1 #ifndef _ASM_X86_PGTABLE_H
2 #define _ASM_X86_PGTABLE_H
4 #define FIRST_USER_ADDRESS 0
6 #define _PAGE_BIT_PRESENT 0 /* is present */
7 #define _PAGE_BIT_RW 1 /* writeable */
8 #define _PAGE_BIT_USER 2 /* userspace addressable */
9 #define _PAGE_BIT_PWT 3 /* page write through */
10 #define _PAGE_BIT_PCD 4 /* page cache disabled */
11 #define _PAGE_BIT_ACCESSED 5 /* was accessed (raised by CPU) */
12 #define _PAGE_BIT_DIRTY 6 /* was written to (raised by CPU) */
13 #define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page */
14 #define _PAGE_BIT_PAT 7 /* on 4KB pages */
15 #define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
16 #define _PAGE_BIT_UNUSED1 9 /* available for programmer */
17 #define _PAGE_BIT_IOMAP 10 /* flag used to indicate IO mapping */
18 #define _PAGE_BIT_UNUSED3 11
19 #define _PAGE_BIT_PAT_LARGE 12 /* On 2MB or 1GB pages */
20 #define _PAGE_BIT_SPECIAL _PAGE_BIT_UNUSED1
21 #define _PAGE_BIT_CPA_TEST _PAGE_BIT_UNUSED1
22 #define _PAGE_BIT_NX 63 /* No execute: only valid after cpuid check */
24 /* If _PAGE_BIT_PRESENT is clear, we use these: */
25 /* - if the user mapped it with PROT_NONE; pte_present gives true */
26 #define _PAGE_BIT_PROTNONE _PAGE_BIT_GLOBAL
27 /* - set: nonlinear file mapping, saved PTE; unset:swap */
28 #define _PAGE_BIT_FILE _PAGE_BIT_DIRTY
30 #define _PAGE_PRESENT (_AT(pteval_t, 1) << _PAGE_BIT_PRESENT)
31 #define _PAGE_RW (_AT(pteval_t, 1) << _PAGE_BIT_RW)
32 #define _PAGE_USER (_AT(pteval_t, 1) << _PAGE_BIT_USER)
33 #define _PAGE_PWT (_AT(pteval_t, 1) << _PAGE_BIT_PWT)
34 #define _PAGE_PCD (_AT(pteval_t, 1) << _PAGE_BIT_PCD)
35 #define _PAGE_ACCESSED (_AT(pteval_t, 1) << _PAGE_BIT_ACCESSED)
36 #define _PAGE_DIRTY (_AT(pteval_t, 1) << _PAGE_BIT_DIRTY)
37 #define _PAGE_PSE (_AT(pteval_t, 1) << _PAGE_BIT_PSE)
38 #define _PAGE_GLOBAL (_AT(pteval_t, 1) << _PAGE_BIT_GLOBAL)
39 #define _PAGE_UNUSED1 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED1)
40 #define _PAGE_IOMAP (_AT(pteval_t, 1) << _PAGE_BIT_IOMAP)
41 #define _PAGE_UNUSED3 (_AT(pteval_t, 1) << _PAGE_BIT_UNUSED3)
42 #define _PAGE_PAT (_AT(pteval_t, 1) << _PAGE_BIT_PAT)
43 #define _PAGE_PAT_LARGE (_AT(pteval_t, 1) << _PAGE_BIT_PAT_LARGE)
44 #define _PAGE_SPECIAL (_AT(pteval_t, 1) << _PAGE_BIT_SPECIAL)
45 #define _PAGE_CPA_TEST (_AT(pteval_t, 1) << _PAGE_BIT_CPA_TEST)
46 #define __HAVE_ARCH_PTE_SPECIAL
48 #if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
49 #define _PAGE_NX (_AT(pteval_t, 1) << _PAGE_BIT_NX)
51 #define _PAGE_NX (_AT(pteval_t, 0))
54 #define _PAGE_FILE (_AT(pteval_t, 1) << _PAGE_BIT_FILE)
55 #define _PAGE_PROTNONE (_AT(pteval_t, 1) << _PAGE_BIT_PROTNONE)
57 #define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
58 _PAGE_ACCESSED | _PAGE_DIRTY)
59 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | \
62 /* Set of bits not changed in pte_modify */
63 #define _PAGE_CHG_MASK (PTE_PFN_MASK | _PAGE_PCD | _PAGE_PWT | \
64 _PAGE_SPECIAL | _PAGE_ACCESSED | _PAGE_DIRTY)
66 #define _PAGE_CACHE_MASK (_PAGE_PCD | _PAGE_PWT)
67 #define _PAGE_CACHE_WB (0)
68 #define _PAGE_CACHE_WC (_PAGE_PWT)
69 #define _PAGE_CACHE_UC_MINUS (_PAGE_PCD)
70 #define _PAGE_CACHE_UC (_PAGE_PCD | _PAGE_PWT)
72 #define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
73 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | \
74 _PAGE_ACCESSED | _PAGE_NX)
76 #define PAGE_SHARED_EXEC __pgprot(_PAGE_PRESENT | _PAGE_RW | \
77 _PAGE_USER | _PAGE_ACCESSED)
78 #define PAGE_COPY_NOEXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
79 _PAGE_ACCESSED | _PAGE_NX)
80 #define PAGE_COPY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
82 #define PAGE_COPY PAGE_COPY_NOEXEC
83 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | \
84 _PAGE_ACCESSED | _PAGE_NX)
85 #define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | \
88 #define __PAGE_KERNEL_EXEC \
89 (_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_GLOBAL)
90 #define __PAGE_KERNEL (__PAGE_KERNEL_EXEC | _PAGE_NX)
92 #define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
93 #define __PAGE_KERNEL_RX (__PAGE_KERNEL_EXEC & ~_PAGE_RW)
94 #define __PAGE_KERNEL_EXEC_NOCACHE (__PAGE_KERNEL_EXEC | _PAGE_PCD | _PAGE_PWT)
95 #define __PAGE_KERNEL_WC (__PAGE_KERNEL | _PAGE_CACHE_WC)
96 #define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD | _PAGE_PWT)
97 #define __PAGE_KERNEL_UC_MINUS (__PAGE_KERNEL | _PAGE_PCD)
98 #define __PAGE_KERNEL_VSYSCALL (__PAGE_KERNEL_RX | _PAGE_USER)
99 #define __PAGE_KERNEL_VSYSCALL_NOCACHE (__PAGE_KERNEL_VSYSCALL | _PAGE_PCD | _PAGE_PWT)
100 #define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
101 #define __PAGE_KERNEL_LARGE_NOCACHE (__PAGE_KERNEL | _PAGE_CACHE_UC | _PAGE_PSE)
102 #define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
104 #define __PAGE_KERNEL_IO (__PAGE_KERNEL | _PAGE_IOMAP)
105 #define __PAGE_KERNEL_IO_NOCACHE (__PAGE_KERNEL_NOCACHE | _PAGE_IOMAP)
106 #define __PAGE_KERNEL_IO_UC_MINUS (__PAGE_KERNEL_UC_MINUS | _PAGE_IOMAP)
107 #define __PAGE_KERNEL_IO_WC (__PAGE_KERNEL_WC | _PAGE_IOMAP)
109 #define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
110 #define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
111 #define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
112 #define PAGE_KERNEL_RX __pgprot(__PAGE_KERNEL_RX)
113 #define PAGE_KERNEL_WC __pgprot(__PAGE_KERNEL_WC)
114 #define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
115 #define PAGE_KERNEL_UC_MINUS __pgprot(__PAGE_KERNEL_UC_MINUS)
116 #define PAGE_KERNEL_EXEC_NOCACHE __pgprot(__PAGE_KERNEL_EXEC_NOCACHE)
117 #define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
118 #define PAGE_KERNEL_LARGE_NOCACHE __pgprot(__PAGE_KERNEL_LARGE_NOCACHE)
119 #define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
120 #define PAGE_KERNEL_VSYSCALL __pgprot(__PAGE_KERNEL_VSYSCALL)
121 #define PAGE_KERNEL_VSYSCALL_NOCACHE __pgprot(__PAGE_KERNEL_VSYSCALL_NOCACHE)
123 #define PAGE_KERNEL_IO __pgprot(__PAGE_KERNEL_IO)
124 #define PAGE_KERNEL_IO_NOCACHE __pgprot(__PAGE_KERNEL_IO_NOCACHE)
125 #define PAGE_KERNEL_IO_UC_MINUS __pgprot(__PAGE_KERNEL_IO_UC_MINUS)
126 #define PAGE_KERNEL_IO_WC __pgprot(__PAGE_KERNEL_IO_WC)
129 #define __P000 PAGE_NONE
130 #define __P001 PAGE_READONLY
131 #define __P010 PAGE_COPY
132 #define __P011 PAGE_COPY
133 #define __P100 PAGE_READONLY_EXEC
134 #define __P101 PAGE_READONLY_EXEC
135 #define __P110 PAGE_COPY_EXEC
136 #define __P111 PAGE_COPY_EXEC
138 #define __S000 PAGE_NONE
139 #define __S001 PAGE_READONLY
140 #define __S010 PAGE_SHARED
141 #define __S011 PAGE_SHARED
142 #define __S100 PAGE_READONLY_EXEC
143 #define __S101 PAGE_READONLY_EXEC
144 #define __S110 PAGE_SHARED_EXEC
145 #define __S111 PAGE_SHARED_EXEC
148 * early identity mapping pte attrib macros.
151 #define __PAGE_KERNEL_IDENT_LARGE_EXEC __PAGE_KERNEL_LARGE_EXEC
154 * For PDE_IDENT_ATTR include USER bit. As the PDE and PTE protection
155 * bits are combined, this will alow user to access the high address mapped
156 * VDSO in the presence of CONFIG_COMPAT_VDSO
158 #define PTE_IDENT_ATTR 0x003 /* PRESENT+RW */
159 #define PDE_IDENT_ATTR 0x067 /* PRESENT+RW+USER+DIRTY+ACCESSED */
160 #define PGD_IDENT_ATTR 0x001 /* PRESENT (no other attributes) */
164 * Macro to mark a page protection value as UC-
166 #define pgprot_noncached(prot) \
167 ((boot_cpu_data.x86 > 3) \
168 ? (__pgprot(pgprot_val(prot) | _PAGE_CACHE_UC_MINUS)) \
173 #define pgprot_writecombine pgprot_writecombine
174 extern pgprot_t pgprot_writecombine(pgprot_t prot);
177 * ZERO_PAGE is a global shared page that is always zero: used
178 * for zero-mapped memory areas etc..
180 extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
181 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
183 extern spinlock_t pgd_lock;
184 extern struct list_head pgd_list;
187 * The following only work if pte_present() is true.
188 * Undefined behaviour if not..
190 static inline int pte_dirty(pte_t pte)
192 return pte_flags(pte) & _PAGE_DIRTY;
195 static inline int pte_young(pte_t pte)
197 return pte_flags(pte) & _PAGE_ACCESSED;
200 static inline int pte_write(pte_t pte)
202 return pte_flags(pte) & _PAGE_RW;
205 static inline int pte_file(pte_t pte)
207 return pte_flags(pte) & _PAGE_FILE;
210 static inline int pte_huge(pte_t pte)
212 return pte_flags(pte) & _PAGE_PSE;
215 static inline int pte_global(pte_t pte)
217 return pte_flags(pte) & _PAGE_GLOBAL;
220 static inline int pte_exec(pte_t pte)
222 return !(pte_flags(pte) & _PAGE_NX);
225 static inline int pte_special(pte_t pte)
227 return pte_flags(pte) & _PAGE_SPECIAL;
230 static inline unsigned long pte_pfn(pte_t pte)
232 return (pte_val(pte) & PTE_PFN_MASK) >> PAGE_SHIFT;
235 #define pte_page(pte) pfn_to_page(pte_pfn(pte))
237 static inline int pmd_large(pmd_t pte)
239 return (pmd_val(pte) & (_PAGE_PSE | _PAGE_PRESENT)) ==
240 (_PAGE_PSE | _PAGE_PRESENT);
243 static inline pte_t pte_mkclean(pte_t pte)
245 return __pte(pte_val(pte) & ~_PAGE_DIRTY);
248 static inline pte_t pte_mkold(pte_t pte)
250 return __pte(pte_val(pte) & ~_PAGE_ACCESSED);
253 static inline pte_t pte_wrprotect(pte_t pte)
255 return __pte(pte_val(pte) & ~_PAGE_RW);
258 static inline pte_t pte_mkexec(pte_t pte)
260 return __pte(pte_val(pte) & ~_PAGE_NX);
263 static inline pte_t pte_mkdirty(pte_t pte)
265 return __pte(pte_val(pte) | _PAGE_DIRTY);
268 static inline pte_t pte_mkyoung(pte_t pte)
270 return __pte(pte_val(pte) | _PAGE_ACCESSED);
273 static inline pte_t pte_mkwrite(pte_t pte)
275 return __pte(pte_val(pte) | _PAGE_RW);
278 static inline pte_t pte_mkhuge(pte_t pte)
280 return __pte(pte_val(pte) | _PAGE_PSE);
283 static inline pte_t pte_clrhuge(pte_t pte)
285 return __pte(pte_val(pte) & ~_PAGE_PSE);
288 static inline pte_t pte_mkglobal(pte_t pte)
290 return __pte(pte_val(pte) | _PAGE_GLOBAL);
293 static inline pte_t pte_clrglobal(pte_t pte)
295 return __pte(pte_val(pte) & ~_PAGE_GLOBAL);
298 static inline pte_t pte_mkspecial(pte_t pte)
300 return __pte(pte_val(pte) | _PAGE_SPECIAL);
303 extern pteval_t __supported_pte_mask;
305 static inline pte_t pfn_pte(unsigned long page_nr, pgprot_t pgprot)
307 return __pte((((phys_addr_t)page_nr << PAGE_SHIFT) |
308 pgprot_val(pgprot)) & __supported_pte_mask);
311 static inline pmd_t pfn_pmd(unsigned long page_nr, pgprot_t pgprot)
313 return __pmd((((phys_addr_t)page_nr << PAGE_SHIFT) |
314 pgprot_val(pgprot)) & __supported_pte_mask);
317 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
319 pteval_t val = pte_val(pte);
322 * Chop off the NX bit (if present), and add the NX portion of
323 * the newprot (if present):
325 val &= _PAGE_CHG_MASK;
326 val |= pgprot_val(newprot) & (~_PAGE_CHG_MASK) & __supported_pte_mask;
331 /* mprotect needs to preserve PAT bits when updating vm_page_prot */
332 #define pgprot_modify pgprot_modify
333 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
335 pgprotval_t preservebits = pgprot_val(oldprot) & _PAGE_CHG_MASK;
336 pgprotval_t addbits = pgprot_val(newprot);
337 return __pgprot(preservebits | addbits);
340 #define pte_pgprot(x) __pgprot(pte_flags(x) & PTE_FLAGS_MASK)
342 #define canon_pgprot(p) __pgprot(pgprot_val(p) & __supported_pte_mask)
345 /* Indicate that x86 has its own track and untrack pfn vma functions */
346 #define __HAVE_PFNMAP_TRACKING
348 #define __HAVE_PHYS_MEM_ACCESS_PROT
350 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
351 unsigned long size, pgprot_t vma_prot);
352 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
353 unsigned long size, pgprot_t *vma_prot);
356 /* Install a pte for a particular vaddr in kernel space. */
357 void set_pte_vaddr(unsigned long vaddr, pte_t pte);
360 extern void native_pagetable_setup_start(pgd_t *base);
361 extern void native_pagetable_setup_done(pgd_t *base);
363 static inline void native_pagetable_setup_start(pgd_t *base) {}
364 static inline void native_pagetable_setup_done(pgd_t *base) {}
368 extern void arch_report_meminfo(struct seq_file *m);
370 #ifdef CONFIG_PARAVIRT
371 #include <asm/paravirt.h>
372 #else /* !CONFIG_PARAVIRT */
373 #define set_pte(ptep, pte) native_set_pte(ptep, pte)
374 #define set_pte_at(mm, addr, ptep, pte) native_set_pte_at(mm, addr, ptep, pte)
376 #define set_pte_present(mm, addr, ptep, pte) \
377 native_set_pte_present(mm, addr, ptep, pte)
378 #define set_pte_atomic(ptep, pte) \
379 native_set_pte_atomic(ptep, pte)
381 #define set_pmd(pmdp, pmd) native_set_pmd(pmdp, pmd)
383 #ifndef __PAGETABLE_PUD_FOLDED
384 #define set_pgd(pgdp, pgd) native_set_pgd(pgdp, pgd)
385 #define pgd_clear(pgd) native_pgd_clear(pgd)
389 # define set_pud(pudp, pud) native_set_pud(pudp, pud)
392 #ifndef __PAGETABLE_PMD_FOLDED
393 #define pud_clear(pud) native_pud_clear(pud)
396 #define pte_clear(mm, addr, ptep) native_pte_clear(mm, addr, ptep)
397 #define pmd_clear(pmd) native_pmd_clear(pmd)
399 #define pte_update(mm, addr, ptep) do { } while (0)
400 #define pte_update_defer(mm, addr, ptep) do { } while (0)
402 static inline void __init paravirt_pagetable_setup_start(pgd_t *base)
404 native_pagetable_setup_start(base);
407 static inline void __init paravirt_pagetable_setup_done(pgd_t *base)
409 native_pagetable_setup_done(base);
411 #endif /* CONFIG_PARAVIRT */
413 #endif /* __ASSEMBLY__ */
416 # include "pgtable_32.h"
418 # include "pgtable_64.h"
422 * the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
424 * this macro returns the index of the entry in the pgd page which would
425 * control the given virtual address
427 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
430 * pgd_offset() returns a (pgd_t *)
431 * pgd_index() is used get the offset into the pgd page's array of pgd_t's;
433 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index((address)))
435 * a shortcut which implies the use of the kernel's pgd, instead
438 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
441 #define KERNEL_PGD_BOUNDARY pgd_index(PAGE_OFFSET)
442 #define KERNEL_PGD_PTRS (PTRS_PER_PGD - KERNEL_PGD_BOUNDARY)
454 #ifdef CONFIG_PROC_FS
455 extern void update_page_count(int level, unsigned long pages);
457 static inline void update_page_count(int level, unsigned long pages) { }
461 * Helper function that returns the kernel pagetable entry controlling
462 * the virtual address 'address'. NULL means no pagetable entry present.
463 * NOTE: the return type is pte_t but if the pmd is PSE then we return it
466 extern pte_t *lookup_address(unsigned long address, unsigned int *level);
468 /* local pte updates need not use xchg for locking */
469 static inline pte_t native_local_ptep_get_and_clear(pte_t *ptep)
473 /* Pure native function needs no input for mm, addr */
474 native_pte_clear(NULL, 0, ptep);
478 static inline void native_set_pte_at(struct mm_struct *mm, unsigned long addr,
479 pte_t *ptep , pte_t pte)
481 native_set_pte(ptep, pte);
484 #ifndef CONFIG_PARAVIRT
486 * Rules for using pte_update - it must be called after any PTE update which
487 * has not been done using the set_pte / clear_pte interfaces. It is used by
488 * shadow mode hypervisors to resynchronize the shadow page tables. Kernel PTE
489 * updates should either be sets, clears, or set_pte_atomic for P->P
490 * transitions, which means this hook should only be called for user PTEs.
491 * This hook implies a P->P protection or access change has taken place, which
492 * requires a subsequent TLB flush. The notification can optionally be delayed
493 * until the TLB flush event by using the pte_update_defer form of the
494 * interface, but care must be taken to assure that the flush happens while
495 * still holding the same page table lock so that the shadow and primary pages
496 * do not become out of sync on SMP.
498 #define pte_update(mm, addr, ptep) do { } while (0)
499 #define pte_update_defer(mm, addr, ptep) do { } while (0)
503 * We only update the dirty/accessed state if we set
504 * the dirty bit by hand in the kernel, since the hardware
505 * will do the accessed bit for us, and we don't want to
506 * race with other CPU's that might be updating the dirty
507 * bit at the same time.
509 struct vm_area_struct;
511 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
512 extern int ptep_set_access_flags(struct vm_area_struct *vma,
513 unsigned long address, pte_t *ptep,
514 pte_t entry, int dirty);
516 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
517 extern int ptep_test_and_clear_young(struct vm_area_struct *vma,
518 unsigned long addr, pte_t *ptep);
520 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
521 extern int ptep_clear_flush_young(struct vm_area_struct *vma,
522 unsigned long address, pte_t *ptep);
524 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
525 static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr,
528 pte_t pte = native_ptep_get_and_clear(ptep);
529 pte_update(mm, addr, ptep);
533 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
534 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
535 unsigned long addr, pte_t *ptep,
541 * Full address destruction in progress; paravirt does not
542 * care about updates and native needs no locking
544 pte = native_local_ptep_get_and_clear(ptep);
546 pte = ptep_get_and_clear(mm, addr, ptep);
551 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
552 static inline void ptep_set_wrprotect(struct mm_struct *mm,
553 unsigned long addr, pte_t *ptep)
555 clear_bit(_PAGE_BIT_RW, (unsigned long *)&ptep->pte);
556 pte_update(mm, addr, ptep);
560 * clone_pgd_range(pgd_t *dst, pgd_t *src, int count);
562 * dst - pointer to pgd range anwhere on a pgd page
564 * count - the number of pgds to copy.
566 * dst and src can be on the same page, but the range must not overlap,
567 * and must not cross a page boundary.
569 static inline void clone_pgd_range(pgd_t *dst, pgd_t *src, int count)
571 memcpy(dst, src, count * sizeof(pgd_t));
575 #include <asm-generic/pgtable.h>
576 #endif /* __ASSEMBLY__ */
578 #endif /* _ASM_X86_PGTABLE_H */