2239 file->f_mode = FMODE_READ;
2240 file->f_flags = O_RDONLY;
2244 * may have to delay until context is attached?
2246 fd_install(fd, file);
2249 * the file structure we will use
2255 if (file) put_filp(file);
2261 pfm_free_fd(int fd, struct file *file)
2263 struct files_struct *files = current->files;
2264 struct fdtable *fdt;
2267 * there ie no fd_uninstall(), so we do it here
2269 spin_lock(&files->file_lock);
2270 fdt = files_fdtable(files);
2271 rcu_assign_pointer(fdt->fd[fd], NULL);
2272 spin_unlock(&files->file_lock);
2280 pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size)
2282 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size));
2285 unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT;
2288 if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY))
2299 * allocate a sampling buffer and remaps it into the user address space of the task
2302 pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr)
2304 struct mm_struct *mm = task->mm;
2305 struct vm_area_struct *vma = NULL;
2311 * the fixed header + requested size and align to page boundary
2313 size = PAGE_ALIGN(rsize);
2315 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size));
2318 * check requested size to avoid Denial-of-service attacks
2319 * XXX: may have to refine this test
2320 * Check against address space limit.
2322 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2325 if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur)
2329 * We do the easy to undo allocations first.
2331 * pfm_rvmalloc(), clears the buffer, so there is no leak
2333 smpl_buf = pfm_rvmalloc(size);
2334 if (smpl_buf == NULL) {
2335 DPRINT(("Can't allocate sampling buffer\n"));
2339 DPRINT(("smpl_buf @%p\n", smpl_buf));
2342 vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2344 DPRINT(("Cannot allocate vma\n"));
2349 * partially initialize the vma for the sampling buffer
2352 vma->vm_file = filp;
2353 vma->vm_flags = VM_READ| VM_MAYREAD |VM_RESERVED;
2354 vma->vm_page_prot = PAGE_READONLY; /* XXX may need to change */
2357 * Now we have everything we need and we can initialize
2358 * and connect all the data structures
2361 ctx->ctx_smpl_hdr = smpl_buf;
2362 ctx->ctx_smpl_size = size; /* aligned size */
2365 * Let's do the difficult operations next.
2367 * now we atomically find some area in the address space and
2368 * remap the buffer in it.
2370 down_write(&task->mm->mmap_sem);
2372 /* find some free area in address space, must have mmap sem held */
2373 vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0);
2374 if (vma->vm_start == 0UL) {
2375 DPRINT(("Cannot find unmapped area for size %ld\n", size));
2376 up_write(&task->mm->mmap_sem);
2379 vma->vm_end = vma->vm_start + size;
2380 vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2382 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start));
2384 /* can only be applied to current task, need to have the mm semaphore held when called */
2385 if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) {
2386 DPRINT(("Can't remap buffer\n"));
2387 up_write(&task->mm->mmap_sem);
2394 * now insert the vma in the vm list for the process, must be
2395 * done with mmap lock held
2397 insert_vm_struct(mm, vma);
2399 mm->total_vm += size >> PAGE_SHIFT;
2400 vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file,
2402 up_write(&task->mm->mmap_sem);
2405 * keep track of user level virtual address
2407 ctx->ctx_smpl_vaddr = (void *)vma->vm_start;
2408 *(unsigned long *)user_vaddr = vma->vm_start;
2413 kmem_cache_free(vm_area_cachep, vma);
2415 pfm_rvfree(smpl_buf, size);
2421 * XXX: do something better here
2424 pfm_bad_permissions(struct task_struct *task)
2426 /* inspired by ptrace_attach() */
2427 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2436 return ((current->uid != task->euid)
2437 || (current->uid != task->suid)
2438 || (current->uid != task->uid)
2439 || (current->gid != task->egid)
2440 || (current->gid != task->sgid)
2441 || (current->gid != task->gid)) && !capable(CAP_SYS_PTRACE);
2445 pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx)
2451 ctx_flags = pfx->ctx_flags;
2453 if (ctx_flags & PFM_FL_SYSTEM_WIDE) {
2456 * cannot block in this mode
2458 if (ctx_flags & PFM_FL_NOTIFY_BLOCK) {
2459 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2464 /* probably more to add here */
2470 pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags,
2471 unsigned int cpu, pfarg_context_t *arg)
2473 pfm_buffer_fmt_t *fmt = NULL;
2474 unsigned long size = 0UL;
2476 void *fmt_arg = NULL;
2478 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2480 /* invoke and lock buffer format, if found */
2481 fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id);
2483 DPRINT(("[%d] cannot find buffer format\n", task->pid));
2488 * buffer argument MUST be contiguous to pfarg_context_t
2490 if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg);
2492 ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg);
2494 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task->pid, ctx_flags, cpu, fmt_arg, ret));
2496 if (ret) goto error;
2498 /* link buffer format and context */
2499 ctx->ctx_buf_fmt = fmt;
2502 * check if buffer format wants to use perfmon buffer allocation/mapping service
2504 ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size);
2505 if (ret) goto error;
2509 * buffer is always remapped into the caller's address space
2511 ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr);
2512 if (ret) goto error;
2514 /* keep track of user address of buffer */
2515 arg->ctx_smpl_vaddr = uaddr;
2517 ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg);
2524 pfm_reset_pmu_state(pfm_context_t *ctx)
2529 * install reset values for PMC.
2531 for (i=1; PMC_IS_LAST(i) == 0; i++) {
2532 if (PMC_IS_IMPL(i) == 0) continue;
2533 ctx->ctx_pmcs[i] = PMC_DFL_VAL(i);
2534 DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i]));
2537 * PMD registers are set to 0UL when the context in memset()
2541 * On context switched restore, we must restore ALL pmc and ALL pmd even
2542 * when they are not actively used by the task. In UP, the incoming process
2543 * may otherwise pick up left over PMC, PMD state from the previous process.
2544 * As opposed to PMD, stale PMC can cause harm to the incoming
2545 * process because they may change what is being measured.
2546 * Therefore, we must systematically reinstall the entire
2547 * PMC state. In SMP, the same thing is possible on the
2548 * same CPU but also on between 2 CPUs.
2550 * The problem with PMD is information leaking especially
2551 * to user level when psr.sp=0
2553 * There is unfortunately no easy way to avoid this problem
2554 * on either UP or SMP. This definitively slows down the
2555 * pfm_load_regs() function.
2559 * bitmask of all PMCs accessible to this context
2561 * PMC0 is treated differently.
2563 ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1;
2566 * bitmask of all PMDs that are accesible to this context
2568 ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0];
2570 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0]));
2573 * useful in case of re-enable after disable
2575 ctx->ctx_used_ibrs[0] = 0UL;
2576 ctx->ctx_used_dbrs[0] = 0UL;
2580 pfm_ctx_getsize(void *arg, size_t *sz)
2582 pfarg_context_t *req = (pfarg_context_t *)arg;
2583 pfm_buffer_fmt_t *fmt;
2587 if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0;
2589 fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id);
2591 DPRINT(("cannot find buffer format\n"));
2594 /* get just enough to copy in user parameters */
2595 *sz = fmt->fmt_arg_size;
2596 DPRINT(("arg_size=%lu\n", *sz));
2604 * cannot attach if :
2606 * - task not owned by caller
2607 * - task incompatible with context mode
2610 pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task)
2613 * no kernel task or task not owner by caller
2615 if (task->mm == NULL) {
2616 DPRINT(("task [%d] has not memory context (kernel thread)\n", task->pid));
2619 if (pfm_bad_permissions(task)) {
2620 DPRINT(("no permission to attach to [%d]\n", task->pid));
2624 * cannot block in self-monitoring mode
2626 if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) {
2627 DPRINT(("cannot load a blocking context on self for [%d]\n", task->pid));
2631 if (task->exit_state == EXIT_ZOMBIE) {
2632 DPRINT(("cannot attach to zombie task [%d]\n", task->pid));
2637 * always ok for self
2639 if (task == current) return 0;
2641 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
2642 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task->pid, task->state));
2646 * make sure the task is off any CPU
2648 wait_task_inactive(task);
2650 /* more to come... */
2656 pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task)
2658 struct task_struct *p = current;
2661 /* XXX: need to add more checks here */
2662 if (pid < 2) return -EPERM;
2664 if (pid != current->pid) {
2666 read_lock(&tasklist_lock);
2668 p = find_task_by_pid(pid);
2670 /* make sure task cannot go away while we operate on it */
2671 if (p) get_task_struct(p);
2673 read_unlock(&tasklist_lock);
2675 if (p == NULL) return -ESRCH;
2678 ret = pfm_task_incompatible(ctx, p);
2681 } else if (p != current) {
2690 pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2692 pfarg_context_t *req = (pfarg_context_t *)arg;
2697 /* let's check the arguments first */
2698 ret = pfarg_is_sane(current, req);
2699 if (ret < 0) return ret;
2701 ctx_flags = req->ctx_flags;
2705 ctx = pfm_context_alloc();
2706 if (!ctx) goto error;
2708 ret = pfm_alloc_fd(&filp);
2709 if (ret < 0) goto error_file;
2711 req->ctx_fd = ctx->ctx_fd = ret;
2714 * attach context to file
2716 filp->private_data = ctx;
2719 * does the user want to sample?
2721 if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) {
2722 ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req);
2723 if (ret) goto buffer_error;
2727 * init context protection lock
2729 spin_lock_init(&ctx->ctx_lock);
2732 * context is unloaded
2734 ctx->ctx_state = PFM_CTX_UNLOADED;
2737 * initialization of context's flags
2739 ctx->ctx_fl_block = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0;
2740 ctx->ctx_fl_system = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0;
2741 ctx->ctx_fl_is_sampling = ctx->ctx_buf_fmt ? 1 : 0; /* assume record() is defined */
2742 ctx->ctx_fl_no_msg = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0;
2744 * will move to set properties
2745 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
2749 * init restart semaphore to locked
2751 init_completion(&ctx->ctx_restart_done);
2754 * activation is used in SMP only
2756 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
2757 SET_LAST_CPU(ctx, -1);
2760 * initialize notification message queue
2762 ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0;
2763 init_waitqueue_head(&ctx->ctx_msgq_wait);
2764 init_waitqueue_head(&ctx->ctx_zombieq);
2766 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n",
2771 ctx->ctx_fl_excl_idle,
2776 * initialize soft PMU state
2778 pfm_reset_pmu_state(ctx);
2783 pfm_free_fd(ctx->ctx_fd, filp);
2785 if (ctx->ctx_buf_fmt) {
2786 pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs);
2789 pfm_context_free(ctx);
2795 static inline unsigned long
2796 pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset)
2798 unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset;
2799 unsigned long new_seed, old_seed = reg->seed, mask = reg->mask;
2800 extern unsigned long carta_random32 (unsigned long seed);
2802 if (reg->flags & PFM_REGFL_RANDOM) {
2803 new_seed = carta_random32(old_seed);
2804 val -= (old_seed & mask); /* counter values are negative numbers! */
2805 if ((mask >> 32) != 0)
2806 /* construct a full 64-bit random value: */
2807 new_seed |= carta_random32(old_seed >> 32) << 32;
2808 reg->seed = new_seed;
2815 pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2817 unsigned long mask = ovfl_regs[0];
2818 unsigned long reset_others = 0UL;
2823 * now restore reset value on sampling overflowed counters
2825 mask >>= PMU_FIRST_COUNTER;
2826 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2828 if ((mask & 0x1UL) == 0UL) continue;
2830 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2831 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2833 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2837 * Now take care of resetting the other registers
2839 for(i = 0; reset_others; i++, reset_others >>= 1) {
2841 if ((reset_others & 0x1) == 0) continue;
2843 ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2845 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2846 is_long_reset ? "long" : "short", i, val));
2851 pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset)
2853 unsigned long mask = ovfl_regs[0];
2854 unsigned long reset_others = 0UL;
2858 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset));
2860 if (ctx->ctx_state == PFM_CTX_MASKED) {
2861 pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset);
2866 * now restore reset value on sampling overflowed counters
2868 mask >>= PMU_FIRST_COUNTER;
2869 for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) {
2871 if ((mask & 0x1UL) == 0UL) continue;
2873 val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset);
2874 reset_others |= ctx->ctx_pmds[i].reset_pmds[0];
2876 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val));
2878 pfm_write_soft_counter(ctx, i, val);
2882 * Now take care of resetting the other registers
2884 for(i = 0; reset_others; i++, reset_others >>= 1) {
2886 if ((reset_others & 0x1) == 0) continue;
2888 val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset);
2890 if (PMD_IS_COUNTING(i)) {
2891 pfm_write_soft_counter(ctx, i, val);
2893 ia64_set_pmd(i, val);
2895 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2896 is_long_reset ? "long" : "short", i, val));
2902 pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
2904 struct task_struct *task;
2905 pfarg_reg_t *req = (pfarg_reg_t *)arg;
2906 unsigned long value, pmc_pm;
2907 unsigned long smpl_pmds, reset_pmds, impl_pmds;
2908 unsigned int cnum, reg_flags, flags, pmc_type;
2909 int i, can_access_pmu = 0, is_loaded, is_system, expert_mode;
2910 int is_monitor, is_counting, state;
2912 pfm_reg_check_t wr_func;
2913 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2915 state = ctx->ctx_state;
2916 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
2917 is_system = ctx->ctx_fl_system;
2918 task = ctx->ctx_task;
2919 impl_pmds = pmu_conf->impl_pmds[0];
2921 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
2925 * In system wide and when the context is loaded, access can only happen
2926 * when the caller is running on the CPU being monitored by the session.
2927 * It does not have to be the owner (ctx_task) of the context per se.
2929 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
2930 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
2933 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
2935 expert_mode = pfm_sysctl.expert_mode;
2937 for (i = 0; i < count; i++, req++) {
2939 cnum = req->reg_num;
2940 reg_flags = req->reg_flags;
2941 value = req->reg_value;
2942 smpl_pmds = req->reg_smpl_pmds[0];
2943 reset_pmds = req->reg_reset_pmds[0];
2947 if (cnum >= PMU_MAX_PMCS) {
2948 DPRINT(("pmc%u is invalid\n", cnum));
2952 pmc_type = pmu_conf->pmc_desc[cnum].type;
2953 pmc_pm = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1;
2954 is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0;
2955 is_monitor = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0;
2958 * we reject all non implemented PMC as well
2959 * as attempts to modify PMC[0-3] which are used
2960 * as status registers by the PMU
2962 if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) {
2963 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type));
2966 wr_func = pmu_conf->pmc_desc[cnum].write_check;
2968 * If the PMC is a monitor, then if the value is not the default:
2969 * - system-wide session: PMCx.pm=1 (privileged monitor)
2970 * - per-task : PMCx.pm=0 (user monitor)
2972 if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) {
2973 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2982 * enforce generation of overflow interrupt. Necessary on all
2985 value |= 1 << PMU_PMC_OI;
2987 if (reg_flags & PFM_REGFL_OVFL_NOTIFY) {
2988 flags |= PFM_REGFL_OVFL_NOTIFY;
2991 if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM;
2993 /* verify validity of smpl_pmds */
2994 if ((smpl_pmds & impl_pmds) != smpl_pmds) {
2995 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum));
2999 /* verify validity of reset_pmds */
3000 if ((reset_pmds & impl_pmds) != reset_pmds) {
3001 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum));
3005 if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) {
3006 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum));
3009 /* eventid on non-counting monitors are ignored */
3013 * execute write checker, if any
3015 if (likely(expert_mode == 0 && wr_func)) {
3016 ret = (*wr_func)(task, ctx, cnum, &value, regs);
3017 if (ret) goto error;
3022 * no error on this register
3024 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3027 * Now we commit the changes to the software state
3031 * update overflow information
3035 * full flag update each time a register is programmed
3037 ctx->ctx_pmds[cnum].flags = flags;
3039 ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds;
3040 ctx->ctx_pmds[cnum].smpl_pmds[0] = smpl_pmds;
3041 ctx->ctx_pmds[cnum].eventid = req->reg_smpl_eventid;
3044 * Mark all PMDS to be accessed as used.
3046 * We do not keep track of PMC because we have to
3047 * systematically restore ALL of them.
3049 * We do not update the used_monitors mask, because
3050 * if we have not programmed them, then will be in
3051 * a quiescent state, therefore we will not need to
3052 * mask/restore then when context is MASKED.
3054 CTX_USED_PMD(ctx, reset_pmds);
3055 CTX_USED_PMD(ctx, smpl_pmds);
3057 * make sure we do not try to reset on
3058 * restart because we have established new values
3060 if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3063 * Needed in case the user does not initialize the equivalent
3064 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
3065 * possible leak here.
3067 CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]);
3070 * keep track of the monitor PMC that we are using.
3071 * we save the value of the pmc in ctx_pmcs[] and if
3072 * the monitoring is not stopped for the context we also
3073 * place it in the saved state area so that it will be
3074 * picked up later by the context switch code.
3076 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
3078 * The value in th_pmcs[] may be modified on overflow, i.e., when
3079 * monitoring needs to be stopped.
3081 if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum);
3084 * update context state
3086 ctx->ctx_pmcs[cnum] = value;
3090 * write thread state
3092 if (is_system == 0) ctx->th_pmcs[cnum] = value;
3095 * write hardware register if we can
3097 if (can_access_pmu) {
3098 ia64_set_pmc(cnum, value);
3103 * per-task SMP only here
3105 * we are guaranteed that the task is not running on the other CPU,
3106 * we indicate that this PMD will need to be reloaded if the task
3107 * is rescheduled on the CPU it ran last on.
3109 ctx->ctx_reload_pmcs[0] |= 1UL << cnum;
3114 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
3120 ctx->ctx_all_pmcs[0],
3121 ctx->ctx_used_pmds[0],
3122 ctx->ctx_pmds[cnum].eventid,
3125 ctx->ctx_reload_pmcs[0],
3126 ctx->ctx_used_monitors[0],
3127 ctx->ctx_ovfl_regs[0]));
3131 * make sure the changes are visible
3133 if (can_access_pmu) ia64_srlz_d();
3137 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3142 pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3144 struct task_struct *task;
3145 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3146 unsigned long value, hw_value, ovfl_mask;
3148 int i, can_access_pmu = 0, state;
3149 int is_counting, is_loaded, is_system, expert_mode;
3151 pfm_reg_check_t wr_func;
3154 state = ctx->ctx_state;
3155 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3156 is_system = ctx->ctx_fl_system;
3157 ovfl_mask = pmu_conf->ovfl_val;
3158 task = ctx->ctx_task;
3160 if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL;
3163 * on both UP and SMP, we can only write to the PMC when the task is
3164 * the owner of the local PMU.
3166 if (likely(is_loaded)) {
3168 * In system wide and when the context is loaded, access can only happen
3169 * when the caller is running on the CPU being monitored by the session.
3170 * It does not have to be the owner (ctx_task) of the context per se.
3172 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3173 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3176 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3178 expert_mode = pfm_sysctl.expert_mode;
3180 for (i = 0; i < count; i++, req++) {
3182 cnum = req->reg_num;
3183 value = req->reg_value;
3185 if (!PMD_IS_IMPL(cnum)) {
3186 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum));
3189 is_counting = PMD_IS_COUNTING(cnum);
3190 wr_func = pmu_conf->pmd_desc[cnum].write_check;
3193 * execute write checker, if any
3195 if (unlikely(expert_mode == 0 && wr_func)) {
3196 unsigned long v = value;
3198 ret = (*wr_func)(task, ctx, cnum, &v, regs);
3199 if (ret) goto abort_mission;
3206 * no error on this register
3208 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
3211 * now commit changes to software state
3216 * update virtualized (64bits) counter
3220 * write context state
3222 ctx->ctx_pmds[cnum].lval = value;
3225 * when context is load we use the split value
3228 hw_value = value & ovfl_mask;
3229 value = value & ~ovfl_mask;
3233 * update reset values (not just for counters)
3235 ctx->ctx_pmds[cnum].long_reset = req->reg_long_reset;
3236 ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset;
3239 * update randomization parameters (not just for counters)
3241 ctx->ctx_pmds[cnum].seed = req->reg_random_seed;
3242 ctx->ctx_pmds[cnum].mask = req->reg_random_mask;
3245 * update context value
3247 ctx->ctx_pmds[cnum].val = value;
3250 * Keep track of what we use
3252 * We do not keep track of PMC because we have to
3253 * systematically restore ALL of them.
3255 CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum));
3258 * mark this PMD register used as well
3260 CTX_USED_PMD(ctx, RDEP(cnum));
3263 * make sure we do not try to reset on
3264 * restart because we have established new values
3266 if (is_counting && state == PFM_CTX_MASKED) {
3267 ctx->ctx_ovfl_regs[0] &= ~1UL << cnum;
3272 * write thread state
3274 if (is_system == 0) ctx->th_pmds[cnum] = hw_value;
3277 * write hardware register if we can
3279 if (can_access_pmu) {
3280 ia64_set_pmd(cnum, hw_value);
3284 * we are guaranteed that the task is not running on the other CPU,
3285 * we indicate that this PMD will need to be reloaded if the task
3286 * is rescheduled on the CPU it ran last on.
3288 ctx->ctx_reload_pmds[0] |= 1UL << cnum;
3293 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3294 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3300 ctx->ctx_pmds[cnum].val,
3301 ctx->ctx_pmds[cnum].short_reset,
3302 ctx->ctx_pmds[cnum].long_reset,
3303 PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N',
3304 ctx->ctx_pmds[cnum].seed,
3305 ctx->ctx_pmds[cnum].mask,
3306 ctx->ctx_used_pmds[0],
3307 ctx->ctx_pmds[cnum].reset_pmds[0],
3308 ctx->ctx_reload_pmds[0],
3309 ctx->ctx_all_pmds[0],
3310 ctx->ctx_ovfl_regs[0]));
3314 * make changes visible
3316 if (can_access_pmu) ia64_srlz_d();
3322 * for now, we have only one possibility for error
3324 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3329 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3330 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3331 * interrupt is delivered during the call, it will be kept pending until we leave, making
3332 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3333 * guaranteed to return consistent data to the user, it may simply be old. It is not
3334 * trivial to treat the overflow while inside the call because you may end up in
3335 * some module sampling buffer code causing deadlocks.
3338 pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3340 struct task_struct *task;
3341 unsigned long val = 0UL, lval, ovfl_mask, sval;
3342 pfarg_reg_t *req = (pfarg_reg_t *)arg;
3343 unsigned int cnum, reg_flags = 0;
3344 int i, can_access_pmu = 0, state;
3345 int is_loaded, is_system, is_counting, expert_mode;
3347 pfm_reg_check_t rd_func;
3350 * access is possible when loaded only for
3351 * self-monitoring tasks or in UP mode
3354 state = ctx->ctx_state;
3355 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3356 is_system = ctx->ctx_fl_system;
3357 ovfl_mask = pmu_conf->ovfl_val;
3358 task = ctx->ctx_task;
3360 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3362 if (likely(is_loaded)) {
3364 * In system wide and when the context is loaded, access can only happen
3365 * when the caller is running on the CPU being monitored by the session.
3366 * It does not have to be the owner (ctx_task) of the context per se.
3368 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3369 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3373 * this can be true when not self-monitoring only in UP
3375 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3377 if (can_access_pmu) ia64_srlz_d();
3379 expert_mode = pfm_sysctl.expert_mode;
3381 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3387 * on both UP and SMP, we can only read the PMD from the hardware register when
3388 * the task is the owner of the local PMU.
3391 for (i = 0; i < count; i++, req++) {
3393 cnum = req->reg_num;
3394 reg_flags = req->reg_flags;
3396 if (unlikely(!PMD_IS_IMPL(cnum))) goto error;
3398 * we can only read the register that we use. That includes
3399 * the one we explicitely initialize AND the one we want included
3400 * in the sampling buffer (smpl_regs).
3402 * Having this restriction allows optimization in the ctxsw routine
3403 * without compromising security (leaks)
3405 if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error;
3407 sval = ctx->ctx_pmds[cnum].val;
3408 lval = ctx->ctx_pmds[cnum].lval;
3409 is_counting = PMD_IS_COUNTING(cnum);
3412 * If the task is not the current one, then we check if the
3413 * PMU state is still in the local live register due to lazy ctxsw.
3414 * If true, then we read directly from the registers.
3416 if (can_access_pmu){
3417 val = ia64_get_pmd(cnum);
3420 * context has been saved
3421 * if context is zombie, then task does not exist anymore.
3422 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3424 val = is_loaded ? ctx->th_pmds[cnum] : 0UL;
3426 rd_func = pmu_conf->pmd_desc[cnum].read_check;
3430 * XXX: need to check for overflow when loaded
3437 * execute read checker, if any
3439 if (unlikely(expert_mode == 0 && rd_func)) {
3440 unsigned long v = val;
3441 ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs);
3442 if (ret) goto error;
3447 PFM_REG_RETFLAG_SET(reg_flags, 0);
3449 DPRINT(("pmd[%u]=0x%lx\n", cnum, val));
3452 * update register return value, abort all if problem during copy.
3453 * we only modify the reg_flags field. no check mode is fine because
3454 * access has been verified upfront in sys_perfmonctl().
3456 req->reg_value = val;
3457 req->reg_flags = reg_flags;
3458 req->reg_last_reset_val = lval;
3464 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
3469 pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3473 if (req == NULL) return -EINVAL;
3475 ctx = GET_PMU_CTX();
3477 if (ctx == NULL) return -EINVAL;
3480 * for now limit to current task, which is enough when calling
3481 * from overflow handler
3483 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3485 return pfm_write_pmcs(ctx, req, nreq, regs);
3487 EXPORT_SYMBOL(pfm_mod_write_pmcs);
3490 pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3494 if (req == NULL) return -EINVAL;
3496 ctx = GET_PMU_CTX();
3498 if (ctx == NULL) return -EINVAL;
3501 * for now limit to current task, which is enough when calling
3502 * from overflow handler
3504 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3506 return pfm_read_pmds(ctx, req, nreq, regs);
3508 EXPORT_SYMBOL(pfm_mod_read_pmds);
3511 * Only call this function when a process it trying to
3512 * write the debug registers (reading is always allowed)
3515 pfm_use_debug_registers(struct task_struct *task)
3517 pfm_context_t *ctx = task->thread.pfm_context;
3518 unsigned long flags;
3521 if (pmu_conf->use_rr_dbregs == 0) return 0;
3523 DPRINT(("called for [%d]\n", task->pid));
3528 if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0;
3531 * Even on SMP, we do not need to use an atomic here because
3532 * the only way in is via ptrace() and this is possible only when the
3533 * process is stopped. Even in the case where the ctxsw out is not totally
3534 * completed by the time we come here, there is no way the 'stopped' process
3535 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3536 * So this is always safe.
3538 if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1;
3543 * We cannot allow setting breakpoints when system wide monitoring
3544 * sessions are using the debug registers.
3546 if (pfm_sessions.pfs_sys_use_dbregs> 0)
3549 pfm_sessions.pfs_ptrace_use_dbregs++;
3551 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3552 pfm_sessions.pfs_ptrace_use_dbregs,
3553 pfm_sessions.pfs_sys_use_dbregs,
3562 * This function is called for every task that exits with the
3563 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3564 * able to use the debug registers for debugging purposes via
3565 * ptrace(). Therefore we know it was not using them for
3566 * perfmormance monitoring, so we only decrement the number
3567 * of "ptraced" debug register users to keep the count up to date
3570 pfm_release_debug_registers(struct task_struct *task)
3572 unsigned long flags;
3575 if (pmu_conf->use_rr_dbregs == 0) return 0;
3578 if (pfm_sessions.pfs_ptrace_use_dbregs == 0) {
3579 printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task->pid);
3582 pfm_sessions.pfs_ptrace_use_dbregs--;
3591 pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3593 struct task_struct *task;
3594 pfm_buffer_fmt_t *fmt;
3595 pfm_ovfl_ctrl_t rst_ctrl;
3596 int state, is_system;
3599 state = ctx->ctx_state;
3600 fmt = ctx->ctx_buf_fmt;
3601 is_system = ctx->ctx_fl_system;
3602 task = PFM_CTX_TASK(ctx);
3605 case PFM_CTX_MASKED:
3607 case PFM_CTX_LOADED:
3608 if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break;
3610 case PFM_CTX_UNLOADED:
3611 case PFM_CTX_ZOMBIE:
3612 DPRINT(("invalid state=%d\n", state));
3615 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state));
3620 * In system wide and when the context is loaded, access can only happen
3621 * when the caller is running on the CPU being monitored by the session.
3622 * It does not have to be the owner (ctx_task) of the context per se.
3624 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
3625 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3630 if (unlikely(task == NULL)) {
3631 printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", current->pid);
3635 if (task == current || is_system) {
3637 fmt = ctx->ctx_buf_fmt;
3639 DPRINT(("restarting self %d ovfl=0x%lx\n",
3641 ctx->ctx_ovfl_regs[0]));
3643 if (CTX_HAS_SMPL(ctx)) {
3645 prefetch(ctx->ctx_smpl_hdr);
3647 rst_ctrl.bits.mask_monitoring = 0;
3648 rst_ctrl.bits.reset_ovfl_pmds = 0;
3650 if (state == PFM_CTX_LOADED)
3651 ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3653 ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
3655 rst_ctrl.bits.mask_monitoring = 0;
3656 rst_ctrl.bits.reset_ovfl_pmds = 1;
3660 if (rst_ctrl.bits.reset_ovfl_pmds)
3661 pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET);
3663 if (rst_ctrl.bits.mask_monitoring == 0) {
3664 DPRINT(("resuming monitoring for [%d]\n", task->pid));
3666 if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task);
3668 DPRINT(("keeping monitoring stopped for [%d]\n", task->pid));
3670 // cannot use pfm_stop_monitoring(task, regs);
3674 * clear overflowed PMD mask to remove any stale information
3676 ctx->ctx_ovfl_regs[0] = 0UL;
3679 * back to LOADED state
3681 ctx->ctx_state = PFM_CTX_LOADED;
3684 * XXX: not really useful for self monitoring
3686 ctx->ctx_fl_can_restart = 0;
3692 * restart another task
3696 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3697 * one is seen by the task.
3699 if (state == PFM_CTX_MASKED) {
3700 if (ctx->ctx_fl_can_restart == 0) return -EINVAL;
3702 * will prevent subsequent restart before this one is
3703 * seen by other task
3705 ctx->ctx_fl_can_restart = 0;
3709 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3710 * the task is blocked or on its way to block. That's the normal
3711 * restart path. If the monitoring is not masked, then the task
3712 * can be actively monitoring and we cannot directly intervene.
3713 * Therefore we use the trap mechanism to catch the task and
3714 * force it to reset the buffer/reset PMDs.
3716 * if non-blocking, then we ensure that the task will go into
3717 * pfm_handle_work() before returning to user mode.
3719 * We cannot explicitely reset another task, it MUST always
3720 * be done by the task itself. This works for system wide because
3721 * the tool that is controlling the session is logically doing
3722 * "self-monitoring".
3724 if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) {
3725 DPRINT(("unblocking [%d] \n", task->pid));
3726 complete(&ctx->ctx_restart_done);
3728 DPRINT(("[%d] armed exit trap\n", task->pid));
3730 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET;
3732 PFM_SET_WORK_PENDING(task, 1);
3734 pfm_set_task_notify(task);
3737 * XXX: send reschedule if task runs on another CPU
3744 pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3746 unsigned int m = *(unsigned int *)arg;
3748 pfm_sysctl.debug = m == 0 ? 0 : 1;
3750 printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off");
3753 memset(pfm_stats, 0, sizeof(pfm_stats));
3754 for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL;
3760 * arg can be NULL and count can be zero for this function
3763 pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3765 struct thread_struct *thread = NULL;
3766 struct task_struct *task;
3767 pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg;
3768 unsigned long flags;
3773 int i, can_access_pmu = 0;
3774 int is_system, is_loaded;
3776 if (pmu_conf->use_rr_dbregs == 0) return -EINVAL;
3778 state = ctx->ctx_state;
3779 is_loaded = state == PFM_CTX_LOADED ? 1 : 0;
3780 is_system = ctx->ctx_fl_system;
3781 task = ctx->ctx_task;
3783 if (state == PFM_CTX_ZOMBIE) return -EINVAL;
3786 * on both UP and SMP, we can only write to the PMC when the task is
3787 * the owner of the local PMU.
3790 thread = &task->thread;
3792 * In system wide and when the context is loaded, access can only happen
3793 * when the caller is running on the CPU being monitored by the session.
3794 * It does not have to be the owner (ctx_task) of the context per se.
3796 if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) {
3797 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
3800 can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0;
3804 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3805 * ensuring that no real breakpoint can be installed via this call.
3807 * IMPORTANT: regs can be NULL in this function
3810 first_time = ctx->ctx_fl_using_dbreg == 0;
3813 * don't bother if we are loaded and task is being debugged
3815 if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) {
3816 DPRINT(("debug registers already in use for [%d]\n", task->pid));
3821 * check for debug registers in system wide mode
3823 * If though a check is done in pfm_context_load(),
3824 * we must repeat it here, in case the registers are
3825 * written after the context is loaded
3830 if (first_time && is_system) {
3831 if (pfm_sessions.pfs_ptrace_use_dbregs)
3834 pfm_sessions.pfs_sys_use_dbregs++;
3839 if (ret != 0) return ret;
3842 * mark ourself as user of the debug registers for
3845 ctx->ctx_fl_using_dbreg = 1;
3848 * clear hardware registers to make sure we don't
3849 * pick up stale state.
3851 * for a system wide session, we do not use
3852 * thread.dbr, thread.ibr because this process
3853 * never leaves the current CPU and the state
3854 * is shared by all processes running on it
3856 if (first_time && can_access_pmu) {
3857 DPRINT(("[%d] clearing ibrs, dbrs\n", task->pid));
3858 for (i=0; i < pmu_conf->num_ibrs; i++) {
3859 ia64_set_ibr(i, 0UL);
3860 ia64_dv_serialize_instruction();
3863 for (i=0; i < pmu_conf->num_dbrs; i++) {
3864 ia64_set_dbr(i, 0UL);
3865 ia64_dv_serialize_data();
3871 * Now install the values into the registers
3873 for (i = 0; i < count; i++, req++) {
3875 rnum = req->dbreg_num;
3876 dbreg.val = req->dbreg_value;
3880 if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) {
3881 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3882 rnum, dbreg.val, mode, i, count));
3888 * make sure we do not install enabled breakpoint
3891 if (mode == PFM_CODE_RR)
3892 dbreg.ibr.ibr_x = 0;
3894 dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0;
3897 PFM_REG_RETFLAG_SET(req->dbreg_flags, 0);
3900 * Debug registers, just like PMC, can only be modified
3901 * by a kernel call. Moreover, perfmon() access to those
3902 * registers are centralized in this routine. The hardware
3903 * does not modify the value of these registers, therefore,
3904 * if we save them as they are written, we can avoid having
3905 * to save them on context switch out. This is made possible
3906 * by the fact that when perfmon uses debug registers, ptrace()
3907 * won't be able to modify them concurrently.
3909 if (mode == PFM_CODE_RR) {
3910 CTX_USED_IBR(ctx, rnum);
3912 if (can_access_pmu) {
3913 ia64_set_ibr(rnum, dbreg.val);
3914 ia64_dv_serialize_instruction();
3917 ctx->ctx_ibrs[rnum] = dbreg.val;
3919 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3920 rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu));
3922 CTX_USED_DBR(ctx, rnum);
3924 if (can_access_pmu) {
3925 ia64_set_dbr(rnum, dbreg.val);
3926 ia64_dv_serialize_data();
3928 ctx->ctx_dbrs[rnum] = dbreg.val;
3930 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3931 rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu));
3939 * in case it was our first attempt, we undo the global modifications
3943 if (ctx->ctx_fl_system) {
3944 pfm_sessions.pfs_sys_use_dbregs--;
3947 ctx->ctx_fl_using_dbreg = 0;
3950 * install error return flag
3952 PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL);
3958 pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3960 return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs);
3964 pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
3966 return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs);
3970 pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3974 if (req == NULL) return -EINVAL;
3976 ctx = GET_PMU_CTX();
3978 if (ctx == NULL) return -EINVAL;
3981 * for now limit to current task, which is enough when calling
3982 * from overflow handler
3984 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
3986 return pfm_write_ibrs(ctx, req, nreq, regs);
3988 EXPORT_SYMBOL(pfm_mod_write_ibrs);
3991 pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs)
3995 if (req == NULL) return -EINVAL;
3997 ctx = GET_PMU_CTX();
3999 if (ctx == NULL) return -EINVAL;
4002 * for now limit to current task, which is enough when calling
4003 * from overflow handler
4005 if (task != current && ctx->ctx_fl_system == 0) return -EBUSY;
4007 return pfm_write_dbrs(ctx, req, nreq, regs);
4009 EXPORT_SYMBOL(pfm_mod_write_dbrs);
4013 pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4015 pfarg_features_t *req = (pfarg_features_t *)arg;
4017 req->ft_version = PFM_VERSION;
4022 pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4024 struct pt_regs *tregs;
4025 struct task_struct *task = PFM_CTX_TASK(ctx);
4026 int state, is_system;
4028 state = ctx->ctx_state;
4029 is_system = ctx->ctx_fl_system;
4032 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
4034 if (state == PFM_CTX_UNLOADED) return -EINVAL;
4037 * In system wide and when the context is loaded, access can only happen
4038 * when the caller is running on the CPU being monitored by the session.
4039 * It does not have to be the owner (ctx_task) of the context per se.
4041 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4042 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4045 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
4046 PFM_CTX_TASK(ctx)->pid,
4050 * in system mode, we need to update the PMU directly
4051 * and the user level state of the caller, which may not
4052 * necessarily be the creator of the context.
4056 * Update local PMU first
4060 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP);
4064 * update local cpuinfo
4066 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4069 * stop monitoring, does srlz.i
4074 * stop monitoring in the caller
4076 ia64_psr(regs)->pp = 0;
4084 if (task == current) {
4085 /* stop monitoring at kernel level */
4089 * stop monitoring at the user level
4091 ia64_psr(regs)->up = 0;
4093 tregs = task_pt_regs(task);
4096 * stop monitoring at the user level
4098 ia64_psr(tregs)->up = 0;
4101 * monitoring disabled in kernel at next reschedule
4103 ctx->ctx_saved_psr_up = 0;
4104 DPRINT(("task=[%d]\n", task->pid));
4111 pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4113 struct pt_regs *tregs;
4114 int state, is_system;
4116 state = ctx->ctx_state;
4117 is_system = ctx->ctx_fl_system;
4119 if (state != PFM_CTX_LOADED) return -EINVAL;
4122 * In system wide and when the context is loaded, access can only happen
4123 * when the caller is running on the CPU being monitored by the session.
4124 * It does not have to be the owner (ctx_task) of the context per se.
4126 if (is_system && ctx->ctx_cpu != smp_processor_id()) {
4127 DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu));
4132 * in system mode, we need to update the PMU directly
4133 * and the user level state of the caller, which may not
4134 * necessarily be the creator of the context.
4139 * set user level psr.pp for the caller
4141 ia64_psr(regs)->pp = 1;
4144 * now update the local PMU and cpuinfo
4146 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP);
4149 * start monitoring at kernel level
4154 ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP);
4164 if (ctx->ctx_task == current) {
4166 /* start monitoring at kernel level */
4170 * activate monitoring at user level
4172 ia64_psr(regs)->up = 1;
4175 tregs = task_pt_regs(ctx->ctx_task);
4178 * start monitoring at the kernel level the next
4179 * time the task is scheduled
4181 ctx->ctx_saved_psr_up = IA64_PSR_UP;
4184 * activate monitoring at user level
4186 ia64_psr(tregs)->up = 1;
4192 pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4194 pfarg_reg_t *req = (pfarg_reg_t *)arg;
4199 for (i = 0; i < count; i++, req++) {
4201 cnum = req->reg_num;
4203 if (!PMC_IS_IMPL(cnum)) goto abort_mission;
4205 req->reg_value = PMC_DFL_VAL(cnum);
4207 PFM_REG_RETFLAG_SET(req->reg_flags, 0);
4209 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value));
4214 PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL);
4219 pfm_check_task_exist(pfm_context_t *ctx)
4221 struct task_struct *g, *t;
4224 read_lock(&tasklist_lock);
4226 do_each_thread (g, t) {
4227 if (t->thread.pfm_context == ctx) {
4231 } while_each_thread (g, t);
4233 read_unlock(&tasklist_lock);
4235 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx));
4241 pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4243 struct task_struct *task;
4244 struct thread_struct *thread;
4245 struct pfm_context_t *old;
4246 unsigned long flags;
4248 struct task_struct *owner_task = NULL;
4250 pfarg_load_t *req = (pfarg_load_t *)arg;
4251 unsigned long *pmcs_source, *pmds_source;
4254 int state, is_system, set_dbregs = 0;
4256 state = ctx->ctx_state;
4257 is_system = ctx->ctx_fl_system;
4259 * can only load from unloaded or terminated state
4261 if (state != PFM_CTX_UNLOADED) {
4262 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4268 DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg));
4270 if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) {
4271 DPRINT(("cannot use blocking mode on self\n"));
4275 ret = pfm_get_task(ctx, req->load_pid, &task);
4277 DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret));
4284 * system wide is self monitoring only
4286 if (is_system && task != current) {
4287 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4292 thread = &task->thread;
4296 * cannot load a context which is using range restrictions,
4297 * into a task that is being debugged.
4299 if (ctx->ctx_fl_using_dbreg) {
4300 if (thread->flags & IA64_THREAD_DBG_VALID) {
4302 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid));
4308 if (pfm_sessions.pfs_ptrace_use_dbregs) {
4309 DPRINT(("cannot load [%d] dbregs in use\n", task->pid));
4312 pfm_sessions.pfs_sys_use_dbregs++;
4313 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task->pid, pfm_sessions.pfs_sys_use_dbregs));
4320 if (ret) goto error;
4324 * SMP system-wide monitoring implies self-monitoring.
4326 * The programming model expects the task to
4327 * be pinned on a CPU throughout the session.
4328 * Here we take note of the current CPU at the
4329 * time the context is loaded. No call from
4330 * another CPU will be allowed.
4332 * The pinning via shed_setaffinity()
4333 * must be done by the calling task prior
4336 * systemwide: keep track of CPU this session is supposed to run on
4338 the_cpu = ctx->ctx_cpu = smp_processor_id();
4342 * now reserve the session
4344 ret = pfm_reserve_session(current, is_system, the_cpu);
4345 if (ret) goto error;
4348 * task is necessarily stopped at this point.
4350 * If the previous context was zombie, then it got removed in
4351 * pfm_save_regs(). Therefore we should not see it here.
4352 * If we see a context, then this is an active context
4354 * XXX: needs to be atomic
4356 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4357 thread->pfm_context, ctx));
4360 old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *));
4362 DPRINT(("load_pid [%d] already has a context\n", req->load_pid));
4366 pfm_reset_msgq(ctx);
4368 ctx->ctx_state = PFM_CTX_LOADED;
4371 * link context to task
4373 ctx->ctx_task = task;
4377 * we load as stopped
4379 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE);
4380 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP);
4382 if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE);
4384 thread->flags |= IA64_THREAD_PM_VALID;
4388 * propagate into thread-state
4390 pfm_copy_pmds(task, ctx);
4391 pfm_copy_pmcs(task, ctx);
4393 pmcs_source = ctx->th_pmcs;
4394 pmds_source = ctx->th_pmds;
4397 * always the case for system-wide
4399 if (task == current) {
4401 if (is_system == 0) {
4403 /* allow user level control */
4404 ia64_psr(regs)->sp = 0;
4405 DPRINT(("clearing psr.sp for [%d]\n", task->pid));
4407 SET_LAST_CPU(ctx, smp_processor_id());
4409 SET_ACTIVATION(ctx);
4412 * push the other task out, if any
4414 owner_task = GET_PMU_OWNER();
4415 if (owner_task) pfm_lazy_save_regs(owner_task);
4419 * load all PMD from ctx to PMU (as opposed to thread state)
4420 * restore all PMC from ctx to PMU
4422 pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]);
4423 pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]);
4425 ctx->ctx_reload_pmcs[0] = 0UL;
4426 ctx->ctx_reload_pmds[0] = 0UL;
4429 * guaranteed safe by earlier check against DBG_VALID
4431 if (ctx->ctx_fl_using_dbreg) {
4432 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
4433 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
4438 SET_PMU_OWNER(task, ctx);
4440 DPRINT(("context loaded on PMU for [%d]\n", task->pid));
4443 * when not current, task MUST be stopped, so this is safe
4445 regs = task_pt_regs(task);
4447 /* force a full reload */
4448 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4449 SET_LAST_CPU(ctx, -1);
4451 /* initial saved psr (stopped) */
4452 ctx->ctx_saved_psr_up = 0UL;
4453 ia64_psr(regs)->up = ia64_psr(regs)->pp = 0;
4459 if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu);
4462 * we must undo the dbregs setting (for system-wide)
4464 if (ret && set_dbregs) {
4466 pfm_sessions.pfs_sys_use_dbregs--;
4470 * release task, there is now a link with the context
4472 if (is_system == 0 && task != current) {
4476 ret = pfm_check_task_exist(ctx);
4478 ctx->ctx_state = PFM_CTX_UNLOADED;
4479 ctx->ctx_task = NULL;
4487 * in this function, we do not need to increase the use count
4488 * for the task via get_task_struct(), because we hold the
4489 * context lock. If the task were to disappear while having
4490 * a context attached, it would go through pfm_exit_thread()
4491 * which also grabs the context lock and would therefore be blocked
4492 * until we are here.
4494 static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx);
4497 pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs)
4499 struct task_struct *task = PFM_CTX_TASK(ctx);
4500 struct pt_regs *tregs;
4501 int prev_state, is_system;
4504 DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task->pid : -1));
4506 prev_state = ctx->ctx_state;
4507 is_system = ctx->ctx_fl_system;
4510 * unload only when necessary
4512 if (prev_state == PFM_CTX_UNLOADED) {
4513 DPRINT(("ctx_state=%d, nothing to do\n", prev_state));
4518 * clear psr and dcr bits
4520 ret = pfm_stop(ctx, NULL, 0, regs);
4521 if (ret) return ret;
4523 ctx->ctx_state = PFM_CTX_UNLOADED;
4526 * in system mode, we need to update the PMU directly
4527 * and the user level state of the caller, which may not
4528 * necessarily be the creator of the context.
4535 * local PMU is taken care of in pfm_stop()
4537 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE);
4538 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE);
4541 * save PMDs in context
4544 pfm_flush_pmds(current, ctx);
4547 * at this point we are done with the PMU
4548 * so we can unreserve the resource.
4550 if (prev_state != PFM_CTX_ZOMBIE)
4551 pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu);
4554 * disconnect context from task
4556 task->thread.pfm_context = NULL;
4558 * disconnect task from context
4560 ctx->ctx_task = NULL;
4563 * There is nothing more to cleanup here.
4571 tregs = task == current ? regs : task_pt_regs(task);
4573 if (task == current) {
4575 * cancel user level control
4577 ia64_psr(regs)->sp = 1;
4579 DPRINT(("setting psr.sp for [%d]\n", task->pid));
4582 * save PMDs to context
4585 pfm_flush_pmds(task, ctx);
4588 * at this point we are done with the PMU
4589 * so we can unreserve the resource.
4591 * when state was ZOMBIE, we have already unreserved.
4593 if (prev_state != PFM_CTX_ZOMBIE)
4594 pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu);
4597 * reset activation counter and psr
4599 ctx->ctx_last_activation = PFM_INVALID_ACTIVATION;
4600 SET_LAST_CPU(ctx, -1);
4603 * PMU state will not be restored
4605 task->thread.flags &= ~IA64_THREAD_PM_VALID;
4608 * break links between context and task
4610 task->thread.pfm_context = NULL;
4611 ctx->ctx_task = NULL;
4613 PFM_SET_WORK_PENDING(task, 0);
4615 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
4616 ctx->ctx_fl_can_restart = 0;
4617 ctx->ctx_fl_going_zombie = 0;
4619 DPRINT(("disconnected [%d] from context\n", task->pid));
4626 * called only from exit_thread(): task == current
4627 * we come here only if current has a context attached (loaded or masked)
4630 pfm_exit_thread(struct task_struct *task)
4633 unsigned long flags;
4634 struct pt_regs *regs = task_pt_regs(task);
4638 ctx = PFM_GET_CTX(task);
4640 PROTECT_CTX(ctx, flags);
4642 DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task->pid));
4644 state = ctx->ctx_state;
4646 case PFM_CTX_UNLOADED:
4648 * only comes to thios function if pfm_context is not NULL, i.e., cannot
4649 * be in unloaded state
4651 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task->pid);
4653 case PFM_CTX_LOADED:
4654 case PFM_CTX_MASKED:
4655 ret = pfm_context_unload(ctx, NULL, 0, regs);
4657 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4659 DPRINT(("ctx unloaded for current state was %d\n", state));
4661 pfm_end_notify_user(ctx);
4663 case PFM_CTX_ZOMBIE:
4664 ret = pfm_context_unload(ctx, NULL, 0, regs);
4666 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task->pid, state, ret);
4671 printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task->pid, state);
4674 UNPROTECT_CTX(ctx, flags);
4676 { u64 psr = pfm_get_psr();
4677 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
4678 BUG_ON(GET_PMU_OWNER());
4679 BUG_ON(ia64_psr(regs)->up);
4680 BUG_ON(ia64_psr(regs)->pp);
4684 * All memory free operations (especially for vmalloc'ed memory)
4685 * MUST be done with interrupts ENABLED.
4687 if (free_ok) pfm_context_free(ctx);
4691 * functions MUST be listed in the increasing order of their index (see permfon.h)
4693 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4694 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4695 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4696 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4697 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4699 static pfm_cmd_desc_t pfm_cmd_tab[]={
4700 /* 0 */PFM_CMD_NONE,
4701 /* 1 */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4702 /* 2 */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4703 /* 3 */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4704 /* 4 */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS),
4705 /* 5 */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS),
4706 /* 6 */PFM_CMD_NONE,
4707 /* 7 */PFM_CMD_NONE,
4708 /* 8 */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize),
4709 /* 9 */PFM_CMD_NONE,
4710 /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW),
4711 /* 11 */PFM_CMD_NONE,
4712 /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL),
4713 /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL),
4714 /* 14 */PFM_CMD_NONE,
4715 /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL),
4716 /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL),
4717 /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS),
4718 /* 18 */PFM_CMD_NONE,
4719 /* 19 */PFM_CMD_NONE,
4720 /* 20 */PFM_CMD_NONE,
4721 /* 21 */PFM_CMD_NONE,
4722 /* 22 */PFM_CMD_NONE,
4723 /* 23 */PFM_CMD_NONE,
4724 /* 24 */PFM_CMD_NONE,
4725 /* 25 */PFM_CMD_NONE,
4726 /* 26 */PFM_CMD_NONE,
4727 /* 27 */PFM_CMD_NONE,
4728 /* 28 */PFM_CMD_NONE,
4729 /* 29 */PFM_CMD_NONE,
4730 /* 30 */PFM_CMD_NONE,
4731 /* 31 */PFM_CMD_NONE,
4732 /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL),
4733 /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL)
4735 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4738 pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags)
4740 struct task_struct *task;
4741 int state, old_state;
4744 state = ctx->ctx_state;
4745 task = ctx->ctx_task;
4748 DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state));
4752 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4756 task->state, PFM_CMD_STOPPED(cmd)));
4759 * self-monitoring always ok.
4761 * for system-wide the caller can either be the creator of the
4762 * context (to one to which the context is attached to) OR
4763 * a task running on the same CPU as the session.
4765 if (task == current || ctx->ctx_fl_system) return 0;
4768 * we are monitoring another thread
4771 case PFM_CTX_UNLOADED:
4773 * if context is UNLOADED we are safe to go
4776 case PFM_CTX_ZOMBIE:
4778 * no command can operate on a zombie context
4780 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd));
4782 case PFM_CTX_MASKED:
4784 * PMU state has been saved to software even though
4785 * the thread may still be running.
4787 if (cmd != PFM_UNLOAD_CONTEXT) return 0;
4791 * context is LOADED or MASKED. Some commands may need to have
4794 * We could lift this restriction for UP but it would mean that
4795 * the user has no guarantee the task would not run between
4796 * two successive calls to perfmonctl(). That's probably OK.
4797 * If this user wants to ensure the task does not run, then
4798 * the task must be stopped.
4800 if (PFM_CMD_STOPPED(cmd)) {
4801 if ((task->state != TASK_STOPPED) && (task->state != TASK_TRACED)) {
4802 DPRINT(("[%d] task not in stopped state\n", task->pid));
4806 * task is now stopped, wait for ctxsw out
4808 * This is an interesting point in the code.
4809 * We need to unprotect the context because
4810 * the pfm_save_regs() routines needs to grab
4811 * the same lock. There are danger in doing
4812 * this because it leaves a window open for
4813 * another task to get access to the context
4814 * and possibly change its state. The one thing
4815 * that is not possible is for the context to disappear
4816 * because we are protected by the VFS layer, i.e.,
4817 * get_fd()/put_fd().
4821 UNPROTECT_CTX(ctx, flags);
4823 wait_task_inactive(task);
4825 PROTECT_CTX(ctx, flags);
4828 * we must recheck to verify if state has changed
4830 if (ctx->ctx_state != old_state) {
4831 DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state));
4839 * system-call entry point (must return long)
4842 sys_perfmonctl (int fd, int cmd, void __user *arg, int count)
4844 struct file *file = NULL;
4845 pfm_context_t *ctx = NULL;
4846 unsigned long flags = 0UL;
4847 void *args_k = NULL;
4848 long ret; /* will expand int return types */
4849 size_t base_sz, sz, xtra_sz = 0;
4850 int narg, completed_args = 0, call_made = 0, cmd_flags;
4851 int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs);
4852 int (*getsize)(void *arg, size_t *sz);
4853 #define PFM_MAX_ARGSIZE 4096
4856 * reject any call if perfmon was disabled at initialization
4858 if (unlikely(pmu_conf == NULL)) return -ENOSYS;
4860 if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) {
4861 DPRINT(("invalid cmd=%d\n", cmd));
4865 func = pfm_cmd_tab[cmd].cmd_func;
4866 narg = pfm_cmd_tab[cmd].cmd_narg;
4867 base_sz = pfm_cmd_tab[cmd].cmd_argsize;
4868 getsize = pfm_cmd_tab[cmd].cmd_getsize;
4869 cmd_flags = pfm_cmd_tab[cmd].cmd_flags;
4871 if (unlikely(func == NULL)) {
4872 DPRINT(("invalid cmd=%d\n", cmd));
4876 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4884 * check if number of arguments matches what the command expects
4886 if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count)))
4890 sz = xtra_sz + base_sz*count;
4892 * limit abuse to min page size
4894 if (unlikely(sz > PFM_MAX_ARGSIZE)) {
4895 printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", current->pid, sz);
4900 * allocate default-sized argument buffer
4902 if (likely(count && args_k == NULL)) {
4903 args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL);
4904 if (args_k == NULL) return -ENOMEM;
4912 * assume sz = 0 for command without parameters
4914 if (sz && copy_from_user(args_k, arg, sz)) {
4915 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg));
4920 * check if command supports extra parameters
4922 if (completed_args == 0 && getsize) {
4924 * get extra parameters size (based on main argument)
4926 ret = (*getsize)(args_k, &xtra_sz);
4927 if (ret) goto error_args;
4931 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz));
4933 /* retry if necessary */
4934 if (likely(xtra_sz)) goto restart_args;
4937 if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd;
4942 if (unlikely(file == NULL)) {
4943 DPRINT(("invalid fd %d\n", fd));
4946 if (unlikely(PFM_IS_FILE(file) == 0)) {
4947 DPRINT(("fd %d not related to perfmon\n", fd));
4951 ctx = (pfm_context_t *)file->private_data;
4952 if (unlikely(ctx == NULL)) {
4953 DPRINT(("no context for fd %d\n", fd));
4956 prefetch(&ctx->ctx_state);
4958 PROTECT_CTX(ctx, flags);
4961 * check task is stopped
4963 ret = pfm_check_task_state(ctx, cmd, flags);
4964 if (unlikely(ret)) goto abort_locked;
4967 ret = (*func)(ctx, args_k, count, task_pt_regs(current));
4973 DPRINT(("context unlocked\n"));
4974 UNPROTECT_CTX(ctx, flags);
4977 /* copy argument back to user, if needed */
4978 if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT;
4986 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret));
4992 pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs)
4994 pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt;
4995 pfm_ovfl_ctrl_t rst_ctrl;
4999 state = ctx->ctx_state;
5001 * Unlock sampling buffer and reset index atomically
5002 * XXX: not really needed when blocking
5004 if (CTX_HAS_SMPL(ctx)) {
5006 rst_ctrl.bits.mask_monitoring = 0;
5007 rst_ctrl.bits.reset_ovfl_pmds = 0;
5009 if (state == PFM_CTX_LOADED)
5010 ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5012 ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs);
5014 rst_ctrl.bits.mask_monitoring = 0;
5015 rst_ctrl.bits.reset_ovfl_pmds = 1;
5019 if (rst_ctrl.bits.reset_ovfl_pmds) {
5020 pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET);
5022 if (rst_ctrl.bits.mask_monitoring == 0) {
5023 DPRINT(("resuming monitoring\n"));
5024 if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current);
5026 DPRINT(("stopping monitoring\n"));
5027 //pfm_stop_monitoring(current, regs);
5029 ctx->ctx_state = PFM_CTX_LOADED;
5034 * context MUST BE LOCKED when calling
5035 * can only be called for current
5038 pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs)
5042 DPRINT(("entering for [%d]\n", current->pid));
5044 ret = pfm_context_unload(ctx, NULL, 0, regs);
5046 printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", current->pid, ret);
5050 * and wakeup controlling task, indicating we are now disconnected
5052 wake_up_interruptible(&ctx->ctx_zombieq);
5055 * given that context is still locked, the controlling
5056 * task will only get access when we return from
5057 * pfm_handle_work().
5061 static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds);
5063 * pfm_handle_work() can be called with interrupts enabled
5064 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
5065 * call may sleep, therefore we must re-enable interrupts
5066 * to avoid deadlocks. It is safe to do so because this function
5067 * is called ONLY when returning to user level (PUStk=1), in which case
5068 * there is no risk of kernel stack overflow due to deep
5069 * interrupt nesting.
5072 pfm_handle_work(void)
5075 struct pt_regs *regs;
5076 unsigned long flags, dummy_flags;
5077 unsigned long ovfl_regs;
5078 unsigned int reason;
5081 ctx = PFM_GET_CTX(current);
5083 printk(KERN_ERR "perfmon: [%d] has no PFM context\n", current->pid);
5087 PROTECT_CTX(ctx, flags);
5089 PFM_SET_WORK_PENDING(current, 0);
5091 pfm_clear_task_notify();
5093 regs = task_pt_regs(current);
5096 * extract reason for being here and clear
5098 reason = ctx->ctx_fl_trap_reason;
5099 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE;
5100 ovfl_regs = ctx->ctx_ovfl_regs[0];
5102 DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state));
5105 * must be done before we check for simple-reset mode
5107 if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) goto do_zombie;
5110 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
5111 if (reason == PFM_TRAP_REASON_RESET) goto skip_blocking;
5114 * restore interrupt mask to what it was on entry.
5115 * Could be enabled/diasbled.
5117 UNPROTECT_CTX(ctx, flags);
5120 * force interrupt enable because of down_interruptible()
5124 DPRINT(("before block sleeping\n"));
5127 * may go through without blocking on SMP systems
5128 * if restart has been received already by the time we call down()
5130 ret = wait_for_completion_interruptible(&ctx->ctx_restart_done);
5132 DPRINT(("after block sleeping ret=%d\n", ret));
5135 * lock context and mask interrupts again
5136 * We save flags into a dummy because we may have
5137 * altered interrupts mask compared to entry in this
5140 PROTECT_CTX(ctx, dummy_flags);
5143 * we need to read the ovfl_regs only after wake-up
5144 * because we may have had pfm_write_pmds() in between
5145 * and that can changed PMD values and therefore
5146 * ovfl_regs is reset for these new PMD values.
5148 ovfl_regs = ctx->ctx_ovfl_regs[0];
5150 if (ctx->ctx_fl_going_zombie) {
5152 DPRINT(("context is zombie, bailing out\n"));
5153 pfm_context_force_terminate(ctx, regs);
5157 * in case of interruption of down() we don't restart anything
5159 if (ret < 0) goto nothing_to_do;
5162 pfm_resume_after_ovfl(ctx, ovfl_regs, regs);
5163 ctx->ctx_ovfl_regs[0] = 0UL;
5167 * restore flags as they were upon entry
5169 UNPROTECT_CTX(ctx, flags);
5173 pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg)
5175 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5176 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5180 DPRINT(("waking up somebody\n"));
5182 if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait);
5185 * safe, we are not in intr handler, nor in ctxsw when
5188 kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN);
5194 pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds)
5196 pfm_msg_t *msg = NULL;
5198 if (ctx->ctx_fl_no_msg == 0) {
5199 msg = pfm_get_new_msg(ctx);
5201 printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5205 msg->pfm_ovfl_msg.msg_type = PFM_MSG_OVFL;
5206 msg->pfm_ovfl_msg.msg_ctx_fd = ctx->ctx_fd;
5207 msg->pfm_ovfl_msg.msg_active_set = 0;
5208 msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds;
5209 msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL;
5210 msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL;
5211 msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL;
5212 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5215 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5221 return pfm_notify_user(ctx, msg);
5225 pfm_end_notify_user(pfm_context_t *ctx)
5229 msg = pfm_get_new_msg(ctx);
5231 printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n");
5235 memset(msg, 0, sizeof(*msg));
5237 msg->pfm_end_msg.msg_type = PFM_MSG_END;
5238 msg->pfm_end_msg.msg_ctx_fd = ctx->ctx_fd;
5239 msg->pfm_ovfl_msg.msg_tstamp = 0UL;
5241 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5246 return pfm_notify_user(ctx, msg);
5250 * main overflow processing routine.
5251 * it can be called from the interrupt path or explicitely during the context switch code
5254 pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs)
5256 pfm_ovfl_arg_t *ovfl_arg;
5258 unsigned long old_val, ovfl_val, new_val;
5259 unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds;
5260 unsigned long tstamp;
5261 pfm_ovfl_ctrl_t ovfl_ctrl;
5262 unsigned int i, has_smpl;
5263 int must_notify = 0;
5265 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring;
5268 * sanity test. Should never happen
5270 if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check;
5272 tstamp = ia64_get_itc();
5273 mask = pmc0 >> PMU_FIRST_COUNTER;
5274 ovfl_val = pmu_conf->ovfl_val;
5275 has_smpl = CTX_HAS_SMPL(ctx);
5277 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5278 "used_pmds=0x%lx\n",
5280 task ? task->pid: -1,
5281 (regs ? regs->cr_iip : 0),
5282 CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking",
5283 ctx->ctx_used_pmds[0]));
5287 * first we update the virtual counters
5288 * assume there was a prior ia64_srlz_d() issued
5290 for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) {
5292 /* skip pmd which did not overflow */
5293 if ((mask & 0x1) == 0) continue;
5296 * Note that the pmd is not necessarily 0 at this point as qualified events
5297 * may have happened before the PMU was frozen. The residual count is not
5298 * taken into consideration here but will be with any read of the pmd via
5301 old_val = new_val = ctx->ctx_pmds[i].val;
5302 new_val += 1 + ovfl_val;
5303 ctx->ctx_pmds[i].val = new_val;
5306 * check for overflow condition
5308 if (likely(old_val > new_val)) {
5309 ovfl_pmds |= 1UL << i;
5310 if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i;
5313 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5317 ia64_get_pmd(i) & ovfl_val,
5323 * there was no 64-bit overflow, nothing else to do
5325 if (ovfl_pmds == 0UL) return;
5328 * reset all control bits
5334 * if a sampling format module exists, then we "cache" the overflow by
5335 * calling the module's handler() routine.
5338 unsigned long start_cycles, end_cycles;
5339 unsigned long pmd_mask;
5341 int this_cpu = smp_processor_id();
5343 pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER;
5344 ovfl_arg = &ctx->ctx_ovfl_arg;
5346 prefetch(ctx->ctx_smpl_hdr);
5348 for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) {
5352 if ((pmd_mask & 0x1) == 0) continue;
5354 ovfl_arg->ovfl_pmd = (unsigned char )i;
5355 ovfl_arg->ovfl_notify = ovfl_notify & mask ? 1 : 0;
5356 ovfl_arg->active_set = 0;
5357 ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */
5358 ovfl_arg->smpl_pmds[0] = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0];
5360 ovfl_arg->pmd_value = ctx->ctx_pmds[i].val;
5361 ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval;
5362 ovfl_arg->pmd_eventid = ctx->ctx_pmds[i].eventid;
5365 * copy values of pmds of interest. Sampling format may copy them
5366 * into sampling buffer.
5369 for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) {
5370 if ((smpl_pmds & 0x1) == 0) continue;
5371 ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ? pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j);
5372 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1]));
5376 pfm_stats[this_cpu].pfm_smpl_handler_calls++;
5378 start_cycles = ia64_get_itc();
5381 * call custom buffer format record (handler) routine
5383 ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp);
5385 end_cycles = ia64_get_itc();
5388 * For those controls, we take the union because they have
5389 * an all or nothing behavior.
5391 ovfl_ctrl.bits.notify_user |= ovfl_arg->ovfl_ctrl.bits.notify_user;
5392 ovfl_ctrl.bits.block_task |= ovfl_arg->ovfl_ctrl.bits.block_task;
5393 ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring;
5395 * build the bitmask of pmds to reset now
5397 if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask;
5399 pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles;
5402 * when the module cannot handle the rest of the overflows, we abort right here
5404 if (ret && pmd_mask) {
5405 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5406 pmd_mask<<PMU_FIRST_COUNTER));
5409 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5411 ovfl_pmds &= ~reset_pmds;
5414 * when no sampling module is used, then the default
5415 * is to notify on overflow if requested by user
5417 ovfl_ctrl.bits.notify_user = ovfl_notify ? 1 : 0;
5418 ovfl_ctrl.bits.block_task = ovfl_notify ? 1 : 0;
5419 ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */
5420 ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1;
5422 * if needed, we reset all overflowed pmds
5424 if (ovfl_notify == 0) reset_pmds = ovfl_pmds;
5427 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds));
5430 * reset the requested PMD registers using the short reset values
5433 unsigned long bm = reset_pmds;
5434 pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET);
5437 if (ovfl_notify && ovfl_ctrl.bits.notify_user) {
5439 * keep track of what to reset when unblocking
5441 ctx->ctx_ovfl_regs[0] = ovfl_pmds;
5444 * check for blocking context
5446 if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) {
5448 ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK;
5451 * set the perfmon specific checking pending work for the task
5453 PFM_SET_WORK_PENDING(task, 1);
5456 * when coming from ctxsw, current still points to the
5457 * previous task, therefore we must work with task and not current.
5459 pfm_set_task_notify(task);
5462 * defer until state is changed (shorten spin window). the context is locked
5463 * anyway, so the signal receiver would come spin for nothing.
5468 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5469 GET_PMU_OWNER() ? GET_PMU_OWNER()->pid : -1,
5470 PFM_GET_WORK_PENDING(task),
5471 ctx->ctx_fl_trap_reason,
5474 ovfl_ctrl.bits.mask_monitoring ? 1 : 0));
5476 * in case monitoring must be stopped, we toggle the psr bits
5478 if (ovfl_ctrl.bits.mask_monitoring) {
5479 pfm_mask_monitoring(task);
5480 ctx->ctx_state = PFM_CTX_MASKED;
5481 ctx->ctx_fl_can_restart = 1;
5485 * send notification now
5487 if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify);
5492 printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5494 task ? task->pid : -1,
5500 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5501 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5502 * come here as zombie only if the task is the current task. In which case, we
5503 * can access the PMU hardware directly.
5505 * Note that zombies do have PM_VALID set. So here we do the minimal.
5507 * In case the context was zombified it could not be reclaimed at the time
5508 * the monitoring program exited. At this point, the PMU reservation has been
5509 * returned, the sampiing buffer has been freed. We must convert this call
5510 * into a spurious interrupt. However, we must also avoid infinite overflows
5511 * by stopping monitoring for this task. We can only come here for a per-task
5512 * context. All we need to do is to stop monitoring using the psr bits which
5513 * are always task private. By re-enabling secure montioring, we ensure that
5514 * the monitored task will not be able to re-activate monitoring.
5515 * The task will eventually be context switched out, at which point the context
5516 * will be reclaimed (that includes releasing ownership of the PMU).
5518 * So there might be a window of time where the number of per-task session is zero
5519 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5520 * context. This is safe because if a per-task session comes in, it will push this one
5521 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5522 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5523 * also push our zombie context out.
5525 * Overall pretty hairy stuff....
5527 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task->pid: -1));
5529 ia64_psr(regs)->up = 0;
5530 ia64_psr(regs)->sp = 1;
5535 pfm_do_interrupt_handler(int irq, void *arg, struct pt_regs *regs)
5537 struct task_struct *task;
5539 unsigned long flags;
5541 int this_cpu = smp_processor_id();
5544 pfm_stats[this_cpu].pfm_ovfl_intr_count++;
5547 * srlz.d done before arriving here
5549 pmc0 = ia64_get_pmc(0);
5551 task = GET_PMU_OWNER();
5552 ctx = GET_PMU_CTX();
5555 * if we have some pending bits set
5556 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5558 if (PMC0_HAS_OVFL(pmc0) && task) {
5560 * we assume that pmc0.fr is always set here
5564 if (!ctx) goto report_spurious1;
5566 if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0)
5567 goto report_spurious2;
5569 PROTECT_CTX_NOPRINT(ctx, flags);
5571 pfm_overflow_handler(task, ctx, pmc0, regs);
5573 UNPROTECT_CTX_NOPRINT(ctx, flags);
5576 pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++;
5580 * keep it unfrozen at all times
5587 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5588 this_cpu, task->pid);
5592 printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5600 pfm_interrupt_handler(int irq, void *arg)
5602 unsigned long start_cycles, total_cycles;
5603 unsigned long min, max;
5606 struct pt_regs *regs = get_irq_regs();
5608 this_cpu = get_cpu();
5609 if (likely(!pfm_alt_intr_handler)) {
5610 min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min;
5611 max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max;
5613 start_cycles = ia64_get_itc();
5615 ret = pfm_do_interrupt_handler(irq, arg, regs);
5617 total_cycles = ia64_get_itc();
5620 * don't measure spurious interrupts
5622 if (likely(ret == 0)) {
5623 total_cycles -= start_cycles;
5625 if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles;
5626 if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles;
5628 pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles;
5632 (*pfm_alt_intr_handler->handler)(irq, arg, regs);
5635 put_cpu_no_resched();
5640 * /proc/perfmon interface, for debug only
5643 #define PFM_PROC_SHOW_HEADER ((void *)NR_CPUS+1)
5646 pfm_proc_start(struct seq_file *m, loff_t *pos)
5649 return PFM_PROC_SHOW_HEADER;
5652 while (*pos <= NR_CPUS) {
5653 if (cpu_online(*pos - 1)) {
5654 return (void *)*pos;
5662 pfm_proc_next(struct seq_file *m, void *v, loff_t *pos)
5665 return pfm_proc_start(m, pos);
5669 pfm_proc_stop(struct seq_file *m, void *v)
5674 pfm_proc_show_header(struct seq_file *m)
5676 struct list_head * pos;
5677 pfm_buffer_fmt_t * entry;
5678 unsigned long flags;
5681 "perfmon version : %u.%u\n"
5684 "expert mode : %s\n"
5685 "ovfl_mask : 0x%lx\n"
5686 "PMU flags : 0x%x\n",
5687 PFM_VERSION_MAJ, PFM_VERSION_MIN,
5689 pfm_sysctl.fastctxsw > 0 ? "Yes": "No",
5690 pfm_sysctl.expert_mode > 0 ? "Yes": "No",
5697 "proc_sessions : %u\n"
5698 "sys_sessions : %u\n"
5699 "sys_use_dbregs : %u\n"
5700 "ptrace_use_dbregs : %u\n",
5701 pfm_sessions.pfs_task_sessions,
5702 pfm_sessions.pfs_sys_sessions,
5703 pfm_sessions.pfs_sys_use_dbregs,
5704 pfm_sessions.pfs_ptrace_use_dbregs);
5708 spin_lock(&pfm_buffer_fmt_lock);
5710 list_for_each(pos, &pfm_buffer_fmt_list) {
5711 entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list);
5712 seq_printf(m, "format : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n",
5723 entry->fmt_uuid[10],
5724 entry->fmt_uuid[11],
5725 entry->fmt_uuid[12],
5726 entry->fmt_uuid[13],
5727 entry->fmt_uuid[14],
5728 entry->fmt_uuid[15],
5731 spin_unlock(&pfm_buffer_fmt_lock);
5736 pfm_proc_show(struct seq_file *m, void *v)
5742 if (v == PFM_PROC_SHOW_HEADER) {
5743 pfm_proc_show_header(m);
5747 /* show info for CPU (v - 1) */
5751 "CPU%-2d overflow intrs : %lu\n"
5752 "CPU%-2d overflow cycles : %lu\n"
5753 "CPU%-2d overflow min : %lu\n"
5754 "CPU%-2d overflow max : %lu\n"
5755 "CPU%-2d smpl handler calls : %lu\n"
5756 "CPU%-2d smpl handler cycles : %lu\n"
5757 "CPU%-2d spurious intrs : %lu\n"
5758 "CPU%-2d replay intrs : %lu\n"
5759 "CPU%-2d syst_wide : %d\n"
5760 "CPU%-2d dcr_pp : %d\n"
5761 "CPU%-2d exclude idle : %d\n"
5762 "CPU%-2d owner : %d\n"
5763 "CPU%-2d context : %p\n"
5764 "CPU%-2d activations : %lu\n",
5765 cpu, pfm_stats[cpu].pfm_ovfl_intr_count,
5766 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles,
5767 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min,
5768 cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max,
5769 cpu, pfm_stats[cpu].pfm_smpl_handler_calls,
5770 cpu, pfm_stats[cpu].pfm_smpl_handler_cycles,
5771 cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count,
5772 cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count,
5773 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0,
5774 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0,
5775 cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0,
5776 cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1,
5777 cpu, pfm_get_cpu_data(pmu_ctx, cpu),
5778 cpu, pfm_get_cpu_data(pmu_activation_number, cpu));
5780 if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) {
5782 psr = pfm_get_psr();
5787 "CPU%-2d psr : 0x%lx\n"
5788 "CPU%-2d pmc0 : 0x%lx\n",
5790 cpu, ia64_get_pmc(0));
5792 for (i=0; PMC_IS_LAST(i) == 0; i++) {
5793 if (PMC_IS_COUNTING(i) == 0) continue;
5795 "CPU%-2d pmc%u : 0x%lx\n"
5796 "CPU%-2d pmd%u : 0x%lx\n",
5797 cpu, i, ia64_get_pmc(i),
5798 cpu, i, ia64_get_pmd(i));
5804 struct seq_operations pfm_seq_ops = {
5805 .start = pfm_proc_start,
5806 .next = pfm_proc_next,
5807 .stop = pfm_proc_stop,
5808 .show = pfm_proc_show
5812 pfm_proc_open(struct inode *inode, struct file *file)
5814 return seq_open(file, &pfm_seq_ops);
5819 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5820 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5821 * is active or inactive based on mode. We must rely on the value in
5822 * local_cpu_data->pfm_syst_info
5825 pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin)
5827 struct pt_regs *regs;
5829 unsigned long dcr_pp;
5831 dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0;
5834 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5835 * on every CPU, so we can rely on the pid to identify the idle task.
5837 if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) {
5838 regs = task_pt_regs(task);
5839 ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0;
5843 * if monitoring has started
5846 dcr = ia64_getreg(_IA64_REG_CR_DCR);
5848 * context switching in?
5851 /* mask monitoring for the idle task */
5852 ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP);
5858 * context switching out
5859 * restore monitoring for next task
5861 * Due to inlining this odd if-then-else construction generates
5864 ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP);
5873 pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs)
5875 struct task_struct *task = ctx->ctx_task;
5877 ia64_psr(regs)->up = 0;
5878 ia64_psr(regs)->sp = 1;
5880 if (GET_PMU_OWNER() == task) {
5881 DPRINT(("cleared ownership for [%d]\n", ctx->ctx_task->pid));
5882 SET_PMU_OWNER(NULL, NULL);
5886 * disconnect the task from the context and vice-versa
5888 PFM_SET_WORK_PENDING(task, 0);
5890 task->thread.pfm_context = NULL;
5891 task->thread.flags &= ~IA64_THREAD_PM_VALID;
5893 DPRINT(("force cleanup for [%d]\n", task->pid));
5898 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5901 pfm_save_regs(struct task_struct *task)
5904 unsigned long flags;
5908 ctx = PFM_GET_CTX(task);
5909 if (ctx == NULL) return;
5912 * we always come here with interrupts ALREADY disabled by
5913 * the scheduler. So we simply need to protect against concurrent
5914 * access, not CPU concurrency.
5916 flags = pfm_protect_ctx_ctxsw(ctx);
5918 if (ctx->ctx_state == PFM_CTX_ZOMBIE) {
5919 struct pt_regs *regs = task_pt_regs(task);
5923 pfm_force_cleanup(ctx, regs);
5925 BUG_ON(ctx->ctx_smpl_hdr);
5927 pfm_unprotect_ctx_ctxsw(ctx, flags);
5929 pfm_context_free(ctx);
5934 * save current PSR: needed because we modify it
5937 psr = pfm_get_psr();
5939 BUG_ON(psr & (IA64_PSR_I));
5943 * This is the last instruction which may generate an overflow
5945 * We do not need to set psr.sp because, it is irrelevant in kernel.
5946 * It will be restored from ipsr when going back to user level
5951 * keep a copy of psr.up (for reload)
5953 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
5956 * release ownership of this PMU.
5957 * PM interrupts are masked, so nothing
5960 SET_PMU_OWNER(NULL, NULL);
5963 * we systematically save the PMD as we have no
5964 * guarantee we will be schedule at that same
5967 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
5970 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5971 * we will need it on the restore path to check
5972 * for pending overflow.
5974 ctx->th_pmcs[0] = ia64_get_pmc(0);
5977 * unfreeze PMU if had pending overflows
5979 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
5982 * finally, allow context access.
5983 * interrupts will still be masked after this call.
5985 pfm_unprotect_ctx_ctxsw(ctx, flags);
5988 #else /* !CONFIG_SMP */
5990 pfm_save_regs(struct task_struct *task)
5995 ctx = PFM_GET_CTX(task);
5996 if (ctx == NULL) return;
5999 * save current PSR: needed because we modify it
6001 psr = pfm_get_psr();
6003 BUG_ON(psr & (IA64_PSR_I));
6007 * This is the last instruction which may generate an overflow
6009 * We do not need to set psr.sp because, it is irrelevant in kernel.
6010 * It will be restored from ipsr when going back to user level
6015 * keep a copy of psr.up (for reload)
6017 ctx->ctx_saved_psr_up = psr & IA64_PSR_UP;
6021 pfm_lazy_save_regs (struct task_struct *task)
6024 unsigned long flags;
6026 { u64 psr = pfm_get_psr();
6027 BUG_ON(psr & IA64_PSR_UP);
6030 ctx = PFM_GET_CTX(task);
6033 * we need to mask PMU overflow here to
6034 * make sure that we maintain pmc0 until
6035 * we save it. overflow interrupts are
6036 * treated as spurious if there is no
6039 * XXX: I don't think this is necessary
6041 PROTECT_CTX(ctx,flags);
6044 * release ownership of this PMU.
6045 * must be done before we save the registers.
6047 * after this call any PMU interrupt is treated
6050 SET_PMU_OWNER(NULL, NULL);
6053 * save all the pmds we use
6055 pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]);
6058 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
6059 * it is needed to check for pended overflow
6060 * on the restore path
6062 ctx->th_pmcs[0] = ia64_get_pmc(0);
6065 * unfreeze PMU if had pending overflows
6067 if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu();
6070 * now get can unmask PMU interrupts, they will
6071 * be treated as purely spurious and we will not
6072 * lose any information
6074 UNPROTECT_CTX(ctx,flags);
6076 #endif /* CONFIG_SMP */
6080 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
6083 pfm_load_regs (struct task_struct *task)
6086 unsigned long pmc_mask = 0UL, pmd_mask = 0UL;
6087 unsigned long flags;
6089 int need_irq_resend;
6091 ctx = PFM_GET_CTX(task);
6092 if (unlikely(ctx == NULL)) return;
6094 BUG_ON(GET_PMU_OWNER());
6097 * possible on unload
6099 if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return;
6102 * we always come here with interrupts ALREADY disabled by
6103 * the scheduler. So we simply need to protect against concurrent
6104 * access, not CPU concurrency.
6106 flags = pfm_protect_ctx_ctxsw(ctx);
6107 psr = pfm_get_psr();
6109 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6111 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6112 BUG_ON(psr & IA64_PSR_I);
6114 if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) {
6115 struct pt_regs *regs = task_pt_regs(task);
6117 BUG_ON(ctx->ctx_smpl_hdr);
6119 pfm_force_cleanup(ctx, regs);
6121 pfm_unprotect_ctx_ctxsw(ctx, flags);
6124 * this one (kmalloc'ed) is fine with interrupts disabled
6126 pfm_context_free(ctx);
6132 * we restore ALL the debug registers to avoid picking up
6135 if (ctx->ctx_fl_using_dbreg) {
6136 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6137 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6140 * retrieve saved psr.up
6142 psr_up = ctx->ctx_saved_psr_up;
6145 * if we were the last user of the PMU on that CPU,
6146 * then nothing to do except restore psr
6148 if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) {
6151 * retrieve partial reload masks (due to user modifications)
6153 pmc_mask = ctx->ctx_reload_pmcs[0];
6154 pmd_mask = ctx->ctx_reload_pmds[0];
6158 * To avoid leaking information to the user level when psr.sp=0,
6159 * we must reload ALL implemented pmds (even the ones we don't use).
6160 * In the kernel we only allow PFM_READ_PMDS on registers which
6161 * we initialized or requested (sampling) so there is no risk there.
6163 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6166 * ALL accessible PMCs are systematically reloaded, unused registers
6167 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6168 * up stale configuration.
6170 * PMC0 is never in the mask. It is always restored separately.
6172 pmc_mask = ctx->ctx_all_pmcs[0];
6175 * when context is MASKED, we will restore PMC with plm=0
6176 * and PMD with stale information, but that's ok, nothing
6179 * XXX: optimize here
6181 if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6182 if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6185 * check for pending overflow at the time the state
6188 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6190 * reload pmc0 with the overflow information
6191 * On McKinley PMU, this will trigger a PMU interrupt
6193 ia64_set_pmc(0, ctx->th_pmcs[0]);
6195 ctx->th_pmcs[0] = 0UL;
6198 * will replay the PMU interrupt
6200 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6202 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6206 * we just did a reload, so we reset the partial reload fields
6208 ctx->ctx_reload_pmcs[0] = 0UL;
6209 ctx->ctx_reload_pmds[0] = 0UL;
6211 SET_LAST_CPU(ctx, smp_processor_id());
6214 * dump activation value for this PMU
6218 * record current activation for this context
6220 SET_ACTIVATION(ctx);
6223 * establish new ownership.
6225 SET_PMU_OWNER(task, ctx);
6228 * restore the psr.up bit. measurement
6230 * no PMU interrupt can happen at this point
6231 * because we still have interrupts disabled.
6233 if (likely(psr_up)) pfm_set_psr_up();
6236 * allow concurrent access to context
6238 pfm_unprotect_ctx_ctxsw(ctx, flags);
6240 #else /* !CONFIG_SMP */
6242 * reload PMU state for UP kernels
6243 * in 2.5 we come here with interrupts disabled
6246 pfm_load_regs (struct task_struct *task)
6249 struct task_struct *owner;
6250 unsigned long pmd_mask, pmc_mask;
6252 int need_irq_resend;
6254 owner = GET_PMU_OWNER();
6255 ctx = PFM_GET_CTX(task);
6256 psr = pfm_get_psr();
6258 BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP));
6259 BUG_ON(psr & IA64_PSR_I);
6262 * we restore ALL the debug registers to avoid picking up
6265 * This must be done even when the task is still the owner
6266 * as the registers may have been modified via ptrace()
6267 * (not perfmon) by the previous task.
6269 if (ctx->ctx_fl_using_dbreg) {
6270 pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs);
6271 pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs);
6275 * retrieved saved psr.up
6277 psr_up = ctx->ctx_saved_psr_up;
6278 need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND;
6281 * short path, our state is still there, just
6282 * need to restore psr and we go
6284 * we do not touch either PMC nor PMD. the psr is not touched
6285 * by the overflow_handler. So we are safe w.r.t. to interrupt
6286 * concurrency even without interrupt masking.
6288 if (likely(owner == task)) {
6289 if (likely(psr_up)) pfm_set_psr_up();
6294 * someone else is still using the PMU, first push it out and
6295 * then we'll be able to install our stuff !
6297 * Upon return, there will be no owner for the current PMU
6299 if (owner) pfm_lazy_save_regs(owner);
6302 * To avoid leaking information to the user level when psr.sp=0,
6303 * we must reload ALL implemented pmds (even the ones we don't use).
6304 * In the kernel we only allow PFM_READ_PMDS on registers which
6305 * we initialized or requested (sampling) so there is no risk there.
6307 pmd_mask = pfm_sysctl.fastctxsw ? ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0];
6310 * ALL accessible PMCs are systematically reloaded, unused registers
6311 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6312 * up stale configuration.
6314 * PMC0 is never in the mask. It is always restored separately
6316 pmc_mask = ctx->ctx_all_pmcs[0];
6318 pfm_restore_pmds(ctx->th_pmds, pmd_mask);
6319 pfm_restore_pmcs(ctx->th_pmcs, pmc_mask);
6322 * check for pending overflow at the time the state
6325 if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) {
6327 * reload pmc0 with the overflow information
6328 * On McKinley PMU, this will trigger a PMU interrupt
6330 ia64_set_pmc(0, ctx->th_pmcs[0]);
6333 ctx->th_pmcs[0] = 0UL;
6336 * will replay the PMU interrupt
6338 if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR);
6340 pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++;
6344 * establish new ownership.
6346 SET_PMU_OWNER(task, ctx);
6349 * restore the psr.up bit. measurement
6351 * no PMU interrupt can happen at this point
6352 * because we still have interrupts disabled.
6354 if (likely(psr_up)) pfm_set_psr_up();
6356 #endif /* CONFIG_SMP */
6359 * this function assumes monitoring is stopped
6362 pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx)
6365 unsigned long mask2, val, pmd_val, ovfl_val;
6366 int i, can_access_pmu = 0;
6370 * is the caller the task being monitored (or which initiated the
6371 * session for system wide measurements)
6373 is_self = ctx->ctx_task == task ? 1 : 0;
6376 * can access PMU is task is the owner of the PMU state on the current CPU
6377 * or if we are running on the CPU bound to the context in system-wide mode
6378 * (that is not necessarily the task the context is attached to in this mode).
6379 * In system-wide we always have can_access_pmu true because a task running on an
6380 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6382 can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id());
6383 if (can_access_pmu) {
6385 * Mark the PMU as not owned
6386 * This will cause the interrupt handler to do nothing in case an overflow
6387 * interrupt was in-flight
6388 * This also guarantees that pmc0 will contain the final state
6389 * It virtually gives us full control on overflow processing from that point
6392 SET_PMU_OWNER(NULL, NULL);
6393 DPRINT(("releasing ownership\n"));
6396 * read current overflow status:
6398 * we are guaranteed to read the final stable state
6401 pmc0 = ia64_get_pmc(0); /* slow */
6404 * reset freeze bit, overflow status information destroyed
6408 pmc0 = ctx->th_pmcs[0];
6410 * clear whatever overflow status bits there were
6412 ctx->th_pmcs[0] = 0;
6414 ovfl_val = pmu_conf->ovfl_val;
6416 * we save all the used pmds
6417 * we take care of overflows for counting PMDs
6419 * XXX: sampling situation is not taken into account here
6421 mask2 = ctx->ctx_used_pmds[0];
6423 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2));
6425 for (i = 0; mask2; i++, mask2>>=1) {
6427 /* skip non used pmds */
6428 if ((mask2 & 0x1) == 0) continue;
6431 * can access PMU always true in system wide mode
6433 val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i];
6435 if (PMD_IS_COUNTING(i)) {
6436 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6439 ctx->ctx_pmds[i].val,
6443 * we rebuild the full 64 bit value of the counter
6445 val = ctx->ctx_pmds[i].val + (val & ovfl_val);
6448 * now everything is in ctx_pmds[] and we need
6449 * to clear the saved context from save_regs() such that
6450 * pfm_read_pmds() gets the correct value
6455 * take care of overflow inline
6457 if (pmc0 & (1UL << i)) {
6458 val += 1 + ovfl_val;
6459 DPRINT(("[%d] pmd[%d] overflowed\n", task->pid, i));
6463 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task->pid, i, val, pmd_val));
6465 if (is_self) ctx->th_pmds[i] = pmd_val;
6467 ctx->ctx_pmds[i].val = val;
6471 static struct irqaction perfmon_irqaction = {
6472 .handler = pfm_interrupt_handler,
6473 .flags = IRQF_DISABLED,
6478 pfm_alt_save_pmu_state(void *data)
6480 struct pt_regs *regs;
6482 regs = task_pt_regs(current);
6484 DPRINT(("called\n"));
6487 * should not be necessary but
6488 * let's take not risk
6492 ia64_psr(regs)->pp = 0;
6495 * This call is required
6496 * May cause a spurious interrupt on some processors
6504 pfm_alt_restore_pmu_state(void *data)
6506 struct pt_regs *regs;
6508 regs = task_pt_regs(current);
6510 DPRINT(("called\n"));
6513 * put PMU back in state expected
6518 ia64_psr(regs)->pp = 0;
6521 * perfmon runs with PMU unfrozen at all times
6529 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6534 /* some sanity checks */
6535 if (hdl == NULL || hdl->handler == NULL) return -EINVAL;
6537 /* do the easy test first */
6538 if (pfm_alt_intr_handler) return -EBUSY;
6540 /* one at a time in the install or remove, just fail the others */
6541 if (!spin_trylock(&pfm_alt_install_check)) {
6545 /* reserve our session */
6546 for_each_online_cpu(reserve_cpu) {
6547 ret = pfm_reserve_session(NULL, 1, reserve_cpu);
6548 if (ret) goto cleanup_reserve;
6551 /* save the current system wide pmu states */
6552 ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 0, 1);
6554 DPRINT(("on_each_cpu() failed: %d\n", ret));
6555 goto cleanup_reserve;
6558 /* officially change to the alternate interrupt handler */
6559 pfm_alt_intr_handler = hdl;
6561 spin_unlock(&pfm_alt_install_check);
6566 for_each_online_cpu(i) {
6567 /* don't unreserve more than we reserved */
6568 if (i >= reserve_cpu) break;
6570 pfm_unreserve_session(NULL, 1, i);
6573 spin_unlock(&pfm_alt_install_check);
6577 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt);
6580 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl)
6585 if (hdl == NULL) return -EINVAL;
6587 /* cannot remove someone else's handler! */
6588 if (pfm_alt_intr_handler != hdl) return -EINVAL;
6590 /* one at a time in the install or remove, just fail the others */
6591 if (!spin_trylock(&pfm_alt_install_check)) {
6595 pfm_alt_intr_handler = NULL;
6597 ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 0, 1);
6599 DPRINT(("on_each_cpu() failed: %d\n", ret));
6602 for_each_online_cpu(i) {
6603 pfm_unreserve_session(NULL, 1, i);
6606 spin_unlock(&pfm_alt_install_check);
6610 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt);
6613 * perfmon initialization routine, called from the initcall() table
6615 static int init_pfm_fs(void);
6623 family = local_cpu_data->family;
6628 if ((*p)->probe() == 0) goto found;
6629 } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) {
6640 static const struct file_operations pfm_proc_fops = {
6641 .open = pfm_proc_open,
6643 .llseek = seq_lseek,
6644 .release = seq_release,
6650 unsigned int n, n_counters, i;
6652 printk("perfmon: version %u.%u IRQ %u\n",
6655 IA64_PERFMON_VECTOR);
6657 if (pfm_probe_pmu()) {
6658 printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n",
6659 local_cpu_data->family);
6664 * compute the number of implemented PMD/PMC from the
6665 * description tables
6668 for (i=0; PMC_IS_LAST(i) == 0; i++) {
6669 if (PMC_IS_IMPL(i) == 0) continue;
6670 pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63);
6673 pmu_conf->num_pmcs = n;
6675 n = 0; n_counters = 0;
6676 for (i=0; PMD_IS_LAST(i) == 0; i++) {
6677 if (PMD_IS_IMPL(i) == 0) continue;
6678 pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63);
6680 if (PMD_IS_COUNTING(i)) n_counters++;
6682 pmu_conf->num_pmds = n;
6683 pmu_conf->num_counters = n_counters;
6686 * sanity checks on the number of debug registers
6688 if (pmu_conf->use_rr_dbregs) {
6689 if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) {
6690 printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs);
6694 if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) {
6695 printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs);
6701 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6705 pmu_conf->num_counters,
6706 ffz(pmu_conf->ovfl_val));
6709 if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) {
6710 printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n");
6716 * create /proc/perfmon (mostly for debugging purposes)
6718 perfmon_dir = create_proc_entry("perfmon", S_IRUGO, NULL);
6719 if (perfmon_dir == NULL) {
6720 printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n");
6725 * install customized file operations for /proc/perfmon entry
6727 perfmon_dir->proc_fops = &pfm_proc_fops;
6730 * create /proc/sys/kernel/perfmon (for debugging purposes)
6732 pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root);
6735 * initialize all our spinlocks
6737 spin_lock_init(&pfm_sessions.pfs_lock);
6738 spin_lock_init(&pfm_buffer_fmt_lock);
6742 for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL;
6747 __initcall(pfm_init);
6750 * this function is called before pfm_init()
6753 pfm_init_percpu (void)
6755 static int first_time=1;
6757 * make sure no measurement is active
6758 * (may inherit programmed PMCs from EFI).
6764 * we run with the PMU not frozen at all times
6769 register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction);
6773 ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR);
6778 * used for debug purposes only
6781 dump_pmu_state(const char *from)
6783 struct task_struct *task;
6784 struct pt_regs *regs;
6786 unsigned long psr, dcr, info, flags;
6789 local_irq_save(flags);
6791 this_cpu = smp_processor_id();
6792 regs = task_pt_regs(current);
6793 info = PFM_CPUINFO_GET();
6794 dcr = ia64_getreg(_IA64_REG_CR_DCR);
6796 if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) {
6797 local_irq_restore(flags);
6801 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6808 task = GET_PMU_OWNER();
6809 ctx = GET_PMU_CTX();
6811 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task->pid : -1, ctx);
6813 psr = pfm_get_psr();
6815 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6818 psr & IA64_PSR_PP ? 1 : 0,
6819 psr & IA64_PSR_UP ? 1 : 0,
6820 dcr & IA64_DCR_PP ? 1 : 0,
6823 ia64_psr(regs)->pp);
6825 ia64_psr(regs)->up = 0;
6826 ia64_psr(regs)->pp = 0;
6828 for (i=1; PMC_IS_LAST(i) == 0; i++) {
6829 if (PMC_IS_IMPL(i) == 0) continue;
6830 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]);
6833 for (i=1; PMD_IS_LAST(i) == 0; i++) {
6834 if (PMD_IS_IMPL(i) == 0) continue;
6835 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]);
6839 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6842 ctx->ctx_smpl_vaddr,
6846 ctx->ctx_saved_psr_up);
6848 local_irq_restore(flags);
6852 * called from process.c:copy_thread(). task is new child.
6855 pfm_inherit(struct task_struct *task, struct pt_regs *regs)
6857 struct thread_struct *thread;
6859 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task->pid));
6861 thread = &task->thread;
6864 * cut links inherited from parent (current)
6866 thread->pfm_context = NULL;
6868 PFM_SET_WORK_PENDING(task, 0);
6871 * the psr bits are already set properly in copy_threads()
6874 #else /* !CONFIG_PERFMON */
6876 sys_perfmonctl (int fd, int cmd, void *arg, int count)
6880 #endif /* CONFIG_PERFMON */