2 * The USB Monitor, inspired by Dave Harding's USBMon.
4 * This is a binary format reader.
6 * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7 * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
10 #include <linux/kernel.h>
11 #include <linux/types.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
19 #include <asm/uaccess.h>
24 * Defined by USB 2.0 clause 9.3, table 9.2.
29 #define MON_IOC_MAGIC 0x92
31 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
32 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
33 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
34 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
35 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
36 #define MON_IOCX_GET _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
37 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
38 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
40 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
41 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
45 * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
46 * But it's all right. Just use a simple way to make sure the chunk is never
47 * smaller than a page.
49 * N.B. An application does not know our chunk size.
51 * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
52 * page-sized chunks for the time being.
54 #define CHUNK_SIZE PAGE_SIZE
55 #define CHUNK_ALIGN(x) (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
58 * The magic limit was calculated so that it allows the monitoring
59 * application to pick data once in two ticks. This way, another application,
60 * which presumably drives the bus, gets to hog CPU, yet we collect our data.
61 * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
62 * enormous overhead built into the bus protocol, so we need about 1000 KB.
64 * This is still too much for most cases, where we just snoop a few
65 * descriptor fetches for enumeration. So, the default is a "reasonable"
66 * amount for systems with HZ=250 and incomplete bus saturation.
68 * XXX What about multi-megabyte URBs which take minutes to transfer?
70 #define BUFF_MAX CHUNK_ALIGN(1200*1024)
71 #define BUFF_DFL CHUNK_ALIGN(300*1024)
72 #define BUFF_MIN CHUNK_ALIGN(8*1024)
75 * The per-event API header (2 per URB).
77 * This structure is seen in userland as defined by the documentation.
80 u64 id; /* URB ID - from submission to callback */
81 unsigned char type; /* Same as in text API; extensible. */
82 unsigned char xfer_type; /* ISO, Intr, Control, Bulk */
83 unsigned char epnum; /* Endpoint number and transfer direction */
84 unsigned char devnum; /* Device address */
85 unsigned short busnum; /* Bus number */
88 s64 ts_sec; /* gettimeofday */
89 s32 ts_usec; /* gettimeofday */
91 unsigned int len_urb; /* Length of data (submitted or actual) */
92 unsigned int len_cap; /* Delivered length */
93 unsigned char setup[SETUP_LEN]; /* Only for Control S-type */
96 /* per file statistic */
97 struct mon_bin_stats {
103 struct mon_bin_hdr __user *hdr; /* Only 48 bytes, not 64. */
105 size_t alloc; /* Length of data (can be zero) */
108 struct mon_bin_mfetch {
109 u32 __user *offvec; /* Vector of events fetched */
110 u32 nfetch; /* Number of events to fetch (out: fetched) */
111 u32 nflush; /* Number of events to flush */
115 struct mon_bin_get32 {
121 struct mon_bin_mfetch32 {
128 /* Having these two values same prevents wrapping of the mon_bin_hdr */
132 /* max number of USB bus supported */
133 #define MON_BIN_MAX_MINOR 128
136 * The buffer: map of used pages.
140 unsigned char *ptr; /* XXX just use page_to_virt everywhere? */
144 * This gets associated with an open file struct.
146 struct mon_reader_bin {
147 /* The buffer: one per open. */
148 spinlock_t b_lock; /* Protect b_cnt, b_in */
149 unsigned int b_size; /* Current size of the buffer - bytes */
150 unsigned int b_cnt; /* Bytes used */
151 unsigned int b_in, b_out; /* Offsets into buffer - bytes */
152 unsigned int b_read; /* Amount of read data in curr. pkt. */
153 struct mon_pgmap *b_vec; /* The map array */
154 wait_queue_head_t b_wait; /* Wait for data here */
156 struct mutex fetch_lock; /* Protect b_read, b_out */
159 /* A list of these is needed for "bus 0". Some time later. */
163 unsigned int cnt_lost;
166 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
169 return (struct mon_bin_hdr *)
170 (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
173 #define MON_RING_EMPTY(rp) ((rp)->b_cnt == 0)
175 static struct class *mon_bin_class;
176 static dev_t mon_bin_dev0;
177 static struct cdev mon_bin_cdev;
179 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
180 unsigned int offset, unsigned int size);
181 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
182 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
183 static void mon_free_buff(struct mon_pgmap *map, int npages);
186 * This is a "chunked memcpy". It does not manipulate any counters.
187 * But it returns the new offset for repeated application.
189 unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
190 unsigned int off, const unsigned char *from, unsigned int length)
192 unsigned int step_len;
194 unsigned int in_page;
198 * Determine step_len.
201 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
202 if (in_page < step_len)
206 * Copy data and advance pointers.
208 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
209 memcpy(buf, from, step_len);
210 if ((off += step_len) >= this->b_size) off = 0;
218 * This is a little worse than the above because it's "chunked copy_to_user".
219 * The return value is an error code, not an offset.
221 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
222 char __user *to, int length)
224 unsigned int step_len;
226 unsigned int in_page;
230 * Determine step_len.
233 in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
234 if (in_page < step_len)
238 * Copy data and advance pointers.
240 buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
241 if (copy_to_user(to, buf, step_len))
243 if ((off += step_len) >= this->b_size) off = 0;
251 * Allocate an (aligned) area in the buffer.
252 * This is called under b_lock.
253 * Returns ~0 on failure.
255 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
260 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
261 if (rp->b_cnt + size > rp->b_size)
265 if ((rp->b_in += size) >= rp->b_size)
266 rp->b_in -= rp->b_size;
271 * This is the same thing as mon_buff_area_alloc, only it does not allow
272 * buffers to wrap. This is needed by applications which pass references
273 * into mmap-ed buffers up their stacks (libpcap can do that).
275 * Currently, we always have the header stuck with the data, although
276 * it is not strictly speaking necessary.
278 * When a buffer would wrap, we place a filler packet to mark the space.
280 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
284 unsigned int fill_size;
286 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
287 if (rp->b_cnt + size > rp->b_size)
289 if (rp->b_in + size > rp->b_size) {
291 * This would wrap. Find if we still have space after
292 * skipping to the end of the buffer. If we do, place
293 * a filler packet and allocate a new packet.
295 fill_size = rp->b_size - rp->b_in;
296 if (rp->b_cnt + size + fill_size > rp->b_size)
298 mon_buff_area_fill(rp, rp->b_in, fill_size);
302 rp->b_cnt += size + fill_size;
303 } else if (rp->b_in + size == rp->b_size) {
316 * Return a few (kilo-)bytes to the head of the buffer.
317 * This is used if a DMA fetch fails.
319 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
322 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
325 rp->b_in += rp->b_size;
330 * This has to be called under both b_lock and fetch_lock, because
331 * it accesses both b_cnt and b_out.
333 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
336 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
338 if ((rp->b_out += size) >= rp->b_size)
339 rp->b_out -= rp->b_size;
342 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
343 unsigned int offset, unsigned int size)
345 struct mon_bin_hdr *ep;
347 ep = MON_OFF2HDR(rp, offset);
348 memset(ep, 0, PKT_SIZE);
350 ep->len_cap = size - PKT_SIZE;
353 static inline char mon_bin_get_setup(unsigned char *setupb,
354 const struct urb *urb, char ev_type)
357 if (!usb_pipecontrol(urb->pipe) || ev_type != 'S')
360 if (urb->dev->bus->uses_dma &&
361 (urb->transfer_flags & URB_NO_SETUP_DMA_MAP)) {
362 return mon_dmapeek(setupb, urb->setup_dma, SETUP_LEN);
364 if (urb->setup_packet == NULL)
367 memcpy(setupb, urb->setup_packet, SETUP_LEN);
371 static char mon_bin_get_data(const struct mon_reader_bin *rp,
372 unsigned int offset, struct urb *urb, unsigned int length)
375 if (urb->dev->bus->uses_dma &&
376 (urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
377 mon_dmapeek_vec(rp, offset, urb->transfer_dma, length);
381 if (urb->transfer_buffer == NULL)
384 mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
388 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
393 unsigned int urb_length;
396 struct mon_bin_hdr *ep;
399 do_gettimeofday(&ts);
401 spin_lock_irqsave(&rp->b_lock, flags);
404 * Find the maximum allowable length, then allocate space.
406 urb_length = (ev_type == 'S') ?
407 urb->transfer_buffer_length : urb->actual_length;
410 if (length >= rp->b_size/5)
411 length = rp->b_size/5;
413 if (usb_pipein(urb->pipe)) {
414 if (ev_type == 'S') {
419 if (ev_type == 'C') {
426 offset = mon_buff_area_alloc_contiguous(rp, length + PKT_SIZE);
428 offset = mon_buff_area_alloc(rp, length + PKT_SIZE);
431 spin_unlock_irqrestore(&rp->b_lock, flags);
435 ep = MON_OFF2HDR(rp, offset);
436 if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
439 * Fill the allocated area.
441 memset(ep, 0, PKT_SIZE);
443 ep->xfer_type = usb_pipetype(urb->pipe);
444 /* We use the fact that usb_pipein() returns 0x80 */
445 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
446 ep->devnum = usb_pipedevice(urb->pipe);
447 ep->busnum = urb->dev->bus->busnum;
448 ep->id = (unsigned long) urb;
449 ep->ts_sec = ts.tv_sec;
450 ep->ts_usec = ts.tv_usec;
451 ep->status = urb->status;
452 ep->len_urb = urb_length;
453 ep->len_cap = length;
455 ep->flag_setup = mon_bin_get_setup(ep->setup, urb, ev_type);
457 ep->flag_data = mon_bin_get_data(rp, offset, urb, length);
458 if (ep->flag_data != 0) { /* Yes, it's 0x00, not '0' */
460 mon_buff_area_shrink(rp, length);
463 ep->flag_data = data_tag;
466 spin_unlock_irqrestore(&rp->b_lock, flags);
468 wake_up(&rp->b_wait);
471 static void mon_bin_submit(void *data, struct urb *urb)
473 struct mon_reader_bin *rp = data;
474 mon_bin_event(rp, urb, 'S');
477 static void mon_bin_complete(void *data, struct urb *urb)
479 struct mon_reader_bin *rp = data;
480 mon_bin_event(rp, urb, 'C');
483 static void mon_bin_error(void *data, struct urb *urb, int error)
485 struct mon_reader_bin *rp = data;
488 struct mon_bin_hdr *ep;
490 spin_lock_irqsave(&rp->b_lock, flags);
492 offset = mon_buff_area_alloc(rp, PKT_SIZE);
494 /* Not incrementing cnt_lost. Just because. */
495 spin_unlock_irqrestore(&rp->b_lock, flags);
499 ep = MON_OFF2HDR(rp, offset);
501 memset(ep, 0, PKT_SIZE);
503 ep->xfer_type = usb_pipetype(urb->pipe);
504 /* We use the fact that usb_pipein() returns 0x80 */
505 ep->epnum = usb_pipeendpoint(urb->pipe) | usb_pipein(urb->pipe);
506 ep->devnum = usb_pipedevice(urb->pipe);
507 ep->busnum = urb->dev->bus->busnum;
508 ep->id = (unsigned long) urb;
511 ep->flag_setup = '-';
514 spin_unlock_irqrestore(&rp->b_lock, flags);
516 wake_up(&rp->b_wait);
519 static int mon_bin_open(struct inode *inode, struct file *file)
521 struct mon_bus *mbus;
522 struct mon_reader_bin *rp;
526 mutex_lock(&mon_lock);
527 if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
528 mutex_unlock(&mon_lock);
531 if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
532 printk(KERN_ERR TAG ": consistency error on open\n");
533 mutex_unlock(&mon_lock);
537 rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
542 spin_lock_init(&rp->b_lock);
543 init_waitqueue_head(&rp->b_wait);
544 mutex_init(&rp->fetch_lock);
546 rp->b_size = BUFF_DFL;
548 size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
549 if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
554 if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
559 rp->r.rnf_submit = mon_bin_submit;
560 rp->r.rnf_error = mon_bin_error;
561 rp->r.rnf_complete = mon_bin_complete;
563 mon_reader_add(mbus, &rp->r);
565 file->private_data = rp;
566 mutex_unlock(&mon_lock);
574 mutex_unlock(&mon_lock);
579 * Extract an event from buffer and copy it to user space.
580 * Wait if there is no event ready.
581 * Returns zero or error.
583 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
584 struct mon_bin_hdr __user *hdr, void __user *data, unsigned int nbytes)
587 struct mon_bin_hdr *ep;
592 mutex_lock(&rp->fetch_lock);
594 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
595 mutex_unlock(&rp->fetch_lock);
599 ep = MON_OFF2HDR(rp, rp->b_out);
601 if (copy_to_user(hdr, ep, sizeof(struct mon_bin_hdr))) {
602 mutex_unlock(&rp->fetch_lock);
606 step_len = min(ep->len_cap, nbytes);
607 if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
609 if (copy_from_buf(rp, offset, data, step_len)) {
610 mutex_unlock(&rp->fetch_lock);
614 spin_lock_irqsave(&rp->b_lock, flags);
615 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
616 spin_unlock_irqrestore(&rp->b_lock, flags);
619 mutex_unlock(&rp->fetch_lock);
623 static int mon_bin_release(struct inode *inode, struct file *file)
625 struct mon_reader_bin *rp = file->private_data;
626 struct mon_bus* mbus = rp->r.m_bus;
628 mutex_lock(&mon_lock);
630 if (mbus->nreaders <= 0) {
631 printk(KERN_ERR TAG ": consistency error on close\n");
632 mutex_unlock(&mon_lock);
635 mon_reader_del(mbus, &rp->r);
637 mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
641 mutex_unlock(&mon_lock);
645 static ssize_t mon_bin_read(struct file *file, char __user *buf,
646 size_t nbytes, loff_t *ppos)
648 struct mon_reader_bin *rp = file->private_data;
650 struct mon_bin_hdr *ep;
657 mutex_lock(&rp->fetch_lock);
659 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
660 mutex_unlock(&rp->fetch_lock);
664 ep = MON_OFF2HDR(rp, rp->b_out);
666 if (rp->b_read < sizeof(struct mon_bin_hdr)) {
667 step_len = min(nbytes, sizeof(struct mon_bin_hdr) - rp->b_read);
668 ptr = ((char *)ep) + rp->b_read;
669 if (step_len && copy_to_user(buf, ptr, step_len)) {
670 mutex_unlock(&rp->fetch_lock);
675 rp->b_read += step_len;
679 if (rp->b_read >= sizeof(struct mon_bin_hdr)) {
680 step_len = min(nbytes, (size_t)ep->len_cap);
681 offset = rp->b_out + PKT_SIZE;
682 offset += rp->b_read - sizeof(struct mon_bin_hdr);
683 if (offset >= rp->b_size)
684 offset -= rp->b_size;
685 if (copy_from_buf(rp, offset, buf, step_len)) {
686 mutex_unlock(&rp->fetch_lock);
691 rp->b_read += step_len;
696 * Check if whole packet was read, and if so, jump to the next one.
698 if (rp->b_read >= sizeof(struct mon_bin_hdr) + ep->len_cap) {
699 spin_lock_irqsave(&rp->b_lock, flags);
700 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
701 spin_unlock_irqrestore(&rp->b_lock, flags);
705 mutex_unlock(&rp->fetch_lock);
710 * Remove at most nevents from chunked buffer.
711 * Returns the number of removed events.
713 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
716 struct mon_bin_hdr *ep;
719 mutex_lock(&rp->fetch_lock);
720 spin_lock_irqsave(&rp->b_lock, flags);
721 for (i = 0; i < nevents; ++i) {
722 if (MON_RING_EMPTY(rp))
725 ep = MON_OFF2HDR(rp, rp->b_out);
726 mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
728 spin_unlock_irqrestore(&rp->b_lock, flags);
730 mutex_unlock(&rp->fetch_lock);
735 * Fetch at most max event offsets into the buffer and put them into vec.
736 * The events are usually freed later with mon_bin_flush.
737 * Return the effective number of events fetched.
739 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
740 u32 __user *vec, unsigned int max)
742 unsigned int cur_out;
743 unsigned int bytes, avail;
745 unsigned int nevents;
746 struct mon_bin_hdr *ep;
750 mutex_lock(&rp->fetch_lock);
752 if ((rc = mon_bin_wait_event(file, rp)) < 0) {
753 mutex_unlock(&rp->fetch_lock);
757 spin_lock_irqsave(&rp->b_lock, flags);
759 spin_unlock_irqrestore(&rp->b_lock, flags);
764 while (bytes < avail) {
768 ep = MON_OFF2HDR(rp, cur_out);
769 if (put_user(cur_out, &vec[nevents])) {
770 mutex_unlock(&rp->fetch_lock);
775 size = ep->len_cap + PKT_SIZE;
776 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
777 if ((cur_out += size) >= rp->b_size)
778 cur_out -= rp->b_size;
782 mutex_unlock(&rp->fetch_lock);
787 * Count events. This is almost the same as the above mon_bin_fetch,
788 * only we do not store offsets into user vector, and we have no limit.
790 static int mon_bin_queued(struct mon_reader_bin *rp)
792 unsigned int cur_out;
793 unsigned int bytes, avail;
795 unsigned int nevents;
796 struct mon_bin_hdr *ep;
799 mutex_lock(&rp->fetch_lock);
801 spin_lock_irqsave(&rp->b_lock, flags);
803 spin_unlock_irqrestore(&rp->b_lock, flags);
808 while (bytes < avail) {
809 ep = MON_OFF2HDR(rp, cur_out);
812 size = ep->len_cap + PKT_SIZE;
813 size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
814 if ((cur_out += size) >= rp->b_size)
815 cur_out -= rp->b_size;
819 mutex_unlock(&rp->fetch_lock);
825 static int mon_bin_ioctl(struct inode *inode, struct file *file,
826 unsigned int cmd, unsigned long arg)
828 struct mon_reader_bin *rp = file->private_data;
829 // struct mon_bus* mbus = rp->r.m_bus;
831 struct mon_bin_hdr *ep;
836 case MON_IOCQ_URB_LEN:
838 * N.B. This only returns the size of data, without the header.
840 spin_lock_irqsave(&rp->b_lock, flags);
841 if (!MON_RING_EMPTY(rp)) {
842 ep = MON_OFF2HDR(rp, rp->b_out);
845 spin_unlock_irqrestore(&rp->b_lock, flags);
848 case MON_IOCQ_RING_SIZE:
852 case MON_IOCT_RING_SIZE:
854 * Changing the buffer size will flush it's contents; the new
855 * buffer is allocated before releasing the old one to be sure
856 * the device will stay functional also in case of memory
861 struct mon_pgmap *vec;
863 if (arg < BUFF_MIN || arg > BUFF_MAX)
866 size = CHUNK_ALIGN(arg);
867 if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
868 GFP_KERNEL)) == NULL) {
873 ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
879 mutex_lock(&rp->fetch_lock);
880 spin_lock_irqsave(&rp->b_lock, flags);
881 mon_free_buff(rp->b_vec, size/CHUNK_SIZE);
885 rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
887 spin_unlock_irqrestore(&rp->b_lock, flags);
888 mutex_unlock(&rp->fetch_lock);
892 case MON_IOCH_MFLUSH:
893 ret = mon_bin_flush(rp, arg);
898 struct mon_bin_get getb;
900 if (copy_from_user(&getb, (void __user *)arg,
901 sizeof(struct mon_bin_get)))
904 if (getb.alloc > 0x10000000) /* Want to cast to u32 */
906 ret = mon_bin_get_event(file, rp,
907 getb.hdr, getb.data, (unsigned int)getb.alloc);
912 case MON_IOCX_GET32: {
913 struct mon_bin_get32 getb;
915 if (copy_from_user(&getb, (void __user *)arg,
916 sizeof(struct mon_bin_get32)))
919 ret = mon_bin_get_event(file, rp,
920 compat_ptr(getb.hdr32), compat_ptr(getb.data32),
926 case MON_IOCX_MFETCH:
928 struct mon_bin_mfetch mfetch;
929 struct mon_bin_mfetch __user *uptr;
931 uptr = (struct mon_bin_mfetch __user *)arg;
933 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
937 ret = mon_bin_flush(rp, mfetch.nflush);
940 if (put_user(ret, &uptr->nflush))
943 ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
946 if (put_user(ret, &uptr->nfetch))
953 case MON_IOCX_MFETCH32:
955 struct mon_bin_mfetch32 mfetch;
956 struct mon_bin_mfetch32 __user *uptr;
958 uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
960 if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
963 if (mfetch.nflush32) {
964 ret = mon_bin_flush(rp, mfetch.nflush32);
967 if (put_user(ret, &uptr->nflush32))
970 ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
974 if (put_user(ret, &uptr->nfetch32))
981 case MON_IOCG_STATS: {
982 struct mon_bin_stats __user *sp;
983 unsigned int nevents;
984 unsigned int ndropped;
986 spin_lock_irqsave(&rp->b_lock, flags);
987 ndropped = rp->cnt_lost;
989 spin_unlock_irqrestore(&rp->b_lock, flags);
990 nevents = mon_bin_queued(rp);
992 sp = (struct mon_bin_stats __user *)arg;
993 if (put_user(rp->cnt_lost, &sp->dropped))
995 if (put_user(nevents, &sp->queued))
1009 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1011 struct mon_reader_bin *rp = file->private_data;
1012 unsigned int mask = 0;
1013 unsigned long flags;
1015 if (file->f_mode & FMODE_READ)
1016 poll_wait(file, &rp->b_wait, wait);
1018 spin_lock_irqsave(&rp->b_lock, flags);
1019 if (!MON_RING_EMPTY(rp))
1020 mask |= POLLIN | POLLRDNORM; /* readable */
1021 spin_unlock_irqrestore(&rp->b_lock, flags);
1026 * open and close: just keep track of how many times the device is
1027 * mapped, to use the proper memory allocation function.
1029 static void mon_bin_vma_open(struct vm_area_struct *vma)
1031 struct mon_reader_bin *rp = vma->vm_private_data;
1035 static void mon_bin_vma_close(struct vm_area_struct *vma)
1037 struct mon_reader_bin *rp = vma->vm_private_data;
1042 * Map ring pages to user space.
1044 struct page *mon_bin_vma_nopage(struct vm_area_struct *vma,
1045 unsigned long address, int *type)
1047 struct mon_reader_bin *rp = vma->vm_private_data;
1048 unsigned long offset, chunk_idx;
1049 struct page *pageptr;
1051 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
1052 if (offset >= rp->b_size)
1053 return NOPAGE_SIGBUS;
1054 chunk_idx = offset / CHUNK_SIZE;
1055 pageptr = rp->b_vec[chunk_idx].pg;
1058 *type = VM_FAULT_MINOR;
1062 struct vm_operations_struct mon_bin_vm_ops = {
1063 .open = mon_bin_vma_open,
1064 .close = mon_bin_vma_close,
1065 .nopage = mon_bin_vma_nopage,
1068 int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1070 /* don't do anything here: "nopage" will set up page table entries */
1071 vma->vm_ops = &mon_bin_vm_ops;
1072 vma->vm_flags |= VM_RESERVED;
1073 vma->vm_private_data = filp->private_data;
1074 mon_bin_vma_open(vma);
1078 struct file_operations mon_fops_binary = {
1079 .owner = THIS_MODULE,
1080 .open = mon_bin_open,
1081 .llseek = no_llseek,
1082 .read = mon_bin_read,
1083 /* .write = mon_text_write, */
1084 .poll = mon_bin_poll,
1085 .ioctl = mon_bin_ioctl,
1086 .release = mon_bin_release,
1089 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1091 DECLARE_WAITQUEUE(waita, current);
1092 unsigned long flags;
1094 add_wait_queue(&rp->b_wait, &waita);
1095 set_current_state(TASK_INTERRUPTIBLE);
1097 spin_lock_irqsave(&rp->b_lock, flags);
1098 while (MON_RING_EMPTY(rp)) {
1099 spin_unlock_irqrestore(&rp->b_lock, flags);
1101 if (file->f_flags & O_NONBLOCK) {
1102 set_current_state(TASK_RUNNING);
1103 remove_wait_queue(&rp->b_wait, &waita);
1104 return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1107 if (signal_pending(current)) {
1108 remove_wait_queue(&rp->b_wait, &waita);
1111 set_current_state(TASK_INTERRUPTIBLE);
1113 spin_lock_irqsave(&rp->b_lock, flags);
1115 spin_unlock_irqrestore(&rp->b_lock, flags);
1117 set_current_state(TASK_RUNNING);
1118 remove_wait_queue(&rp->b_wait, &waita);
1122 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1125 unsigned long vaddr;
1127 for (n = 0; n < npages; n++) {
1128 vaddr = get_zeroed_page(GFP_KERNEL);
1131 free_page((unsigned long) map[n].ptr);
1134 map[n].ptr = (unsigned char *) vaddr;
1135 map[n].pg = virt_to_page(vaddr);
1140 static void mon_free_buff(struct mon_pgmap *map, int npages)
1144 for (n = 0; n < npages; n++)
1145 free_page((unsigned long) map[n].ptr);
1148 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1151 unsigned minor = ubus? ubus->busnum: 0;
1153 if (minor >= MON_BIN_MAX_MINOR)
1156 dev = device_create(mon_bin_class, ubus? ubus->controller: NULL,
1157 MKDEV(MAJOR(mon_bin_dev0), minor), "usbmon%d", minor);
1161 mbus->classdev = dev;
1165 void mon_bin_del(struct mon_bus *mbus)
1167 device_destroy(mon_bin_class, mbus->classdev->devt);
1170 int __init mon_bin_init(void)
1174 mon_bin_class = class_create(THIS_MODULE, "usbmon");
1175 if (IS_ERR(mon_bin_class)) {
1176 rc = PTR_ERR(mon_bin_class);
1180 rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1184 cdev_init(&mon_bin_cdev, &mon_fops_binary);
1185 mon_bin_cdev.owner = THIS_MODULE;
1187 rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1194 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1196 class_destroy(mon_bin_class);
1201 void mon_bin_exit(void)
1203 cdev_del(&mon_bin_cdev);
1204 unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1205 class_destroy(mon_bin_class);