Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai/sound-2.6
[linux-2.6] / include / linux / perf_counter.h
1 /*
2  *  Performance counters:
3  *
4  *    Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5  *    Copyright (C) 2008-2009, Red Hat, Inc., Ingo Molnar
6  *    Copyright (C) 2008-2009, Red Hat, Inc., Peter Zijlstra
7  *
8  *  Data type definitions, declarations, prototypes.
9  *
10  *    Started by: Thomas Gleixner and Ingo Molnar
11  *
12  *  For licencing details see kernel-base/COPYING
13  */
14 #ifndef _LINUX_PERF_COUNTER_H
15 #define _LINUX_PERF_COUNTER_H
16
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
20
21 /*
22  * User-space ABI bits:
23  */
24
25 /*
26  * attr.type
27  */
28 enum perf_type_id {
29         PERF_TYPE_HARDWARE                      = 0,
30         PERF_TYPE_SOFTWARE                      = 1,
31         PERF_TYPE_TRACEPOINT                    = 2,
32         PERF_TYPE_HW_CACHE                      = 3,
33         PERF_TYPE_RAW                           = 4,
34
35         PERF_TYPE_MAX,                          /* non-ABI */
36 };
37
38 /*
39  * Generalized performance counter event types, used by the
40  * attr.event_id parameter of the sys_perf_counter_open()
41  * syscall:
42  */
43 enum perf_hw_id {
44         /*
45          * Common hardware events, generalized by the kernel:
46          */
47         PERF_COUNT_HW_CPU_CYCLES                = 0,
48         PERF_COUNT_HW_INSTRUCTIONS              = 1,
49         PERF_COUNT_HW_CACHE_REFERENCES          = 2,
50         PERF_COUNT_HW_CACHE_MISSES              = 3,
51         PERF_COUNT_HW_BRANCH_INSTRUCTIONS       = 4,
52         PERF_COUNT_HW_BRANCH_MISSES             = 5,
53         PERF_COUNT_HW_BUS_CYCLES                = 6,
54
55         PERF_COUNT_HW_MAX,                      /* non-ABI */
56 };
57
58 /*
59  * Generalized hardware cache counters:
60  *
61  *       { L1-D, L1-I, LLC, ITLB, DTLB, BPU } x
62  *       { read, write, prefetch } x
63  *       { accesses, misses }
64  */
65 enum perf_hw_cache_id {
66         PERF_COUNT_HW_CACHE_L1D                 = 0,
67         PERF_COUNT_HW_CACHE_L1I                 = 1,
68         PERF_COUNT_HW_CACHE_LL                  = 2,
69         PERF_COUNT_HW_CACHE_DTLB                = 3,
70         PERF_COUNT_HW_CACHE_ITLB                = 4,
71         PERF_COUNT_HW_CACHE_BPU                 = 5,
72
73         PERF_COUNT_HW_CACHE_MAX,                /* non-ABI */
74 };
75
76 enum perf_hw_cache_op_id {
77         PERF_COUNT_HW_CACHE_OP_READ             = 0,
78         PERF_COUNT_HW_CACHE_OP_WRITE            = 1,
79         PERF_COUNT_HW_CACHE_OP_PREFETCH         = 2,
80
81         PERF_COUNT_HW_CACHE_OP_MAX,             /* non-ABI */
82 };
83
84 enum perf_hw_cache_op_result_id {
85         PERF_COUNT_HW_CACHE_RESULT_ACCESS       = 0,
86         PERF_COUNT_HW_CACHE_RESULT_MISS         = 1,
87
88         PERF_COUNT_HW_CACHE_RESULT_MAX,         /* non-ABI */
89 };
90
91 /*
92  * Special "software" counters provided by the kernel, even if the hardware
93  * does not support performance counters. These counters measure various
94  * physical and sw events of the kernel (and allow the profiling of them as
95  * well):
96  */
97 enum perf_sw_ids {
98         PERF_COUNT_SW_CPU_CLOCK                 = 0,
99         PERF_COUNT_SW_TASK_CLOCK                = 1,
100         PERF_COUNT_SW_PAGE_FAULTS               = 2,
101         PERF_COUNT_SW_CONTEXT_SWITCHES          = 3,
102         PERF_COUNT_SW_CPU_MIGRATIONS            = 4,
103         PERF_COUNT_SW_PAGE_FAULTS_MIN           = 5,
104         PERF_COUNT_SW_PAGE_FAULTS_MAJ           = 6,
105
106         PERF_COUNT_SW_MAX,                      /* non-ABI */
107 };
108
109 /*
110  * Bits that can be set in attr.sample_type to request information
111  * in the overflow packets.
112  */
113 enum perf_counter_sample_format {
114         PERF_SAMPLE_IP                          = 1U << 0,
115         PERF_SAMPLE_TID                         = 1U << 1,
116         PERF_SAMPLE_TIME                        = 1U << 2,
117         PERF_SAMPLE_ADDR                        = 1U << 3,
118         PERF_SAMPLE_GROUP                       = 1U << 4,
119         PERF_SAMPLE_CALLCHAIN                   = 1U << 5,
120         PERF_SAMPLE_ID                          = 1U << 6,
121         PERF_SAMPLE_CPU                         = 1U << 7,
122         PERF_SAMPLE_PERIOD                      = 1U << 8,
123
124         PERF_SAMPLE_MAX = 1U << 9,              /* non-ABI */
125 };
126
127 /*
128  * Bits that can be set in attr.read_format to request that
129  * reads on the counter should return the indicated quantities,
130  * in increasing order of bit value, after the counter value.
131  */
132 enum perf_counter_read_format {
133         PERF_FORMAT_TOTAL_TIME_ENABLED          = 1U << 0,
134         PERF_FORMAT_TOTAL_TIME_RUNNING          = 1U << 1,
135         PERF_FORMAT_ID                          = 1U << 2,
136
137         PERF_FORMAT_MAX = 1U << 3,              /* non-ABI */
138 };
139
140 #define PERF_ATTR_SIZE_VER0     64      /* sizeof first published struct */
141
142 /*
143  * Hardware event to monitor via a performance monitoring counter:
144  */
145 struct perf_counter_attr {
146
147         /*
148          * Major type: hardware/software/tracepoint/etc.
149          */
150         __u32                   type;
151
152         /*
153          * Size of the attr structure, for fwd/bwd compat.
154          */
155         __u32                   size;
156
157         /*
158          * Type specific configuration information.
159          */
160         __u64                   config;
161
162         union {
163                 __u64           sample_period;
164                 __u64           sample_freq;
165         };
166
167         __u64                   sample_type;
168         __u64                   read_format;
169
170         __u64                   disabled       :  1, /* off by default        */
171                                 inherit        :  1, /* children inherit it   */
172                                 pinned         :  1, /* must always be on PMU */
173                                 exclusive      :  1, /* only group on PMU     */
174                                 exclude_user   :  1, /* don't count user      */
175                                 exclude_kernel :  1, /* ditto kernel          */
176                                 exclude_hv     :  1, /* ditto hypervisor      */
177                                 exclude_idle   :  1, /* don't count when idle */
178                                 mmap           :  1, /* include mmap data     */
179                                 comm           :  1, /* include comm data     */
180                                 freq           :  1, /* use freq, not period  */
181                                 inherit_stat   :  1, /* per task counts       */
182                                 enable_on_exec :  1, /* next exec enables     */
183
184                                 __reserved_1   : 51;
185
186         __u32                   wakeup_events;  /* wakeup every n events */
187         __u32                   __reserved_2;
188
189         __u64                   __reserved_3;
190 };
191
192 /*
193  * Ioctls that can be done on a perf counter fd:
194  */
195 #define PERF_COUNTER_IOC_ENABLE         _IO ('$', 0)
196 #define PERF_COUNTER_IOC_DISABLE        _IO ('$', 1)
197 #define PERF_COUNTER_IOC_REFRESH        _IO ('$', 2)
198 #define PERF_COUNTER_IOC_RESET          _IO ('$', 3)
199 #define PERF_COUNTER_IOC_PERIOD         _IOW('$', 4, u64)
200
201 enum perf_counter_ioc_flags {
202         PERF_IOC_FLAG_GROUP             = 1U << 0,
203 };
204
205 /*
206  * Structure of the page that can be mapped via mmap
207  */
208 struct perf_counter_mmap_page {
209         __u32   version;                /* version number of this structure */
210         __u32   compat_version;         /* lowest version this is compat with */
211
212         /*
213          * Bits needed to read the hw counters in user-space.
214          *
215          *   u32 seq;
216          *   s64 count;
217          *
218          *   do {
219          *     seq = pc->lock;
220          *
221          *     barrier()
222          *     if (pc->index) {
223          *       count = pmc_read(pc->index - 1);
224          *       count += pc->offset;
225          *     } else
226          *       goto regular_read;
227          *
228          *     barrier();
229          *   } while (pc->lock != seq);
230          *
231          * NOTE: for obvious reason this only works on self-monitoring
232          *       processes.
233          */
234         __u32   lock;                   /* seqlock for synchronization */
235         __u32   index;                  /* hardware counter identifier */
236         __s64   offset;                 /* add to hardware counter value */
237         __u64   time_enabled;           /* time counter active */
238         __u64   time_running;           /* time counter on cpu */
239
240                 /*
241                  * Hole for extension of the self monitor capabilities
242                  */
243
244         __u64   __reserved[123];        /* align to 1k */
245
246         /*
247          * Control data for the mmap() data buffer.
248          *
249          * User-space reading the @data_head value should issue an rmb(), on
250          * SMP capable platforms, after reading this value -- see
251          * perf_counter_wakeup().
252          *
253          * When the mapping is PROT_WRITE the @data_tail value should be
254          * written by userspace to reflect the last read data. In this case
255          * the kernel will not over-write unread data.
256          */
257         __u64   data_head;              /* head in the data section */
258         __u64   data_tail;              /* user-space written tail */
259 };
260
261 #define PERF_EVENT_MISC_CPUMODE_MASK            (3 << 0)
262 #define PERF_EVENT_MISC_CPUMODE_UNKNOWN         (0 << 0)
263 #define PERF_EVENT_MISC_KERNEL                  (1 << 0)
264 #define PERF_EVENT_MISC_USER                    (2 << 0)
265 #define PERF_EVENT_MISC_HYPERVISOR              (3 << 0)
266
267 struct perf_event_header {
268         __u32   type;
269         __u16   misc;
270         __u16   size;
271 };
272
273 enum perf_event_type {
274
275         /*
276          * The MMAP events record the PROT_EXEC mappings so that we can
277          * correlate userspace IPs to code. They have the following structure:
278          *
279          * struct {
280          *      struct perf_event_header        header;
281          *
282          *      u32                             pid, tid;
283          *      u64                             addr;
284          *      u64                             len;
285          *      u64                             pgoff;
286          *      char                            filename[];
287          * };
288          */
289         PERF_EVENT_MMAP                 = 1,
290
291         /*
292          * struct {
293          *      struct perf_event_header        header;
294          *      u64                             id;
295          *      u64                             lost;
296          * };
297          */
298         PERF_EVENT_LOST                 = 2,
299
300         /*
301          * struct {
302          *      struct perf_event_header        header;
303          *
304          *      u32                             pid, tid;
305          *      char                            comm[];
306          * };
307          */
308         PERF_EVENT_COMM                 = 3,
309
310         /*
311          * struct {
312          *      struct perf_event_header        header;
313          *      u64                             time;
314          *      u64                             id;
315          *      u64                             sample_period;
316          * };
317          */
318         PERF_EVENT_PERIOD               = 4,
319
320         /*
321          * struct {
322          *      struct perf_event_header        header;
323          *      u64                             time;
324          *      u64                             id;
325          * };
326          */
327         PERF_EVENT_THROTTLE             = 5,
328         PERF_EVENT_UNTHROTTLE           = 6,
329
330         /*
331          * struct {
332          *      struct perf_event_header        header;
333          *      u32                             pid, ppid;
334          * };
335          */
336         PERF_EVENT_FORK                 = 7,
337
338         /*
339          * struct {
340          *      struct perf_event_header        header;
341          *      u32                             pid, tid;
342          *      u64                             value;
343          *      { u64           time_enabled;   } && PERF_FORMAT_ENABLED
344          *      { u64           time_running;   } && PERF_FORMAT_RUNNING
345          *      { u64           parent_id;      } && PERF_FORMAT_ID
346          * };
347          */
348         PERF_EVENT_READ                 = 8,
349
350         /*
351          * struct {
352          *      struct perf_event_header        header;
353          *
354          *      { u64                   ip;       } && PERF_SAMPLE_IP
355          *      { u32                   pid, tid; } && PERF_SAMPLE_TID
356          *      { u64                   time;     } && PERF_SAMPLE_TIME
357          *      { u64                   addr;     } && PERF_SAMPLE_ADDR
358          *      { u64                   id;       } && PERF_SAMPLE_ID
359          *      { u32                   cpu, res; } && PERF_SAMPLE_CPU
360          *      { u64                   period;   } && PERF_SAMPLE_PERIOD
361          *
362          *      { u64                   nr;
363          *        { u64 id, val; }      cnt[nr];  } && PERF_SAMPLE_GROUP
364          *
365          *      { u64                   nr,
366          *        u64                   ips[nr];  } && PERF_SAMPLE_CALLCHAIN
367          * };
368          */
369         PERF_EVENT_SAMPLE               = 9,
370
371         PERF_EVENT_MAX,                 /* non-ABI */
372 };
373
374 enum perf_callchain_context {
375         PERF_CONTEXT_HV                 = (__u64)-32,
376         PERF_CONTEXT_KERNEL             = (__u64)-128,
377         PERF_CONTEXT_USER               = (__u64)-512,
378
379         PERF_CONTEXT_GUEST              = (__u64)-2048,
380         PERF_CONTEXT_GUEST_KERNEL       = (__u64)-2176,
381         PERF_CONTEXT_GUEST_USER         = (__u64)-2560,
382
383         PERF_CONTEXT_MAX                = (__u64)-4095,
384 };
385
386 #ifdef __KERNEL__
387 /*
388  * Kernel-internal data types and definitions:
389  */
390
391 #ifdef CONFIG_PERF_COUNTERS
392 # include <asm/perf_counter.h>
393 #endif
394
395 #include <linux/list.h>
396 #include <linux/mutex.h>
397 #include <linux/rculist.h>
398 #include <linux/rcupdate.h>
399 #include <linux/spinlock.h>
400 #include <linux/hrtimer.h>
401 #include <linux/fs.h>
402 #include <linux/pid_namespace.h>
403 #include <asm/atomic.h>
404
405 #define PERF_MAX_STACK_DEPTH            255
406
407 struct perf_callchain_entry {
408         __u64                           nr;
409         __u64                           ip[PERF_MAX_STACK_DEPTH];
410 };
411
412 struct task_struct;
413
414 /**
415  * struct hw_perf_counter - performance counter hardware details:
416  */
417 struct hw_perf_counter {
418 #ifdef CONFIG_PERF_COUNTERS
419         union {
420                 struct { /* hardware */
421                         u64             config;
422                         unsigned long   config_base;
423                         unsigned long   counter_base;
424                         int             idx;
425                 };
426                 union { /* software */
427                         atomic64_t      count;
428                         struct hrtimer  hrtimer;
429                 };
430         };
431         atomic64_t                      prev_count;
432         u64                             sample_period;
433         u64                             last_period;
434         atomic64_t                      period_left;
435         u64                             interrupts;
436
437         u64                             freq_count;
438         u64                             freq_interrupts;
439         u64                             freq_stamp;
440 #endif
441 };
442
443 struct perf_counter;
444
445 /**
446  * struct pmu - generic performance monitoring unit
447  */
448 struct pmu {
449         int (*enable)                   (struct perf_counter *counter);
450         void (*disable)                 (struct perf_counter *counter);
451         void (*read)                    (struct perf_counter *counter);
452         void (*unthrottle)              (struct perf_counter *counter);
453 };
454
455 /**
456  * enum perf_counter_active_state - the states of a counter
457  */
458 enum perf_counter_active_state {
459         PERF_COUNTER_STATE_ERROR        = -2,
460         PERF_COUNTER_STATE_OFF          = -1,
461         PERF_COUNTER_STATE_INACTIVE     =  0,
462         PERF_COUNTER_STATE_ACTIVE       =  1,
463 };
464
465 struct file;
466
467 struct perf_mmap_data {
468         struct rcu_head                 rcu_head;
469         int                             nr_pages;       /* nr of data pages  */
470         int                             writable;       /* are we writable   */
471         int                             nr_locked;      /* nr pages mlocked  */
472
473         atomic_t                        poll;           /* POLL_ for wakeups */
474         atomic_t                        events;         /* event limit       */
475
476         atomic_long_t                   head;           /* write position    */
477         atomic_long_t                   done_head;      /* completed head    */
478
479         atomic_t                        lock;           /* concurrent writes */
480         atomic_t                        wakeup;         /* needs a wakeup    */
481         atomic_t                        lost;           /* nr records lost   */
482
483         struct perf_counter_mmap_page   *user_page;
484         void                            *data_pages[0];
485 };
486
487 struct perf_pending_entry {
488         struct perf_pending_entry *next;
489         void (*func)(struct perf_pending_entry *);
490 };
491
492 /**
493  * struct perf_counter - performance counter kernel representation:
494  */
495 struct perf_counter {
496 #ifdef CONFIG_PERF_COUNTERS
497         struct list_head                list_entry;
498         struct list_head                event_entry;
499         struct list_head                sibling_list;
500         int                             nr_siblings;
501         struct perf_counter             *group_leader;
502         const struct pmu                *pmu;
503
504         enum perf_counter_active_state  state;
505         atomic64_t                      count;
506
507         /*
508          * These are the total time in nanoseconds that the counter
509          * has been enabled (i.e. eligible to run, and the task has
510          * been scheduled in, if this is a per-task counter)
511          * and running (scheduled onto the CPU), respectively.
512          *
513          * They are computed from tstamp_enabled, tstamp_running and
514          * tstamp_stopped when the counter is in INACTIVE or ACTIVE state.
515          */
516         u64                             total_time_enabled;
517         u64                             total_time_running;
518
519         /*
520          * These are timestamps used for computing total_time_enabled
521          * and total_time_running when the counter is in INACTIVE or
522          * ACTIVE state, measured in nanoseconds from an arbitrary point
523          * in time.
524          * tstamp_enabled: the notional time when the counter was enabled
525          * tstamp_running: the notional time when the counter was scheduled on
526          * tstamp_stopped: in INACTIVE state, the notional time when the
527          *      counter was scheduled off.
528          */
529         u64                             tstamp_enabled;
530         u64                             tstamp_running;
531         u64                             tstamp_stopped;
532
533         struct perf_counter_attr        attr;
534         struct hw_perf_counter          hw;
535
536         struct perf_counter_context     *ctx;
537         struct file                     *filp;
538
539         /*
540          * These accumulate total time (in nanoseconds) that children
541          * counters have been enabled and running, respectively.
542          */
543         atomic64_t                      child_total_time_enabled;
544         atomic64_t                      child_total_time_running;
545
546         /*
547          * Protect attach/detach and child_list:
548          */
549         struct mutex                    child_mutex;
550         struct list_head                child_list;
551         struct perf_counter             *parent;
552
553         int                             oncpu;
554         int                             cpu;
555
556         struct list_head                owner_entry;
557         struct task_struct              *owner;
558
559         /* mmap bits */
560         struct mutex                    mmap_mutex;
561         atomic_t                        mmap_count;
562         struct perf_mmap_data           *data;
563
564         /* poll related */
565         wait_queue_head_t               waitq;
566         struct fasync_struct            *fasync;
567
568         /* delayed work for NMIs and such */
569         int                             pending_wakeup;
570         int                             pending_kill;
571         int                             pending_disable;
572         struct perf_pending_entry       pending;
573
574         atomic_t                        event_limit;
575
576         void (*destroy)(struct perf_counter *);
577         struct rcu_head                 rcu_head;
578
579         struct pid_namespace            *ns;
580         u64                             id;
581 #endif
582 };
583
584 /**
585  * struct perf_counter_context - counter context structure
586  *
587  * Used as a container for task counters and CPU counters as well:
588  */
589 struct perf_counter_context {
590         /*
591          * Protect the states of the counters in the list,
592          * nr_active, and the list:
593          */
594         spinlock_t                      lock;
595         /*
596          * Protect the list of counters.  Locking either mutex or lock
597          * is sufficient to ensure the list doesn't change; to change
598          * the list you need to lock both the mutex and the spinlock.
599          */
600         struct mutex                    mutex;
601
602         struct list_head                counter_list;
603         struct list_head                event_list;
604         int                             nr_counters;
605         int                             nr_active;
606         int                             is_active;
607         int                             nr_stat;
608         atomic_t                        refcount;
609         struct task_struct              *task;
610
611         /*
612          * Context clock, runs when context enabled.
613          */
614         u64                             time;
615         u64                             timestamp;
616
617         /*
618          * These fields let us detect when two contexts have both
619          * been cloned (inherited) from a common ancestor.
620          */
621         struct perf_counter_context     *parent_ctx;
622         u64                             parent_gen;
623         u64                             generation;
624         int                             pin_count;
625         struct rcu_head                 rcu_head;
626 };
627
628 /**
629  * struct perf_counter_cpu_context - per cpu counter context structure
630  */
631 struct perf_cpu_context {
632         struct perf_counter_context     ctx;
633         struct perf_counter_context     *task_ctx;
634         int                             active_oncpu;
635         int                             max_pertask;
636         int                             exclusive;
637
638         /*
639          * Recursion avoidance:
640          *
641          * task, softirq, irq, nmi context
642          */
643         int                             recursion[4];
644 };
645
646 #ifdef CONFIG_PERF_COUNTERS
647
648 /*
649  * Set by architecture code:
650  */
651 extern int perf_max_counters;
652
653 extern const struct pmu *hw_perf_counter_init(struct perf_counter *counter);
654
655 extern void perf_counter_task_sched_in(struct task_struct *task, int cpu);
656 extern void perf_counter_task_sched_out(struct task_struct *task,
657                                         struct task_struct *next, int cpu);
658 extern void perf_counter_task_tick(struct task_struct *task, int cpu);
659 extern int perf_counter_init_task(struct task_struct *child);
660 extern void perf_counter_exit_task(struct task_struct *child);
661 extern void perf_counter_free_task(struct task_struct *task);
662 extern void set_perf_counter_pending(void);
663 extern void perf_counter_do_pending(void);
664 extern void perf_counter_print_debug(void);
665 extern void __perf_disable(void);
666 extern bool __perf_enable(void);
667 extern void perf_disable(void);
668 extern void perf_enable(void);
669 extern int perf_counter_task_disable(void);
670 extern int perf_counter_task_enable(void);
671 extern int hw_perf_group_sched_in(struct perf_counter *group_leader,
672                struct perf_cpu_context *cpuctx,
673                struct perf_counter_context *ctx, int cpu);
674 extern void perf_counter_update_userpage(struct perf_counter *counter);
675
676 struct perf_sample_data {
677         struct pt_regs                  *regs;
678         u64                             addr;
679         u64                             period;
680 };
681
682 extern int perf_counter_overflow(struct perf_counter *counter, int nmi,
683                                  struct perf_sample_data *data);
684
685 /*
686  * Return 1 for a software counter, 0 for a hardware counter
687  */
688 static inline int is_software_counter(struct perf_counter *counter)
689 {
690         return (counter->attr.type != PERF_TYPE_RAW) &&
691                 (counter->attr.type != PERF_TYPE_HARDWARE) &&
692                 (counter->attr.type != PERF_TYPE_HW_CACHE);
693 }
694
695 extern atomic_t perf_swcounter_enabled[PERF_COUNT_SW_MAX];
696
697 extern void __perf_swcounter_event(u32, u64, int, struct pt_regs *, u64);
698
699 static inline void
700 perf_swcounter_event(u32 event, u64 nr, int nmi, struct pt_regs *regs, u64 addr)
701 {
702         if (atomic_read(&perf_swcounter_enabled[event]))
703                 __perf_swcounter_event(event, nr, nmi, regs, addr);
704 }
705
706 extern void __perf_counter_mmap(struct vm_area_struct *vma);
707
708 static inline void perf_counter_mmap(struct vm_area_struct *vma)
709 {
710         if (vma->vm_flags & VM_EXEC)
711                 __perf_counter_mmap(vma);
712 }
713
714 extern void perf_counter_comm(struct task_struct *tsk);
715 extern void perf_counter_fork(struct task_struct *tsk);
716
717 extern struct perf_callchain_entry *perf_callchain(struct pt_regs *regs);
718
719 extern int sysctl_perf_counter_paranoid;
720 extern int sysctl_perf_counter_mlock;
721 extern int sysctl_perf_counter_sample_rate;
722
723 extern void perf_counter_init(void);
724
725 #ifndef perf_misc_flags
726 #define perf_misc_flags(regs)   (user_mode(regs) ? PERF_EVENT_MISC_USER : \
727                                  PERF_EVENT_MISC_KERNEL)
728 #define perf_instruction_pointer(regs)  instruction_pointer(regs)
729 #endif
730
731 #else
732 static inline void
733 perf_counter_task_sched_in(struct task_struct *task, int cpu)           { }
734 static inline void
735 perf_counter_task_sched_out(struct task_struct *task,
736                             struct task_struct *next, int cpu)          { }
737 static inline void
738 perf_counter_task_tick(struct task_struct *task, int cpu)               { }
739 static inline int perf_counter_init_task(struct task_struct *child)     { return 0; }
740 static inline void perf_counter_exit_task(struct task_struct *child)    { }
741 static inline void perf_counter_free_task(struct task_struct *task)     { }
742 static inline void perf_counter_do_pending(void)                        { }
743 static inline void perf_counter_print_debug(void)                       { }
744 static inline void perf_disable(void)                                   { }
745 static inline void perf_enable(void)                                    { }
746 static inline int perf_counter_task_disable(void)       { return -EINVAL; }
747 static inline int perf_counter_task_enable(void)        { return -EINVAL; }
748
749 static inline void
750 perf_swcounter_event(u32 event, u64 nr, int nmi,
751                      struct pt_regs *regs, u64 addr)                    { }
752
753 static inline void perf_counter_mmap(struct vm_area_struct *vma)        { }
754 static inline void perf_counter_comm(struct task_struct *tsk)           { }
755 static inline void perf_counter_fork(struct task_struct *tsk)           { }
756 static inline void perf_counter_init(void)                              { }
757 #endif
758
759 #endif /* __KERNEL__ */
760 #endif /* _LINUX_PERF_COUNTER_H */