4 * Basic PIO and command management functionality.
6 * This code was split off from ide.c. See ide.c for history and original
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
27 #include <linux/module.h>
28 #include <linux/types.h>
29 #include <linux/string.h>
30 #include <linux/kernel.h>
31 #include <linux/timer.h>
33 #include <linux/interrupt.h>
34 #include <linux/major.h>
35 #include <linux/errno.h>
36 #include <linux/genhd.h>
37 #include <linux/blkpg.h>
38 #include <linux/slab.h>
39 #include <linux/init.h>
40 #include <linux/pci.h>
41 #include <linux/delay.h>
42 #include <linux/ide.h>
43 #include <linux/hdreg.h>
44 #include <linux/completion.h>
45 #include <linux/reboot.h>
46 #include <linux/cdrom.h>
47 #include <linux/seq_file.h>
48 #include <linux/device.h>
49 #include <linux/kmod.h>
50 #include <linux/scatterlist.h>
51 #include <linux/bitops.h>
53 #include <asm/byteorder.h>
55 #include <asm/uaccess.h>
58 static int __ide_end_request(ide_drive_t *drive, struct request *rq,
59 int uptodate, unsigned int nr_bytes, int dequeue)
65 error = uptodate ? uptodate : -EIO;
68 * if failfast is set on a request, override number of sectors and
69 * complete the whole request right now
71 if (blk_noretry_request(rq) && error)
72 nr_bytes = rq->hard_nr_sectors << 9;
74 if (!blk_fs_request(rq) && error && !rq->errors)
78 * decide whether to reenable DMA -- 3 is a random magic for now,
79 * if we DMA timeout more than 3 times, just stay in PIO
81 if ((drive->dev_flags & IDE_DFLAG_DMA_PIO_RETRY) &&
82 drive->retry_pio <= 3) {
83 drive->dev_flags &= ~IDE_DFLAG_DMA_PIO_RETRY;
87 if (!__blk_end_request(rq, error, nr_bytes)) {
89 HWGROUP(drive)->rq = NULL;
97 * ide_end_request - complete an IDE I/O
98 * @drive: IDE device for the I/O
100 * @nr_sectors: number of sectors completed
102 * This is our end_request wrapper function. We complete the I/O
103 * update random number input and dequeue the request, which if
104 * it was tagged may be out of order.
107 int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
109 unsigned int nr_bytes = nr_sectors << 9;
115 * room for locking improvements here, the calls below don't
116 * need the queue lock held at all
118 spin_lock_irqsave(&ide_lock, flags);
119 rq = HWGROUP(drive)->rq;
122 if (blk_pc_request(rq))
123 nr_bytes = rq->data_len;
125 nr_bytes = rq->hard_cur_sectors << 9;
128 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
130 spin_unlock_irqrestore(&ide_lock, flags);
133 EXPORT_SYMBOL(ide_end_request);
135 static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
137 struct request_pm_state *pm = rq->data;
139 if (drive->media != ide_disk)
142 switch (pm->pm_step) {
143 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
144 if (pm->pm_state == PM_EVENT_FREEZE)
145 pm->pm_step = IDE_PM_COMPLETED;
147 pm->pm_step = IDE_PM_STANDBY;
149 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
150 pm->pm_step = IDE_PM_COMPLETED;
152 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
153 pm->pm_step = IDE_PM_IDLE;
155 case IDE_PM_IDLE: /* Resume step 2 (idle)*/
156 pm->pm_step = IDE_PM_RESTORE_DMA;
161 static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
163 struct request_pm_state *pm = rq->data;
164 ide_task_t *args = rq->special;
166 memset(args, 0, sizeof(*args));
168 switch (pm->pm_step) {
169 case IDE_PM_FLUSH_CACHE: /* Suspend step 1 (flush cache) */
170 if (drive->media != ide_disk)
172 /* Not supported? Switch to next step now. */
173 if (ata_id_flush_enabled(drive->id) == 0 ||
174 (drive->dev_flags & IDE_DFLAG_WCACHE) == 0) {
175 ide_complete_power_step(drive, rq, 0, 0);
178 if (ata_id_flush_ext_enabled(drive->id))
179 args->tf.command = ATA_CMD_FLUSH_EXT;
181 args->tf.command = ATA_CMD_FLUSH;
183 case IDE_PM_STANDBY: /* Suspend step 2 (standby) */
184 args->tf.command = ATA_CMD_STANDBYNOW1;
186 case IDE_PM_RESTORE_PIO: /* Resume step 1 (restore PIO) */
187 ide_set_max_pio(drive);
189 * skip IDE_PM_IDLE for ATAPI devices
191 if (drive->media != ide_disk)
192 pm->pm_step = IDE_PM_RESTORE_DMA;
194 ide_complete_power_step(drive, rq, 0, 0);
196 case IDE_PM_IDLE: /* Resume step 2 (idle) */
197 args->tf.command = ATA_CMD_IDLEIMMEDIATE;
199 case IDE_PM_RESTORE_DMA: /* Resume step 3 (restore DMA) */
201 * Right now, all we do is call ide_set_dma(drive),
202 * we could be smarter and check for current xfer_speed
203 * in struct drive etc...
205 if (drive->hwif->dma_ops == NULL)
208 * TODO: respect IDE_DFLAG_USING_DMA
214 pm->pm_step = IDE_PM_COMPLETED;
218 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
219 args->data_phase = TASKFILE_NO_DATA;
220 return do_rw_taskfile(drive, args);
224 * ide_end_dequeued_request - complete an IDE I/O
225 * @drive: IDE device for the I/O
227 * @nr_sectors: number of sectors completed
229 * Complete an I/O that is no longer on the request queue. This
230 * typically occurs when we pull the request and issue a REQUEST_SENSE.
231 * We must still finish the old request but we must not tamper with the
232 * queue in the meantime.
234 * NOTE: This path does not handle barrier, but barrier is not supported
238 int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
239 int uptodate, int nr_sectors)
244 spin_lock_irqsave(&ide_lock, flags);
245 BUG_ON(!blk_rq_started(rq));
246 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
247 spin_unlock_irqrestore(&ide_lock, flags);
251 EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
255 * ide_complete_pm_request - end the current Power Management request
256 * @drive: target drive
259 * This function cleans up the current PM request and stops the queue
262 static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
267 printk("%s: completing PM request, %s\n", drive->name,
268 blk_pm_suspend_request(rq) ? "suspend" : "resume");
270 spin_lock_irqsave(&ide_lock, flags);
271 if (blk_pm_suspend_request(rq)) {
272 blk_stop_queue(drive->queue);
274 drive->dev_flags &= ~IDE_DFLAG_BLOCKED;
275 blk_start_queue(drive->queue);
277 HWGROUP(drive)->rq = NULL;
278 if (__blk_end_request(rq, 0, 0))
280 spin_unlock_irqrestore(&ide_lock, flags);
284 * ide_end_drive_cmd - end an explicit drive command
289 * Clean up after success/failure of an explicit drive command.
290 * These get thrown onto the queue so they are synchronized with
291 * real I/O operations on the drive.
293 * In LBA48 mode we have to read the register set twice to get
294 * all the extra information out.
297 void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
302 spin_lock_irqsave(&ide_lock, flags);
303 rq = HWGROUP(drive)->rq;
304 spin_unlock_irqrestore(&ide_lock, flags);
306 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
307 ide_task_t *task = (ide_task_t *)rq->special;
310 rq->errors = !OK_STAT(stat, ATA_DRDY, BAD_STAT);
313 struct ide_taskfile *tf = &task->tf;
318 drive->hwif->tp_ops->tf_read(drive, task);
320 if (task->tf_flags & IDE_TFLAG_DYN)
323 } else if (blk_pm_request(rq)) {
324 struct request_pm_state *pm = rq->data;
326 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
327 drive->name, rq->pm->pm_step, stat, err);
329 ide_complete_power_step(drive, rq, stat, err);
330 if (pm->pm_step == IDE_PM_COMPLETED)
331 ide_complete_pm_request(drive, rq);
335 spin_lock_irqsave(&ide_lock, flags);
336 HWGROUP(drive)->rq = NULL;
338 if (unlikely(__blk_end_request(rq, (rq->errors ? -EIO : 0),
341 spin_unlock_irqrestore(&ide_lock, flags);
344 EXPORT_SYMBOL(ide_end_drive_cmd);
346 static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
351 drv = *(ide_driver_t **)rq->rq_disk->private_data;
352 drv->end_request(drive, 0, 0);
354 ide_end_request(drive, 0, 0);
357 static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
359 ide_hwif_t *hwif = drive->hwif;
361 if ((stat & ATA_BUSY) ||
362 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
363 /* other bits are useless when BUSY */
364 rq->errors |= ERROR_RESET;
365 } else if (stat & ATA_ERR) {
366 /* err has different meaning on cdrom and tape */
367 if (err == ATA_ABORTED) {
368 if ((drive->dev_flags & IDE_DFLAG_LBA) &&
369 /* some newer drives don't support ATA_CMD_INIT_DEV_PARAMS */
370 hwif->tp_ops->read_status(hwif) == ATA_CMD_INIT_DEV_PARAMS)
372 } else if ((err & BAD_CRC) == BAD_CRC) {
373 /* UDMA crc error, just retry the operation */
375 } else if (err & (ATA_BBK | ATA_UNC)) {
376 /* retries won't help these */
377 rq->errors = ERROR_MAX;
378 } else if (err & ATA_TRK0NF) {
379 /* help it find track zero */
380 rq->errors |= ERROR_RECAL;
384 if ((stat & ATA_DRQ) && rq_data_dir(rq) == READ &&
385 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0) {
386 int nsect = drive->mult_count ? drive->mult_count : 1;
388 ide_pad_transfer(drive, READ, nsect * SECTOR_SIZE);
391 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
392 ide_kill_rq(drive, rq);
396 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
397 rq->errors |= ERROR_RESET;
399 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
401 return ide_do_reset(drive);
404 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
405 drive->special.b.recalibrate = 1;
412 static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
414 ide_hwif_t *hwif = drive->hwif;
416 if ((stat & ATA_BUSY) ||
417 ((stat & ATA_DF) && (drive->dev_flags & IDE_DFLAG_NOWERR) == 0)) {
418 /* other bits are useless when BUSY */
419 rq->errors |= ERROR_RESET;
421 /* add decoding error stuff */
424 if (hwif->tp_ops->read_status(hwif) & (ATA_BUSY | ATA_DRQ))
426 hwif->tp_ops->exec_command(hwif, ATA_CMD_IDLEIMMEDIATE);
428 if (rq->errors >= ERROR_MAX) {
429 ide_kill_rq(drive, rq);
431 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
433 return ide_do_reset(drive);
442 __ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
444 if (drive->media == ide_disk)
445 return ide_ata_error(drive, rq, stat, err);
446 return ide_atapi_error(drive, rq, stat, err);
449 EXPORT_SYMBOL_GPL(__ide_error);
452 * ide_error - handle an error on the IDE
453 * @drive: drive the error occurred on
454 * @msg: message to report
457 * ide_error() takes action based on the error returned by the drive.
458 * For normal I/O that may well include retries. We deal with
459 * both new-style (taskfile) and old style command handling here.
460 * In the case of taskfile command handling there is work left to
464 ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
469 err = ide_dump_status(drive, msg, stat);
471 if ((rq = HWGROUP(drive)->rq) == NULL)
474 /* retry only "normal" I/O: */
475 if (!blk_fs_request(rq)) {
477 ide_end_drive_cmd(drive, stat, err);
484 drv = *(ide_driver_t **)rq->rq_disk->private_data;
485 return drv->error(drive, rq, stat, err);
487 return __ide_error(drive, rq, stat, err);
490 EXPORT_SYMBOL_GPL(ide_error);
492 static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
494 tf->nsect = drive->sect;
495 tf->lbal = drive->sect;
496 tf->lbam = drive->cyl;
497 tf->lbah = drive->cyl >> 8;
498 tf->device = (drive->head - 1) | drive->select.all;
499 tf->command = ATA_CMD_INIT_DEV_PARAMS;
502 static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
504 tf->nsect = drive->sect;
505 tf->command = ATA_CMD_RESTORE;
508 static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
510 tf->nsect = drive->mult_req;
511 tf->command = ATA_CMD_SET_MULTI;
514 static ide_startstop_t ide_disk_special(ide_drive_t *drive)
516 special_t *s = &drive->special;
519 memset(&args, 0, sizeof(ide_task_t));
520 args.data_phase = TASKFILE_NO_DATA;
522 if (s->b.set_geometry) {
523 s->b.set_geometry = 0;
524 ide_tf_set_specify_cmd(drive, &args.tf);
525 } else if (s->b.recalibrate) {
526 s->b.recalibrate = 0;
527 ide_tf_set_restore_cmd(drive, &args.tf);
528 } else if (s->b.set_multmode) {
529 s->b.set_multmode = 0;
530 ide_tf_set_setmult_cmd(drive, &args.tf);
532 int special = s->all;
534 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
538 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
539 IDE_TFLAG_CUSTOM_HANDLER;
541 do_rw_taskfile(drive, &args);
547 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
549 static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
558 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
561 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
564 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
571 * do_special - issue some special commands
572 * @drive: drive the command is for
574 * do_special() is used to issue ATA_CMD_INIT_DEV_PARAMS,
575 * ATA_CMD_RESTORE and ATA_CMD_SET_MULTI commands to a drive.
577 * It used to do much more, but has been scaled back.
580 static ide_startstop_t do_special (ide_drive_t *drive)
582 special_t *s = &drive->special;
585 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
588 ide_hwif_t *hwif = drive->hwif;
589 const struct ide_port_ops *port_ops = hwif->port_ops;
590 u8 req_pio = drive->tune_req;
594 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
596 * take ide_lock for IDE_DFLAG_[NO_]UNMASK/[NO_]IO_32BIT
598 if (req_pio == 8 || req_pio == 9) {
601 spin_lock_irqsave(&ide_lock, flags);
602 port_ops->set_pio_mode(drive, req_pio);
603 spin_unlock_irqrestore(&ide_lock, flags);
605 port_ops->set_pio_mode(drive, req_pio);
608 !!(drive->dev_flags & IDE_DFLAG_USING_DMA);
610 ide_set_pio(drive, req_pio);
612 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
620 if (drive->media == ide_disk)
621 return ide_disk_special(drive);
629 void ide_map_sg(ide_drive_t *drive, struct request *rq)
631 ide_hwif_t *hwif = drive->hwif;
632 struct scatterlist *sg = hwif->sg_table;
634 if (hwif->sg_mapped) /* needed by ide-scsi */
637 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
638 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
640 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
645 EXPORT_SYMBOL_GPL(ide_map_sg);
647 void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
649 ide_hwif_t *hwif = drive->hwif;
651 hwif->nsect = hwif->nleft = rq->nr_sectors;
656 EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
659 * execute_drive_command - issue special drive command
660 * @drive: the drive to issue the command on
661 * @rq: the request structure holding the command
663 * execute_drive_cmd() issues a special drive command, usually
664 * initiated by ioctl() from the external hdparm program. The
665 * command can be a drive command, drive task or taskfile
666 * operation. Weirdly you can call it with NULL to wait for
667 * all commands to finish. Don't do this as that is due to change
670 static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
673 ide_hwif_t *hwif = HWIF(drive);
674 ide_task_t *task = rq->special;
677 hwif->data_phase = task->data_phase;
679 switch (hwif->data_phase) {
680 case TASKFILE_MULTI_OUT:
682 case TASKFILE_MULTI_IN:
684 ide_init_sg_cmd(drive, rq);
685 ide_map_sg(drive, rq);
690 return do_rw_taskfile(drive, task);
694 * NULL is actually a valid way of waiting for
695 * all current requests to be flushed from the queue.
698 printk("%s: DRIVE_CMD (null)\n", drive->name);
700 ide_end_drive_cmd(drive, hwif->tp_ops->read_status(hwif),
701 ide_read_error(drive));
706 int ide_devset_execute(ide_drive_t *drive, const struct ide_devset *setting,
709 struct request_queue *q = drive->queue;
713 if (!(setting->flags & DS_SYNC))
714 return setting->set(drive, arg);
716 rq = blk_get_request(q, READ, GFP_KERNEL);
720 rq->cmd_type = REQ_TYPE_SPECIAL;
722 rq->cmd[0] = REQ_DEVSET_EXEC;
723 *(int *)&rq->cmd[1] = arg;
724 rq->special = setting->set;
726 if (blk_execute_rq(q, NULL, rq, 0))
732 EXPORT_SYMBOL_GPL(ide_devset_execute);
734 static ide_startstop_t ide_special_rq(ide_drive_t *drive, struct request *rq)
736 switch (rq->cmd[0]) {
737 case REQ_DEVSET_EXEC:
739 int err, (*setfunc)(ide_drive_t *, int) = rq->special;
741 err = setfunc(drive, *(int *)&rq->cmd[1]);
746 ide_end_request(drive, err, 0);
749 case REQ_DRIVE_RESET:
750 return ide_do_reset(drive);
752 blk_dump_rq_flags(rq, "ide_special_rq - bad request");
753 ide_end_request(drive, 0, 0);
758 static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
760 struct request_pm_state *pm = rq->data;
762 if (blk_pm_suspend_request(rq) &&
763 pm->pm_step == IDE_PM_START_SUSPEND)
764 /* Mark drive blocked when starting the suspend sequence. */
765 drive->dev_flags |= IDE_DFLAG_BLOCKED;
766 else if (blk_pm_resume_request(rq) &&
767 pm->pm_step == IDE_PM_START_RESUME) {
769 * The first thing we do on wakeup is to wait for BSY bit to
770 * go away (with a looong timeout) as a drive on this hwif may
771 * just be POSTing itself.
772 * We do that before even selecting as the "other" device on
773 * the bus may be broken enough to walk on our toes at this
776 ide_hwif_t *hwif = drive->hwif;
779 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
781 rc = ide_wait_not_busy(hwif, 35000);
783 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
785 hwif->tp_ops->set_irq(hwif, 1);
786 rc = ide_wait_not_busy(hwif, 100000);
788 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
793 * start_request - start of I/O and command issuing for IDE
795 * start_request() initiates handling of a new I/O request. It
796 * accepts commands and I/O (read/write) requests.
798 * FIXME: this function needs a rename
801 static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
803 ide_startstop_t startstop;
805 BUG_ON(!blk_rq_started(rq));
808 printk("%s: start_request: current=0x%08lx\n",
809 HWIF(drive)->name, (unsigned long) rq);
812 /* bail early if we've exceeded max_failures */
813 if (drive->max_failures && (drive->failures > drive->max_failures)) {
814 rq->cmd_flags |= REQ_FAILED;
818 if (blk_pm_request(rq))
819 ide_check_pm_state(drive, rq);
822 if (ide_wait_stat(&startstop, drive, drive->ready_stat,
823 ATA_BUSY | ATA_DRQ, WAIT_READY)) {
824 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
827 if (!drive->special.all) {
831 * We reset the drive so we need to issue a SETFEATURES.
832 * Do it _after_ do_special() restored device parameters.
834 if (drive->current_speed == 0xff)
835 ide_config_drive_speed(drive, drive->desired_speed);
837 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
838 return execute_drive_cmd(drive, rq);
839 else if (blk_pm_request(rq)) {
840 struct request_pm_state *pm = rq->data;
842 printk("%s: start_power_step(step: %d)\n",
843 drive->name, rq->pm->pm_step);
845 startstop = ide_start_power_step(drive, rq);
846 if (startstop == ide_stopped &&
847 pm->pm_step == IDE_PM_COMPLETED)
848 ide_complete_pm_request(drive, rq);
850 } else if (!rq->rq_disk && blk_special_request(rq))
852 * TODO: Once all ULDs have been modified to
853 * check for specific op codes rather than
854 * blindly accepting any special request, the
855 * check for ->rq_disk above may be replaced
856 * by a more suitable mechanism or even
859 return ide_special_rq(drive, rq);
861 drv = *(ide_driver_t **)rq->rq_disk->private_data;
863 return drv->do_request(drive, rq, rq->sector);
865 return do_special(drive);
867 ide_kill_rq(drive, rq);
872 * ide_stall_queue - pause an IDE device
873 * @drive: drive to stall
874 * @timeout: time to stall for (jiffies)
876 * ide_stall_queue() can be used by a drive to give excess bandwidth back
877 * to the hwgroup by sleeping for timeout jiffies.
880 void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
882 if (timeout > WAIT_WORSTCASE)
883 timeout = WAIT_WORSTCASE;
884 drive->sleep = timeout + jiffies;
885 drive->dev_flags |= IDE_DFLAG_SLEEPING;
888 EXPORT_SYMBOL(ide_stall_queue);
890 #define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
893 * choose_drive - select a drive to service
894 * @hwgroup: hardware group to select on
896 * choose_drive() selects the next drive which will be serviced.
897 * This is necessary because the IDE layer can't issue commands
898 * to both drives on the same cable, unlike SCSI.
901 static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
903 ide_drive_t *drive, *best;
907 drive = hwgroup->drive;
910 * drive is doing pre-flush, ordered write, post-flush sequence. even
911 * though that is 3 requests, it must be seen as a single transaction.
912 * we must not preempt this drive until that is complete
914 if (blk_queue_flushing(drive->queue)) {
916 * small race where queue could get replugged during
917 * the 3-request flush cycle, just yank the plug since
918 * we want it to finish asap
920 blk_remove_plug(drive->queue);
925 u8 dev_s = !!(drive->dev_flags & IDE_DFLAG_SLEEPING);
926 u8 best_s = (best && !!(best->dev_flags & IDE_DFLAG_SLEEPING));
928 if ((dev_s == 0 || time_after_eq(jiffies, drive->sleep)) &&
929 !elv_queue_empty(drive->queue)) {
931 (dev_s && (best_s == 0 || time_before(drive->sleep, best->sleep))) ||
932 (best_s == 0 && time_before(WAKEUP(drive), WAKEUP(best)))) {
933 if (!blk_queue_plugged(drive->queue))
937 } while ((drive = drive->next) != hwgroup->drive);
939 if (best && (best->dev_flags & IDE_DFLAG_NICE1) &&
940 (best->dev_flags & IDE_DFLAG_SLEEPING) == 0 &&
941 best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
942 long t = (signed long)(WAKEUP(best) - jiffies);
943 if (t >= WAIT_MIN_SLEEP) {
945 * We *may* have some time to spare, but first let's see if
946 * someone can potentially benefit from our nice mood today..
950 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) == 0
951 && time_before(jiffies - best->service_time, WAKEUP(drive))
952 && time_before(WAKEUP(drive), jiffies + t))
954 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
957 } while ((drive = drive->next) != best);
964 * Issue a new request to a drive from hwgroup
965 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
967 * A hwgroup is a serialized group of IDE interfaces. Usually there is
968 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
969 * may have both interfaces in a single hwgroup to "serialize" access.
970 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
971 * together into one hwgroup for serialized access.
973 * Note also that several hwgroups can end up sharing a single IRQ,
974 * possibly along with many other devices. This is especially common in
975 * PCI-based systems with off-board IDE controller cards.
977 * The IDE driver uses the single global ide_lock spinlock to protect
978 * access to the request queues, and to protect the hwgroup->busy flag.
980 * The first thread into the driver for a particular hwgroup sets the
981 * hwgroup->busy flag to indicate that this hwgroup is now active,
982 * and then initiates processing of the top request from the request queue.
984 * Other threads attempting entry notice the busy setting, and will simply
985 * queue their new requests and exit immediately. Note that hwgroup->busy
986 * remains set even when the driver is merely awaiting the next interrupt.
987 * Thus, the meaning is "this hwgroup is busy processing a request".
989 * When processing of a request completes, the completing thread or IRQ-handler
990 * will start the next request from the queue. If no more work remains,
991 * the driver will clear the hwgroup->busy flag and exit.
993 * The ide_lock (spinlock) is used to protect all access to the
994 * hwgroup->busy flag, but is otherwise not needed for most processing in
995 * the driver. This makes the driver much more friendlier to shared IRQs
996 * than previous designs, while remaining 100% (?) SMP safe and capable.
998 static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1003 ide_startstop_t startstop;
1006 /* for atari only: POSSIBLY BROKEN HERE(?) */
1007 ide_get_lock(ide_intr, hwgroup);
1009 /* caller must own ide_lock */
1010 BUG_ON(!irqs_disabled());
1012 while (!hwgroup->busy) {
1014 drive = choose_drive(hwgroup);
1015 if (drive == NULL) {
1017 unsigned long sleep = 0; /* shut up, gcc */
1019 drive = hwgroup->drive;
1021 if ((drive->dev_flags & IDE_DFLAG_SLEEPING) &&
1023 time_before(drive->sleep, sleep))) {
1025 sleep = drive->sleep;
1027 } while ((drive = drive->next) != hwgroup->drive);
1030 * Take a short snooze, and then wake up this hwgroup again.
1031 * This gives other hwgroups on the same a chance to
1032 * play fairly with us, just in case there are big differences
1033 * in relative throughputs.. don't want to hog the cpu too much.
1035 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1036 sleep = jiffies + WAIT_MIN_SLEEP;
1038 if (timer_pending(&hwgroup->timer))
1039 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1041 /* so that ide_timer_expiry knows what to do */
1042 hwgroup->sleeping = 1;
1043 hwgroup->req_gen_timer = hwgroup->req_gen;
1044 mod_timer(&hwgroup->timer, sleep);
1045 /* we purposely leave hwgroup->busy==1
1048 /* Ugly, but how can we sleep for the lock
1049 * otherwise? perhaps from tq_disk?
1052 /* for atari only */
1057 /* no more work for this hwgroup (for now) */
1062 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
1064 * set nIEN for previous hwif, drives in the
1065 * quirk_list may not like intr setups/cleanups
1067 if (drive->quirk_list != 1)
1068 hwif->tp_ops->set_irq(hwif, 0);
1070 hwgroup->hwif = hwif;
1071 hwgroup->drive = drive;
1072 drive->dev_flags &= ~IDE_DFLAG_SLEEPING;
1073 drive->service_start = jiffies;
1075 if (blk_queue_plugged(drive->queue)) {
1076 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1081 * we know that the queue isn't empty, but this can happen
1082 * if the q->prep_rq_fn() decides to kill a request
1084 rq = elv_next_request(drive->queue);
1091 * Sanity: don't accept a request that isn't a PM request
1092 * if we are currently power managed. This is very important as
1093 * blk_stop_queue() doesn't prevent the elv_next_request()
1094 * above to return us whatever is in the queue. Since we call
1095 * ide_do_request() ourselves, we end up taking requests while
1096 * the queue is blocked...
1098 * We let requests forced at head of queue with ide-preempt
1099 * though. I hope that doesn't happen too much, hopefully not
1100 * unless the subdriver triggers such a thing in its own PM
1103 * We count how many times we loop here to make sure we service
1104 * all drives in the hwgroup without looping for ever
1106 if ((drive->dev_flags & IDE_DFLAG_BLOCKED) &&
1107 blk_pm_request(rq) == 0 &&
1108 (rq->cmd_flags & REQ_PREEMPT) == 0) {
1109 drive = drive->next ? drive->next : hwgroup->drive;
1110 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1112 /* We clear busy, there should be no pending ATA command at this point. */
1120 * Some systems have trouble with IDE IRQs arriving while
1121 * the driver is still setting things up. So, here we disable
1122 * the IRQ used by this interface while the request is being started.
1123 * This may look bad at first, but pretty much the same thing
1124 * happens anyway when any interrupt comes in, IDE or otherwise
1125 * -- the kernel masks the IRQ while it is being handled.
1127 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1128 disable_irq_nosync(hwif->irq);
1129 spin_unlock(&ide_lock);
1130 local_irq_enable_in_hardirq();
1131 /* allow other IRQs while we start this request */
1132 startstop = start_request(drive, rq);
1133 spin_lock_irq(&ide_lock);
1134 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1135 enable_irq(hwif->irq);
1136 if (startstop == ide_stopped)
1142 * Passes the stuff to ide_do_request
1144 void do_ide_request(struct request_queue *q)
1146 ide_drive_t *drive = q->queuedata;
1148 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1152 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1153 * retry the current request in pio mode instead of risking tossing it
1156 static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1158 ide_hwif_t *hwif = HWIF(drive);
1160 ide_startstop_t ret = ide_stopped;
1163 * end current dma transaction
1167 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1168 (void)hwif->dma_ops->dma_end(drive);
1169 ret = ide_error(drive, "dma timeout error",
1170 hwif->tp_ops->read_status(hwif));
1172 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
1173 hwif->dma_ops->dma_timeout(drive);
1177 * disable dma for now, but remember that we did so because of
1178 * a timeout -- we'll reenable after we finish this next request
1179 * (or rather the first chunk of it) in pio.
1181 drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY;
1183 ide_dma_off_quietly(drive);
1186 * un-busy drive etc (hwgroup->busy is cleared on return) and
1187 * make sure request is sane
1189 rq = HWGROUP(drive)->rq;
1194 HWGROUP(drive)->rq = NULL;
1201 rq->sector = rq->bio->bi_sector;
1202 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1203 rq->hard_cur_sectors = rq->current_nr_sectors;
1204 rq->buffer = bio_data(rq->bio);
1210 * ide_timer_expiry - handle lack of an IDE interrupt
1211 * @data: timer callback magic (hwgroup)
1213 * An IDE command has timed out before the expected drive return
1214 * occurred. At this point we attempt to clean up the current
1215 * mess. If the current handler includes an expiry handler then
1216 * we invoke the expiry handler, and providing it is happy the
1217 * work is done. If that fails we apply generic recovery rules
1218 * invoking the handler and checking the drive DMA status. We
1219 * have an excessively incestuous relationship with the DMA
1220 * logic that wants cleaning up.
1223 void ide_timer_expiry (unsigned long data)
1225 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1226 ide_handler_t *handler;
1227 ide_expiry_t *expiry;
1228 unsigned long flags;
1229 unsigned long wait = -1;
1231 spin_lock_irqsave(&ide_lock, flags);
1233 if (((handler = hwgroup->handler) == NULL) ||
1234 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1236 * Either a marginal timeout occurred
1237 * (got the interrupt just as timer expired),
1238 * or we were "sleeping" to give other devices a chance.
1239 * Either way, we don't really want to complain about anything.
1241 if (hwgroup->sleeping) {
1242 hwgroup->sleeping = 0;
1246 ide_drive_t *drive = hwgroup->drive;
1248 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1249 hwgroup->handler = NULL;
1252 ide_startstop_t startstop = ide_stopped;
1253 if (!hwgroup->busy) {
1254 hwgroup->busy = 1; /* paranoia */
1255 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1257 if ((expiry = hwgroup->expiry) != NULL) {
1259 if ((wait = expiry(drive)) > 0) {
1261 hwgroup->timer.expires = jiffies + wait;
1262 hwgroup->req_gen_timer = hwgroup->req_gen;
1263 add_timer(&hwgroup->timer);
1264 spin_unlock_irqrestore(&ide_lock, flags);
1268 hwgroup->handler = NULL;
1270 * We need to simulate a real interrupt when invoking
1271 * the handler() function, which means we need to
1272 * globally mask the specific IRQ:
1274 spin_unlock(&ide_lock);
1276 /* disable_irq_nosync ?? */
1277 disable_irq(hwif->irq);
1279 * as if we were handling an interrupt */
1280 local_irq_disable();
1281 if (hwgroup->polling) {
1282 startstop = handler(drive);
1283 } else if (drive_is_ready(drive)) {
1284 if (drive->waiting_for_dma)
1285 hwif->dma_ops->dma_lost_irq(drive);
1286 (void)ide_ack_intr(hwif);
1287 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1288 startstop = handler(drive);
1290 if (drive->waiting_for_dma) {
1291 startstop = ide_dma_timeout_retry(drive, wait);
1294 ide_error(drive, "irq timeout",
1295 hwif->tp_ops->read_status(hwif));
1297 drive->service_time = jiffies - drive->service_start;
1298 spin_lock_irq(&ide_lock);
1299 enable_irq(hwif->irq);
1300 if (startstop == ide_stopped)
1304 ide_do_request(hwgroup, IDE_NO_IRQ);
1305 spin_unlock_irqrestore(&ide_lock, flags);
1309 * unexpected_intr - handle an unexpected IDE interrupt
1310 * @irq: interrupt line
1311 * @hwgroup: hwgroup being processed
1313 * There's nothing really useful we can do with an unexpected interrupt,
1314 * other than reading the status register (to clear it), and logging it.
1315 * There should be no way that an irq can happen before we're ready for it,
1316 * so we needn't worry much about losing an "important" interrupt here.
1318 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1319 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1320 * looks "good", we just ignore the interrupt completely.
1322 * This routine assumes __cli() is in effect when called.
1324 * If an unexpected interrupt happens on irq15 while we are handling irq14
1325 * and if the two interfaces are "serialized" (CMD640), then it looks like
1326 * we could screw up by interfering with a new request being set up for
1329 * In reality, this is a non-issue. The new command is not sent unless
1330 * the drive is ready to accept one, in which case we know the drive is
1331 * not trying to interrupt us. And ide_set_handler() is always invoked
1332 * before completing the issuance of any new drive command, so we will not
1333 * be accidentally invoked as a result of any valid command completion
1336 * Note that we must walk the entire hwgroup here. We know which hwif
1337 * is doing the current command, but we don't know which hwif burped
1341 static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1344 ide_hwif_t *hwif = hwgroup->hwif;
1347 * handle the unexpected interrupt
1350 if (hwif->irq == irq) {
1351 stat = hwif->tp_ops->read_status(hwif);
1353 if (!OK_STAT(stat, ATA_DRDY, BAD_STAT)) {
1354 /* Try to not flood the console with msgs */
1355 static unsigned long last_msgtime, count;
1357 if (time_after(jiffies, last_msgtime + HZ)) {
1358 last_msgtime = jiffies;
1359 printk(KERN_ERR "%s%s: unexpected interrupt, "
1360 "status=0x%02x, count=%ld\n",
1362 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1366 } while ((hwif = hwif->next) != hwgroup->hwif);
1370 * ide_intr - default IDE interrupt handler
1371 * @irq: interrupt number
1372 * @dev_id: hwif group
1373 * @regs: unused weirdness from the kernel irq layer
1375 * This is the default IRQ handler for the IDE layer. You should
1376 * not need to override it. If you do be aware it is subtle in
1379 * hwgroup->hwif is the interface in the group currently performing
1380 * a command. hwgroup->drive is the drive and hwgroup->handler is
1381 * the IRQ handler to call. As we issue a command the handlers
1382 * step through multiple states, reassigning the handler to the
1383 * next step in the process. Unlike a smart SCSI controller IDE
1384 * expects the main processor to sequence the various transfer
1385 * stages. We also manage a poll timer to catch up with most
1386 * timeout situations. There are still a few where the handlers
1387 * don't ever decide to give up.
1389 * The handler eventually returns ide_stopped to indicate the
1390 * request completed. At this point we issue the next request
1391 * on the hwgroup and the process begins again.
1394 irqreturn_t ide_intr (int irq, void *dev_id)
1396 unsigned long flags;
1397 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1400 ide_handler_t *handler;
1401 ide_startstop_t startstop;
1403 spin_lock_irqsave(&ide_lock, flags);
1404 hwif = hwgroup->hwif;
1406 if (!ide_ack_intr(hwif)) {
1407 spin_unlock_irqrestore(&ide_lock, flags);
1411 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1413 * Not expecting an interrupt from this drive.
1414 * That means this could be:
1415 * (1) an interrupt from another PCI device
1416 * sharing the same PCI INT# as us.
1417 * or (2) a drive just entered sleep or standby mode,
1418 * and is interrupting to let us know.
1419 * or (3) a spurious interrupt of unknown origin.
1421 * For PCI, we cannot tell the difference,
1422 * so in that case we just ignore it and hope it goes away.
1424 * FIXME: unexpected_intr should be hwif-> then we can
1425 * remove all the ifdef PCI crap
1427 #ifdef CONFIG_BLK_DEV_IDEPCI
1428 if (hwif->chipset != ide_pci)
1429 #endif /* CONFIG_BLK_DEV_IDEPCI */
1432 * Probably not a shared PCI interrupt,
1433 * so we can safely try to do something about it:
1435 unexpected_intr(irq, hwgroup);
1436 #ifdef CONFIG_BLK_DEV_IDEPCI
1439 * Whack the status register, just in case
1440 * we have a leftover pending IRQ.
1442 (void)hwif->tp_ops->read_status(hwif);
1443 #endif /* CONFIG_BLK_DEV_IDEPCI */
1445 spin_unlock_irqrestore(&ide_lock, flags);
1448 drive = hwgroup->drive;
1451 * This should NEVER happen, and there isn't much
1452 * we could do about it here.
1454 * [Note - this can occur if the drive is hot unplugged]
1456 spin_unlock_irqrestore(&ide_lock, flags);
1459 if (!drive_is_ready(drive)) {
1461 * This happens regularly when we share a PCI IRQ with
1462 * another device. Unfortunately, it can also happen
1463 * with some buggy drives that trigger the IRQ before
1464 * their status register is up to date. Hopefully we have
1465 * enough advance overhead that the latter isn't a problem.
1467 spin_unlock_irqrestore(&ide_lock, flags);
1470 if (!hwgroup->busy) {
1471 hwgroup->busy = 1; /* paranoia */
1472 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1474 hwgroup->handler = NULL;
1476 del_timer(&hwgroup->timer);
1477 spin_unlock(&ide_lock);
1479 /* Some controllers might set DMA INTR no matter DMA or PIO;
1480 * bmdma status might need to be cleared even for
1481 * PIO interrupts to prevent spurious/lost irq.
1483 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1484 /* ide_dma_end() needs bmdma status for error checking.
1485 * So, skip clearing bmdma status here and leave it
1486 * to ide_dma_end() if this is dma interrupt.
1488 hwif->ide_dma_clear_irq(drive);
1490 if (drive->dev_flags & IDE_DFLAG_UNMASK)
1491 local_irq_enable_in_hardirq();
1492 /* service this interrupt, may set handler for next interrupt */
1493 startstop = handler(drive);
1494 spin_lock_irq(&ide_lock);
1497 * Note that handler() may have set things up for another
1498 * interrupt to occur soon, but it cannot happen until
1499 * we exit from this routine, because it will be the
1500 * same irq as is currently being serviced here, and Linux
1501 * won't allow another of the same (on any CPU) until we return.
1503 drive->service_time = jiffies - drive->service_start;
1504 if (startstop == ide_stopped) {
1505 if (hwgroup->handler == NULL) { /* paranoia */
1507 ide_do_request(hwgroup, hwif->irq);
1509 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1510 "on exit\n", drive->name);
1513 spin_unlock_irqrestore(&ide_lock, flags);
1518 * ide_do_drive_cmd - issue IDE special command
1519 * @drive: device to issue command
1520 * @rq: request to issue
1522 * This function issues a special IDE device request
1523 * onto the request queue.
1525 * the rq is queued at the head of the request queue, displacing
1526 * the currently-being-processed request and this function
1527 * returns immediately without waiting for the new rq to be
1528 * completed. This is VERY DANGEROUS, and is intended for
1529 * careful use by the ATAPI tape/cdrom driver code.
1532 void ide_do_drive_cmd(ide_drive_t *drive, struct request *rq)
1534 unsigned long flags;
1535 ide_hwgroup_t *hwgroup = HWGROUP(drive);
1537 spin_lock_irqsave(&ide_lock, flags);
1539 __elv_add_request(drive->queue, rq, ELEVATOR_INSERT_FRONT, 1);
1540 __generic_unplug_device(drive->queue);
1541 spin_unlock_irqrestore(&ide_lock, flags);
1544 EXPORT_SYMBOL(ide_do_drive_cmd);
1546 void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1548 ide_hwif_t *hwif = drive->hwif;
1551 memset(&task, 0, sizeof(task));
1552 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1553 IDE_TFLAG_OUT_FEATURE | tf_flags;
1554 task.tf.feature = dma; /* Use PIO/DMA */
1555 task.tf.lbam = bcount & 0xff;
1556 task.tf.lbah = (bcount >> 8) & 0xff;
1558 ide_tf_dump(drive->name, &task.tf);
1559 hwif->tp_ops->set_irq(hwif, 1);
1560 SELECT_MASK(drive, 0);
1561 hwif->tp_ops->tf_load(drive, &task);
1564 EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);
1566 void ide_pad_transfer(ide_drive_t *drive, int write, int len)
1568 ide_hwif_t *hwif = drive->hwif;
1573 hwif->tp_ops->output_data(drive, NULL, buf, min(4, len));
1575 hwif->tp_ops->input_data(drive, NULL, buf, min(4, len));
1579 EXPORT_SYMBOL_GPL(ide_pad_transfer);