sh_eth: Change handling of IRQ
[linux-2.6] / drivers / net / ipg.c
1 /*
2  * ipg.c: Device Driver for the IP1000 Gigabit Ethernet Adapter
3  *
4  * Copyright (C) 2003, 2007  IC Plus Corp
5  *
6  * Original Author:
7  *
8  *   Craig Rich
9  *   Sundance Technology, Inc.
10  *   www.sundanceti.com
11  *   craig_rich@sundanceti.com
12  *
13  * Current Maintainer:
14  *
15  *   Sorbica Shieh.
16  *   http://www.icplus.com.tw
17  *   sorbica@icplus.com.tw
18  *
19  *   Jesse Huang
20  *   http://www.icplus.com.tw
21  *   jesse@icplus.com.tw
22  */
23 #include <linux/crc32.h>
24 #include <linux/ethtool.h>
25 #include <linux/mii.h>
26 #include <linux/mutex.h>
27
28 #include <asm/div64.h>
29
30 #define IPG_RX_RING_BYTES       (sizeof(struct ipg_rx) * IPG_RFDLIST_LENGTH)
31 #define IPG_TX_RING_BYTES       (sizeof(struct ipg_tx) * IPG_TFDLIST_LENGTH)
32 #define IPG_RESET_MASK \
33         (IPG_AC_GLOBAL_RESET | IPG_AC_RX_RESET | IPG_AC_TX_RESET | \
34          IPG_AC_DMA | IPG_AC_FIFO | IPG_AC_NETWORK | IPG_AC_HOST | \
35          IPG_AC_AUTO_INIT)
36
37 #define ipg_w32(val32, reg)     iowrite32((val32), ioaddr + (reg))
38 #define ipg_w16(val16, reg)     iowrite16((val16), ioaddr + (reg))
39 #define ipg_w8(val8, reg)       iowrite8((val8), ioaddr + (reg))
40
41 #define ipg_r32(reg)            ioread32(ioaddr + (reg))
42 #define ipg_r16(reg)            ioread16(ioaddr + (reg))
43 #define ipg_r8(reg)             ioread8(ioaddr + (reg))
44
45 enum {
46         netdev_io_size = 128
47 };
48
49 #include "ipg.h"
50 #define DRV_NAME        "ipg"
51
52 MODULE_AUTHOR("IC Plus Corp. 2003");
53 MODULE_DESCRIPTION("IC Plus IP1000 Gigabit Ethernet Adapter Linux Driver");
54 MODULE_LICENSE("GPL");
55
56 /*
57  * Defaults
58  */
59 #define IPG_MAX_RXFRAME_SIZE    0x0600
60 #define IPG_RXFRAG_SIZE         0x0600
61 #define IPG_RXSUPPORT_SIZE      0x0600
62 #define IPG_IS_JUMBO            false
63
64 /*
65  * Variable record -- index by leading revision/length
66  * Revision/Length(=N*4), Address1, Data1, Address2, Data2,...,AddressN,DataN
67  */
68 static unsigned short DefaultPhyParam[] = {
69         /* 11/12/03 IP1000A v1-3 rev=0x40 */
70         /*--------------------------------------------------------------------------
71         (0x4000|(15*4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 22, 0x85bd, 24, 0xfff2,
72                                  27, 0x0c10, 28, 0x0c10, 29, 0x2c10, 31, 0x0003, 23, 0x92f6,
73                                  31, 0x0000, 23, 0x003d, 30, 0x00de, 20, 0x20e7,  9, 0x0700,
74           --------------------------------------------------------------------------*/
75         /* 12/17/03 IP1000A v1-4 rev=0x40 */
76         (0x4000 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
77             0x0000,
78         30, 0x005e, 9, 0x0700,
79         /* 01/09/04 IP1000A v1-5 rev=0x41 */
80         (0x4100 | (07 * 4)), 31, 0x0001, 27, 0x01e0, 31, 0x0002, 27, 0xeb8e, 31,
81             0x0000,
82         30, 0x005e, 9, 0x0700,
83         0x0000
84 };
85
86 static const char *ipg_brand_name[] = {
87         "IC PLUS IP1000 1000/100/10 based NIC",
88         "Sundance Technology ST2021 based NIC",
89         "Tamarack Microelectronics TC9020/9021 based NIC",
90         "Tamarack Microelectronics TC9020/9021 based NIC",
91         "D-Link NIC",
92         "D-Link NIC IP1000A"
93 };
94
95 static struct pci_device_id ipg_pci_tbl[] __devinitdata = {
96         { PCI_VDEVICE(SUNDANCE, 0x1023), 0 },
97         { PCI_VDEVICE(SUNDANCE, 0x2021), 1 },
98         { PCI_VDEVICE(SUNDANCE, 0x1021), 2 },
99         { PCI_VDEVICE(DLINK,    0x9021), 3 },
100         { PCI_VDEVICE(DLINK,    0x4000), 4 },
101         { PCI_VDEVICE(DLINK,    0x4020), 5 },
102         { 0, }
103 };
104
105 MODULE_DEVICE_TABLE(pci, ipg_pci_tbl);
106
107 static inline void __iomem *ipg_ioaddr(struct net_device *dev)
108 {
109         struct ipg_nic_private *sp = netdev_priv(dev);
110         return sp->ioaddr;
111 }
112
113 #ifdef IPG_DEBUG
114 static void ipg_dump_rfdlist(struct net_device *dev)
115 {
116         struct ipg_nic_private *sp = netdev_priv(dev);
117         void __iomem *ioaddr = sp->ioaddr;
118         unsigned int i;
119         u32 offset;
120
121         IPG_DEBUG_MSG("_dump_rfdlist\n");
122
123         printk(KERN_INFO "rx_current = %2.2x\n", sp->rx_current);
124         printk(KERN_INFO "rx_dirty   = %2.2x\n", sp->rx_dirty);
125         printk(KERN_INFO "RFDList start address = %16.16lx\n",
126                (unsigned long) sp->rxd_map);
127         printk(KERN_INFO "RFDListPtr register   = %8.8x%8.8x\n",
128                ipg_r32(IPG_RFDLISTPTR1), ipg_r32(IPG_RFDLISTPTR0));
129
130         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
131                 offset = (u32) &sp->rxd[i].next_desc - (u32) sp->rxd;
132                 printk(KERN_INFO "%2.2x %4.4x RFDNextPtr = %16.16lx\n", i,
133                        offset, (unsigned long) sp->rxd[i].next_desc);
134                 offset = (u32) &sp->rxd[i].rfs - (u32) sp->rxd;
135                 printk(KERN_INFO "%2.2x %4.4x RFS        = %16.16lx\n", i,
136                        offset, (unsigned long) sp->rxd[i].rfs);
137                 offset = (u32) &sp->rxd[i].frag_info - (u32) sp->rxd;
138                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
139                        offset, (unsigned long) sp->rxd[i].frag_info);
140         }
141 }
142
143 static void ipg_dump_tfdlist(struct net_device *dev)
144 {
145         struct ipg_nic_private *sp = netdev_priv(dev);
146         void __iomem *ioaddr = sp->ioaddr;
147         unsigned int i;
148         u32 offset;
149
150         IPG_DEBUG_MSG("_dump_tfdlist\n");
151
152         printk(KERN_INFO "tx_current         = %2.2x\n", sp->tx_current);
153         printk(KERN_INFO "tx_dirty = %2.2x\n", sp->tx_dirty);
154         printk(KERN_INFO "TFDList start address = %16.16lx\n",
155                (unsigned long) sp->txd_map);
156         printk(KERN_INFO "TFDListPtr register   = %8.8x%8.8x\n",
157                ipg_r32(IPG_TFDLISTPTR1), ipg_r32(IPG_TFDLISTPTR0));
158
159         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
160                 offset = (u32) &sp->txd[i].next_desc - (u32) sp->txd;
161                 printk(KERN_INFO "%2.2x %4.4x TFDNextPtr = %16.16lx\n", i,
162                        offset, (unsigned long) sp->txd[i].next_desc);
163
164                 offset = (u32) &sp->txd[i].tfc - (u32) sp->txd;
165                 printk(KERN_INFO "%2.2x %4.4x TFC        = %16.16lx\n", i,
166                        offset, (unsigned long) sp->txd[i].tfc);
167                 offset = (u32) &sp->txd[i].frag_info - (u32) sp->txd;
168                 printk(KERN_INFO "%2.2x %4.4x frag_info   = %16.16lx\n", i,
169                        offset, (unsigned long) sp->txd[i].frag_info);
170         }
171 }
172 #endif
173
174 static void ipg_write_phy_ctl(void __iomem *ioaddr, u8 data)
175 {
176         ipg_w8(IPG_PC_RSVD_MASK & data, PHY_CTRL);
177         ndelay(IPG_PC_PHYCTRLWAIT_NS);
178 }
179
180 static void ipg_drive_phy_ctl_low_high(void __iomem *ioaddr, u8 data)
181 {
182         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | data);
183         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | data);
184 }
185
186 static void send_three_state(void __iomem *ioaddr, u8 phyctrlpolarity)
187 {
188         phyctrlpolarity |= (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR;
189
190         ipg_drive_phy_ctl_low_high(ioaddr, phyctrlpolarity);
191 }
192
193 static void send_end(void __iomem *ioaddr, u8 phyctrlpolarity)
194 {
195         ipg_w8((IPG_PC_MGMTCLK_LO | (IPG_PC_MGMTDATA & 0) | IPG_PC_MGMTDIR |
196                 phyctrlpolarity) & IPG_PC_RSVD_MASK, PHY_CTRL);
197 }
198
199 static u16 read_phy_bit(void __iomem *ioaddr, u8 phyctrlpolarity)
200 {
201         u16 bit_data;
202
203         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | phyctrlpolarity);
204
205         bit_data = ((ipg_r8(PHY_CTRL) & IPG_PC_MGMTDATA) >> 1) & 1;
206
207         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | phyctrlpolarity);
208
209         return bit_data;
210 }
211
212 /*
213  * Read a register from the Physical Layer device located
214  * on the IPG NIC, using the IPG PHYCTRL register.
215  */
216 static int mdio_read(struct net_device *dev, int phy_id, int phy_reg)
217 {
218         void __iomem *ioaddr = ipg_ioaddr(dev);
219         /*
220          * The GMII mangement frame structure for a read is as follows:
221          *
222          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
223          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
224          *
225          * <32 1s> = 32 consecutive logic 1 values
226          * A = bit of Physical Layer device address (MSB first)
227          * R = bit of register address (MSB first)
228          * z = High impedance state
229          * D = bit of read data (MSB first)
230          *
231          * Transmission order is 'Preamble' field first, bits transmitted
232          * left to right (first to last).
233          */
234         struct {
235                 u32 field;
236                 unsigned int len;
237         } p[] = {
238                 { GMII_PREAMBLE,        32 },   /* Preamble */
239                 { GMII_ST,              2  },   /* ST */
240                 { GMII_READ,            2  },   /* OP */
241                 { phy_id,               5  },   /* PHYAD */
242                 { phy_reg,              5  },   /* REGAD */
243                 { 0x0000,               2  },   /* TA */
244                 { 0x0000,               16 },   /* DATA */
245                 { 0x0000,               1  }    /* IDLE */
246         };
247         unsigned int i, j;
248         u8 polarity, data;
249
250         polarity  = ipg_r8(PHY_CTRL);
251         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
252
253         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
254         for (j = 0; j < 5; j++) {
255                 for (i = 0; i < p[j].len; i++) {
256                         /* For each variable length field, the MSB must be
257                          * transmitted first. Rotate through the field bits,
258                          * starting with the MSB, and move each bit into the
259                          * the 1st (2^1) bit position (this is the bit position
260                          * corresponding to the MgmtData bit of the PhyCtrl
261                          * register for the IPG).
262                          *
263                          * Example: ST = 01;
264                          *
265                          *          First write a '0' to bit 1 of the PhyCtrl
266                          *          register, then write a '1' to bit 1 of the
267                          *          PhyCtrl register.
268                          *
269                          * To do this, right shift the MSB of ST by the value:
270                          * [field length - 1 - #ST bits already written]
271                          * then left shift this result by 1.
272                          */
273                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
274                         data &= IPG_PC_MGMTDATA;
275                         data |= polarity | IPG_PC_MGMTDIR;
276
277                         ipg_drive_phy_ctl_low_high(ioaddr, data);
278                 }
279         }
280
281         send_three_state(ioaddr, polarity);
282
283         read_phy_bit(ioaddr, polarity);
284
285         /*
286          * For a read cycle, the bits for the next two fields (TA and
287          * DATA) are driven by the PHY (the IPG reads these bits).
288          */
289         for (i = 0; i < p[6].len; i++) {
290                 p[6].field |=
291                     (read_phy_bit(ioaddr, polarity) << (p[6].len - 1 - i));
292         }
293
294         send_three_state(ioaddr, polarity);
295         send_three_state(ioaddr, polarity);
296         send_three_state(ioaddr, polarity);
297         send_end(ioaddr, polarity);
298
299         /* Return the value of the DATA field. */
300         return p[6].field;
301 }
302
303 /*
304  * Write to a register from the Physical Layer device located
305  * on the IPG NIC, using the IPG PHYCTRL register.
306  */
307 static void mdio_write(struct net_device *dev, int phy_id, int phy_reg, int val)
308 {
309         void __iomem *ioaddr = ipg_ioaddr(dev);
310         /*
311          * The GMII mangement frame structure for a read is as follows:
312          *
313          * |Preamble|st|op|phyad|regad|ta|      data      |idle|
314          * |< 32 1s>|01|10|AAAAA|RRRRR|z0|DDDDDDDDDDDDDDDD|z   |
315          *
316          * <32 1s> = 32 consecutive logic 1 values
317          * A = bit of Physical Layer device address (MSB first)
318          * R = bit of register address (MSB first)
319          * z = High impedance state
320          * D = bit of write data (MSB first)
321          *
322          * Transmission order is 'Preamble' field first, bits transmitted
323          * left to right (first to last).
324          */
325         struct {
326                 u32 field;
327                 unsigned int len;
328         } p[] = {
329                 { GMII_PREAMBLE,        32 },   /* Preamble */
330                 { GMII_ST,              2  },   /* ST */
331                 { GMII_WRITE,           2  },   /* OP */
332                 { phy_id,               5  },   /* PHYAD */
333                 { phy_reg,              5  },   /* REGAD */
334                 { 0x0002,               2  },   /* TA */
335                 { val & 0xffff,         16 },   /* DATA */
336                 { 0x0000,               1  }    /* IDLE */
337         };
338         unsigned int i, j;
339         u8 polarity, data;
340
341         polarity  = ipg_r8(PHY_CTRL);
342         polarity &= (IPG_PC_DUPLEX_POLARITY | IPG_PC_LINK_POLARITY);
343
344         /* Create the Preamble, ST, OP, PHYAD, and REGAD field. */
345         for (j = 0; j < 7; j++) {
346                 for (i = 0; i < p[j].len; i++) {
347                         /* For each variable length field, the MSB must be
348                          * transmitted first. Rotate through the field bits,
349                          * starting with the MSB, and move each bit into the
350                          * the 1st (2^1) bit position (this is the bit position
351                          * corresponding to the MgmtData bit of the PhyCtrl
352                          * register for the IPG).
353                          *
354                          * Example: ST = 01;
355                          *
356                          *          First write a '0' to bit 1 of the PhyCtrl
357                          *          register, then write a '1' to bit 1 of the
358                          *          PhyCtrl register.
359                          *
360                          * To do this, right shift the MSB of ST by the value:
361                          * [field length - 1 - #ST bits already written]
362                          * then left shift this result by 1.
363                          */
364                         data  = (p[j].field >> (p[j].len - 1 - i)) << 1;
365                         data &= IPG_PC_MGMTDATA;
366                         data |= polarity | IPG_PC_MGMTDIR;
367
368                         ipg_drive_phy_ctl_low_high(ioaddr, data);
369                 }
370         }
371
372         /* The last cycle is a tri-state, so read from the PHY. */
373         for (j = 7; j < 8; j++) {
374                 for (i = 0; i < p[j].len; i++) {
375                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_LO | polarity);
376
377                         p[j].field |= ((ipg_r8(PHY_CTRL) &
378                                 IPG_PC_MGMTDATA) >> 1) << (p[j].len - 1 - i);
379
380                         ipg_write_phy_ctl(ioaddr, IPG_PC_MGMTCLK_HI | polarity);
381                 }
382         }
383 }
384
385 static void ipg_set_led_mode(struct net_device *dev)
386 {
387         struct ipg_nic_private *sp = netdev_priv(dev);
388         void __iomem *ioaddr = sp->ioaddr;
389         u32 mode;
390
391         mode = ipg_r32(ASIC_CTRL);
392         mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
393
394         if ((sp->led_mode & 0x03) > 1)
395                 mode |= IPG_AC_LED_MODE_BIT_1;  /* Write Asic Control Bit 29 */
396
397         if ((sp->led_mode & 0x01) == 1)
398                 mode |= IPG_AC_LED_MODE;        /* Write Asic Control Bit 14 */
399
400         if ((sp->led_mode & 0x08) == 8)
401                 mode |= IPG_AC_LED_SPEED;       /* Write Asic Control Bit 27 */
402
403         ipg_w32(mode, ASIC_CTRL);
404 }
405
406 static void ipg_set_phy_set(struct net_device *dev)
407 {
408         struct ipg_nic_private *sp = netdev_priv(dev);
409         void __iomem *ioaddr = sp->ioaddr;
410         int physet;
411
412         physet = ipg_r8(PHY_SET);
413         physet &= ~(IPG_PS_MEM_LENB9B | IPG_PS_MEM_LEN9 | IPG_PS_NON_COMPDET);
414         physet |= ((sp->led_mode & 0x70) >> 4);
415         ipg_w8(physet, PHY_SET);
416 }
417
418 static int ipg_reset(struct net_device *dev, u32 resetflags)
419 {
420         /* Assert functional resets via the IPG AsicCtrl
421          * register as specified by the 'resetflags' input
422          * parameter.
423          */
424         void __iomem *ioaddr = ipg_ioaddr(dev);
425         unsigned int timeout_count = 0;
426
427         IPG_DEBUG_MSG("_reset\n");
428
429         ipg_w32(ipg_r32(ASIC_CTRL) | resetflags, ASIC_CTRL);
430
431         /* Delay added to account for problem with 10Mbps reset. */
432         mdelay(IPG_AC_RESETWAIT);
433
434         while (IPG_AC_RESET_BUSY & ipg_r32(ASIC_CTRL)) {
435                 mdelay(IPG_AC_RESETWAIT);
436                 if (++timeout_count > IPG_AC_RESET_TIMEOUT)
437                         return -ETIME;
438         }
439         /* Set LED Mode in Asic Control */
440         ipg_set_led_mode(dev);
441
442         /* Set PHYSet Register Value */
443         ipg_set_phy_set(dev);
444         return 0;
445 }
446
447 /* Find the GMII PHY address. */
448 static int ipg_find_phyaddr(struct net_device *dev)
449 {
450         unsigned int phyaddr, i;
451
452         for (i = 0; i < 32; i++) {
453                 u32 status;
454
455                 /* Search for the correct PHY address among 32 possible. */
456                 phyaddr = (IPG_NIC_PHY_ADDRESS + i) % 32;
457
458                 /* 10/22/03 Grace change verify from GMII_PHY_STATUS to
459                    GMII_PHY_ID1
460                  */
461
462                 status = mdio_read(dev, phyaddr, MII_BMSR);
463
464                 if ((status != 0xFFFF) && (status != 0))
465                         return phyaddr;
466         }
467
468         return 0x1f;
469 }
470
471 /*
472  * Configure IPG based on result of IEEE 802.3 PHY
473  * auto-negotiation.
474  */
475 static int ipg_config_autoneg(struct net_device *dev)
476 {
477         struct ipg_nic_private *sp = netdev_priv(dev);
478         void __iomem *ioaddr = sp->ioaddr;
479         unsigned int txflowcontrol;
480         unsigned int rxflowcontrol;
481         unsigned int fullduplex;
482         u32 mac_ctrl_val;
483         u32 asicctrl;
484         u8 phyctrl;
485
486         IPG_DEBUG_MSG("_config_autoneg\n");
487
488         asicctrl = ipg_r32(ASIC_CTRL);
489         phyctrl = ipg_r8(PHY_CTRL);
490         mac_ctrl_val = ipg_r32(MAC_CTRL);
491
492         /* Set flags for use in resolving auto-negotation, assuming
493          * non-1000Mbps, half duplex, no flow control.
494          */
495         fullduplex = 0;
496         txflowcontrol = 0;
497         rxflowcontrol = 0;
498
499         /* To accomodate a problem in 10Mbps operation,
500          * set a global flag if PHY running in 10Mbps mode.
501          */
502         sp->tenmbpsmode = 0;
503
504         printk(KERN_INFO "%s: Link speed = ", dev->name);
505
506         /* Determine actual speed of operation. */
507         switch (phyctrl & IPG_PC_LINK_SPEED) {
508         case IPG_PC_LINK_SPEED_10MBPS:
509                 printk("10Mbps.\n");
510                 printk(KERN_INFO "%s: 10Mbps operational mode enabled.\n",
511                        dev->name);
512                 sp->tenmbpsmode = 1;
513                 break;
514         case IPG_PC_LINK_SPEED_100MBPS:
515                 printk("100Mbps.\n");
516                 break;
517         case IPG_PC_LINK_SPEED_1000MBPS:
518                 printk("1000Mbps.\n");
519                 break;
520         default:
521                 printk("undefined!\n");
522                 return 0;
523         }
524
525         if (phyctrl & IPG_PC_DUPLEX_STATUS) {
526                 fullduplex = 1;
527                 txflowcontrol = 1;
528                 rxflowcontrol = 1;
529         }
530
531         /* Configure full duplex, and flow control. */
532         if (fullduplex == 1) {
533                 /* Configure IPG for full duplex operation. */
534                 printk(KERN_INFO "%s: setting full duplex, ", dev->name);
535
536                 mac_ctrl_val |= IPG_MC_DUPLEX_SELECT_FD;
537
538                 if (txflowcontrol == 1) {
539                         printk("TX flow control");
540                         mac_ctrl_val |= IPG_MC_TX_FLOW_CONTROL_ENABLE;
541                 } else {
542                         printk("no TX flow control");
543                         mac_ctrl_val &= ~IPG_MC_TX_FLOW_CONTROL_ENABLE;
544                 }
545
546                 if (rxflowcontrol == 1) {
547                         printk(", RX flow control.");
548                         mac_ctrl_val |= IPG_MC_RX_FLOW_CONTROL_ENABLE;
549                 } else {
550                         printk(", no RX flow control.");
551                         mac_ctrl_val &= ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
552                 }
553
554                 printk("\n");
555         } else {
556                 /* Configure IPG for half duplex operation. */
557                 printk(KERN_INFO "%s: setting half duplex, "
558                        "no TX flow control, no RX flow control.\n", dev->name);
559
560                 mac_ctrl_val &= ~IPG_MC_DUPLEX_SELECT_FD &
561                         ~IPG_MC_TX_FLOW_CONTROL_ENABLE &
562                         ~IPG_MC_RX_FLOW_CONTROL_ENABLE;
563         }
564         ipg_w32(mac_ctrl_val, MAC_CTRL);
565         return 0;
566 }
567
568 /* Determine and configure multicast operation and set
569  * receive mode for IPG.
570  */
571 static void ipg_nic_set_multicast_list(struct net_device *dev)
572 {
573         void __iomem *ioaddr = ipg_ioaddr(dev);
574         struct dev_mc_list *mc_list_ptr;
575         unsigned int hashindex;
576         u32 hashtable[2];
577         u8 receivemode;
578
579         IPG_DEBUG_MSG("_nic_set_multicast_list\n");
580
581         receivemode = IPG_RM_RECEIVEUNICAST | IPG_RM_RECEIVEBROADCAST;
582
583         if (dev->flags & IFF_PROMISC) {
584                 /* NIC to be configured in promiscuous mode. */
585                 receivemode = IPG_RM_RECEIVEALLFRAMES;
586         } else if ((dev->flags & IFF_ALLMULTI) ||
587                    ((dev->flags & IFF_MULTICAST) &&
588                     (dev->mc_count > IPG_MULTICAST_HASHTABLE_SIZE))) {
589                 /* NIC to be configured to receive all multicast
590                  * frames. */
591                 receivemode |= IPG_RM_RECEIVEMULTICAST;
592         } else if ((dev->flags & IFF_MULTICAST) && (dev->mc_count > 0)) {
593                 /* NIC to be configured to receive selected
594                  * multicast addresses. */
595                 receivemode |= IPG_RM_RECEIVEMULTICASTHASH;
596         }
597
598         /* Calculate the bits to set for the 64 bit, IPG HASHTABLE.
599          * The IPG applies a cyclic-redundancy-check (the same CRC
600          * used to calculate the frame data FCS) to the destination
601          * address all incoming multicast frames whose destination
602          * address has the multicast bit set. The least significant
603          * 6 bits of the CRC result are used as an addressing index
604          * into the hash table. If the value of the bit addressed by
605          * this index is a 1, the frame is passed to the host system.
606          */
607
608         /* Clear hashtable. */
609         hashtable[0] = 0x00000000;
610         hashtable[1] = 0x00000000;
611
612         /* Cycle through all multicast addresses to filter. */
613         for (mc_list_ptr = dev->mc_list;
614              mc_list_ptr != NULL; mc_list_ptr = mc_list_ptr->next) {
615                 /* Calculate CRC result for each multicast address. */
616                 hashindex = crc32_le(0xffffffff, mc_list_ptr->dmi_addr,
617                                      ETH_ALEN);
618
619                 /* Use only the least significant 6 bits. */
620                 hashindex = hashindex & 0x3F;
621
622                 /* Within "hashtable", set bit number "hashindex"
623                  * to a logic 1.
624                  */
625                 set_bit(hashindex, (void *)hashtable);
626         }
627
628         /* Write the value of the hashtable, to the 4, 16 bit
629          * HASHTABLE IPG registers.
630          */
631         ipg_w32(hashtable[0], HASHTABLE_0);
632         ipg_w32(hashtable[1], HASHTABLE_1);
633
634         ipg_w8(IPG_RM_RSVD_MASK & receivemode, RECEIVE_MODE);
635
636         IPG_DEBUG_MSG("ReceiveMode = %x\n", ipg_r8(RECEIVE_MODE));
637 }
638
639 static int ipg_io_config(struct net_device *dev)
640 {
641         struct ipg_nic_private *sp = netdev_priv(dev);
642         void __iomem *ioaddr = ipg_ioaddr(dev);
643         u32 origmacctrl;
644         u32 restoremacctrl;
645
646         IPG_DEBUG_MSG("_io_config\n");
647
648         origmacctrl = ipg_r32(MAC_CTRL);
649
650         restoremacctrl = origmacctrl | IPG_MC_STATISTICS_ENABLE;
651
652         /* Based on compilation option, determine if FCS is to be
653          * stripped on receive frames by IPG.
654          */
655         if (!IPG_STRIP_FCS_ON_RX)
656                 restoremacctrl |= IPG_MC_RCV_FCS;
657
658         /* Determine if transmitter and/or receiver are
659          * enabled so we may restore MACCTRL correctly.
660          */
661         if (origmacctrl & IPG_MC_TX_ENABLED)
662                 restoremacctrl |= IPG_MC_TX_ENABLE;
663
664         if (origmacctrl & IPG_MC_RX_ENABLED)
665                 restoremacctrl |= IPG_MC_RX_ENABLE;
666
667         /* Transmitter and receiver must be disabled before setting
668          * IFSSelect.
669          */
670         ipg_w32((origmacctrl & (IPG_MC_RX_DISABLE | IPG_MC_TX_DISABLE)) &
671                 IPG_MC_RSVD_MASK, MAC_CTRL);
672
673         /* Now that transmitter and receiver are disabled, write
674          * to IFSSelect.
675          */
676         ipg_w32((origmacctrl & IPG_MC_IFS_96BIT) & IPG_MC_RSVD_MASK, MAC_CTRL);
677
678         /* Set RECEIVEMODE register. */
679         ipg_nic_set_multicast_list(dev);
680
681         ipg_w16(sp->max_rxframe_size, MAX_FRAME_SIZE);
682
683         ipg_w8(IPG_RXDMAPOLLPERIOD_VALUE,   RX_DMA_POLL_PERIOD);
684         ipg_w8(IPG_RXDMAURGENTTHRESH_VALUE, RX_DMA_URGENT_THRESH);
685         ipg_w8(IPG_RXDMABURSTTHRESH_VALUE,  RX_DMA_BURST_THRESH);
686         ipg_w8(IPG_TXDMAPOLLPERIOD_VALUE,   TX_DMA_POLL_PERIOD);
687         ipg_w8(IPG_TXDMAURGENTTHRESH_VALUE, TX_DMA_URGENT_THRESH);
688         ipg_w8(IPG_TXDMABURSTTHRESH_VALUE,  TX_DMA_BURST_THRESH);
689         ipg_w16((IPG_IE_HOST_ERROR | IPG_IE_TX_DMA_COMPLETE |
690                  IPG_IE_TX_COMPLETE | IPG_IE_INT_REQUESTED |
691                  IPG_IE_UPDATE_STATS | IPG_IE_LINK_EVENT |
692                  IPG_IE_RX_DMA_COMPLETE | IPG_IE_RX_DMA_PRIORITY), INT_ENABLE);
693         ipg_w16(IPG_FLOWONTHRESH_VALUE,  FLOW_ON_THRESH);
694         ipg_w16(IPG_FLOWOFFTHRESH_VALUE, FLOW_OFF_THRESH);
695
696         /* IPG multi-frag frame bug workaround.
697          * Per silicon revision B3 eratta.
698          */
699         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0200, DEBUG_CTRL);
700
701         /* IPG TX poll now bug workaround.
702          * Per silicon revision B3 eratta.
703          */
704         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0010, DEBUG_CTRL);
705
706         /* IPG RX poll now bug workaround.
707          * Per silicon revision B3 eratta.
708          */
709         ipg_w16(ipg_r16(DEBUG_CTRL) | 0x0020, DEBUG_CTRL);
710
711         /* Now restore MACCTRL to original setting. */
712         ipg_w32(IPG_MC_RSVD_MASK & restoremacctrl, MAC_CTRL);
713
714         /* Disable unused RMON statistics. */
715         ipg_w32(IPG_RZ_ALL, RMON_STATISTICS_MASK);
716
717         /* Disable unused MIB statistics. */
718         ipg_w32(IPG_SM_MACCONTROLFRAMESXMTD | IPG_SM_MACCONTROLFRAMESRCVD |
719                 IPG_SM_BCSTOCTETXMTOK_BCSTFRAMESXMTDOK | IPG_SM_TXJUMBOFRAMES |
720                 IPG_SM_MCSTOCTETXMTOK_MCSTFRAMESXMTDOK | IPG_SM_RXJUMBOFRAMES |
721                 IPG_SM_BCSTOCTETRCVDOK_BCSTFRAMESRCVDOK |
722                 IPG_SM_UDPCHECKSUMERRORS | IPG_SM_TCPCHECKSUMERRORS |
723                 IPG_SM_IPCHECKSUMERRORS, STATISTICS_MASK);
724
725         return 0;
726 }
727
728 /*
729  * Create a receive buffer within system memory and update
730  * NIC private structure appropriately.
731  */
732 static int ipg_get_rxbuff(struct net_device *dev, int entry)
733 {
734         struct ipg_nic_private *sp = netdev_priv(dev);
735         struct ipg_rx *rxfd = sp->rxd + entry;
736         struct sk_buff *skb;
737         u64 rxfragsize;
738
739         IPG_DEBUG_MSG("_get_rxbuff\n");
740
741         skb = netdev_alloc_skb(dev, sp->rxsupport_size + NET_IP_ALIGN);
742         if (!skb) {
743                 sp->rx_buff[entry] = NULL;
744                 return -ENOMEM;
745         }
746
747         /* Adjust the data start location within the buffer to
748          * align IP address field to a 16 byte boundary.
749          */
750         skb_reserve(skb, NET_IP_ALIGN);
751
752         /* Associate the receive buffer with the IPG NIC. */
753         skb->dev = dev;
754
755         /* Save the address of the sk_buff structure. */
756         sp->rx_buff[entry] = skb;
757
758         rxfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
759                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE));
760
761         /* Set the RFD fragment length. */
762         rxfragsize = sp->rxfrag_size;
763         rxfd->frag_info |= cpu_to_le64((rxfragsize << 48) & IPG_RFI_FRAGLEN);
764
765         return 0;
766 }
767
768 static int init_rfdlist(struct net_device *dev)
769 {
770         struct ipg_nic_private *sp = netdev_priv(dev);
771         void __iomem *ioaddr = sp->ioaddr;
772         unsigned int i;
773
774         IPG_DEBUG_MSG("_init_rfdlist\n");
775
776         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
777                 struct ipg_rx *rxfd = sp->rxd + i;
778
779                 if (sp->rx_buff[i]) {
780                         pci_unmap_single(sp->pdev,
781                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
782                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
783                         dev_kfree_skb_irq(sp->rx_buff[i]);
784                         sp->rx_buff[i] = NULL;
785                 }
786
787                 /* Clear out the RFS field. */
788                 rxfd->rfs = 0x0000000000000000;
789
790                 if (ipg_get_rxbuff(dev, i) < 0) {
791                         /*
792                          * A receive buffer was not ready, break the
793                          * RFD list here.
794                          */
795                         IPG_DEBUG_MSG("Cannot allocate Rx buffer.\n");
796
797                         /* Just in case we cannot allocate a single RFD.
798                          * Should not occur.
799                          */
800                         if (i == 0) {
801                                 printk(KERN_ERR "%s: No memory available"
802                                         " for RFD list.\n", dev->name);
803                                 return -ENOMEM;
804                         }
805                 }
806
807                 rxfd->next_desc = cpu_to_le64(sp->rxd_map +
808                         sizeof(struct ipg_rx)*(i + 1));
809         }
810         sp->rxd[i - 1].next_desc = cpu_to_le64(sp->rxd_map);
811
812         sp->rx_current = 0;
813         sp->rx_dirty = 0;
814
815         /* Write the location of the RFDList to the IPG. */
816         ipg_w32((u32) sp->rxd_map, RFD_LIST_PTR_0);
817         ipg_w32(0x00000000, RFD_LIST_PTR_1);
818
819         return 0;
820 }
821
822 static void init_tfdlist(struct net_device *dev)
823 {
824         struct ipg_nic_private *sp = netdev_priv(dev);
825         void __iomem *ioaddr = sp->ioaddr;
826         unsigned int i;
827
828         IPG_DEBUG_MSG("_init_tfdlist\n");
829
830         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
831                 struct ipg_tx *txfd = sp->txd + i;
832
833                 txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
834
835                 if (sp->tx_buff[i]) {
836                         dev_kfree_skb_irq(sp->tx_buff[i]);
837                         sp->tx_buff[i] = NULL;
838                 }
839
840                 txfd->next_desc = cpu_to_le64(sp->txd_map +
841                         sizeof(struct ipg_tx)*(i + 1));
842         }
843         sp->txd[i - 1].next_desc = cpu_to_le64(sp->txd_map);
844
845         sp->tx_current = 0;
846         sp->tx_dirty = 0;
847
848         /* Write the location of the TFDList to the IPG. */
849         IPG_DDEBUG_MSG("Starting TFDListPtr = %8.8x\n",
850                        (u32) sp->txd_map);
851         ipg_w32((u32) sp->txd_map, TFD_LIST_PTR_0);
852         ipg_w32(0x00000000, TFD_LIST_PTR_1);
853
854         sp->reset_current_tfd = 1;
855 }
856
857 /*
858  * Free all transmit buffers which have already been transfered
859  * via DMA to the IPG.
860  */
861 static void ipg_nic_txfree(struct net_device *dev)
862 {
863         struct ipg_nic_private *sp = netdev_priv(dev);
864         unsigned int released, pending, dirty;
865
866         IPG_DEBUG_MSG("_nic_txfree\n");
867
868         pending = sp->tx_current - sp->tx_dirty;
869         dirty = sp->tx_dirty % IPG_TFDLIST_LENGTH;
870
871         for (released = 0; released < pending; released++) {
872                 struct sk_buff *skb = sp->tx_buff[dirty];
873                 struct ipg_tx *txfd = sp->txd + dirty;
874
875                 IPG_DEBUG_MSG("TFC = %16.16lx\n", (unsigned long) txfd->tfc);
876
877                 /* Look at each TFD's TFC field beginning
878                  * at the last freed TFD up to the current TFD.
879                  * If the TFDDone bit is set, free the associated
880                  * buffer.
881                  */
882                 if (!(txfd->tfc & cpu_to_le64(IPG_TFC_TFDDONE)))
883                         break;
884
885                 /* Free the transmit buffer. */
886                 if (skb) {
887                         pci_unmap_single(sp->pdev,
888                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
889                                 skb->len, PCI_DMA_TODEVICE);
890
891                         dev_kfree_skb_irq(skb);
892
893                         sp->tx_buff[dirty] = NULL;
894                 }
895                 dirty = (dirty + 1) % IPG_TFDLIST_LENGTH;
896         }
897
898         sp->tx_dirty += released;
899
900         if (netif_queue_stopped(dev) &&
901             (sp->tx_current != (sp->tx_dirty + IPG_TFDLIST_LENGTH))) {
902                 netif_wake_queue(dev);
903         }
904 }
905
906 static void ipg_tx_timeout(struct net_device *dev)
907 {
908         struct ipg_nic_private *sp = netdev_priv(dev);
909         void __iomem *ioaddr = sp->ioaddr;
910
911         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA | IPG_AC_NETWORK |
912                   IPG_AC_FIFO);
913
914         spin_lock_irq(&sp->lock);
915
916         /* Re-configure after DMA reset. */
917         if (ipg_io_config(dev) < 0) {
918                 printk(KERN_INFO "%s: Error during re-configuration.\n",
919                        dev->name);
920         }
921
922         init_tfdlist(dev);
923
924         spin_unlock_irq(&sp->lock);
925
926         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) & IPG_MC_RSVD_MASK,
927                 MAC_CTRL);
928 }
929
930 /*
931  * For TxComplete interrupts, free all transmit
932  * buffers which have already been transfered via DMA
933  * to the IPG.
934  */
935 static void ipg_nic_txcleanup(struct net_device *dev)
936 {
937         struct ipg_nic_private *sp = netdev_priv(dev);
938         void __iomem *ioaddr = sp->ioaddr;
939         unsigned int i;
940
941         IPG_DEBUG_MSG("_nic_txcleanup\n");
942
943         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
944                 /* Reading the TXSTATUS register clears the
945                  * TX_COMPLETE interrupt.
946                  */
947                 u32 txstatusdword = ipg_r32(TX_STATUS);
948
949                 IPG_DEBUG_MSG("TxStatus = %8.8x\n", txstatusdword);
950
951                 /* Check for Transmit errors. Error bits only valid if
952                  * TX_COMPLETE bit in the TXSTATUS register is a 1.
953                  */
954                 if (!(txstatusdword & IPG_TS_TX_COMPLETE))
955                         break;
956
957                 /* If in 10Mbps mode, indicate transmit is ready. */
958                 if (sp->tenmbpsmode) {
959                         netif_wake_queue(dev);
960                 }
961
962                 /* Transmit error, increment stat counters. */
963                 if (txstatusdword & IPG_TS_TX_ERROR) {
964                         IPG_DEBUG_MSG("Transmit error.\n");
965                         sp->stats.tx_errors++;
966                 }
967
968                 /* Late collision, re-enable transmitter. */
969                 if (txstatusdword & IPG_TS_LATE_COLLISION) {
970                         IPG_DEBUG_MSG("Late collision on transmit.\n");
971                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
972                                 IPG_MC_RSVD_MASK, MAC_CTRL);
973                 }
974
975                 /* Maximum collisions, re-enable transmitter. */
976                 if (txstatusdword & IPG_TS_TX_MAX_COLL) {
977                         IPG_DEBUG_MSG("Maximum collisions on transmit.\n");
978                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
979                                 IPG_MC_RSVD_MASK, MAC_CTRL);
980                 }
981
982                 /* Transmit underrun, reset and re-enable
983                  * transmitter.
984                  */
985                 if (txstatusdword & IPG_TS_TX_UNDERRUN) {
986                         IPG_DEBUG_MSG("Transmitter underrun.\n");
987                         sp->stats.tx_fifo_errors++;
988                         ipg_reset(dev, IPG_AC_TX_RESET | IPG_AC_DMA |
989                                   IPG_AC_NETWORK | IPG_AC_FIFO);
990
991                         /* Re-configure after DMA reset. */
992                         if (ipg_io_config(dev) < 0) {
993                                 printk(KERN_INFO
994                                        "%s: Error during re-configuration.\n",
995                                        dev->name);
996                         }
997                         init_tfdlist(dev);
998
999                         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_TX_ENABLE) &
1000                                 IPG_MC_RSVD_MASK, MAC_CTRL);
1001                 }
1002         }
1003
1004         ipg_nic_txfree(dev);
1005 }
1006
1007 /* Provides statistical information about the IPG NIC. */
1008 static struct net_device_stats *ipg_nic_get_stats(struct net_device *dev)
1009 {
1010         struct ipg_nic_private *sp = netdev_priv(dev);
1011         void __iomem *ioaddr = sp->ioaddr;
1012         u16 temp1;
1013         u16 temp2;
1014
1015         IPG_DEBUG_MSG("_nic_get_stats\n");
1016
1017         /* Check to see if the NIC has been initialized via nic_open,
1018          * before trying to read statistic registers.
1019          */
1020         if (!test_bit(__LINK_STATE_START, &dev->state))
1021                 return &sp->stats;
1022
1023         sp->stats.rx_packets += ipg_r32(IPG_FRAMESRCVDOK);
1024         sp->stats.tx_packets += ipg_r32(IPG_FRAMESXMTDOK);
1025         sp->stats.rx_bytes += ipg_r32(IPG_OCTETRCVOK);
1026         sp->stats.tx_bytes += ipg_r32(IPG_OCTETXMTOK);
1027         temp1 = ipg_r16(IPG_FRAMESLOSTRXERRORS);
1028         sp->stats.rx_errors += temp1;
1029         sp->stats.rx_missed_errors += temp1;
1030         temp1 = ipg_r32(IPG_SINGLECOLFRAMES) + ipg_r32(IPG_MULTICOLFRAMES) +
1031                 ipg_r32(IPG_LATECOLLISIONS);
1032         temp2 = ipg_r16(IPG_CARRIERSENSEERRORS);
1033         sp->stats.collisions += temp1;
1034         sp->stats.tx_dropped += ipg_r16(IPG_FRAMESABORTXSCOLLS);
1035         sp->stats.tx_errors += ipg_r16(IPG_FRAMESWEXDEFERRAL) +
1036                 ipg_r32(IPG_FRAMESWDEFERREDXMT) + temp1 + temp2;
1037         sp->stats.multicast += ipg_r32(IPG_MCSTOCTETRCVDOK);
1038
1039         /* detailed tx_errors */
1040         sp->stats.tx_carrier_errors += temp2;
1041
1042         /* detailed rx_errors */
1043         sp->stats.rx_length_errors += ipg_r16(IPG_INRANGELENGTHERRORS) +
1044                 ipg_r16(IPG_FRAMETOOLONGERRRORS);
1045         sp->stats.rx_crc_errors += ipg_r16(IPG_FRAMECHECKSEQERRORS);
1046
1047         /* Unutilized IPG statistic registers. */
1048         ipg_r32(IPG_MCSTFRAMESRCVDOK);
1049
1050         return &sp->stats;
1051 }
1052
1053 /* Restore used receive buffers. */
1054 static int ipg_nic_rxrestore(struct net_device *dev)
1055 {
1056         struct ipg_nic_private *sp = netdev_priv(dev);
1057         const unsigned int curr = sp->rx_current;
1058         unsigned int dirty = sp->rx_dirty;
1059
1060         IPG_DEBUG_MSG("_nic_rxrestore\n");
1061
1062         for (dirty = sp->rx_dirty; curr - dirty > 0; dirty++) {
1063                 unsigned int entry = dirty % IPG_RFDLIST_LENGTH;
1064
1065                 /* rx_copybreak may poke hole here and there. */
1066                 if (sp->rx_buff[entry])
1067                         continue;
1068
1069                 /* Generate a new receive buffer to replace the
1070                  * current buffer (which will be released by the
1071                  * Linux system).
1072                  */
1073                 if (ipg_get_rxbuff(dev, entry) < 0) {
1074                         IPG_DEBUG_MSG("Cannot allocate new Rx buffer.\n");
1075
1076                         break;
1077                 }
1078
1079                 /* Reset the RFS field. */
1080                 sp->rxd[entry].rfs = 0x0000000000000000;
1081         }
1082         sp->rx_dirty = dirty;
1083
1084         return 0;
1085 }
1086
1087 /* use jumboindex and jumbosize to control jumbo frame status
1088  * initial status is jumboindex=-1 and jumbosize=0
1089  * 1. jumboindex = -1 and jumbosize=0 : previous jumbo frame has been done.
1090  * 2. jumboindex != -1 and jumbosize != 0 : jumbo frame is not over size and receiving
1091  * 3. jumboindex = -1 and jumbosize != 0 : jumbo frame is over size, already dump
1092  *               previous receiving and need to continue dumping the current one
1093  */
1094 enum {
1095         NORMAL_PACKET,
1096         ERROR_PACKET
1097 };
1098
1099 enum {
1100         FRAME_NO_START_NO_END   = 0,
1101         FRAME_WITH_START                = 1,
1102         FRAME_WITH_END          = 10,
1103         FRAME_WITH_START_WITH_END = 11
1104 };
1105
1106 static void ipg_nic_rx_free_skb(struct net_device *dev)
1107 {
1108         struct ipg_nic_private *sp = netdev_priv(dev);
1109         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1110
1111         if (sp->rx_buff[entry]) {
1112                 struct ipg_rx *rxfd = sp->rxd + entry;
1113
1114                 pci_unmap_single(sp->pdev,
1115                         le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1116                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1117                 dev_kfree_skb_irq(sp->rx_buff[entry]);
1118                 sp->rx_buff[entry] = NULL;
1119         }
1120 }
1121
1122 static int ipg_nic_rx_check_frame_type(struct net_device *dev)
1123 {
1124         struct ipg_nic_private *sp = netdev_priv(dev);
1125         struct ipg_rx *rxfd = sp->rxd + (sp->rx_current % IPG_RFDLIST_LENGTH);
1126         int type = FRAME_NO_START_NO_END;
1127
1128         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART)
1129                 type += FRAME_WITH_START;
1130         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND)
1131                 type += FRAME_WITH_END;
1132         return type;
1133 }
1134
1135 static int ipg_nic_rx_check_error(struct net_device *dev)
1136 {
1137         struct ipg_nic_private *sp = netdev_priv(dev);
1138         unsigned int entry = sp->rx_current % IPG_RFDLIST_LENGTH;
1139         struct ipg_rx *rxfd = sp->rxd + entry;
1140
1141         if (IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1142              (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1143               IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1144               IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR))) {
1145                 IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1146                               (unsigned long) rxfd->rfs);
1147
1148                 /* Increment general receive error statistic. */
1149                 sp->stats.rx_errors++;
1150
1151                 /* Increment detailed receive error statistics. */
1152                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1153                         IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1154
1155                         sp->stats.rx_fifo_errors++;
1156                 }
1157
1158                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1159                         IPG_DEBUG_MSG("RX runt occured.\n");
1160                         sp->stats.rx_length_errors++;
1161                 }
1162
1163                 /* Do nothing for IPG_RFS_RXOVERSIZEDFRAME,
1164                  * error count handled by a IPG statistic register.
1165                  */
1166
1167                 if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1168                         IPG_DEBUG_MSG("RX alignment error occured.\n");
1169                         sp->stats.rx_frame_errors++;
1170                 }
1171
1172                 /* Do nothing for IPG_RFS_RXFCSERROR, error count
1173                  * handled by a IPG statistic register.
1174                  */
1175
1176                 /* Free the memory associated with the RX
1177                  * buffer since it is erroneous and we will
1178                  * not pass it to higher layer processes.
1179                  */
1180                 if (sp->rx_buff[entry]) {
1181                         pci_unmap_single(sp->pdev,
1182                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1183                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1184
1185                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1186                         sp->rx_buff[entry] = NULL;
1187                 }
1188                 return ERROR_PACKET;
1189         }
1190         return NORMAL_PACKET;
1191 }
1192
1193 static void ipg_nic_rx_with_start_and_end(struct net_device *dev,
1194                                           struct ipg_nic_private *sp,
1195                                           struct ipg_rx *rxfd, unsigned entry)
1196 {
1197         struct ipg_jumbo *jumbo = &sp->jumbo;
1198         struct sk_buff *skb;
1199         int framelen;
1200
1201         if (jumbo->found_start) {
1202                 dev_kfree_skb_irq(jumbo->skb);
1203                 jumbo->found_start = 0;
1204                 jumbo->current_size = 0;
1205                 jumbo->skb = NULL;
1206         }
1207
1208         /* 1: found error, 0 no error */
1209         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1210                 return;
1211
1212         skb = sp->rx_buff[entry];
1213         if (!skb)
1214                 return;
1215
1216         /* accept this frame and send to upper layer */
1217         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1218         if (framelen > sp->rxfrag_size)
1219                 framelen = sp->rxfrag_size;
1220
1221         skb_put(skb, framelen);
1222         skb->protocol = eth_type_trans(skb, dev);
1223         skb->ip_summed = CHECKSUM_NONE;
1224         netif_rx(skb);
1225         sp->rx_buff[entry] = NULL;
1226 }
1227
1228 static void ipg_nic_rx_with_start(struct net_device *dev,
1229                                   struct ipg_nic_private *sp,
1230                                   struct ipg_rx *rxfd, unsigned entry)
1231 {
1232         struct ipg_jumbo *jumbo = &sp->jumbo;
1233         struct pci_dev *pdev = sp->pdev;
1234         struct sk_buff *skb;
1235
1236         /* 1: found error, 0 no error */
1237         if (ipg_nic_rx_check_error(dev) != NORMAL_PACKET)
1238                 return;
1239
1240         /* accept this frame and send to upper layer */
1241         skb = sp->rx_buff[entry];
1242         if (!skb)
1243                 return;
1244
1245         if (jumbo->found_start)
1246                 dev_kfree_skb_irq(jumbo->skb);
1247
1248         pci_unmap_single(pdev, le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1249                          sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1250
1251         skb_put(skb, sp->rxfrag_size);
1252
1253         jumbo->found_start = 1;
1254         jumbo->current_size = sp->rxfrag_size;
1255         jumbo->skb = skb;
1256
1257         sp->rx_buff[entry] = NULL;
1258 }
1259
1260 static void ipg_nic_rx_with_end(struct net_device *dev,
1261                                 struct ipg_nic_private *sp,
1262                                 struct ipg_rx *rxfd, unsigned entry)
1263 {
1264         struct ipg_jumbo *jumbo = &sp->jumbo;
1265
1266         /* 1: found error, 0 no error */
1267         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1268                 struct sk_buff *skb = sp->rx_buff[entry];
1269
1270                 if (!skb)
1271                         return;
1272
1273                 if (jumbo->found_start) {
1274                         int framelen, endframelen;
1275
1276                         framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1277
1278                         endframelen = framelen - jumbo->current_size;
1279                         if (framelen > sp->rxsupport_size)
1280                                 dev_kfree_skb_irq(jumbo->skb);
1281                         else {
1282                                 memcpy(skb_put(jumbo->skb, endframelen),
1283                                        skb->data, endframelen);
1284
1285                                 jumbo->skb->protocol =
1286                                     eth_type_trans(jumbo->skb, dev);
1287
1288                                 jumbo->skb->ip_summed = CHECKSUM_NONE;
1289                                 netif_rx(jumbo->skb);
1290                         }
1291                 }
1292
1293                 jumbo->found_start = 0;
1294                 jumbo->current_size = 0;
1295                 jumbo->skb = NULL;
1296
1297                 ipg_nic_rx_free_skb(dev);
1298         } else {
1299                 dev_kfree_skb_irq(jumbo->skb);
1300                 jumbo->found_start = 0;
1301                 jumbo->current_size = 0;
1302                 jumbo->skb = NULL;
1303         }
1304 }
1305
1306 static void ipg_nic_rx_no_start_no_end(struct net_device *dev,
1307                                        struct ipg_nic_private *sp,
1308                                        struct ipg_rx *rxfd, unsigned entry)
1309 {
1310         struct ipg_jumbo *jumbo = &sp->jumbo;
1311
1312         /* 1: found error, 0 no error */
1313         if (ipg_nic_rx_check_error(dev) == NORMAL_PACKET) {
1314                 struct sk_buff *skb = sp->rx_buff[entry];
1315
1316                 if (skb) {
1317                         if (jumbo->found_start) {
1318                                 jumbo->current_size += sp->rxfrag_size;
1319                                 if (jumbo->current_size <= sp->rxsupport_size) {
1320                                         memcpy(skb_put(jumbo->skb,
1321                                                        sp->rxfrag_size),
1322                                                skb->data, sp->rxfrag_size);
1323                                 }
1324                         }
1325                         ipg_nic_rx_free_skb(dev);
1326                 }
1327         } else {
1328                 dev_kfree_skb_irq(jumbo->skb);
1329                 jumbo->found_start = 0;
1330                 jumbo->current_size = 0;
1331                 jumbo->skb = NULL;
1332         }
1333 }
1334
1335 static int ipg_nic_rx_jumbo(struct net_device *dev)
1336 {
1337         struct ipg_nic_private *sp = netdev_priv(dev);
1338         unsigned int curr = sp->rx_current;
1339         void __iomem *ioaddr = sp->ioaddr;
1340         unsigned int i;
1341
1342         IPG_DEBUG_MSG("_nic_rx\n");
1343
1344         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1345                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1346                 struct ipg_rx *rxfd = sp->rxd + entry;
1347
1348                 if (!(rxfd->rfs & cpu_to_le64(IPG_RFS_RFDDONE)))
1349                         break;
1350
1351                 switch (ipg_nic_rx_check_frame_type(dev)) {
1352                 case FRAME_WITH_START_WITH_END:
1353                         ipg_nic_rx_with_start_and_end(dev, sp, rxfd, entry);
1354                         break;
1355                 case FRAME_WITH_START:
1356                         ipg_nic_rx_with_start(dev, sp, rxfd, entry);
1357                         break;
1358                 case FRAME_WITH_END:
1359                         ipg_nic_rx_with_end(dev, sp, rxfd, entry);
1360                         break;
1361                 case FRAME_NO_START_NO_END:
1362                         ipg_nic_rx_no_start_no_end(dev, sp, rxfd, entry);
1363                         break;
1364                 }
1365         }
1366
1367         sp->rx_current = curr;
1368
1369         if (i == IPG_MAXRFDPROCESS_COUNT) {
1370                 /* There are more RFDs to process, however the
1371                  * allocated amount of RFD processing time has
1372                  * expired. Assert Interrupt Requested to make
1373                  * sure we come back to process the remaining RFDs.
1374                  */
1375                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1376         }
1377
1378         ipg_nic_rxrestore(dev);
1379
1380         return 0;
1381 }
1382
1383 static int ipg_nic_rx(struct net_device *dev)
1384 {
1385         /* Transfer received Ethernet frames to higher network layers. */
1386         struct ipg_nic_private *sp = netdev_priv(dev);
1387         unsigned int curr = sp->rx_current;
1388         void __iomem *ioaddr = sp->ioaddr;
1389         struct ipg_rx *rxfd;
1390         unsigned int i;
1391
1392         IPG_DEBUG_MSG("_nic_rx\n");
1393
1394 #define __RFS_MASK \
1395         cpu_to_le64(IPG_RFS_RFDDONE | IPG_RFS_FRAMESTART | IPG_RFS_FRAMEEND)
1396
1397         for (i = 0; i < IPG_MAXRFDPROCESS_COUNT; i++, curr++) {
1398                 unsigned int entry = curr % IPG_RFDLIST_LENGTH;
1399                 struct sk_buff *skb = sp->rx_buff[entry];
1400                 unsigned int framelen;
1401
1402                 rxfd = sp->rxd + entry;
1403
1404                 if (((rxfd->rfs & __RFS_MASK) != __RFS_MASK) || !skb)
1405                         break;
1406
1407                 /* Get received frame length. */
1408                 framelen = le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFRAMELEN;
1409
1410                 /* Check for jumbo frame arrival with too small
1411                  * RXFRAG_SIZE.
1412                  */
1413                 if (framelen > sp->rxfrag_size) {
1414                         IPG_DEBUG_MSG
1415                             ("RFS FrameLen > allocated fragment size.\n");
1416
1417                         framelen = sp->rxfrag_size;
1418                 }
1419
1420                 if ((IPG_DROP_ON_RX_ETH_ERRORS && (le64_to_cpu(rxfd->rfs) &
1421                        (IPG_RFS_RXFIFOOVERRUN | IPG_RFS_RXRUNTFRAME |
1422                         IPG_RFS_RXALIGNMENTERROR | IPG_RFS_RXFCSERROR |
1423                         IPG_RFS_RXOVERSIZEDFRAME | IPG_RFS_RXLENGTHERROR)))) {
1424
1425                         IPG_DEBUG_MSG("Rx error, RFS = %16.16lx\n",
1426                                       (unsigned long int) rxfd->rfs);
1427
1428                         /* Increment general receive error statistic. */
1429                         sp->stats.rx_errors++;
1430
1431                         /* Increment detailed receive error statistics. */
1432                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFIFOOVERRUN) {
1433                                 IPG_DEBUG_MSG("RX FIFO overrun occured.\n");
1434                                 sp->stats.rx_fifo_errors++;
1435                         }
1436
1437                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXRUNTFRAME) {
1438                                 IPG_DEBUG_MSG("RX runt occured.\n");
1439                                 sp->stats.rx_length_errors++;
1440                         }
1441
1442                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXOVERSIZEDFRAME) ;
1443                         /* Do nothing, error count handled by a IPG
1444                          * statistic register.
1445                          */
1446
1447                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXALIGNMENTERROR) {
1448                                 IPG_DEBUG_MSG("RX alignment error occured.\n");
1449                                 sp->stats.rx_frame_errors++;
1450                         }
1451
1452                         if (le64_to_cpu(rxfd->rfs) & IPG_RFS_RXFCSERROR) ;
1453                         /* Do nothing, error count handled by a IPG
1454                          * statistic register.
1455                          */
1456
1457                         /* Free the memory associated with the RX
1458                          * buffer since it is erroneous and we will
1459                          * not pass it to higher layer processes.
1460                          */
1461                         if (skb) {
1462                                 __le64 info = rxfd->frag_info;
1463
1464                                 pci_unmap_single(sp->pdev,
1465                                         le64_to_cpu(info) & ~IPG_RFI_FRAGLEN,
1466                                         sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1467
1468                                 dev_kfree_skb_irq(skb);
1469                         }
1470                 } else {
1471
1472                         /* Adjust the new buffer length to accomodate the size
1473                          * of the received frame.
1474                          */
1475                         skb_put(skb, framelen);
1476
1477                         /* Set the buffer's protocol field to Ethernet. */
1478                         skb->protocol = eth_type_trans(skb, dev);
1479
1480                         /* The IPG encountered an error with (or
1481                          * there were no) IP/TCP/UDP checksums.
1482                          * This may or may not indicate an invalid
1483                          * IP/TCP/UDP frame was received. Let the
1484                          * upper layer decide.
1485                          */
1486                         skb->ip_summed = CHECKSUM_NONE;
1487
1488                         /* Hand off frame for higher layer processing.
1489                          * The function netif_rx() releases the sk_buff
1490                          * when processing completes.
1491                          */
1492                         netif_rx(skb);
1493                 }
1494
1495                 /* Assure RX buffer is not reused by IPG. */
1496                 sp->rx_buff[entry] = NULL;
1497         }
1498
1499         /*
1500          * If there are more RFDs to proces and the allocated amount of RFD
1501          * processing time has expired, assert Interrupt Requested to make
1502          * sure we come back to process the remaining RFDs.
1503          */
1504         if (i == IPG_MAXRFDPROCESS_COUNT)
1505                 ipg_w32(ipg_r32(ASIC_CTRL) | IPG_AC_INT_REQUEST, ASIC_CTRL);
1506
1507 #ifdef IPG_DEBUG
1508         /* Check if the RFD list contained no receive frame data. */
1509         if (!i)
1510                 sp->EmptyRFDListCount++;
1511 #endif
1512         while ((le64_to_cpu(rxfd->rfs) & IPG_RFS_RFDDONE) &&
1513                !((le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMESTART) &&
1514                  (le64_to_cpu(rxfd->rfs) & IPG_RFS_FRAMEEND))) {
1515                 unsigned int entry = curr++ % IPG_RFDLIST_LENGTH;
1516
1517                 rxfd = sp->rxd + entry;
1518
1519                 IPG_DEBUG_MSG("Frame requires multiple RFDs.\n");
1520
1521                 /* An unexpected event, additional code needed to handle
1522                  * properly. So for the time being, just disregard the
1523                  * frame.
1524                  */
1525
1526                 /* Free the memory associated with the RX
1527                  * buffer since it is erroneous and we will
1528                  * not pass it to higher layer processes.
1529                  */
1530                 if (sp->rx_buff[entry]) {
1531                         pci_unmap_single(sp->pdev,
1532                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1533                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1534                         dev_kfree_skb_irq(sp->rx_buff[entry]);
1535                 }
1536
1537                 /* Assure RX buffer is not reused by IPG. */
1538                 sp->rx_buff[entry] = NULL;
1539         }
1540
1541         sp->rx_current = curr;
1542
1543         /* Check to see if there are a minimum number of used
1544          * RFDs before restoring any (should improve performance.)
1545          */
1546         if ((curr - sp->rx_dirty) >= IPG_MINUSEDRFDSTOFREE)
1547                 ipg_nic_rxrestore(dev);
1548
1549         return 0;
1550 }
1551
1552 static void ipg_reset_after_host_error(struct work_struct *work)
1553 {
1554         struct ipg_nic_private *sp =
1555                 container_of(work, struct ipg_nic_private, task.work);
1556         struct net_device *dev = sp->dev;
1557
1558         IPG_DDEBUG_MSG("DMACtrl = %8.8x\n", ioread32(sp->ioaddr + IPG_DMACTRL));
1559
1560         /*
1561          * Acknowledge HostError interrupt by resetting
1562          * IPG DMA and HOST.
1563          */
1564         ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1565
1566         init_rfdlist(dev);
1567         init_tfdlist(dev);
1568
1569         if (ipg_io_config(dev) < 0) {
1570                 printk(KERN_INFO "%s: Cannot recover from PCI error.\n",
1571                        dev->name);
1572                 schedule_delayed_work(&sp->task, HZ);
1573         }
1574 }
1575
1576 static irqreturn_t ipg_interrupt_handler(int irq, void *dev_inst)
1577 {
1578         struct net_device *dev = dev_inst;
1579         struct ipg_nic_private *sp = netdev_priv(dev);
1580         void __iomem *ioaddr = sp->ioaddr;
1581         unsigned int handled = 0;
1582         u16 status;
1583
1584         IPG_DEBUG_MSG("_interrupt_handler\n");
1585
1586         if (sp->is_jumbo)
1587                 ipg_nic_rxrestore(dev);
1588
1589         spin_lock(&sp->lock);
1590
1591         /* Get interrupt source information, and acknowledge
1592          * some (i.e. TxDMAComplete, RxDMAComplete, RxEarly,
1593          * IntRequested, MacControlFrame, LinkEvent) interrupts
1594          * if issued. Also, all IPG interrupts are disabled by
1595          * reading IntStatusAck.
1596          */
1597         status = ipg_r16(INT_STATUS_ACK);
1598
1599         IPG_DEBUG_MSG("IntStatusAck = %4.4x\n", status);
1600
1601         /* Shared IRQ of remove event. */
1602         if (!(status & IPG_IS_RSVD_MASK))
1603                 goto out_enable;
1604
1605         handled = 1;
1606
1607         if (unlikely(!netif_running(dev)))
1608                 goto out_unlock;
1609
1610         /* If RFDListEnd interrupt, restore all used RFDs. */
1611         if (status & IPG_IS_RFD_LIST_END) {
1612                 IPG_DEBUG_MSG("RFDListEnd Interrupt.\n");
1613
1614                 /* The RFD list end indicates an RFD was encountered
1615                  * with a 0 NextPtr, or with an RFDDone bit set to 1
1616                  * (indicating the RFD is not read for use by the
1617                  * IPG.) Try to restore all RFDs.
1618                  */
1619                 ipg_nic_rxrestore(dev);
1620
1621 #ifdef IPG_DEBUG
1622                 /* Increment the RFDlistendCount counter. */
1623                 sp->RFDlistendCount++;
1624 #endif
1625         }
1626
1627         /* If RFDListEnd, RxDMAPriority, RxDMAComplete, or
1628          * IntRequested interrupt, process received frames. */
1629         if ((status & IPG_IS_RX_DMA_PRIORITY) ||
1630             (status & IPG_IS_RFD_LIST_END) ||
1631             (status & IPG_IS_RX_DMA_COMPLETE) ||
1632             (status & IPG_IS_INT_REQUESTED)) {
1633 #ifdef IPG_DEBUG
1634                 /* Increment the RFD list checked counter if interrupted
1635                  * only to check the RFD list. */
1636                 if (status & (~(IPG_IS_RX_DMA_PRIORITY | IPG_IS_RFD_LIST_END |
1637                                 IPG_IS_RX_DMA_COMPLETE | IPG_IS_INT_REQUESTED) &
1638                                (IPG_IS_HOST_ERROR | IPG_IS_TX_DMA_COMPLETE |
1639                                 IPG_IS_LINK_EVENT | IPG_IS_TX_COMPLETE |
1640                                 IPG_IS_UPDATE_STATS)))
1641                         sp->RFDListCheckedCount++;
1642 #endif
1643
1644                 if (sp->is_jumbo)
1645                         ipg_nic_rx_jumbo(dev);
1646                 else
1647                         ipg_nic_rx(dev);
1648         }
1649
1650         /* If TxDMAComplete interrupt, free used TFDs. */
1651         if (status & IPG_IS_TX_DMA_COMPLETE)
1652                 ipg_nic_txfree(dev);
1653
1654         /* TxComplete interrupts indicate one of numerous actions.
1655          * Determine what action to take based on TXSTATUS register.
1656          */
1657         if (status & IPG_IS_TX_COMPLETE)
1658                 ipg_nic_txcleanup(dev);
1659
1660         /* If UpdateStats interrupt, update Linux Ethernet statistics */
1661         if (status & IPG_IS_UPDATE_STATS)
1662                 ipg_nic_get_stats(dev);
1663
1664         /* If HostError interrupt, reset IPG. */
1665         if (status & IPG_IS_HOST_ERROR) {
1666                 IPG_DDEBUG_MSG("HostError Interrupt\n");
1667
1668                 schedule_delayed_work(&sp->task, 0);
1669         }
1670
1671         /* If LinkEvent interrupt, resolve autonegotiation. */
1672         if (status & IPG_IS_LINK_EVENT) {
1673                 if (ipg_config_autoneg(dev) < 0)
1674                         printk(KERN_INFO "%s: Auto-negotiation error.\n",
1675                                dev->name);
1676         }
1677
1678         /* If MACCtrlFrame interrupt, do nothing. */
1679         if (status & IPG_IS_MAC_CTRL_FRAME)
1680                 IPG_DEBUG_MSG("MACCtrlFrame interrupt.\n");
1681
1682         /* If RxComplete interrupt, do nothing. */
1683         if (status & IPG_IS_RX_COMPLETE)
1684                 IPG_DEBUG_MSG("RxComplete interrupt.\n");
1685
1686         /* If RxEarly interrupt, do nothing. */
1687         if (status & IPG_IS_RX_EARLY)
1688                 IPG_DEBUG_MSG("RxEarly interrupt.\n");
1689
1690 out_enable:
1691         /* Re-enable IPG interrupts. */
1692         ipg_w16(IPG_IE_TX_DMA_COMPLETE | IPG_IE_RX_DMA_COMPLETE |
1693                 IPG_IE_HOST_ERROR | IPG_IE_INT_REQUESTED | IPG_IE_TX_COMPLETE |
1694                 IPG_IE_LINK_EVENT | IPG_IE_UPDATE_STATS, INT_ENABLE);
1695 out_unlock:
1696         spin_unlock(&sp->lock);
1697
1698         return IRQ_RETVAL(handled);
1699 }
1700
1701 static void ipg_rx_clear(struct ipg_nic_private *sp)
1702 {
1703         unsigned int i;
1704
1705         for (i = 0; i < IPG_RFDLIST_LENGTH; i++) {
1706                 if (sp->rx_buff[i]) {
1707                         struct ipg_rx *rxfd = sp->rxd + i;
1708
1709                         dev_kfree_skb_irq(sp->rx_buff[i]);
1710                         sp->rx_buff[i] = NULL;
1711                         pci_unmap_single(sp->pdev,
1712                                 le64_to_cpu(rxfd->frag_info) & ~IPG_RFI_FRAGLEN,
1713                                 sp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1714                 }
1715         }
1716 }
1717
1718 static void ipg_tx_clear(struct ipg_nic_private *sp)
1719 {
1720         unsigned int i;
1721
1722         for (i = 0; i < IPG_TFDLIST_LENGTH; i++) {
1723                 if (sp->tx_buff[i]) {
1724                         struct ipg_tx *txfd = sp->txd + i;
1725
1726                         pci_unmap_single(sp->pdev,
1727                                 le64_to_cpu(txfd->frag_info) & ~IPG_TFI_FRAGLEN,
1728                                 sp->tx_buff[i]->len, PCI_DMA_TODEVICE);
1729
1730                         dev_kfree_skb_irq(sp->tx_buff[i]);
1731
1732                         sp->tx_buff[i] = NULL;
1733                 }
1734         }
1735 }
1736
1737 static int ipg_nic_open(struct net_device *dev)
1738 {
1739         struct ipg_nic_private *sp = netdev_priv(dev);
1740         void __iomem *ioaddr = sp->ioaddr;
1741         struct pci_dev *pdev = sp->pdev;
1742         int rc;
1743
1744         IPG_DEBUG_MSG("_nic_open\n");
1745
1746         sp->rx_buf_sz = sp->rxsupport_size;
1747
1748         /* Check for interrupt line conflicts, and request interrupt
1749          * line for IPG.
1750          *
1751          * IMPORTANT: Disable IPG interrupts prior to registering
1752          *            IRQ.
1753          */
1754         ipg_w16(0x0000, INT_ENABLE);
1755
1756         /* Register the interrupt line to be used by the IPG within
1757          * the Linux system.
1758          */
1759         rc = request_irq(pdev->irq, &ipg_interrupt_handler, IRQF_SHARED,
1760                          dev->name, dev);
1761         if (rc < 0) {
1762                 printk(KERN_INFO "%s: Error when requesting interrupt.\n",
1763                        dev->name);
1764                 goto out;
1765         }
1766
1767         dev->irq = pdev->irq;
1768
1769         rc = -ENOMEM;
1770
1771         sp->rxd = dma_alloc_coherent(&pdev->dev, IPG_RX_RING_BYTES,
1772                                      &sp->rxd_map, GFP_KERNEL);
1773         if (!sp->rxd)
1774                 goto err_free_irq_0;
1775
1776         sp->txd = dma_alloc_coherent(&pdev->dev, IPG_TX_RING_BYTES,
1777                                      &sp->txd_map, GFP_KERNEL);
1778         if (!sp->txd)
1779                 goto err_free_rx_1;
1780
1781         rc = init_rfdlist(dev);
1782         if (rc < 0) {
1783                 printk(KERN_INFO "%s: Error during configuration.\n",
1784                        dev->name);
1785                 goto err_free_tx_2;
1786         }
1787
1788         init_tfdlist(dev);
1789
1790         rc = ipg_io_config(dev);
1791         if (rc < 0) {
1792                 printk(KERN_INFO "%s: Error during configuration.\n",
1793                        dev->name);
1794                 goto err_release_tfdlist_3;
1795         }
1796
1797         /* Resolve autonegotiation. */
1798         if (ipg_config_autoneg(dev) < 0)
1799                 printk(KERN_INFO "%s: Auto-negotiation error.\n", dev->name);
1800
1801         /* initialize JUMBO Frame control variable */
1802         sp->jumbo.found_start = 0;
1803         sp->jumbo.current_size = 0;
1804         sp->jumbo.skb = NULL;
1805
1806         /* Enable transmit and receive operation of the IPG. */
1807         ipg_w32((ipg_r32(MAC_CTRL) | IPG_MC_RX_ENABLE | IPG_MC_TX_ENABLE) &
1808                  IPG_MC_RSVD_MASK, MAC_CTRL);
1809
1810         netif_start_queue(dev);
1811 out:
1812         return rc;
1813
1814 err_release_tfdlist_3:
1815         ipg_tx_clear(sp);
1816         ipg_rx_clear(sp);
1817 err_free_tx_2:
1818         dma_free_coherent(&pdev->dev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1819 err_free_rx_1:
1820         dma_free_coherent(&pdev->dev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1821 err_free_irq_0:
1822         free_irq(pdev->irq, dev);
1823         goto out;
1824 }
1825
1826 static int ipg_nic_stop(struct net_device *dev)
1827 {
1828         struct ipg_nic_private *sp = netdev_priv(dev);
1829         void __iomem *ioaddr = sp->ioaddr;
1830         struct pci_dev *pdev = sp->pdev;
1831
1832         IPG_DEBUG_MSG("_nic_stop\n");
1833
1834         netif_stop_queue(dev);
1835
1836         IPG_DDEBUG_MSG("RFDlistendCount = %i\n", sp->RFDlistendCount);
1837         IPG_DDEBUG_MSG("RFDListCheckedCount = %i\n", sp->rxdCheckedCount);
1838         IPG_DDEBUG_MSG("EmptyRFDListCount = %i\n", sp->EmptyRFDListCount);
1839         IPG_DUMPTFDLIST(dev);
1840
1841         do {
1842                 (void) ipg_r16(INT_STATUS_ACK);
1843
1844                 ipg_reset(dev, IPG_AC_GLOBAL_RESET | IPG_AC_HOST | IPG_AC_DMA);
1845
1846                 synchronize_irq(pdev->irq);
1847         } while (ipg_r16(INT_ENABLE) & IPG_IE_RSVD_MASK);
1848
1849         ipg_rx_clear(sp);
1850
1851         ipg_tx_clear(sp);
1852
1853         pci_free_consistent(pdev, IPG_RX_RING_BYTES, sp->rxd, sp->rxd_map);
1854         pci_free_consistent(pdev, IPG_TX_RING_BYTES, sp->txd, sp->txd_map);
1855
1856         free_irq(pdev->irq, dev);
1857
1858         return 0;
1859 }
1860
1861 static int ipg_nic_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
1862 {
1863         struct ipg_nic_private *sp = netdev_priv(dev);
1864         void __iomem *ioaddr = sp->ioaddr;
1865         unsigned int entry = sp->tx_current % IPG_TFDLIST_LENGTH;
1866         unsigned long flags;
1867         struct ipg_tx *txfd;
1868
1869         IPG_DDEBUG_MSG("_nic_hard_start_xmit\n");
1870
1871         /* If in 10Mbps mode, stop the transmit queue so
1872          * no more transmit frames are accepted.
1873          */
1874         if (sp->tenmbpsmode)
1875                 netif_stop_queue(dev);
1876
1877         if (sp->reset_current_tfd) {
1878                 sp->reset_current_tfd = 0;
1879                 entry = 0;
1880         }
1881
1882         txfd = sp->txd + entry;
1883
1884         sp->tx_buff[entry] = skb;
1885
1886         /* Clear all TFC fields, except TFDDONE. */
1887         txfd->tfc = cpu_to_le64(IPG_TFC_TFDDONE);
1888
1889         /* Specify the TFC field within the TFD. */
1890         txfd->tfc |= cpu_to_le64(IPG_TFC_WORDALIGNDISABLED |
1891                 (IPG_TFC_FRAMEID & sp->tx_current) |
1892                 (IPG_TFC_FRAGCOUNT & (1 << 24)));
1893         /*
1894          * 16--17 (WordAlign) <- 3 (disable),
1895          * 0--15 (FrameId) <- sp->tx_current,
1896          * 24--27 (FragCount) <- 1
1897          */
1898
1899         /* Request TxComplete interrupts at an interval defined
1900          * by the constant IPG_FRAMESBETWEENTXCOMPLETES.
1901          * Request TxComplete interrupt for every frame
1902          * if in 10Mbps mode to accomodate problem with 10Mbps
1903          * processing.
1904          */
1905         if (sp->tenmbpsmode)
1906                 txfd->tfc |= cpu_to_le64(IPG_TFC_TXINDICATE);
1907         txfd->tfc |= cpu_to_le64(IPG_TFC_TXDMAINDICATE);
1908         /* Based on compilation option, determine if FCS is to be
1909          * appended to transmit frame by IPG.
1910          */
1911         if (!(IPG_APPEND_FCS_ON_TX))
1912                 txfd->tfc |= cpu_to_le64(IPG_TFC_FCSAPPENDDISABLE);
1913
1914         /* Based on compilation option, determine if IP, TCP and/or
1915          * UDP checksums are to be added to transmit frame by IPG.
1916          */
1917         if (IPG_ADD_IPCHECKSUM_ON_TX)
1918                 txfd->tfc |= cpu_to_le64(IPG_TFC_IPCHECKSUMENABLE);
1919
1920         if (IPG_ADD_TCPCHECKSUM_ON_TX)
1921                 txfd->tfc |= cpu_to_le64(IPG_TFC_TCPCHECKSUMENABLE);
1922
1923         if (IPG_ADD_UDPCHECKSUM_ON_TX)
1924                 txfd->tfc |= cpu_to_le64(IPG_TFC_UDPCHECKSUMENABLE);
1925
1926         /* Based on compilation option, determine if VLAN tag info is to be
1927          * inserted into transmit frame by IPG.
1928          */
1929         if (IPG_INSERT_MANUAL_VLAN_TAG) {
1930                 txfd->tfc |= cpu_to_le64(IPG_TFC_VLANTAGINSERT |
1931                         ((u64) IPG_MANUAL_VLAN_VID << 32) |
1932                         ((u64) IPG_MANUAL_VLAN_CFI << 44) |
1933                         ((u64) IPG_MANUAL_VLAN_USERPRIORITY << 45));
1934         }
1935
1936         /* The fragment start location within system memory is defined
1937          * by the sk_buff structure's data field. The physical address
1938          * of this location within the system's virtual memory space
1939          * is determined using the IPG_HOST2BUS_MAP function.
1940          */
1941         txfd->frag_info = cpu_to_le64(pci_map_single(sp->pdev, skb->data,
1942                 skb->len, PCI_DMA_TODEVICE));
1943
1944         /* The length of the fragment within system memory is defined by
1945          * the sk_buff structure's len field.
1946          */
1947         txfd->frag_info |= cpu_to_le64(IPG_TFI_FRAGLEN &
1948                 ((u64) (skb->len & 0xffff) << 48));
1949
1950         /* Clear the TFDDone bit last to indicate the TFD is ready
1951          * for transfer to the IPG.
1952          */
1953         txfd->tfc &= cpu_to_le64(~IPG_TFC_TFDDONE);
1954
1955         spin_lock_irqsave(&sp->lock, flags);
1956
1957         sp->tx_current++;
1958
1959         mmiowb();
1960
1961         ipg_w32(IPG_DC_TX_DMA_POLL_NOW, DMA_CTRL);
1962
1963         if (sp->tx_current == (sp->tx_dirty + IPG_TFDLIST_LENGTH))
1964                 netif_stop_queue(dev);
1965
1966         spin_unlock_irqrestore(&sp->lock, flags);
1967
1968         return NETDEV_TX_OK;
1969 }
1970
1971 static void ipg_set_phy_default_param(unsigned char rev,
1972                                       struct net_device *dev, int phy_address)
1973 {
1974         unsigned short length;
1975         unsigned char revision;
1976         unsigned short *phy_param;
1977         unsigned short address, value;
1978
1979         phy_param = &DefaultPhyParam[0];
1980         length = *phy_param & 0x00FF;
1981         revision = (unsigned char)((*phy_param) >> 8);
1982         phy_param++;
1983         while (length != 0) {
1984                 if (rev == revision) {
1985                         while (length > 1) {
1986                                 address = *phy_param;
1987                                 value = *(phy_param + 1);
1988                                 phy_param += 2;
1989                                 mdio_write(dev, phy_address, address, value);
1990                                 length -= 4;
1991                         }
1992                         break;
1993                 } else {
1994                         phy_param += length / 2;
1995                         length = *phy_param & 0x00FF;
1996                         revision = (unsigned char)((*phy_param) >> 8);
1997                         phy_param++;
1998                 }
1999         }
2000 }
2001
2002 static int read_eeprom(struct net_device *dev, int eep_addr)
2003 {
2004         void __iomem *ioaddr = ipg_ioaddr(dev);
2005         unsigned int i;
2006         int ret = 0;
2007         u16 value;
2008
2009         value = IPG_EC_EEPROM_READOPCODE | (eep_addr & 0xff);
2010         ipg_w16(value, EEPROM_CTRL);
2011
2012         for (i = 0; i < 1000; i++) {
2013                 u16 data;
2014
2015                 mdelay(10);
2016                 data = ipg_r16(EEPROM_CTRL);
2017                 if (!(data & IPG_EC_EEPROM_BUSY)) {
2018                         ret = ipg_r16(EEPROM_DATA);
2019                         break;
2020                 }
2021         }
2022         return ret;
2023 }
2024
2025 static void ipg_init_mii(struct net_device *dev)
2026 {
2027         struct ipg_nic_private *sp = netdev_priv(dev);
2028         struct mii_if_info *mii_if = &sp->mii_if;
2029         int phyaddr;
2030
2031         mii_if->dev          = dev;
2032         mii_if->mdio_read    = mdio_read;
2033         mii_if->mdio_write   = mdio_write;
2034         mii_if->phy_id_mask  = 0x1f;
2035         mii_if->reg_num_mask = 0x1f;
2036
2037         mii_if->phy_id = phyaddr = ipg_find_phyaddr(dev);
2038
2039         if (phyaddr != 0x1f) {
2040                 u16 mii_phyctrl, mii_1000cr;
2041                 u8 revisionid = 0;
2042
2043                 mii_1000cr  = mdio_read(dev, phyaddr, MII_CTRL1000);
2044                 mii_1000cr |= ADVERTISE_1000FULL | ADVERTISE_1000HALF |
2045                         GMII_PHY_1000BASETCONTROL_PreferMaster;
2046                 mdio_write(dev, phyaddr, MII_CTRL1000, mii_1000cr);
2047
2048                 mii_phyctrl = mdio_read(dev, phyaddr, MII_BMCR);
2049
2050                 /* Set default phyparam */
2051                 pci_read_config_byte(sp->pdev, PCI_REVISION_ID, &revisionid);
2052                 ipg_set_phy_default_param(revisionid, dev, phyaddr);
2053
2054                 /* Reset PHY */
2055                 mii_phyctrl |= BMCR_RESET | BMCR_ANRESTART;
2056                 mdio_write(dev, phyaddr, MII_BMCR, mii_phyctrl);
2057
2058         }
2059 }
2060
2061 static int ipg_hw_init(struct net_device *dev)
2062 {
2063         struct ipg_nic_private *sp = netdev_priv(dev);
2064         void __iomem *ioaddr = sp->ioaddr;
2065         unsigned int i;
2066         int rc;
2067
2068         /* Read/Write and Reset EEPROM Value */
2069         /* Read LED Mode Configuration from EEPROM */
2070         sp->led_mode = read_eeprom(dev, 6);
2071
2072         /* Reset all functions within the IPG. Do not assert
2073          * RST_OUT as not compatible with some PHYs.
2074          */
2075         rc = ipg_reset(dev, IPG_RESET_MASK);
2076         if (rc < 0)
2077                 goto out;
2078
2079         ipg_init_mii(dev);
2080
2081         /* Read MAC Address from EEPROM */
2082         for (i = 0; i < 3; i++)
2083                 sp->station_addr[i] = read_eeprom(dev, 16 + i);
2084
2085         for (i = 0; i < 3; i++)
2086                 ipg_w16(sp->station_addr[i], STATION_ADDRESS_0 + 2*i);
2087
2088         /* Set station address in ethernet_device structure. */
2089         dev->dev_addr[0] =  ipg_r16(STATION_ADDRESS_0) & 0x00ff;
2090         dev->dev_addr[1] = (ipg_r16(STATION_ADDRESS_0) & 0xff00) >> 8;
2091         dev->dev_addr[2] =  ipg_r16(STATION_ADDRESS_1) & 0x00ff;
2092         dev->dev_addr[3] = (ipg_r16(STATION_ADDRESS_1) & 0xff00) >> 8;
2093         dev->dev_addr[4] =  ipg_r16(STATION_ADDRESS_2) & 0x00ff;
2094         dev->dev_addr[5] = (ipg_r16(STATION_ADDRESS_2) & 0xff00) >> 8;
2095 out:
2096         return rc;
2097 }
2098
2099 static int ipg_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2100 {
2101         struct ipg_nic_private *sp = netdev_priv(dev);
2102         int rc;
2103
2104         mutex_lock(&sp->mii_mutex);
2105         rc = generic_mii_ioctl(&sp->mii_if, if_mii(ifr), cmd, NULL);
2106         mutex_unlock(&sp->mii_mutex);
2107
2108         return rc;
2109 }
2110
2111 static int ipg_nic_change_mtu(struct net_device *dev, int new_mtu)
2112 {
2113         struct ipg_nic_private *sp = netdev_priv(dev);
2114         int err;
2115
2116         /* Function to accomodate changes to Maximum Transfer Unit
2117          * (or MTU) of IPG NIC. Cannot use default function since
2118          * the default will not allow for MTU > 1500 bytes.
2119          */
2120
2121         IPG_DEBUG_MSG("_nic_change_mtu\n");
2122
2123         /*
2124          * Check that the new MTU value is between 68 (14 byte header, 46 byte
2125          * payload, 4 byte FCS) and 10 KB, which is the largest supported MTU.
2126          */
2127         if (new_mtu < 68 || new_mtu > 10240)
2128                 return -EINVAL;
2129
2130         err = ipg_nic_stop(dev);
2131         if (err)
2132                 return err;
2133
2134         dev->mtu = new_mtu;
2135
2136         sp->max_rxframe_size = new_mtu;
2137
2138         sp->rxfrag_size = new_mtu;
2139         if (sp->rxfrag_size > 4088)
2140                 sp->rxfrag_size = 4088;
2141
2142         sp->rxsupport_size = sp->max_rxframe_size;
2143
2144         if (new_mtu > 0x0600)
2145                 sp->is_jumbo = true;
2146         else
2147                 sp->is_jumbo = false;
2148
2149         return ipg_nic_open(dev);
2150 }
2151
2152 static int ipg_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2153 {
2154         struct ipg_nic_private *sp = netdev_priv(dev);
2155         int rc;
2156
2157         mutex_lock(&sp->mii_mutex);
2158         rc = mii_ethtool_gset(&sp->mii_if, cmd);
2159         mutex_unlock(&sp->mii_mutex);
2160
2161         return rc;
2162 }
2163
2164 static int ipg_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2165 {
2166         struct ipg_nic_private *sp = netdev_priv(dev);
2167         int rc;
2168
2169         mutex_lock(&sp->mii_mutex);
2170         rc = mii_ethtool_sset(&sp->mii_if, cmd);
2171         mutex_unlock(&sp->mii_mutex);
2172
2173         return rc;
2174 }
2175
2176 static int ipg_nway_reset(struct net_device *dev)
2177 {
2178         struct ipg_nic_private *sp = netdev_priv(dev);
2179         int rc;
2180
2181         mutex_lock(&sp->mii_mutex);
2182         rc = mii_nway_restart(&sp->mii_if);
2183         mutex_unlock(&sp->mii_mutex);
2184
2185         return rc;
2186 }
2187
2188 static struct ethtool_ops ipg_ethtool_ops = {
2189         .get_settings = ipg_get_settings,
2190         .set_settings = ipg_set_settings,
2191         .nway_reset   = ipg_nway_reset,
2192 };
2193
2194 static void __devexit ipg_remove(struct pci_dev *pdev)
2195 {
2196         struct net_device *dev = pci_get_drvdata(pdev);
2197         struct ipg_nic_private *sp = netdev_priv(dev);
2198
2199         IPG_DEBUG_MSG("_remove\n");
2200
2201         /* Un-register Ethernet device. */
2202         unregister_netdev(dev);
2203
2204         pci_iounmap(pdev, sp->ioaddr);
2205
2206         pci_release_regions(pdev);
2207
2208         free_netdev(dev);
2209         pci_disable_device(pdev);
2210         pci_set_drvdata(pdev, NULL);
2211 }
2212
2213 static const struct net_device_ops ipg_netdev_ops = {
2214         .ndo_open               = ipg_nic_open,
2215         .ndo_stop               = ipg_nic_stop,
2216         .ndo_start_xmit         = ipg_nic_hard_start_xmit,
2217         .ndo_get_stats          = ipg_nic_get_stats,
2218         .ndo_set_multicast_list = ipg_nic_set_multicast_list,
2219         .ndo_do_ioctl           = ipg_ioctl,
2220         .ndo_tx_timeout         = ipg_tx_timeout,
2221         .ndo_change_mtu         = ipg_nic_change_mtu,
2222         .ndo_set_mac_address    = eth_mac_addr,
2223         .ndo_validate_addr      = eth_validate_addr,
2224 };
2225
2226 static int __devinit ipg_probe(struct pci_dev *pdev,
2227                                const struct pci_device_id *id)
2228 {
2229         unsigned int i = id->driver_data;
2230         struct ipg_nic_private *sp;
2231         struct net_device *dev;
2232         void __iomem *ioaddr;
2233         int rc;
2234
2235         rc = pci_enable_device(pdev);
2236         if (rc < 0)
2237                 goto out;
2238
2239         printk(KERN_INFO "%s: %s\n", pci_name(pdev), ipg_brand_name[i]);
2240
2241         pci_set_master(pdev);
2242
2243         rc = pci_set_dma_mask(pdev, DMA_40BIT_MASK);
2244         if (rc < 0) {
2245                 rc = pci_set_dma_mask(pdev, DMA_32BIT_MASK);
2246                 if (rc < 0) {
2247                         printk(KERN_ERR "%s: DMA config failed.\n",
2248                                pci_name(pdev));
2249                         goto err_disable_0;
2250                 }
2251         }
2252
2253         /*
2254          * Initialize net device.
2255          */
2256         dev = alloc_etherdev(sizeof(struct ipg_nic_private));
2257         if (!dev) {
2258                 printk(KERN_ERR "%s: alloc_etherdev failed\n", pci_name(pdev));
2259                 rc = -ENOMEM;
2260                 goto err_disable_0;
2261         }
2262
2263         sp = netdev_priv(dev);
2264         spin_lock_init(&sp->lock);
2265         mutex_init(&sp->mii_mutex);
2266
2267         sp->is_jumbo = IPG_IS_JUMBO;
2268         sp->rxfrag_size = IPG_RXFRAG_SIZE;
2269         sp->rxsupport_size = IPG_RXSUPPORT_SIZE;
2270         sp->max_rxframe_size = IPG_MAX_RXFRAME_SIZE;
2271
2272         /* Declare IPG NIC functions for Ethernet device methods.
2273          */
2274         dev->netdev_ops = &ipg_netdev_ops;
2275         SET_NETDEV_DEV(dev, &pdev->dev);
2276         SET_ETHTOOL_OPS(dev, &ipg_ethtool_ops);
2277
2278         rc = pci_request_regions(pdev, DRV_NAME);
2279         if (rc)
2280                 goto err_free_dev_1;
2281
2282         ioaddr = pci_iomap(pdev, 1, pci_resource_len(pdev, 1));
2283         if (!ioaddr) {
2284                 printk(KERN_ERR "%s cannot map MMIO\n", pci_name(pdev));
2285                 rc = -EIO;
2286                 goto err_release_regions_2;
2287         }
2288
2289         /* Save the pointer to the PCI device information. */
2290         sp->ioaddr = ioaddr;
2291         sp->pdev = pdev;
2292         sp->dev = dev;
2293
2294         INIT_DELAYED_WORK(&sp->task, ipg_reset_after_host_error);
2295
2296         pci_set_drvdata(pdev, dev);
2297
2298         rc = ipg_hw_init(dev);
2299         if (rc < 0)
2300                 goto err_unmap_3;
2301
2302         rc = register_netdev(dev);
2303         if (rc < 0)
2304                 goto err_unmap_3;
2305
2306         printk(KERN_INFO "Ethernet device registered as: %s\n", dev->name);
2307 out:
2308         return rc;
2309
2310 err_unmap_3:
2311         pci_iounmap(pdev, ioaddr);
2312 err_release_regions_2:
2313         pci_release_regions(pdev);
2314 err_free_dev_1:
2315         free_netdev(dev);
2316 err_disable_0:
2317         pci_disable_device(pdev);
2318         goto out;
2319 }
2320
2321 static struct pci_driver ipg_pci_driver = {
2322         .name           = IPG_DRIVER_NAME,
2323         .id_table       = ipg_pci_tbl,
2324         .probe          = ipg_probe,
2325         .remove         = __devexit_p(ipg_remove),
2326 };
2327
2328 static int __init ipg_init_module(void)
2329 {
2330         return pci_register_driver(&ipg_pci_driver);
2331 }
2332
2333 static void __exit ipg_exit_module(void)
2334 {
2335         pci_unregister_driver(&ipg_pci_driver);
2336 }
2337
2338 module_init(ipg_init_module);
2339 module_exit(ipg_exit_module);