Merge branch 'mymerge' of ssh://ozlabs.org/home/sfr/kernel-sfr
[linux-2.6] / drivers / s390 / crypto / z90main.c
1 /*
2  *  linux/drivers/s390/crypto/z90main.c
3  *
4  *  z90crypt 1.3.2
5  *
6  *  Copyright (C)  2001, 2004 IBM Corporation
7  *  Author(s): Robert Burroughs (burrough@us.ibm.com)
8  *             Eric Rossman (edrossma@us.ibm.com)
9  *
10  *  Hotplug & misc device support: Jochen Roehrig (roehrig@de.ibm.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
25  */
26
27 #include <asm/uaccess.h>       // copy_(from|to)_user
28 #include <linux/compat.h>
29 #include <linux/compiler.h>
30 #include <linux/delay.h>       // mdelay
31 #include <linux/init.h>
32 #include <linux/interrupt.h>   // for tasklets
33 #include <linux/ioctl32.h>
34 #include <linux/miscdevice.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/kobject_uevent.h>
38 #include <linux/proc_fs.h>
39 #include <linux/syscalls.h>
40 #include "z90crypt.h"
41 #include "z90common.h"
42
43 #define VERSION_Z90MAIN_C "$Revision: 1.62 $"
44
45 static char z90main_version[] __initdata =
46         "z90main.o (" VERSION_Z90MAIN_C "/"
47                       VERSION_Z90COMMON_H "/" VERSION_Z90CRYPT_H ")";
48
49 extern char z90hardware_version[];
50
51 /**
52  * Defaults that may be modified.
53  */
54
55 /**
56  * You can specify a different minor at compile time.
57  */
58 #ifndef Z90CRYPT_MINOR
59 #define Z90CRYPT_MINOR  MISC_DYNAMIC_MINOR
60 #endif
61
62 /**
63  * You can specify a different domain at compile time or on the insmod
64  * command line.
65  */
66 #ifndef DOMAIN_INDEX
67 #define DOMAIN_INDEX    -1
68 #endif
69
70 /**
71  * This is the name under which the device is registered in /proc/modules.
72  */
73 #define REG_NAME        "z90crypt"
74
75 /**
76  * Cleanup should run every CLEANUPTIME seconds and should clean up requests
77  * older than CLEANUPTIME seconds in the past.
78  */
79 #ifndef CLEANUPTIME
80 #define CLEANUPTIME 15
81 #endif
82
83 /**
84  * Config should run every CONFIGTIME seconds
85  */
86 #ifndef CONFIGTIME
87 #define CONFIGTIME 30
88 #endif
89
90 /**
91  * The first execution of the config task should take place
92  * immediately after initialization
93  */
94 #ifndef INITIAL_CONFIGTIME
95 #define INITIAL_CONFIGTIME 1
96 #endif
97
98 /**
99  * Reader should run every READERTIME milliseconds
100  * With the 100Hz patch for s390, z90crypt can lock the system solid while
101  * under heavy load. We'll try to avoid that.
102  */
103 #ifndef READERTIME
104 #if HZ > 1000
105 #define READERTIME 2
106 #else
107 #define READERTIME 10
108 #endif
109 #endif
110
111 /**
112  * turn long device array index into device pointer
113  */
114 #define LONG2DEVPTR(ndx) (z90crypt.device_p[(ndx)])
115
116 /**
117  * turn short device array index into long device array index
118  */
119 #define SHRT2LONG(ndx) (z90crypt.overall_device_x.device_index[(ndx)])
120
121 /**
122  * turn short device array index into device pointer
123  */
124 #define SHRT2DEVPTR(ndx) LONG2DEVPTR(SHRT2LONG(ndx))
125
126 /**
127  * Status for a work-element
128  */
129 #define STAT_DEFAULT    0x00 // request has not been processed
130
131 #define STAT_ROUTED     0x80 // bit 7: requests get routed to specific device
132                              //        else, device is determined each write
133 #define STAT_FAILED     0x40 // bit 6: this bit is set if the request failed
134                              //        before being sent to the hardware.
135 #define STAT_WRITTEN    0x30 // bits 5-4: work to be done, not sent to device
136 //                      0x20 // UNUSED state
137 #define STAT_READPEND   0x10 // bits 5-4: work done, we're returning data now
138 #define STAT_NOWORK     0x00 // bits off: no work on any queue
139 #define STAT_RDWRMASK   0x30 // mask for bits 5-4
140
141 /**
142  * Macros to check the status RDWRMASK
143  */
144 #define CHK_RDWRMASK(statbyte) ((statbyte) & STAT_RDWRMASK)
145 #define SET_RDWRMASK(statbyte, newval) \
146         {(statbyte) &= ~STAT_RDWRMASK; (statbyte) |= newval;}
147
148 /**
149  * Audit Trail.  Progress of a Work element
150  * audit[0]: Unless noted otherwise, these bits are all set by the process
151  */
152 #define FP_COPYFROM     0x80 // Caller's buffer has been copied to work element
153 #define FP_BUFFREQ      0x40 // Low Level buffer requested
154 #define FP_BUFFGOT      0x20 // Low Level buffer obtained
155 #define FP_SENT         0x10 // Work element sent to a crypto device
156                              // (may be set by process or by reader task)
157 #define FP_PENDING      0x08 // Work element placed on pending queue
158                              // (may be set by process or by reader task)
159 #define FP_REQUEST      0x04 // Work element placed on request queue
160 #define FP_ASLEEP       0x02 // Work element about to sleep
161 #define FP_AWAKE        0x01 // Work element has been awakened
162
163 /**
164  * audit[1]: These bits are set by the reader task and/or the cleanup task
165  */
166 #define FP_NOTPENDING     0x80 // Work element removed from pending queue
167 #define FP_AWAKENING      0x40 // Caller about to be awakened
168 #define FP_TIMEDOUT       0x20 // Caller timed out
169 #define FP_RESPSIZESET    0x10 // Response size copied to work element
170 #define FP_RESPADDRCOPIED 0x08 // Response address copied to work element
171 #define FP_RESPBUFFCOPIED 0x04 // Response buffer copied to work element
172 #define FP_REMREQUEST     0x02 // Work element removed from request queue
173 #define FP_SIGNALED       0x01 // Work element was awakened by a signal
174
175 /**
176  * audit[2]: unused
177  */
178
179 /**
180  * state of the file handle in private_data.status
181  */
182 #define STAT_OPEN 0
183 #define STAT_CLOSED 1
184
185 /**
186  * PID() expands to the process ID of the current process
187  */
188 #define PID() (current->pid)
189
190 /**
191  * Selected Constants.  The number of APs and the number of devices
192  */
193 #ifndef Z90CRYPT_NUM_APS
194 #define Z90CRYPT_NUM_APS 64
195 #endif
196 #ifndef Z90CRYPT_NUM_DEVS
197 #define Z90CRYPT_NUM_DEVS Z90CRYPT_NUM_APS
198 #endif
199
200 /**
201  * Buffer size for receiving responses. The maximum Response Size
202  * is actually the maximum request size, since in an error condition
203  * the request itself may be returned unchanged.
204  */
205 #define MAX_RESPONSE_SIZE 0x0000077C
206
207 /**
208  * A count and status-byte mask
209  */
210 struct status {
211         int           st_count;             // # of enabled devices
212         int           disabled_count;       // # of disabled devices
213         int           user_disabled_count;  // # of devices disabled via proc fs
214         unsigned char st_mask[Z90CRYPT_NUM_APS]; // current status mask
215 };
216
217 /**
218  * The array of device indexes is a mechanism for fast indexing into
219  * a long (and sparse) array.  For instance, if APs 3, 9 and 47 are
220  * installed, z90CDeviceIndex[0] is 3, z90CDeviceIndex[1] is 9, and
221  * z90CDeviceIndex[2] is 47.
222  */
223 struct device_x {
224         int device_index[Z90CRYPT_NUM_DEVS];
225 };
226
227 /**
228  * All devices are arranged in a single array: 64 APs
229  */
230 struct device {
231         int              dev_type;          // PCICA, PCICC, PCIXCC_MCL2,
232                                             // PCIXCC_MCL3, CEX2C
233         enum devstat     dev_stat;          // current device status
234         int              dev_self_x;        // Index in array
235         int              disabled;          // Set when device is in error
236         int              user_disabled;     // Set when device is disabled by user
237         int              dev_q_depth;       // q depth
238         unsigned char *  dev_resp_p;        // Response buffer address
239         int              dev_resp_l;        // Response Buffer length
240         int              dev_caller_count;  // Number of callers
241         int              dev_total_req_cnt; // # requests for device since load
242         struct list_head dev_caller_list;   // List of callers
243 };
244
245 /**
246  * There's a struct status and a struct device_x for each device type.
247  */
248 struct hdware_block {
249         struct status   hdware_mask;
250         struct status   type_mask[Z90CRYPT_NUM_TYPES];
251         struct device_x type_x_addr[Z90CRYPT_NUM_TYPES];
252         unsigned char   device_type_array[Z90CRYPT_NUM_APS];
253 };
254
255 /**
256  * z90crypt is the topmost data structure in the hierarchy.
257  */
258 struct z90crypt {
259         int                  max_count;         // Nr of possible crypto devices
260         struct status        mask;
261         int                  q_depth_array[Z90CRYPT_NUM_DEVS];
262         int                  dev_type_array[Z90CRYPT_NUM_DEVS];
263         struct device_x      overall_device_x;  // array device indexes
264         struct device *      device_p[Z90CRYPT_NUM_DEVS];
265         int                  terminating;
266         int                  domain_established;// TRUE:  domain has been found
267         int                  cdx;               // Crypto Domain Index
268         int                  len;               // Length of this data structure
269         struct hdware_block *hdware_info;
270 };
271
272 /**
273  * An array of these structures is pointed to from dev_caller
274  * The length of the array depends on the device type. For APs,
275  * there are 8.
276  *
277  * The caller buffer is allocated to the user at OPEN. At WRITE,
278  * it contains the request; at READ, the response. The function
279  * send_to_crypto_device converts the request to device-dependent
280  * form and use the caller's OPEN-allocated buffer for the response.
281  *
282  * For the contents of caller_dev_dep_req and caller_dev_dep_req_p
283  * because that points to it, see the discussion in z90hardware.c.
284  * Search for "extended request message block".
285  */
286 struct caller {
287         int              caller_buf_l;           // length of original request
288         unsigned char *  caller_buf_p;           // Original request on WRITE
289         int              caller_dev_dep_req_l;   // len device dependent request
290         unsigned char *  caller_dev_dep_req_p;   // Device dependent form
291         unsigned char    caller_id[8];           // caller-supplied message id
292         struct list_head caller_liste;
293         unsigned char    caller_dev_dep_req[MAX_RESPONSE_SIZE];
294 };
295
296 /**
297  * Function prototypes from z90hardware.c
298  */
299 enum hdstat query_online(int, int, int, int *, int *);
300 enum devstat reset_device(int, int, int);
301 enum devstat send_to_AP(int, int, int, unsigned char *);
302 enum devstat receive_from_AP(int, int, int, unsigned char *, unsigned char *);
303 int convert_request(unsigned char *, int, short, int, int, int *,
304                     unsigned char *);
305 int convert_response(unsigned char *, unsigned char *, int *, unsigned char *);
306
307 /**
308  * Low level function prototypes
309  */
310 static int create_z90crypt(int *);
311 static int refresh_z90crypt(int *);
312 static int find_crypto_devices(struct status *);
313 static int create_crypto_device(int);
314 static int destroy_crypto_device(int);
315 static void destroy_z90crypt(void);
316 static int refresh_index_array(struct status *, struct device_x *);
317 static int probe_device_type(struct device *);
318 static int probe_PCIXCC_type(struct device *);
319
320 /**
321  * proc fs definitions
322  */
323 static struct proc_dir_entry *z90crypt_entry;
324
325 /**
326  * data structures
327  */
328
329 /**
330  * work_element.opener points back to this structure
331  */
332 struct priv_data {
333         pid_t   opener_pid;
334         unsigned char   status;         // 0: open  1: closed
335 };
336
337 /**
338  * A work element is allocated for each request
339  */
340 struct work_element {
341         struct priv_data *priv_data;
342         pid_t             pid;
343         int               devindex;       // index of device processing this w_e
344                                           // (If request did not specify device,
345                                           // -1 until placed onto a queue)
346         int               devtype;
347         struct list_head  liste;          // used for requestq and pendingq
348         char              buffer[128];    // local copy of user request
349         int               buff_size;      // size of the buffer for the request
350         char              resp_buff[RESPBUFFSIZE];
351         int               resp_buff_size;
352         char __user *     resp_addr;      // address of response in user space
353         unsigned int      funccode;       // function code of request
354         wait_queue_head_t waitq;
355         unsigned long     requestsent;    // time at which the request was sent
356         atomic_t          alarmrung;      // wake-up signal
357         unsigned char     caller_id[8];   // pid + counter, for this w_e
358         unsigned char     status[1];      // bits to mark status of the request
359         unsigned char     audit[3];       // record of work element's progress
360         unsigned char *   requestptr;     // address of request buffer
361         int               retcode;        // return code of request
362 };
363
364 /**
365  * High level function prototypes
366  */
367 static int z90crypt_open(struct inode *, struct file *);
368 static int z90crypt_release(struct inode *, struct file *);
369 static ssize_t z90crypt_read(struct file *, char __user *, size_t, loff_t *);
370 static ssize_t z90crypt_write(struct file *, const char __user *,
371                                                         size_t, loff_t *);
372 static long z90crypt_unlocked_ioctl(struct file *, unsigned int, unsigned long);
373 static long z90crypt_compat_ioctl(struct file *, unsigned int, unsigned long);
374
375 static void z90crypt_reader_task(unsigned long);
376 static void z90crypt_schedule_reader_task(unsigned long);
377 static void z90crypt_config_task(unsigned long);
378 static void z90crypt_cleanup_task(unsigned long);
379
380 static int z90crypt_status(char *, char **, off_t, int, int *, void *);
381 static int z90crypt_status_write(struct file *, const char __user *,
382                                  unsigned long, void *);
383
384 /**
385  * Storage allocated at initialization and used throughout the life of
386  * this insmod
387  */
388 static int domain = DOMAIN_INDEX;
389 static struct z90crypt z90crypt;
390 static int quiesce_z90crypt;
391 static spinlock_t queuespinlock;
392 static struct list_head request_list;
393 static int requestq_count;
394 static struct list_head pending_list;
395 static int pendingq_count;
396
397 static struct tasklet_struct reader_tasklet;
398 static struct timer_list reader_timer;
399 static struct timer_list config_timer;
400 static struct timer_list cleanup_timer;
401 static atomic_t total_open;
402 static atomic_t z90crypt_step;
403
404 static struct file_operations z90crypt_fops = {
405         .owner          = THIS_MODULE,
406         .read           = z90crypt_read,
407         .write          = z90crypt_write,
408         .unlocked_ioctl = z90crypt_unlocked_ioctl,
409 #ifdef CONFIG_COMPAT
410         .compat_ioctl   = z90crypt_compat_ioctl,
411 #endif
412         .open           = z90crypt_open,
413         .release        = z90crypt_release
414 };
415
416 static struct miscdevice z90crypt_misc_device = {
417         .minor      = Z90CRYPT_MINOR,
418         .name       = DEV_NAME,
419         .fops       = &z90crypt_fops,
420         .devfs_name = DEV_NAME
421 };
422
423 /**
424  * Documentation values.
425  */
426 MODULE_AUTHOR("zSeries Linux Crypto Team: Robert H. Burroughs, Eric D. Rossman"
427               "and Jochen Roehrig");
428 MODULE_DESCRIPTION("zSeries Linux Cryptographic Coprocessor device driver, "
429                    "Copyright 2001, 2004 IBM Corporation");
430 MODULE_LICENSE("GPL");
431 module_param(domain, int, 0);
432 MODULE_PARM_DESC(domain, "domain index for device");
433
434 #ifdef CONFIG_COMPAT
435 /**
436  * ioctl32 conversion routines
437  */
438 struct ica_rsa_modexpo_32 { // For 32-bit callers
439         compat_uptr_t   inputdata;
440         unsigned int    inputdatalength;
441         compat_uptr_t   outputdata;
442         unsigned int    outputdatalength;
443         compat_uptr_t   b_key;
444         compat_uptr_t   n_modulus;
445 };
446
447 static long
448 trans_modexpo32(struct file *filp, unsigned int cmd, unsigned long arg)
449 {
450         struct ica_rsa_modexpo_32 __user *mex32u = compat_ptr(arg);
451         struct ica_rsa_modexpo_32  mex32k;
452         struct ica_rsa_modexpo __user *mex64;
453         long ret = 0;
454         unsigned int i;
455
456         if (!access_ok(VERIFY_WRITE, mex32u, sizeof(struct ica_rsa_modexpo_32)))
457                 return -EFAULT;
458         mex64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo));
459         if (!access_ok(VERIFY_WRITE, mex64, sizeof(struct ica_rsa_modexpo)))
460                 return -EFAULT;
461         if (copy_from_user(&mex32k, mex32u, sizeof(struct ica_rsa_modexpo_32)))
462                 return -EFAULT;
463         if (__put_user(compat_ptr(mex32k.inputdata), &mex64->inputdata)   ||
464             __put_user(mex32k.inputdatalength, &mex64->inputdatalength)   ||
465             __put_user(compat_ptr(mex32k.outputdata), &mex64->outputdata) ||
466             __put_user(mex32k.outputdatalength, &mex64->outputdatalength) ||
467             __put_user(compat_ptr(mex32k.b_key), &mex64->b_key)           ||
468             __put_user(compat_ptr(mex32k.n_modulus), &mex64->n_modulus))
469                 return -EFAULT;
470         ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)mex64);
471         if (!ret)
472                 if (__get_user(i, &mex64->outputdatalength) ||
473                     __put_user(i, &mex32u->outputdatalength))
474                         ret = -EFAULT;
475         return ret;
476 }
477
478 struct ica_rsa_modexpo_crt_32 { // For 32-bit callers
479         compat_uptr_t   inputdata;
480         unsigned int    inputdatalength;
481         compat_uptr_t   outputdata;
482         unsigned int    outputdatalength;
483         compat_uptr_t   bp_key;
484         compat_uptr_t   bq_key;
485         compat_uptr_t   np_prime;
486         compat_uptr_t   nq_prime;
487         compat_uptr_t   u_mult_inv;
488 };
489
490 static long
491 trans_modexpo_crt32(struct file *filp, unsigned int cmd, unsigned long arg)
492 {
493         struct ica_rsa_modexpo_crt_32 __user *crt32u = compat_ptr(arg);
494         struct ica_rsa_modexpo_crt_32  crt32k;
495         struct ica_rsa_modexpo_crt __user *crt64;
496         long ret = 0;
497         unsigned int i;
498
499         if (!access_ok(VERIFY_WRITE, crt32u,
500                        sizeof(struct ica_rsa_modexpo_crt_32)))
501                 return -EFAULT;
502         crt64 = compat_alloc_user_space(sizeof(struct ica_rsa_modexpo_crt));
503         if (!access_ok(VERIFY_WRITE, crt64, sizeof(struct ica_rsa_modexpo_crt)))
504                 return -EFAULT;
505         if (copy_from_user(&crt32k, crt32u,
506                            sizeof(struct ica_rsa_modexpo_crt_32)))
507                 return -EFAULT;
508         if (__put_user(compat_ptr(crt32k.inputdata), &crt64->inputdata)   ||
509             __put_user(crt32k.inputdatalength, &crt64->inputdatalength)   ||
510             __put_user(compat_ptr(crt32k.outputdata), &crt64->outputdata) ||
511             __put_user(crt32k.outputdatalength, &crt64->outputdatalength) ||
512             __put_user(compat_ptr(crt32k.bp_key), &crt64->bp_key)         ||
513             __put_user(compat_ptr(crt32k.bq_key), &crt64->bq_key)         ||
514             __put_user(compat_ptr(crt32k.np_prime), &crt64->np_prime)     ||
515             __put_user(compat_ptr(crt32k.nq_prime), &crt64->nq_prime)     ||
516             __put_user(compat_ptr(crt32k.u_mult_inv), &crt64->u_mult_inv))
517                 return -EFAULT;
518         ret = z90crypt_unlocked_ioctl(filp, cmd, (unsigned long)crt64);
519         if (!ret)
520                 if (__get_user(i, &crt64->outputdatalength) ||
521                     __put_user(i, &crt32u->outputdatalength))
522                         ret = -EFAULT;
523         return ret;
524 }
525
526 static long
527 z90crypt_compat_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
528 {
529         switch (cmd) {
530         case ICAZ90STATUS:
531         case Z90QUIESCE:
532         case Z90STAT_TOTALCOUNT:
533         case Z90STAT_PCICACOUNT:
534         case Z90STAT_PCICCCOUNT:
535         case Z90STAT_PCIXCCCOUNT:
536         case Z90STAT_PCIXCCMCL2COUNT:
537         case Z90STAT_PCIXCCMCL3COUNT:
538         case Z90STAT_CEX2CCOUNT:
539         case Z90STAT_REQUESTQ_COUNT:
540         case Z90STAT_PENDINGQ_COUNT:
541         case Z90STAT_TOTALOPEN_COUNT:
542         case Z90STAT_DOMAIN_INDEX:
543         case Z90STAT_STATUS_MASK:
544         case Z90STAT_QDEPTH_MASK:
545         case Z90STAT_PERDEV_REQCNT:
546                 return z90crypt_unlocked_ioctl(filp, cmd, arg);
547         case ICARSAMODEXPO:
548                 return trans_modexpo32(filp, cmd, arg);
549         case ICARSACRT:
550                 return trans_modexpo_crt32(filp, cmd, arg);
551         default:
552                 return -ENOIOCTLCMD;
553         }
554 }
555 #endif
556
557 /**
558  * The module initialization code.
559  */
560 static int __init
561 z90crypt_init_module(void)
562 {
563         int result, nresult;
564         struct proc_dir_entry *entry;
565
566         PDEBUG("PID %d\n", PID());
567
568         if ((domain < -1) || (domain > 15)) {
569                 PRINTKW("Invalid param: domain = %d.  Not loading.\n", domain);
570                 return -EINVAL;
571         }
572
573         /* Register as misc device with given minor (or get a dynamic one). */
574         result = misc_register(&z90crypt_misc_device);
575         if (result < 0) {
576                 PRINTKW(KERN_ERR "misc_register (minor %d) failed with %d\n",
577                         z90crypt_misc_device.minor, result);
578                 return result;
579         }
580
581         PDEBUG("Registered " DEV_NAME " with result %d\n", result);
582
583         result = create_z90crypt(&domain);
584         if (result != 0) {
585                 PRINTKW("create_z90crypt (domain index %d) failed with %d.\n",
586                         domain, result);
587                 result = -ENOMEM;
588                 goto init_module_cleanup;
589         }
590
591         if (result == 0) {
592                 PRINTKN("Version %d.%d.%d loaded, built on %s %s\n",
593                         z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT,
594                         __DATE__, __TIME__);
595                 PRINTKN("%s\n", z90main_version);
596                 PRINTKN("%s\n", z90hardware_version);
597                 PDEBUG("create_z90crypt (domain index %d) successful.\n",
598                        domain);
599         } else
600                 PRINTK("No devices at startup\n");
601
602         /* Initialize globals. */
603         spin_lock_init(&queuespinlock);
604
605         INIT_LIST_HEAD(&pending_list);
606         pendingq_count = 0;
607
608         INIT_LIST_HEAD(&request_list);
609         requestq_count = 0;
610
611         quiesce_z90crypt = 0;
612
613         atomic_set(&total_open, 0);
614         atomic_set(&z90crypt_step, 0);
615
616         /* Set up the cleanup task. */
617         init_timer(&cleanup_timer);
618         cleanup_timer.function = z90crypt_cleanup_task;
619         cleanup_timer.data = 0;
620         cleanup_timer.expires = jiffies + (CLEANUPTIME * HZ);
621         add_timer(&cleanup_timer);
622
623         /* Set up the proc file system */
624         entry = create_proc_entry("driver/z90crypt", 0644, 0);
625         if (entry) {
626                 entry->nlink = 1;
627                 entry->data = 0;
628                 entry->read_proc = z90crypt_status;
629                 entry->write_proc = z90crypt_status_write;
630         }
631         else
632                 PRINTK("Couldn't create z90crypt proc entry\n");
633         z90crypt_entry = entry;
634
635         /* Set up the configuration task. */
636         init_timer(&config_timer);
637         config_timer.function = z90crypt_config_task;
638         config_timer.data = 0;
639         config_timer.expires = jiffies + (INITIAL_CONFIGTIME * HZ);
640         add_timer(&config_timer);
641
642         /* Set up the reader task */
643         tasklet_init(&reader_tasklet, z90crypt_reader_task, 0);
644         init_timer(&reader_timer);
645         reader_timer.function = z90crypt_schedule_reader_task;
646         reader_timer.data = 0;
647         reader_timer.expires = jiffies + (READERTIME * HZ / 1000);
648         add_timer(&reader_timer);
649
650         return 0; // success
651
652 init_module_cleanup:
653         if ((nresult = misc_deregister(&z90crypt_misc_device)))
654                 PRINTK("misc_deregister failed with %d.\n", nresult);
655         else
656                 PDEBUG("misc_deregister successful.\n");
657
658         return result; // failure
659 }
660
661 /**
662  * The module termination code
663  */
664 static void __exit
665 z90crypt_cleanup_module(void)
666 {
667         int nresult;
668
669         PDEBUG("PID %d\n", PID());
670
671         remove_proc_entry("driver/z90crypt", 0);
672
673         if ((nresult = misc_deregister(&z90crypt_misc_device)))
674                 PRINTK("misc_deregister failed with %d.\n", nresult);
675         else
676                 PDEBUG("misc_deregister successful.\n");
677
678         /* Remove the tasks */
679         tasklet_kill(&reader_tasklet);
680         del_timer(&reader_timer);
681         del_timer(&config_timer);
682         del_timer(&cleanup_timer);
683
684         destroy_z90crypt();
685
686         PRINTKN("Unloaded.\n");
687 }
688
689 /**
690  * Functions running under a process id
691  *
692  * The I/O functions:
693  *     z90crypt_open
694  *     z90crypt_release
695  *     z90crypt_read
696  *     z90crypt_write
697  *     z90crypt_unlocked_ioctl
698  *     z90crypt_status
699  *     z90crypt_status_write
700  *       disable_card
701  *       enable_card
702  *
703  * Helper functions:
704  *     z90crypt_rsa
705  *       z90crypt_prepare
706  *       z90crypt_send
707  *       z90crypt_process_results
708  *
709  */
710 static int
711 z90crypt_open(struct inode *inode, struct file *filp)
712 {
713         struct priv_data *private_data_p;
714
715         if (quiesce_z90crypt)
716                 return -EQUIESCE;
717
718         private_data_p = kmalloc(sizeof(struct priv_data), GFP_KERNEL);
719         if (!private_data_p) {
720                 PRINTK("Memory allocate failed\n");
721                 return -ENOMEM;
722         }
723
724         memset((void *)private_data_p, 0, sizeof(struct priv_data));
725         private_data_p->status = STAT_OPEN;
726         private_data_p->opener_pid = PID();
727         filp->private_data = private_data_p;
728         atomic_inc(&total_open);
729
730         return 0;
731 }
732
733 static int
734 z90crypt_release(struct inode *inode, struct file *filp)
735 {
736         struct priv_data *private_data_p = filp->private_data;
737
738         PDEBUG("PID %d (filp %p)\n", PID(), filp);
739
740         private_data_p->status = STAT_CLOSED;
741         memset(private_data_p, 0, sizeof(struct priv_data));
742         kfree(private_data_p);
743         atomic_dec(&total_open);
744
745         return 0;
746 }
747
748 /*
749  * there are two read functions, of which compile options will choose one
750  * without USE_GET_RANDOM_BYTES
751  *   => read() always returns -EPERM;
752  * otherwise
753  *   => read() uses get_random_bytes() kernel function
754  */
755 #ifndef USE_GET_RANDOM_BYTES
756 /**
757  * z90crypt_read will not be supported beyond z90crypt 1.3.1
758  */
759 static ssize_t
760 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
761 {
762         PDEBUG("filp %p (PID %d)\n", filp, PID());
763         return -EPERM;
764 }
765 #else // we want to use get_random_bytes
766 /**
767  * read() just returns a string of random bytes.  Since we have no way
768  * to generate these cryptographically, we just execute get_random_bytes
769  * for the length specified.
770  */
771 #include <linux/random.h>
772 static ssize_t
773 z90crypt_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos)
774 {
775         unsigned char *temp_buff;
776
777         PDEBUG("filp %p (PID %d)\n", filp, PID());
778
779         if (quiesce_z90crypt)
780                 return -EQUIESCE;
781         if (count < 0) {
782                 PRINTK("Requested random byte count negative: %ld\n", count);
783                 return -EINVAL;
784         }
785         if (count > RESPBUFFSIZE) {
786                 PDEBUG("count[%d] > RESPBUFFSIZE", count);
787                 return -EINVAL;
788         }
789         if (count == 0)
790                 return 0;
791         temp_buff = kmalloc(RESPBUFFSIZE, GFP_KERNEL);
792         if (!temp_buff) {
793                 PRINTK("Memory allocate failed\n");
794                 return -ENOMEM;
795         }
796         get_random_bytes(temp_buff, count);
797
798         if (copy_to_user(buf, temp_buff, count) != 0) {
799                 kfree(temp_buff);
800                 return -EFAULT;
801         }
802         kfree(temp_buff);
803         return count;
804 }
805 #endif
806
807 /**
808  * Write is is not allowed
809  */
810 static ssize_t
811 z90crypt_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos)
812 {
813         PDEBUG("filp %p (PID %d)\n", filp, PID());
814         return -EPERM;
815 }
816
817 /**
818  * New status functions
819  */
820 static inline int
821 get_status_totalcount(void)
822 {
823         return z90crypt.hdware_info->hdware_mask.st_count;
824 }
825
826 static inline int
827 get_status_PCICAcount(void)
828 {
829         return z90crypt.hdware_info->type_mask[PCICA].st_count;
830 }
831
832 static inline int
833 get_status_PCICCcount(void)
834 {
835         return z90crypt.hdware_info->type_mask[PCICC].st_count;
836 }
837
838 static inline int
839 get_status_PCIXCCcount(void)
840 {
841         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count +
842                z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
843 }
844
845 static inline int
846 get_status_PCIXCCMCL2count(void)
847 {
848         return z90crypt.hdware_info->type_mask[PCIXCC_MCL2].st_count;
849 }
850
851 static inline int
852 get_status_PCIXCCMCL3count(void)
853 {
854         return z90crypt.hdware_info->type_mask[PCIXCC_MCL3].st_count;
855 }
856
857 static inline int
858 get_status_CEX2Ccount(void)
859 {
860         return z90crypt.hdware_info->type_mask[CEX2C].st_count;
861 }
862
863 static inline int
864 get_status_requestq_count(void)
865 {
866         return requestq_count;
867 }
868
869 static inline int
870 get_status_pendingq_count(void)
871 {
872         return pendingq_count;
873 }
874
875 static inline int
876 get_status_totalopen_count(void)
877 {
878         return atomic_read(&total_open);
879 }
880
881 static inline int
882 get_status_domain_index(void)
883 {
884         return z90crypt.cdx;
885 }
886
887 static inline unsigned char *
888 get_status_status_mask(unsigned char status[Z90CRYPT_NUM_APS])
889 {
890         int i, ix;
891
892         memcpy(status, z90crypt.hdware_info->device_type_array,
893                Z90CRYPT_NUM_APS);
894
895         for (i = 0; i < get_status_totalcount(); i++) {
896                 ix = SHRT2LONG(i);
897                 if (LONG2DEVPTR(ix)->user_disabled)
898                         status[ix] = 0x0d;
899         }
900
901         return status;
902 }
903
904 static inline unsigned char *
905 get_status_qdepth_mask(unsigned char qdepth[Z90CRYPT_NUM_APS])
906 {
907         int i, ix;
908
909         memset(qdepth, 0, Z90CRYPT_NUM_APS);
910
911         for (i = 0; i < get_status_totalcount(); i++) {
912                 ix = SHRT2LONG(i);
913                 qdepth[ix] = LONG2DEVPTR(ix)->dev_caller_count;
914         }
915
916         return qdepth;
917 }
918
919 static inline unsigned int *
920 get_status_perdevice_reqcnt(unsigned int reqcnt[Z90CRYPT_NUM_APS])
921 {
922         int i, ix;
923
924         memset(reqcnt, 0, Z90CRYPT_NUM_APS * sizeof(int));
925
926         for (i = 0; i < get_status_totalcount(); i++) {
927                 ix = SHRT2LONG(i);
928                 reqcnt[ix] = LONG2DEVPTR(ix)->dev_total_req_cnt;
929         }
930
931         return reqcnt;
932 }
933
934 static inline void
935 init_work_element(struct work_element *we_p,
936                   struct priv_data *priv_data, pid_t pid)
937 {
938         int step;
939
940         we_p->requestptr = (unsigned char *)we_p + sizeof(struct work_element);
941         /* Come up with a unique id for this caller. */
942         step = atomic_inc_return(&z90crypt_step);
943         memcpy(we_p->caller_id+0, (void *) &pid, sizeof(pid));
944         memcpy(we_p->caller_id+4, (void *) &step, sizeof(step));
945         we_p->pid = pid;
946         we_p->priv_data = priv_data;
947         we_p->status[0] = STAT_DEFAULT;
948         we_p->audit[0] = 0x00;
949         we_p->audit[1] = 0x00;
950         we_p->audit[2] = 0x00;
951         we_p->resp_buff_size = 0;
952         we_p->retcode = 0;
953         we_p->devindex = -1;
954         we_p->devtype = -1;
955         atomic_set(&we_p->alarmrung, 0);
956         init_waitqueue_head(&we_p->waitq);
957         INIT_LIST_HEAD(&(we_p->liste));
958 }
959
960 static inline int
961 allocate_work_element(struct work_element **we_pp,
962                       struct priv_data *priv_data_p, pid_t pid)
963 {
964         struct work_element *we_p;
965
966         we_p = (struct work_element *) get_zeroed_page(GFP_KERNEL);
967         if (!we_p)
968                 return -ENOMEM;
969         init_work_element(we_p, priv_data_p, pid);
970         *we_pp = we_p;
971         return 0;
972 }
973
974 static inline void
975 remove_device(struct device *device_p)
976 {
977         if (!device_p || (device_p->disabled != 0))
978                 return;
979         device_p->disabled = 1;
980         z90crypt.hdware_info->type_mask[device_p->dev_type].disabled_count++;
981         z90crypt.hdware_info->hdware_mask.disabled_count++;
982 }
983
984 /**
985  * Bitlength limits for each card
986  *
987  * There are new MCLs which allow more bitlengths. See the table for details.
988  * The MCL must be applied and the newer bitlengths enabled for these to work.
989  *
990  * Card Type    Old limit    New limit
991  * PCICA          ??-2048     same (the lower limit is less than 128 bit...)
992  * PCICC         512-1024     512-2048
993  * PCIXCC_MCL2   512-2048     ----- (applying any GA LIC will make an MCL3 card)
994  * PCIXCC_MCL3   -----        128-2048
995  * CEX2C         512-2048     128-2048
996  *
997  * ext_bitlens (extended bitlengths) is a global, since you should not apply an
998  * MCL to just one card in a machine. We assume, at first, that all cards have
999  * these capabilities.
1000  */
1001 int ext_bitlens = 1; // This is global
1002 #define PCIXCC_MIN_MOD_SIZE      16     //  128 bits
1003 #define OLD_PCIXCC_MIN_MOD_SIZE  64     //  512 bits
1004 #define PCICC_MIN_MOD_SIZE       64     //  512 bits
1005 #define OLD_PCICC_MAX_MOD_SIZE  128     // 1024 bits
1006 #define MAX_MOD_SIZE            256     // 2048 bits
1007
1008 static inline int
1009 select_device_type(int *dev_type_p, int bytelength)
1010 {
1011         static int count = 0;
1012         int PCICA_avail, PCIXCC_MCL3_avail, CEX2C_avail, index_to_use;
1013         struct status *stat;
1014         if ((*dev_type_p != PCICC) && (*dev_type_p != PCICA) &&
1015             (*dev_type_p != PCIXCC_MCL2) && (*dev_type_p != PCIXCC_MCL3) &&
1016             (*dev_type_p != CEX2C) && (*dev_type_p != ANYDEV))
1017                 return -1;
1018         if (*dev_type_p != ANYDEV) {
1019                 stat = &z90crypt.hdware_info->type_mask[*dev_type_p];
1020                 if (stat->st_count >
1021                     (stat->disabled_count + stat->user_disabled_count))
1022                         return 0;
1023                 return -1;
1024         }
1025
1026         /* Assumption: PCICA, PCIXCC_MCL3, and CEX2C are all similar in speed */
1027         stat = &z90crypt.hdware_info->type_mask[PCICA];
1028         PCICA_avail = stat->st_count -
1029                         (stat->disabled_count + stat->user_disabled_count);
1030         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL3];
1031         PCIXCC_MCL3_avail = stat->st_count -
1032                         (stat->disabled_count + stat->user_disabled_count);
1033         stat = &z90crypt.hdware_info->type_mask[CEX2C];
1034         CEX2C_avail = stat->st_count -
1035                         (stat->disabled_count + stat->user_disabled_count);
1036         if (PCICA_avail || PCIXCC_MCL3_avail || CEX2C_avail) {
1037                 /**
1038                  * bitlength is a factor, PCICA is the most capable, even with
1039                  * the new MCL for PCIXCC.
1040                  */
1041                 if ((bytelength < PCIXCC_MIN_MOD_SIZE) ||
1042                     (!ext_bitlens && (bytelength < OLD_PCIXCC_MIN_MOD_SIZE))) {
1043                         if (!PCICA_avail)
1044                                 return -1;
1045                         else {
1046                                 *dev_type_p = PCICA;
1047                                 return 0;
1048                         }
1049                 }
1050
1051                 index_to_use = count % (PCICA_avail + PCIXCC_MCL3_avail +
1052                                         CEX2C_avail);
1053                 if (index_to_use < PCICA_avail)
1054                         *dev_type_p = PCICA;
1055                 else if (index_to_use < (PCICA_avail + PCIXCC_MCL3_avail))
1056                         *dev_type_p = PCIXCC_MCL3;
1057                 else
1058                         *dev_type_p = CEX2C;
1059                 count++;
1060                 return 0;
1061         }
1062
1063         /* Less than OLD_PCIXCC_MIN_MOD_SIZE cannot go to a PCIXCC_MCL2 */
1064         if (bytelength < OLD_PCIXCC_MIN_MOD_SIZE)
1065                 return -1;
1066         stat = &z90crypt.hdware_info->type_mask[PCIXCC_MCL2];
1067         if (stat->st_count >
1068             (stat->disabled_count + stat->user_disabled_count)) {
1069                 *dev_type_p = PCIXCC_MCL2;
1070                 return 0;
1071         }
1072
1073         /**
1074          * Less than PCICC_MIN_MOD_SIZE or more than OLD_PCICC_MAX_MOD_SIZE
1075          * (if we don't have the MCL applied and the newer bitlengths enabled)
1076          * cannot go to a PCICC
1077          */
1078         if ((bytelength < PCICC_MIN_MOD_SIZE) ||
1079             (!ext_bitlens && (bytelength > OLD_PCICC_MAX_MOD_SIZE))) {
1080                 return -1;
1081         }
1082         stat = &z90crypt.hdware_info->type_mask[PCICC];
1083         if (stat->st_count >
1084             (stat->disabled_count + stat->user_disabled_count)) {
1085                 *dev_type_p = PCICC;
1086                 return 0;
1087         }
1088
1089         return -1;
1090 }
1091
1092 /**
1093  * Try the selected number, then the selected type (can be ANYDEV)
1094  */
1095 static inline int
1096 select_device(int *dev_type_p, int *device_nr_p, int bytelength)
1097 {
1098         int i, indx, devTp, low_count, low_indx;
1099         struct device_x *index_p;
1100         struct device *dev_ptr;
1101
1102         PDEBUG("device type = %d, index = %d\n", *dev_type_p, *device_nr_p);
1103         if ((*device_nr_p >= 0) && (*device_nr_p < Z90CRYPT_NUM_DEVS)) {
1104                 PDEBUG("trying index = %d\n", *device_nr_p);
1105                 dev_ptr = z90crypt.device_p[*device_nr_p];
1106
1107                 if (dev_ptr &&
1108                     (dev_ptr->dev_stat != DEV_GONE) &&
1109                     (dev_ptr->disabled == 0) &&
1110                     (dev_ptr->user_disabled == 0)) {
1111                         PDEBUG("selected by number, index = %d\n",
1112                                *device_nr_p);
1113                         *dev_type_p = dev_ptr->dev_type;
1114                         return *device_nr_p;
1115                 }
1116         }
1117         *device_nr_p = -1;
1118         PDEBUG("trying type = %d\n", *dev_type_p);
1119         devTp = *dev_type_p;
1120         if (select_device_type(&devTp, bytelength) == -1) {
1121                 PDEBUG("failed to select by type\n");
1122                 return -1;
1123         }
1124         PDEBUG("selected type = %d\n", devTp);
1125         index_p = &z90crypt.hdware_info->type_x_addr[devTp];
1126         low_count = 0x0000FFFF;
1127         low_indx = -1;
1128         for (i = 0; i < z90crypt.hdware_info->type_mask[devTp].st_count; i++) {
1129                 indx = index_p->device_index[i];
1130                 dev_ptr = z90crypt.device_p[indx];
1131                 if (dev_ptr &&
1132                     (dev_ptr->dev_stat != DEV_GONE) &&
1133                     (dev_ptr->disabled == 0) &&
1134                     (dev_ptr->user_disabled == 0) &&
1135                     (devTp == dev_ptr->dev_type) &&
1136                     (low_count > dev_ptr->dev_caller_count)) {
1137                         low_count = dev_ptr->dev_caller_count;
1138                         low_indx = indx;
1139                 }
1140         }
1141         *device_nr_p = low_indx;
1142         return low_indx;
1143 }
1144
1145 static inline int
1146 send_to_crypto_device(struct work_element *we_p)
1147 {
1148         struct caller *caller_p;
1149         struct device *device_p;
1150         int dev_nr;
1151         int bytelen = ((struct ica_rsa_modexpo *)we_p->buffer)->inputdatalength;
1152
1153         if (!we_p->requestptr)
1154                 return SEN_FATAL_ERROR;
1155         caller_p = (struct caller *)we_p->requestptr;
1156         dev_nr = we_p->devindex;
1157         if (select_device(&we_p->devtype, &dev_nr, bytelen) == -1) {
1158                 if (z90crypt.hdware_info->hdware_mask.st_count != 0)
1159                         return SEN_RETRY;
1160                 else
1161                         return SEN_NOT_AVAIL;
1162         }
1163         we_p->devindex = dev_nr;
1164         device_p = z90crypt.device_p[dev_nr];
1165         if (!device_p)
1166                 return SEN_NOT_AVAIL;
1167         if (device_p->dev_type != we_p->devtype)
1168                 return SEN_RETRY;
1169         if (device_p->dev_caller_count >= device_p->dev_q_depth)
1170                 return SEN_QUEUE_FULL;
1171         PDEBUG("device number prior to send: %d\n", dev_nr);
1172         switch (send_to_AP(dev_nr, z90crypt.cdx,
1173                            caller_p->caller_dev_dep_req_l,
1174                            caller_p->caller_dev_dep_req_p)) {
1175         case DEV_SEN_EXCEPTION:
1176                 PRINTKC("Exception during send to device %d\n", dev_nr);
1177                 z90crypt.terminating = 1;
1178                 return SEN_FATAL_ERROR;
1179         case DEV_GONE:
1180                 PRINTK("Device %d not available\n", dev_nr);
1181                 remove_device(device_p);
1182                 return SEN_NOT_AVAIL;
1183         case DEV_EMPTY:
1184                 return SEN_NOT_AVAIL;
1185         case DEV_NO_WORK:
1186                 return SEN_FATAL_ERROR;
1187         case DEV_BAD_MESSAGE:
1188                 return SEN_USER_ERROR;
1189         case DEV_QUEUE_FULL:
1190                 return SEN_QUEUE_FULL;
1191         default:
1192         case DEV_ONLINE:
1193                 break;
1194         }
1195         list_add_tail(&(caller_p->caller_liste), &(device_p->dev_caller_list));
1196         device_p->dev_caller_count++;
1197         return 0;
1198 }
1199
1200 /**
1201  * Send puts the user's work on one of two queues:
1202  *   the pending queue if the send was successful
1203  *   the request queue if the send failed because device full or busy
1204  */
1205 static inline int
1206 z90crypt_send(struct work_element *we_p, const char *buf)
1207 {
1208         int rv;
1209
1210         PDEBUG("PID %d\n", PID());
1211
1212         if (CHK_RDWRMASK(we_p->status[0]) != STAT_NOWORK) {
1213                 PDEBUG("PID %d tried to send more work but has outstanding "
1214                        "work.\n", PID());
1215                 return -EWORKPEND;
1216         }
1217         we_p->devindex = -1; // Reset device number
1218         spin_lock_irq(&queuespinlock);
1219         rv = send_to_crypto_device(we_p);
1220         switch (rv) {
1221         case 0:
1222                 we_p->requestsent = jiffies;
1223                 we_p->audit[0] |= FP_SENT;
1224                 list_add_tail(&we_p->liste, &pending_list);
1225                 ++pendingq_count;
1226                 we_p->audit[0] |= FP_PENDING;
1227                 break;
1228         case SEN_BUSY:
1229         case SEN_QUEUE_FULL:
1230                 rv = 0;
1231                 we_p->devindex = -1; // any device will do
1232                 we_p->requestsent = jiffies;
1233                 list_add_tail(&we_p->liste, &request_list);
1234                 ++requestq_count;
1235                 we_p->audit[0] |= FP_REQUEST;
1236                 break;
1237         case SEN_RETRY:
1238                 rv = -ERESTARTSYS;
1239                 break;
1240         case SEN_NOT_AVAIL:
1241                 PRINTK("*** No devices available.\n");
1242                 rv = we_p->retcode = -ENODEV;
1243                 we_p->status[0] |= STAT_FAILED;
1244                 break;
1245         case REC_OPERAND_INV:
1246         case REC_OPERAND_SIZE:
1247         case REC_EVEN_MOD:
1248         case REC_INVALID_PAD:
1249                 rv = we_p->retcode = -EINVAL;
1250                 we_p->status[0] |= STAT_FAILED;
1251                 break;
1252         default:
1253                 we_p->retcode = rv;
1254                 we_p->status[0] |= STAT_FAILED;
1255                 break;
1256         }
1257         if (rv != -ERESTARTSYS)
1258                 SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1259         spin_unlock_irq(&queuespinlock);
1260         if (rv == 0)
1261                 tasklet_schedule(&reader_tasklet);
1262         return rv;
1263 }
1264
1265 /**
1266  * process_results copies the user's work from kernel space.
1267  */
1268 static inline int
1269 z90crypt_process_results(struct work_element *we_p, char __user *buf)
1270 {
1271         int rv;
1272
1273         PDEBUG("we_p %p (PID %d)\n", we_p, PID());
1274
1275         LONG2DEVPTR(we_p->devindex)->dev_total_req_cnt++;
1276         SET_RDWRMASK(we_p->status[0], STAT_READPEND);
1277
1278         rv = 0;
1279         if (!we_p->buffer) {
1280                 PRINTK("we_p %p PID %d in STAT_READPEND: buffer NULL.\n",
1281                         we_p, PID());
1282                 rv = -ENOBUFF;
1283         }
1284
1285         if (!rv)
1286                 if ((rv = copy_to_user(buf, we_p->buffer, we_p->buff_size))) {
1287                         PDEBUG("copy_to_user failed: rv = %d\n", rv);
1288                         rv = -EFAULT;
1289                 }
1290
1291         if (!rv)
1292                 rv = we_p->retcode;
1293         if (!rv)
1294                 if (we_p->resp_buff_size
1295                     &&  copy_to_user(we_p->resp_addr, we_p->resp_buff,
1296                                      we_p->resp_buff_size))
1297                         rv = -EFAULT;
1298
1299         SET_RDWRMASK(we_p->status[0], STAT_NOWORK);
1300         return rv;
1301 }
1302
1303 static unsigned char NULL_psmid[8] =
1304 {0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
1305
1306 /**
1307  * Used in device configuration functions
1308  */
1309 #define MAX_RESET 90
1310
1311 /**
1312  * This is used only for PCICC support
1313  */
1314 static inline int
1315 is_PKCS11_padded(unsigned char *buffer, int length)
1316 {
1317         int i;
1318         if ((buffer[0] != 0x00) || (buffer[1] != 0x01))
1319                 return 0;
1320         for (i = 2; i < length; i++)
1321                 if (buffer[i] != 0xFF)
1322                         break;
1323         if ((i < 10) || (i == length))
1324                 return 0;
1325         if (buffer[i] != 0x00)
1326                 return 0;
1327         return 1;
1328 }
1329
1330 /**
1331  * This is used only for PCICC support
1332  */
1333 static inline int
1334 is_PKCS12_padded(unsigned char *buffer, int length)
1335 {
1336         int i;
1337         if ((buffer[0] != 0x00) || (buffer[1] != 0x02))
1338                 return 0;
1339         for (i = 2; i < length; i++)
1340                 if (buffer[i] == 0x00)
1341                         break;
1342         if ((i < 10) || (i == length))
1343                 return 0;
1344         if (buffer[i] != 0x00)
1345                 return 0;
1346         return 1;
1347 }
1348
1349 /**
1350  * builds struct caller and converts message from generic format to
1351  * device-dependent format
1352  * func is ICARSAMODEXPO or ICARSACRT
1353  * function is PCI_FUNC_KEY_ENCRYPT or PCI_FUNC_KEY_DECRYPT
1354  */
1355 static inline int
1356 build_caller(struct work_element *we_p, short function)
1357 {
1358         int rv;
1359         struct caller *caller_p = (struct caller *)we_p->requestptr;
1360
1361         if ((we_p->devtype != PCICC) && (we_p->devtype != PCICA) &&
1362             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1363             (we_p->devtype != CEX2C))
1364                 return SEN_NOT_AVAIL;
1365
1366         memcpy(caller_p->caller_id, we_p->caller_id,
1367                sizeof(caller_p->caller_id));
1368         caller_p->caller_dev_dep_req_p = caller_p->caller_dev_dep_req;
1369         caller_p->caller_dev_dep_req_l = MAX_RESPONSE_SIZE;
1370         caller_p->caller_buf_p = we_p->buffer;
1371         INIT_LIST_HEAD(&(caller_p->caller_liste));
1372
1373         rv = convert_request(we_p->buffer, we_p->funccode, function,
1374                              z90crypt.cdx, we_p->devtype,
1375                              &caller_p->caller_dev_dep_req_l,
1376                              caller_p->caller_dev_dep_req_p);
1377         if (rv) {
1378                 if (rv == SEN_NOT_AVAIL)
1379                         PDEBUG("request can't be processed on hdwr avail\n");
1380                 else
1381                         PRINTK("Error from convert_request: %d\n", rv);
1382         }
1383         else
1384                 memcpy(&(caller_p->caller_dev_dep_req_p[4]), we_p->caller_id,8);
1385         return rv;
1386 }
1387
1388 static inline void
1389 unbuild_caller(struct device *device_p, struct caller *caller_p)
1390 {
1391         if (!caller_p)
1392                 return;
1393         if (caller_p->caller_liste.next && caller_p->caller_liste.prev)
1394                 if (!list_empty(&caller_p->caller_liste)) {
1395                         list_del_init(&caller_p->caller_liste);
1396                         device_p->dev_caller_count--;
1397                 }
1398         memset(caller_p->caller_id, 0, sizeof(caller_p->caller_id));
1399 }
1400
1401 static inline int
1402 get_crypto_request_buffer(struct work_element *we_p)
1403 {
1404         struct ica_rsa_modexpo *mex_p;
1405         struct ica_rsa_modexpo_crt *crt_p;
1406         unsigned char *temp_buffer;
1407         short function;
1408         int rv;
1409
1410         mex_p = (struct ica_rsa_modexpo *) we_p->buffer;
1411         crt_p = (struct ica_rsa_modexpo_crt *) we_p->buffer;
1412
1413         PDEBUG("device type input = %d\n", we_p->devtype);
1414
1415         if (z90crypt.terminating)
1416                 return REC_NO_RESPONSE;
1417         if (memcmp(we_p->caller_id, NULL_psmid, 8) == 0) {
1418                 PRINTK("psmid zeroes\n");
1419                 return SEN_FATAL_ERROR;
1420         }
1421         if (!we_p->buffer) {
1422                 PRINTK("buffer pointer NULL\n");
1423                 return SEN_USER_ERROR;
1424         }
1425         if (!we_p->requestptr) {
1426                 PRINTK("caller pointer NULL\n");
1427                 return SEN_USER_ERROR;
1428         }
1429
1430         if ((we_p->devtype != PCICA) && (we_p->devtype != PCICC) &&
1431             (we_p->devtype != PCIXCC_MCL2) && (we_p->devtype != PCIXCC_MCL3) &&
1432             (we_p->devtype != CEX2C) && (we_p->devtype != ANYDEV)) {
1433                 PRINTK("invalid device type\n");
1434                 return SEN_USER_ERROR;
1435         }
1436
1437         if ((mex_p->inputdatalength < 1) ||
1438             (mex_p->inputdatalength > MAX_MOD_SIZE)) {
1439                 PRINTK("inputdatalength[%d] is not valid\n",
1440                        mex_p->inputdatalength);
1441                 return SEN_USER_ERROR;
1442         }
1443
1444         if (mex_p->outputdatalength < mex_p->inputdatalength) {
1445                 PRINTK("outputdatalength[%d] < inputdatalength[%d]\n",
1446                        mex_p->outputdatalength, mex_p->inputdatalength);
1447                 return SEN_USER_ERROR;
1448         }
1449
1450         if (!mex_p->inputdata || !mex_p->outputdata) {
1451                 PRINTK("inputdata[%p] or outputdata[%p] is NULL\n",
1452                        mex_p->outputdata, mex_p->inputdata);
1453                 return SEN_USER_ERROR;
1454         }
1455
1456         /**
1457          * As long as outputdatalength is big enough, we can set the
1458          * outputdatalength equal to the inputdatalength, since that is the
1459          * number of bytes we will copy in any case
1460          */
1461         mex_p->outputdatalength = mex_p->inputdatalength;
1462
1463         rv = 0;
1464         switch (we_p->funccode) {
1465         case ICARSAMODEXPO:
1466                 if (!mex_p->b_key || !mex_p->n_modulus)
1467                         rv = SEN_USER_ERROR;
1468                 break;
1469         case ICARSACRT:
1470                 if (!IS_EVEN(crt_p->inputdatalength)) {
1471                         PRINTK("inputdatalength[%d] is odd, CRT form\n",
1472                                crt_p->inputdatalength);
1473                         rv = SEN_USER_ERROR;
1474                         break;
1475                 }
1476                 if (!crt_p->bp_key ||
1477                     !crt_p->bq_key ||
1478                     !crt_p->np_prime ||
1479                     !crt_p->nq_prime ||
1480                     !crt_p->u_mult_inv) {
1481                         PRINTK("CRT form, bad data: %p/%p/%p/%p/%p\n",
1482                                crt_p->bp_key, crt_p->bq_key,
1483                                crt_p->np_prime, crt_p->nq_prime,
1484                                crt_p->u_mult_inv);
1485                         rv = SEN_USER_ERROR;
1486                 }
1487                 break;
1488         default:
1489                 PRINTK("bad func = %d\n", we_p->funccode);
1490                 rv = SEN_USER_ERROR;
1491                 break;
1492         }
1493         if (rv != 0)
1494                 return rv;
1495
1496         if (select_device_type(&we_p->devtype, mex_p->inputdatalength) < 0)
1497                 return SEN_NOT_AVAIL;
1498
1499         temp_buffer = (unsigned char *)we_p + sizeof(struct work_element) +
1500                       sizeof(struct caller);
1501         if (copy_from_user(temp_buffer, mex_p->inputdata,
1502                            mex_p->inputdatalength) != 0)
1503                 return SEN_RELEASED;
1504
1505         function = PCI_FUNC_KEY_ENCRYPT;
1506         switch (we_p->devtype) {
1507         /* PCICA does everything with a simple RSA mod-expo operation */
1508         case PCICA:
1509                 function = PCI_FUNC_KEY_ENCRYPT;
1510                 break;
1511         /**
1512          * PCIXCC_MCL2 does all Mod-Expo form with a simple RSA mod-expo
1513          * operation, and all CRT forms with a PKCS-1.2 format decrypt.
1514          * PCIXCC_MCL3 and CEX2C do all Mod-Expo and CRT forms with a simple RSA
1515          * mod-expo operation
1516          */
1517         case PCIXCC_MCL2:
1518                 if (we_p->funccode == ICARSAMODEXPO)
1519                         function = PCI_FUNC_KEY_ENCRYPT;
1520                 else
1521                         function = PCI_FUNC_KEY_DECRYPT;
1522                 break;
1523         case PCIXCC_MCL3:
1524         case CEX2C:
1525                 if (we_p->funccode == ICARSAMODEXPO)
1526                         function = PCI_FUNC_KEY_ENCRYPT;
1527                 else
1528                         function = PCI_FUNC_KEY_DECRYPT;
1529                 break;
1530         /**
1531          * PCICC does everything as a PKCS-1.2 format request
1532          */
1533         case PCICC:
1534                 /* PCICC cannot handle input that is is PKCS#1.1 padded */
1535                 if (is_PKCS11_padded(temp_buffer, mex_p->inputdatalength)) {
1536                         return SEN_NOT_AVAIL;
1537                 }
1538                 if (we_p->funccode == ICARSAMODEXPO) {
1539                         if (is_PKCS12_padded(temp_buffer,
1540                                              mex_p->inputdatalength))
1541                                 function = PCI_FUNC_KEY_ENCRYPT;
1542                         else
1543                                 function = PCI_FUNC_KEY_DECRYPT;
1544                 } else
1545                         /* all CRT forms are decrypts */
1546                         function = PCI_FUNC_KEY_DECRYPT;
1547                 break;
1548         }
1549         PDEBUG("function: %04x\n", function);
1550         rv = build_caller(we_p, function);
1551         PDEBUG("rv from build_caller = %d\n", rv);
1552         return rv;
1553 }
1554
1555 static inline int
1556 z90crypt_prepare(struct work_element *we_p, unsigned int funccode,
1557                  const char __user *buffer)
1558 {
1559         int rv;
1560
1561         we_p->devindex = -1;
1562         if (funccode == ICARSAMODEXPO)
1563                 we_p->buff_size = sizeof(struct ica_rsa_modexpo);
1564         else
1565                 we_p->buff_size = sizeof(struct ica_rsa_modexpo_crt);
1566
1567         if (copy_from_user(we_p->buffer, buffer, we_p->buff_size))
1568                 return -EFAULT;
1569
1570         we_p->audit[0] |= FP_COPYFROM;
1571         SET_RDWRMASK(we_p->status[0], STAT_WRITTEN);
1572         we_p->funccode = funccode;
1573         we_p->devtype = -1;
1574         we_p->audit[0] |= FP_BUFFREQ;
1575         rv = get_crypto_request_buffer(we_p);
1576         switch (rv) {
1577         case 0:
1578                 we_p->audit[0] |= FP_BUFFGOT;
1579                 break;
1580         case SEN_USER_ERROR:
1581                 rv = -EINVAL;
1582                 break;
1583         case SEN_QUEUE_FULL:
1584                 rv = 0;
1585                 break;
1586         case SEN_RELEASED:
1587                 rv = -EFAULT;
1588                 break;
1589         case REC_NO_RESPONSE:
1590                 rv = -ENODEV;
1591                 break;
1592         case SEN_NOT_AVAIL:
1593         case EGETBUFF:
1594                 rv = -EGETBUFF;
1595                 break;
1596         default:
1597                 PRINTK("rv = %d\n", rv);
1598                 rv = -EGETBUFF;
1599                 break;
1600         }
1601         if (CHK_RDWRMASK(we_p->status[0]) == STAT_WRITTEN)
1602                 SET_RDWRMASK(we_p->status[0], STAT_DEFAULT);
1603         return rv;
1604 }
1605
1606 static inline void
1607 purge_work_element(struct work_element *we_p)
1608 {
1609         struct list_head *lptr;
1610
1611         spin_lock_irq(&queuespinlock);
1612         list_for_each(lptr, &request_list) {
1613                 if (lptr == &we_p->liste) {
1614                         list_del_init(lptr);
1615                         requestq_count--;
1616                         break;
1617                 }
1618         }
1619         list_for_each(lptr, &pending_list) {
1620                 if (lptr == &we_p->liste) {
1621                         list_del_init(lptr);
1622                         pendingq_count--;
1623                         break;
1624                 }
1625         }
1626         spin_unlock_irq(&queuespinlock);
1627 }
1628
1629 /**
1630  * Build the request and send it.
1631  */
1632 static inline int
1633 z90crypt_rsa(struct priv_data *private_data_p, pid_t pid,
1634              unsigned int cmd, unsigned long arg)
1635 {
1636         struct work_element *we_p;
1637         int rv;
1638
1639         if ((rv = allocate_work_element(&we_p, private_data_p, pid))) {
1640                 PDEBUG("PID %d: allocate_work_element returned ENOMEM\n", pid);
1641                 return rv;
1642         }
1643         if ((rv = z90crypt_prepare(we_p, cmd, (const char __user *)arg)))
1644                 PDEBUG("PID %d: rv = %d from z90crypt_prepare\n", pid, rv);
1645         if (!rv)
1646                 if ((rv = z90crypt_send(we_p, (const char *)arg)))
1647                         PDEBUG("PID %d: rv %d from z90crypt_send.\n", pid, rv);
1648         if (!rv) {
1649                 we_p->audit[0] |= FP_ASLEEP;
1650                 wait_event(we_p->waitq, atomic_read(&we_p->alarmrung));
1651                 we_p->audit[0] |= FP_AWAKE;
1652                 rv = we_p->retcode;
1653         }
1654         if (!rv)
1655                 rv = z90crypt_process_results(we_p, (char __user *)arg);
1656
1657         if ((we_p->status[0] & STAT_FAILED)) {
1658                 switch (rv) {
1659                 /**
1660                  * EINVAL *after* receive is almost always a padding error or
1661                  * length error issued by a coprocessor (not an accelerator).
1662                  * We convert this return value to -EGETBUFF which should
1663                  * trigger a fallback to software.
1664                  */
1665                 case -EINVAL:
1666                         if (we_p->devtype != PCICA)
1667                                 rv = -EGETBUFF;
1668                         break;
1669                 case -ETIMEOUT:
1670                         if (z90crypt.mask.st_count > 0)
1671                                 rv = -ERESTARTSYS; // retry with another
1672                         else
1673                                 rv = -ENODEV; // no cards left
1674                 /* fall through to clean up request queue */
1675                 case -ERESTARTSYS:
1676                 case -ERELEASED:
1677                         switch (CHK_RDWRMASK(we_p->status[0])) {
1678                         case STAT_WRITTEN:
1679                                 purge_work_element(we_p);
1680                                 break;
1681                         case STAT_READPEND:
1682                         case STAT_NOWORK:
1683                         default:
1684                                 break;
1685                         }
1686                         break;
1687                 default:
1688                         we_p->status[0] ^= STAT_FAILED;
1689                         break;
1690                 }
1691         }
1692         free_page((long)we_p);
1693         return rv;
1694 }
1695
1696 /**
1697  * This function is a little long, but it's really just one large switch
1698  * statement.
1699  */
1700 static long
1701 z90crypt_unlocked_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1702 {
1703         struct priv_data *private_data_p = filp->private_data;
1704         unsigned char *status;
1705         unsigned char *qdepth;
1706         unsigned int *reqcnt;
1707         struct ica_z90_status *pstat;
1708         int ret, i, loopLim, tempstat;
1709         static int deprecated_msg_count1 = 0;
1710         static int deprecated_msg_count2 = 0;
1711
1712         PDEBUG("filp %p (PID %d), cmd 0x%08X\n", filp, PID(), cmd);
1713         PDEBUG("cmd 0x%08X: dir %s, size 0x%04X, type 0x%02X, nr 0x%02X\n",
1714                 cmd,
1715                 !_IOC_DIR(cmd) ? "NO"
1716                 : ((_IOC_DIR(cmd) == (_IOC_READ|_IOC_WRITE)) ? "RW"
1717                 : ((_IOC_DIR(cmd) == _IOC_READ) ? "RD"
1718                 : "WR")),
1719                 _IOC_SIZE(cmd), _IOC_TYPE(cmd), _IOC_NR(cmd));
1720
1721         if (_IOC_TYPE(cmd) != Z90_IOCTL_MAGIC) {
1722                 PRINTK("cmd 0x%08X contains bad magic\n", cmd);
1723                 return -ENOTTY;
1724         }
1725
1726         ret = 0;
1727         switch (cmd) {
1728         case ICARSAMODEXPO:
1729         case ICARSACRT:
1730                 if (quiesce_z90crypt) {
1731                         ret = -EQUIESCE;
1732                         break;
1733                 }
1734                 ret = -ENODEV; // Default if no devices
1735                 loopLim = z90crypt.hdware_info->hdware_mask.st_count -
1736                         (z90crypt.hdware_info->hdware_mask.disabled_count +
1737                          z90crypt.hdware_info->hdware_mask.user_disabled_count);
1738                 for (i = 0; i < loopLim; i++) {
1739                         ret = z90crypt_rsa(private_data_p, PID(), cmd, arg);
1740                         if (ret != -ERESTARTSYS)
1741                                 break;
1742                 }
1743                 if (ret == -ERESTARTSYS)
1744                         ret = -ENODEV;
1745                 break;
1746
1747         case Z90STAT_TOTALCOUNT:
1748                 tempstat = get_status_totalcount();
1749                 if (copy_to_user((int __user *)arg, &tempstat,sizeof(int)) != 0)
1750                         ret = -EFAULT;
1751                 break;
1752
1753         case Z90STAT_PCICACOUNT:
1754                 tempstat = get_status_PCICAcount();
1755                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1756                         ret = -EFAULT;
1757                 break;
1758
1759         case Z90STAT_PCICCCOUNT:
1760                 tempstat = get_status_PCICCcount();
1761                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1762                         ret = -EFAULT;
1763                 break;
1764
1765         case Z90STAT_PCIXCCMCL2COUNT:
1766                 tempstat = get_status_PCIXCCMCL2count();
1767                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1768                         ret = -EFAULT;
1769                 break;
1770
1771         case Z90STAT_PCIXCCMCL3COUNT:
1772                 tempstat = get_status_PCIXCCMCL3count();
1773                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1774                         ret = -EFAULT;
1775                 break;
1776
1777         case Z90STAT_CEX2CCOUNT:
1778                 tempstat = get_status_CEX2Ccount();
1779                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1780                         ret = -EFAULT;
1781                 break;
1782
1783         case Z90STAT_REQUESTQ_COUNT:
1784                 tempstat = get_status_requestq_count();
1785                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1786                         ret = -EFAULT;
1787                 break;
1788
1789         case Z90STAT_PENDINGQ_COUNT:
1790                 tempstat = get_status_pendingq_count();
1791                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1792                         ret = -EFAULT;
1793                 break;
1794
1795         case Z90STAT_TOTALOPEN_COUNT:
1796                 tempstat = get_status_totalopen_count();
1797                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1798                         ret = -EFAULT;
1799                 break;
1800
1801         case Z90STAT_DOMAIN_INDEX:
1802                 tempstat = get_status_domain_index();
1803                 if (copy_to_user((int __user *)arg, &tempstat, sizeof(int)) != 0)
1804                         ret = -EFAULT;
1805                 break;
1806
1807         case Z90STAT_STATUS_MASK:
1808                 status = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1809                 if (!status) {
1810                         PRINTK("kmalloc for status failed!\n");
1811                         ret = -ENOMEM;
1812                         break;
1813                 }
1814                 get_status_status_mask(status);
1815                 if (copy_to_user((char __user *) arg, status, Z90CRYPT_NUM_APS)
1816                                                                         != 0)
1817                         ret = -EFAULT;
1818                 kfree(status);
1819                 break;
1820
1821         case Z90STAT_QDEPTH_MASK:
1822                 qdepth = kmalloc(Z90CRYPT_NUM_APS, GFP_KERNEL);
1823                 if (!qdepth) {
1824                         PRINTK("kmalloc for qdepth failed!\n");
1825                         ret = -ENOMEM;
1826                         break;
1827                 }
1828                 get_status_qdepth_mask(qdepth);
1829                 if (copy_to_user((char __user *) arg, qdepth, Z90CRYPT_NUM_APS) != 0)
1830                         ret = -EFAULT;
1831                 kfree(qdepth);
1832                 break;
1833
1834         case Z90STAT_PERDEV_REQCNT:
1835                 reqcnt = kmalloc(sizeof(int) * Z90CRYPT_NUM_APS, GFP_KERNEL);
1836                 if (!reqcnt) {
1837                         PRINTK("kmalloc for reqcnt failed!\n");
1838                         ret = -ENOMEM;
1839                         break;
1840                 }
1841                 get_status_perdevice_reqcnt(reqcnt);
1842                 if (copy_to_user((char __user *) arg, reqcnt,
1843                                  Z90CRYPT_NUM_APS * sizeof(int)) != 0)
1844                         ret = -EFAULT;
1845                 kfree(reqcnt);
1846                 break;
1847
1848                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1849         case ICAZ90STATUS:
1850                 if (deprecated_msg_count1 < 20) {
1851                         PRINTK("deprecated call to ioctl (ICAZ90STATUS)!\n");
1852                         deprecated_msg_count1++;
1853                         if (deprecated_msg_count1 == 20)
1854                                 PRINTK("No longer issuing messages related to "
1855                                        "deprecated call to ICAZ90STATUS.\n");
1856                 }
1857
1858                 pstat = kmalloc(sizeof(struct ica_z90_status), GFP_KERNEL);
1859                 if (!pstat) {
1860                         PRINTK("kmalloc for pstat failed!\n");
1861                         ret = -ENOMEM;
1862                         break;
1863                 }
1864
1865                 pstat->totalcount        = get_status_totalcount();
1866                 pstat->leedslitecount    = get_status_PCICAcount();
1867                 pstat->leeds2count       = get_status_PCICCcount();
1868                 pstat->requestqWaitCount = get_status_requestq_count();
1869                 pstat->pendingqWaitCount = get_status_pendingq_count();
1870                 pstat->totalOpenCount    = get_status_totalopen_count();
1871                 pstat->cryptoDomain      = get_status_domain_index();
1872                 get_status_status_mask(pstat->status);
1873                 get_status_qdepth_mask(pstat->qdepth);
1874
1875                 if (copy_to_user((struct ica_z90_status __user *) arg, pstat,
1876                                  sizeof(struct ica_z90_status)) != 0)
1877                         ret = -EFAULT;
1878                 kfree(pstat);
1879                 break;
1880
1881                 /* THIS IS DEPRECATED.  USE THE NEW STATUS CALLS */
1882         case Z90STAT_PCIXCCCOUNT:
1883                 if (deprecated_msg_count2 < 20) {
1884                         PRINTK("deprecated ioctl (Z90STAT_PCIXCCCOUNT)!\n");
1885                         deprecated_msg_count2++;
1886                         if (deprecated_msg_count2 == 20)
1887                                 PRINTK("No longer issuing messages about depre"
1888                                        "cated ioctl Z90STAT_PCIXCCCOUNT.\n");
1889                 }
1890
1891                 tempstat = get_status_PCIXCCcount();
1892                 if (copy_to_user((int *)arg, &tempstat, sizeof(int)) != 0)
1893                         ret = -EFAULT;
1894                 break;
1895
1896         case Z90QUIESCE:
1897                 if (current->euid != 0) {
1898                         PRINTK("QUIESCE fails: euid %d\n",
1899                                current->euid);
1900                         ret = -EACCES;
1901                 } else {
1902                         PRINTK("QUIESCE device from PID %d\n", PID());
1903                         quiesce_z90crypt = 1;
1904                 }
1905                 break;
1906
1907         default:
1908                 /* user passed an invalid IOCTL number */
1909                 PDEBUG("cmd 0x%08X contains invalid ioctl code\n", cmd);
1910                 ret = -ENOTTY;
1911                 break;
1912         }
1913
1914         return ret;
1915 }
1916
1917 static inline int
1918 sprintcl(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1919 {
1920         int hl, i;
1921
1922         hl = 0;
1923         for (i = 0; i < len; i++)
1924                 hl += sprintf(outaddr+hl, "%01x", (unsigned int) addr[i]);
1925         hl += sprintf(outaddr+hl, " ");
1926
1927         return hl;
1928 }
1929
1930 static inline int
1931 sprintrw(unsigned char *outaddr, unsigned char *addr, unsigned int len)
1932 {
1933         int hl, inl, c, cx;
1934
1935         hl = sprintf(outaddr, "    ");
1936         inl = 0;
1937         for (c = 0; c < (len / 16); c++) {
1938                 hl += sprintcl(outaddr+hl, addr+inl, 16);
1939                 inl += 16;
1940         }
1941
1942         cx = len%16;
1943         if (cx) {
1944                 hl += sprintcl(outaddr+hl, addr+inl, cx);
1945                 inl += cx;
1946         }
1947
1948         hl += sprintf(outaddr+hl, "\n");
1949
1950         return hl;
1951 }
1952
1953 static inline int
1954 sprinthx(unsigned char *title, unsigned char *outaddr,
1955          unsigned char *addr, unsigned int len)
1956 {
1957         int hl, inl, r, rx;
1958
1959         hl = sprintf(outaddr, "\n%s\n", title);
1960         inl = 0;
1961         for (r = 0; r < (len / 64); r++) {
1962                 hl += sprintrw(outaddr+hl, addr+inl, 64);
1963                 inl += 64;
1964         }
1965         rx = len % 64;
1966         if (rx) {
1967                 hl += sprintrw(outaddr+hl, addr+inl, rx);
1968                 inl += rx;
1969         }
1970
1971         hl += sprintf(outaddr+hl, "\n");
1972
1973         return hl;
1974 }
1975
1976 static inline int
1977 sprinthx4(unsigned char *title, unsigned char *outaddr,
1978           unsigned int *array, unsigned int len)
1979 {
1980         int hl, r;
1981
1982         hl = sprintf(outaddr, "\n%s\n", title);
1983
1984         for (r = 0; r < len; r++) {
1985                 if ((r % 8) == 0)
1986                         hl += sprintf(outaddr+hl, "    ");
1987                 hl += sprintf(outaddr+hl, "%08X ", array[r]);
1988                 if ((r % 8) == 7)
1989                         hl += sprintf(outaddr+hl, "\n");
1990         }
1991
1992         hl += sprintf(outaddr+hl, "\n");
1993
1994         return hl;
1995 }
1996
1997 static int
1998 z90crypt_status(char *resp_buff, char **start, off_t offset,
1999                 int count, int *eof, void *data)
2000 {
2001         unsigned char *workarea;
2002         int len;
2003
2004         /* resp_buff is a page. Use the right half for a work area */
2005         workarea = resp_buff+2000;
2006         len = 0;
2007         len += sprintf(resp_buff+len, "\nz90crypt version: %d.%d.%d\n",
2008                 z90crypt_VERSION, z90crypt_RELEASE, z90crypt_VARIANT);
2009         len += sprintf(resp_buff+len, "Cryptographic domain: %d\n",
2010                 get_status_domain_index());
2011         len += sprintf(resp_buff+len, "Total device count: %d\n",
2012                 get_status_totalcount());
2013         len += sprintf(resp_buff+len, "PCICA count: %d\n",
2014                 get_status_PCICAcount());
2015         len += sprintf(resp_buff+len, "PCICC count: %d\n",
2016                 get_status_PCICCcount());
2017         len += sprintf(resp_buff+len, "PCIXCC MCL2 count: %d\n",
2018                 get_status_PCIXCCMCL2count());
2019         len += sprintf(resp_buff+len, "PCIXCC MCL3 count: %d\n",
2020                 get_status_PCIXCCMCL3count());
2021         len += sprintf(resp_buff+len, "CEX2C count: %d\n",
2022                 get_status_CEX2Ccount());
2023         len += sprintf(resp_buff+len, "requestq count: %d\n",
2024                 get_status_requestq_count());
2025         len += sprintf(resp_buff+len, "pendingq count: %d\n",
2026                 get_status_pendingq_count());
2027         len += sprintf(resp_buff+len, "Total open handles: %d\n\n",
2028                 get_status_totalopen_count());
2029         len += sprinthx(
2030                 "Online devices: 1: PCICA, 2: PCICC, 3: PCIXCC (MCL2), "
2031                 "4: PCIXCC (MCL3), 5: CEX2C",
2032                 resp_buff+len,
2033                 get_status_status_mask(workarea),
2034                 Z90CRYPT_NUM_APS);
2035         len += sprinthx("Waiting work element counts",
2036                 resp_buff+len,
2037                 get_status_qdepth_mask(workarea),
2038                 Z90CRYPT_NUM_APS);
2039         len += sprinthx4(
2040                 "Per-device successfully completed request counts",
2041                 resp_buff+len,
2042                 get_status_perdevice_reqcnt((unsigned int *)workarea),
2043                 Z90CRYPT_NUM_APS);
2044         *eof = 1;
2045         memset(workarea, 0, Z90CRYPT_NUM_APS * sizeof(unsigned int));
2046         return len;
2047 }
2048
2049 static inline void
2050 disable_card(int card_index)
2051 {
2052         struct device *devp;
2053
2054         devp = LONG2DEVPTR(card_index);
2055         if (!devp || devp->user_disabled)
2056                 return;
2057         devp->user_disabled = 1;
2058         z90crypt.hdware_info->hdware_mask.user_disabled_count++;
2059         if (devp->dev_type == -1)
2060                 return;
2061         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count++;
2062 }
2063
2064 static inline void
2065 enable_card(int card_index)
2066 {
2067         struct device *devp;
2068
2069         devp = LONG2DEVPTR(card_index);
2070         if (!devp || !devp->user_disabled)
2071                 return;
2072         devp->user_disabled = 0;
2073         z90crypt.hdware_info->hdware_mask.user_disabled_count--;
2074         if (devp->dev_type == -1)
2075                 return;
2076         z90crypt.hdware_info->type_mask[devp->dev_type].user_disabled_count--;
2077 }
2078
2079 static int
2080 z90crypt_status_write(struct file *file, const char __user *buffer,
2081                       unsigned long count, void *data)
2082 {
2083         int j, eol;
2084         unsigned char *lbuf, *ptr;
2085         unsigned int local_count;
2086
2087 #define LBUFSIZE 1200
2088         lbuf = kmalloc(LBUFSIZE, GFP_KERNEL);
2089         if (!lbuf) {
2090                 PRINTK("kmalloc failed!\n");
2091                 return 0;
2092         }
2093
2094         if (count <= 0)
2095                 return 0;
2096
2097         local_count = UMIN((unsigned int)count, LBUFSIZE-1);
2098
2099         if (copy_from_user(lbuf, buffer, local_count) != 0) {
2100                 kfree(lbuf);
2101                 return -EFAULT;
2102         }
2103
2104         lbuf[local_count] = '\0';
2105
2106         ptr = strstr(lbuf, "Online devices");
2107         if (ptr == 0) {
2108                 PRINTK("Unable to parse data (missing \"Online devices\")\n");
2109                 kfree(lbuf);
2110                 return count;
2111         }
2112
2113         ptr = strstr(ptr, "\n");
2114         if (ptr == 0) {
2115                 PRINTK("Unable to parse data (missing newline after \"Online devices\")\n");
2116                 kfree(lbuf);
2117                 return count;
2118         }
2119         ptr++;
2120
2121         if (strstr(ptr, "Waiting work element counts") == NULL) {
2122                 PRINTK("Unable to parse data (missing \"Waiting work element counts\")\n");
2123                 kfree(lbuf);
2124                 return count;
2125         }
2126
2127         j = 0;
2128         eol = 0;
2129         while ((j < 64) && (*ptr != '\0')) {
2130                 switch (*ptr) {
2131                 case '\t':
2132                 case ' ':
2133                         break;
2134                 case '\n':
2135                 default:
2136                         eol = 1;
2137                         break;
2138                 case '0':       // no device
2139                 case '1':       // PCICA
2140                 case '2':       // PCICC
2141                 case '3':       // PCIXCC_MCL2
2142                 case '4':       // PCIXCC_MCL3
2143                 case '5':       // CEX2C
2144                         j++;
2145                         break;
2146                 case 'd':
2147                 case 'D':
2148                         disable_card(j);
2149                         j++;
2150                         break;
2151                 case 'e':
2152                 case 'E':
2153                         enable_card(j);
2154                         j++;
2155                         break;
2156                 }
2157                 if (eol)
2158                         break;
2159                 ptr++;
2160         }
2161
2162         kfree(lbuf);
2163         return count;
2164 }
2165
2166 /**
2167  * Functions that run under a timer, with no process id
2168  *
2169  * The task functions:
2170  *     z90crypt_reader_task
2171  *       helper_send_work
2172  *       helper_handle_work_element
2173  *       helper_receive_rc
2174  *     z90crypt_config_task
2175  *     z90crypt_cleanup_task
2176  *
2177  * Helper functions:
2178  *     z90crypt_schedule_reader_timer
2179  *     z90crypt_schedule_reader_task
2180  *     z90crypt_schedule_config_task
2181  *     z90crypt_schedule_cleanup_task
2182  */
2183 static inline int
2184 receive_from_crypto_device(int index, unsigned char *psmid, int *buff_len_p,
2185                            unsigned char *buff, unsigned char __user **dest_p_p)
2186 {
2187         int dv, rv;
2188         struct device *dev_ptr;
2189         struct caller *caller_p;
2190         struct ica_rsa_modexpo *icaMsg_p;
2191         struct list_head *ptr, *tptr;
2192
2193         memcpy(psmid, NULL_psmid, sizeof(NULL_psmid));
2194
2195         if (z90crypt.terminating)
2196                 return REC_FATAL_ERROR;
2197
2198         caller_p = 0;
2199         dev_ptr = z90crypt.device_p[index];
2200         rv = 0;
2201         do {
2202                 if (!dev_ptr || dev_ptr->disabled) {
2203                         rv = REC_NO_WORK; // a disabled device can't return work
2204                         break;
2205                 }
2206                 if (dev_ptr->dev_self_x != index) {
2207                         PRINTKC("Corrupt dev ptr\n");
2208                         z90crypt.terminating = 1;
2209                         rv = REC_FATAL_ERROR;
2210                         break;
2211                 }
2212                 if (!dev_ptr->dev_resp_l || !dev_ptr->dev_resp_p) {
2213                         dv = DEV_REC_EXCEPTION;
2214                         PRINTK("dev_resp_l = %d, dev_resp_p = %p\n",
2215                                dev_ptr->dev_resp_l, dev_ptr->dev_resp_p);
2216                 } else {
2217                         PDEBUG("Dequeue called for device %d\n", index);
2218                         dv = receive_from_AP(index, z90crypt.cdx,
2219                                              dev_ptr->dev_resp_l,
2220                                              dev_ptr->dev_resp_p, psmid);
2221                 }
2222                 switch (dv) {
2223                 case DEV_REC_EXCEPTION:
2224                         rv = REC_FATAL_ERROR;
2225                         z90crypt.terminating = 1;
2226                         PRINTKC("Exception in receive from device %d\n",
2227                                 index);
2228                         break;
2229                 case DEV_ONLINE:
2230                         rv = 0;
2231                         break;
2232                 case DEV_EMPTY:
2233                         rv = REC_EMPTY;
2234                         break;
2235                 case DEV_NO_WORK:
2236                         rv = REC_NO_WORK;
2237                         break;
2238                 case DEV_BAD_MESSAGE:
2239                 case DEV_GONE:
2240                 case REC_HARDWAR_ERR:
2241                 default:
2242                         rv = REC_NO_RESPONSE;
2243                         break;
2244                 }
2245                 if (rv)
2246                         break;
2247                 if (dev_ptr->dev_caller_count <= 0) {
2248                         rv = REC_USER_GONE;
2249                         break;
2250                 }
2251
2252                 list_for_each_safe(ptr, tptr, &dev_ptr->dev_caller_list) {
2253                         caller_p = list_entry(ptr, struct caller, caller_liste);
2254                         if (!memcmp(caller_p->caller_id, psmid,
2255                                     sizeof(caller_p->caller_id))) {
2256                                 if (!list_empty(&caller_p->caller_liste)) {
2257                                         list_del_init(ptr);
2258                                         dev_ptr->dev_caller_count--;
2259                                         break;
2260                                 }
2261                         }
2262                         caller_p = 0;
2263                 }
2264                 if (!caller_p) {
2265                         PRINTKW("Unable to locate PSMID %02X%02X%02X%02X%02X"
2266                                 "%02X%02X%02X in device list\n",
2267                                 psmid[0], psmid[1], psmid[2], psmid[3],
2268                                 psmid[4], psmid[5], psmid[6], psmid[7]);
2269                         rv = REC_USER_GONE;
2270                         break;
2271                 }
2272
2273                 PDEBUG("caller_p after successful receive: %p\n", caller_p);
2274                 rv = convert_response(dev_ptr->dev_resp_p,
2275                                       caller_p->caller_buf_p, buff_len_p, buff);
2276                 switch (rv) {
2277                 case REC_USE_PCICA:
2278                         break;
2279                 case REC_OPERAND_INV:
2280                 case REC_OPERAND_SIZE:
2281                 case REC_EVEN_MOD:
2282                 case REC_INVALID_PAD:
2283                         PDEBUG("device %d: 'user error' %d\n", index, rv);
2284                         break;
2285                 case WRONG_DEVICE_TYPE:
2286                 case REC_HARDWAR_ERR:
2287                 case REC_BAD_MESSAGE:
2288                         PRINTKW("device %d: hardware error %d\n", index, rv);
2289                         rv = REC_NO_RESPONSE;
2290                         break;
2291                 default:
2292                         PDEBUG("device %d: rv = %d\n", index, rv);
2293                         break;
2294                 }
2295         } while (0);
2296
2297         switch (rv) {
2298         case 0:
2299                 PDEBUG("Successful receive from device %d\n", index);
2300                 icaMsg_p = (struct ica_rsa_modexpo *)caller_p->caller_buf_p;
2301                 *dest_p_p = icaMsg_p->outputdata;
2302                 if (*buff_len_p == 0)
2303                         PRINTK("Zero *buff_len_p\n");
2304                 break;
2305         case REC_NO_RESPONSE:
2306                 PRINTKW("Removing device %d from availability\n", index);
2307                 remove_device(dev_ptr);
2308                 break;
2309         }
2310
2311         if (caller_p)
2312                 unbuild_caller(dev_ptr, caller_p);
2313
2314         return rv;
2315 }
2316
2317 static inline void
2318 helper_send_work(int index)
2319 {
2320         struct work_element *rq_p;
2321         int rv;
2322
2323         if (list_empty(&request_list))
2324                 return;
2325         requestq_count--;
2326         rq_p = list_entry(request_list.next, struct work_element, liste);
2327         list_del_init(&rq_p->liste);
2328         rq_p->audit[1] |= FP_REMREQUEST;
2329         if (rq_p->devtype == SHRT2DEVPTR(index)->dev_type) {
2330                 rq_p->devindex = SHRT2LONG(index);
2331                 rv = send_to_crypto_device(rq_p);
2332                 if (rv == 0) {
2333                         rq_p->requestsent = jiffies;
2334                         rq_p->audit[0] |= FP_SENT;
2335                         list_add_tail(&rq_p->liste, &pending_list);
2336                         ++pendingq_count;
2337                         rq_p->audit[0] |= FP_PENDING;
2338                 } else {
2339                         switch (rv) {
2340                         case REC_OPERAND_INV:
2341                         case REC_OPERAND_SIZE:
2342                         case REC_EVEN_MOD:
2343                         case REC_INVALID_PAD:
2344                                 rq_p->retcode = -EINVAL;
2345                                 break;
2346                         case SEN_NOT_AVAIL:
2347                         case SEN_RETRY:
2348                         case REC_NO_RESPONSE:
2349                         default:
2350                                 if (z90crypt.mask.st_count > 1)
2351                                         rq_p->retcode =
2352                                                 -ERESTARTSYS;
2353                                 else
2354                                         rq_p->retcode = -ENODEV;
2355                                 break;
2356                         }
2357                         rq_p->status[0] |= STAT_FAILED;
2358                         rq_p->audit[1] |= FP_AWAKENING;
2359                         atomic_set(&rq_p->alarmrung, 1);
2360                         wake_up(&rq_p->waitq);
2361                 }
2362         } else {
2363                 if (z90crypt.mask.st_count > 1)
2364                         rq_p->retcode = -ERESTARTSYS;
2365                 else
2366                         rq_p->retcode = -ENODEV;
2367                 rq_p->status[0] |= STAT_FAILED;
2368                 rq_p->audit[1] |= FP_AWAKENING;
2369                 atomic_set(&rq_p->alarmrung, 1);
2370                 wake_up(&rq_p->waitq);
2371         }
2372 }
2373
2374 static inline void
2375 helper_handle_work_element(int index, unsigned char psmid[8], int rc,
2376                            int buff_len, unsigned char *buff,
2377                            unsigned char __user *resp_addr)
2378 {
2379         struct work_element *pq_p;
2380         struct list_head *lptr, *tptr;
2381
2382         pq_p = 0;
2383         list_for_each_safe(lptr, tptr, &pending_list) {
2384                 pq_p = list_entry(lptr, struct work_element, liste);
2385                 if (!memcmp(pq_p->caller_id, psmid, sizeof(pq_p->caller_id))) {
2386                         list_del_init(lptr);
2387                         pendingq_count--;
2388                         pq_p->audit[1] |= FP_NOTPENDING;
2389                         break;
2390                 }
2391                 pq_p = 0;
2392         }
2393
2394         if (!pq_p) {
2395                 PRINTK("device %d has work but no caller exists on pending Q\n",
2396                        SHRT2LONG(index));
2397                 return;
2398         }
2399
2400         switch (rc) {
2401                 case 0:
2402                         pq_p->resp_buff_size = buff_len;
2403                         pq_p->audit[1] |= FP_RESPSIZESET;
2404                         if (buff_len) {
2405                                 pq_p->resp_addr = resp_addr;
2406                                 pq_p->audit[1] |= FP_RESPADDRCOPIED;
2407                                 memcpy(pq_p->resp_buff, buff, buff_len);
2408                                 pq_p->audit[1] |= FP_RESPBUFFCOPIED;
2409                         }
2410                         break;
2411                 case REC_OPERAND_INV:
2412                 case REC_OPERAND_SIZE:
2413                 case REC_EVEN_MOD:
2414                 case REC_INVALID_PAD:
2415                         PDEBUG("-EINVAL after application error %d\n", rc);
2416                         pq_p->retcode = -EINVAL;
2417                         pq_p->status[0] |= STAT_FAILED;
2418                         break;
2419                 case REC_USE_PCICA:
2420                         pq_p->retcode = -ERESTARTSYS;
2421                         pq_p->status[0] |= STAT_FAILED;
2422                         break;
2423                 case REC_NO_RESPONSE:
2424                 default:
2425                         if (z90crypt.mask.st_count > 1)
2426                                 pq_p->retcode = -ERESTARTSYS;
2427                         else
2428                                 pq_p->retcode = -ENODEV;
2429                         pq_p->status[0] |= STAT_FAILED;
2430                         break;
2431         }
2432         if ((pq_p->status[0] != STAT_FAILED) || (pq_p->retcode != -ERELEASED)) {
2433                 pq_p->audit[1] |= FP_AWAKENING;
2434                 atomic_set(&pq_p->alarmrung, 1);
2435                 wake_up(&pq_p->waitq);
2436         }
2437 }
2438
2439 /**
2440  * return TRUE if the work element should be removed from the queue
2441  */
2442 static inline int
2443 helper_receive_rc(int index, int *rc_p)
2444 {
2445         switch (*rc_p) {
2446         case 0:
2447         case REC_OPERAND_INV:
2448         case REC_OPERAND_SIZE:
2449         case REC_EVEN_MOD:
2450         case REC_INVALID_PAD:
2451         case REC_USE_PCICA:
2452                 break;
2453
2454         case REC_BUSY:
2455         case REC_NO_WORK:
2456         case REC_EMPTY:
2457         case REC_RETRY_DEV:
2458         case REC_FATAL_ERROR:
2459                 return 0;
2460
2461         case REC_NO_RESPONSE:
2462                 break;
2463
2464         default:
2465                 PRINTK("rc %d, device %d converted to REC_NO_RESPONSE\n",
2466                        *rc_p, SHRT2LONG(index));
2467                 *rc_p = REC_NO_RESPONSE;
2468                 break;
2469         }
2470         return 1;
2471 }
2472
2473 static inline void
2474 z90crypt_schedule_reader_timer(void)
2475 {
2476         if (timer_pending(&reader_timer))
2477                 return;
2478         if (mod_timer(&reader_timer, jiffies+(READERTIME*HZ/1000)) != 0)
2479                 PRINTK("Timer pending while modifying reader timer\n");
2480 }
2481
2482 static void
2483 z90crypt_reader_task(unsigned long ptr)
2484 {
2485         int workavail, index, rc, buff_len;
2486         unsigned char   psmid[8];
2487         unsigned char __user *resp_addr;
2488         static unsigned char buff[1024];
2489
2490         /**
2491          * we use workavail = 2 to ensure 2 passes with nothing dequeued before
2492          * exiting the loop. If (pendingq_count+requestq_count) == 0 after the
2493          * loop, there is no work remaining on the queues.
2494          */
2495         resp_addr = 0;
2496         workavail = 2;
2497         buff_len = 0;
2498         while (workavail) {
2499                 workavail--;
2500                 rc = 0;
2501                 spin_lock_irq(&queuespinlock);
2502                 memset(buff, 0x00, sizeof(buff));
2503
2504                 /* Dequeue once from each device in round robin. */
2505                 for (index = 0; index < z90crypt.mask.st_count; index++) {
2506                         PDEBUG("About to receive.\n");
2507                         rc = receive_from_crypto_device(SHRT2LONG(index),
2508                                                         psmid,
2509                                                         &buff_len,
2510                                                         buff,
2511                                                         &resp_addr);
2512                         PDEBUG("Dequeued: rc = %d.\n", rc);
2513
2514                         if (helper_receive_rc(index, &rc)) {
2515                                 if (rc != REC_NO_RESPONSE) {
2516                                         helper_send_work(index);
2517                                         workavail = 2;
2518                                 }
2519
2520                                 helper_handle_work_element(index, psmid, rc,
2521                                                            buff_len, buff,
2522                                                            resp_addr);
2523                         }
2524
2525                         if (rc == REC_FATAL_ERROR)
2526                                 PRINTKW("REC_FATAL_ERROR from device %d!\n",
2527                                         SHRT2LONG(index));
2528                 }
2529                 spin_unlock_irq(&queuespinlock);
2530         }
2531
2532         if (pendingq_count + requestq_count)
2533                 z90crypt_schedule_reader_timer();
2534 }
2535
2536 static inline void
2537 z90crypt_schedule_config_task(unsigned int expiration)
2538 {
2539         if (timer_pending(&config_timer))
2540                 return;
2541         if (mod_timer(&config_timer, jiffies+(expiration*HZ)) != 0)
2542                 PRINTK("Timer pending while modifying config timer\n");
2543 }
2544
2545 static void
2546 z90crypt_config_task(unsigned long ptr)
2547 {
2548         int rc;
2549
2550         PDEBUG("jiffies %ld\n", jiffies);
2551
2552         if ((rc = refresh_z90crypt(&z90crypt.cdx)))
2553                 PRINTK("Error %d detected in refresh_z90crypt.\n", rc);
2554         /* If return was fatal, don't bother reconfiguring */
2555         if ((rc != TSQ_FATAL_ERROR) && (rc != RSQ_FATAL_ERROR))
2556                 z90crypt_schedule_config_task(CONFIGTIME);
2557 }
2558
2559 static inline void
2560 z90crypt_schedule_cleanup_task(void)
2561 {
2562         if (timer_pending(&cleanup_timer))
2563                 return;
2564         if (mod_timer(&cleanup_timer, jiffies+(CLEANUPTIME*HZ)) != 0)
2565                 PRINTK("Timer pending while modifying cleanup timer\n");
2566 }
2567
2568 static inline void
2569 helper_drain_queues(void)
2570 {
2571         struct work_element *pq_p;
2572         struct list_head *lptr, *tptr;
2573
2574         list_for_each_safe(lptr, tptr, &pending_list) {
2575                 pq_p = list_entry(lptr, struct work_element, liste);
2576                 pq_p->retcode = -ENODEV;
2577                 pq_p->status[0] |= STAT_FAILED;
2578                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2579                                (struct caller *)pq_p->requestptr);
2580                 list_del_init(lptr);
2581                 pendingq_count--;
2582                 pq_p->audit[1] |= FP_NOTPENDING;
2583                 pq_p->audit[1] |= FP_AWAKENING;
2584                 atomic_set(&pq_p->alarmrung, 1);
2585                 wake_up(&pq_p->waitq);
2586         }
2587
2588         list_for_each_safe(lptr, tptr, &request_list) {
2589                 pq_p = list_entry(lptr, struct work_element, liste);
2590                 pq_p->retcode = -ENODEV;
2591                 pq_p->status[0] |= STAT_FAILED;
2592                 list_del_init(lptr);
2593                 requestq_count--;
2594                 pq_p->audit[1] |= FP_REMREQUEST;
2595                 pq_p->audit[1] |= FP_AWAKENING;
2596                 atomic_set(&pq_p->alarmrung, 1);
2597                 wake_up(&pq_p->waitq);
2598         }
2599 }
2600
2601 static inline void
2602 helper_timeout_requests(void)
2603 {
2604         struct work_element *pq_p;
2605         struct list_head *lptr, *tptr;
2606         long timelimit;
2607
2608         timelimit = jiffies - (CLEANUPTIME * HZ);
2609         /* The list is in strict chronological order */
2610         list_for_each_safe(lptr, tptr, &pending_list) {
2611                 pq_p = list_entry(lptr, struct work_element, liste);
2612                 if (pq_p->requestsent >= timelimit)
2613                         break;
2614                 PRINTKW("Purging(PQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2615                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2616                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2617                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2618                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2619                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2620                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2621                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2622                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2623                 pq_p->retcode = -ETIMEOUT;
2624                 pq_p->status[0] |= STAT_FAILED;
2625                 /* get this off any caller queue it may be on */
2626                 unbuild_caller(LONG2DEVPTR(pq_p->devindex),
2627                                (struct caller *) pq_p->requestptr);
2628                 list_del_init(lptr);
2629                 pendingq_count--;
2630                 pq_p->audit[1] |= FP_TIMEDOUT;
2631                 pq_p->audit[1] |= FP_NOTPENDING;
2632                 pq_p->audit[1] |= FP_AWAKENING;
2633                 atomic_set(&pq_p->alarmrung, 1);
2634                 wake_up(&pq_p->waitq);
2635         }
2636
2637         /**
2638          * If pending count is zero, items left on the request queue may
2639          * never be processed.
2640          */
2641         if (pendingq_count <= 0) {
2642                 list_for_each_safe(lptr, tptr, &request_list) {
2643                         pq_p = list_entry(lptr, struct work_element, liste);
2644                         if (pq_p->requestsent >= timelimit)
2645                                 break;
2646                 PRINTKW("Purging(RQ) PSMID %02X%02X%02X%02X%02X%02X%02X%02X\n",
2647                        ((struct caller *)pq_p->requestptr)->caller_id[0],
2648                        ((struct caller *)pq_p->requestptr)->caller_id[1],
2649                        ((struct caller *)pq_p->requestptr)->caller_id[2],
2650                        ((struct caller *)pq_p->requestptr)->caller_id[3],
2651                        ((struct caller *)pq_p->requestptr)->caller_id[4],
2652                        ((struct caller *)pq_p->requestptr)->caller_id[5],
2653                        ((struct caller *)pq_p->requestptr)->caller_id[6],
2654                        ((struct caller *)pq_p->requestptr)->caller_id[7]);
2655                         pq_p->retcode = -ETIMEOUT;
2656                         pq_p->status[0] |= STAT_FAILED;
2657                         list_del_init(lptr);
2658                         requestq_count--;
2659                         pq_p->audit[1] |= FP_TIMEDOUT;
2660                         pq_p->audit[1] |= FP_REMREQUEST;
2661                         pq_p->audit[1] |= FP_AWAKENING;
2662                         atomic_set(&pq_p->alarmrung, 1);
2663                         wake_up(&pq_p->waitq);
2664                 }
2665         }
2666 }
2667
2668 static void
2669 z90crypt_cleanup_task(unsigned long ptr)
2670 {
2671         PDEBUG("jiffies %ld\n", jiffies);
2672         spin_lock_irq(&queuespinlock);
2673         if (z90crypt.mask.st_count <= 0) // no devices!
2674                 helper_drain_queues();
2675         else
2676                 helper_timeout_requests();
2677         spin_unlock_irq(&queuespinlock);
2678         z90crypt_schedule_cleanup_task();
2679 }
2680
2681 static void
2682 z90crypt_schedule_reader_task(unsigned long ptr)
2683 {
2684         tasklet_schedule(&reader_tasklet);
2685 }
2686
2687 /**
2688  * Lowlevel Functions:
2689  *
2690  *   create_z90crypt:  creates and initializes basic data structures
2691  *   refresh_z90crypt:  re-initializes basic data structures
2692  *   find_crypto_devices: returns a count and mask of hardware status
2693  *   create_crypto_device:  builds the descriptor for a device
2694  *   destroy_crypto_device:  unallocates the descriptor for a device
2695  *   destroy_z90crypt:  drains all work, unallocates structs
2696  */
2697
2698 /**
2699  * build the z90crypt root structure using the given domain index
2700  */
2701 static int
2702 create_z90crypt(int *cdx_p)
2703 {
2704         struct hdware_block *hdware_blk_p;
2705
2706         memset(&z90crypt, 0x00, sizeof(struct z90crypt));
2707         z90crypt.domain_established = 0;
2708         z90crypt.len = sizeof(struct z90crypt);
2709         z90crypt.max_count = Z90CRYPT_NUM_DEVS;
2710         z90crypt.cdx = *cdx_p;
2711
2712         hdware_blk_p = (struct hdware_block *)
2713                 kmalloc(sizeof(struct hdware_block), GFP_ATOMIC);
2714         if (!hdware_blk_p) {
2715                 PDEBUG("kmalloc for hardware block failed\n");
2716                 return ENOMEM;
2717         }
2718         memset(hdware_blk_p, 0x00, sizeof(struct hdware_block));
2719         z90crypt.hdware_info = hdware_blk_p;
2720
2721         return 0;
2722 }
2723
2724 static inline int
2725 helper_scan_devices(int cdx_array[16], int *cdx_p, int *correct_cdx_found)
2726 {
2727         enum hdstat hd_stat;
2728         int q_depth, dev_type;
2729         int indx, chkdom, numdomains;
2730
2731         q_depth = dev_type = numdomains = 0;
2732         for (chkdom = 0; chkdom <= 15; cdx_array[chkdom++] = -1);
2733         for (indx = 0; indx < z90crypt.max_count; indx++) {
2734                 hd_stat = HD_NOT_THERE;
2735                 numdomains = 0;
2736                 for (chkdom = 0; chkdom <= 15; chkdom++) {
2737                         hd_stat = query_online(indx, chkdom, MAX_RESET,
2738                                                &q_depth, &dev_type);
2739                         if (hd_stat == HD_TSQ_EXCEPTION) {
2740                                 z90crypt.terminating = 1;
2741                                 PRINTKC("exception taken!\n");
2742                                 break;
2743                         }
2744                         if (hd_stat == HD_ONLINE) {
2745                                 cdx_array[numdomains++] = chkdom;
2746                                 if (*cdx_p == chkdom) {
2747                                         *correct_cdx_found  = 1;
2748                                         break;
2749                                 }
2750                         }
2751                 }
2752                 if ((*correct_cdx_found == 1) || (numdomains != 0))
2753                         break;
2754                 if (z90crypt.terminating)
2755                         break;
2756         }
2757         return numdomains;
2758 }
2759
2760 static inline int
2761 probe_crypto_domain(int *cdx_p)
2762 {
2763         int cdx_array[16];
2764         char cdx_array_text[53], temp[5];
2765         int correct_cdx_found, numdomains;
2766
2767         correct_cdx_found = 0;
2768         numdomains = helper_scan_devices(cdx_array, cdx_p, &correct_cdx_found);
2769
2770         if (z90crypt.terminating)
2771                 return TSQ_FATAL_ERROR;
2772
2773         if (correct_cdx_found)
2774                 return 0;
2775
2776         if (numdomains == 0) {
2777                 PRINTKW("Unable to find crypto domain: No devices found\n");
2778                 return Z90C_NO_DEVICES;
2779         }
2780
2781         if (numdomains == 1) {
2782                 if (*cdx_p == -1) {
2783                         *cdx_p = cdx_array[0];
2784                         return 0;
2785                 }
2786                 PRINTKW("incorrect domain: specified = %d, found = %d\n",
2787                        *cdx_p, cdx_array[0]);
2788                 return Z90C_INCORRECT_DOMAIN;
2789         }
2790
2791         numdomains--;
2792         sprintf(cdx_array_text, "%d", cdx_array[numdomains]);
2793         while (numdomains) {
2794                 numdomains--;
2795                 sprintf(temp, ", %d", cdx_array[numdomains]);
2796                 strcat(cdx_array_text, temp);
2797         }
2798
2799         PRINTKW("ambiguous domain detected: specified = %d, found array = %s\n",
2800                 *cdx_p, cdx_array_text);
2801         return Z90C_AMBIGUOUS_DOMAIN;
2802 }
2803
2804 static int
2805 refresh_z90crypt(int *cdx_p)
2806 {
2807         int i, j, indx, rv;
2808         static struct status local_mask;
2809         struct device *devPtr;
2810         unsigned char oldStat, newStat;
2811         int return_unchanged;
2812
2813         if (z90crypt.len != sizeof(z90crypt))
2814                 return ENOTINIT;
2815         if (z90crypt.terminating)
2816                 return TSQ_FATAL_ERROR;
2817         rv = 0;
2818         if (!z90crypt.hdware_info->hdware_mask.st_count &&
2819             !z90crypt.domain_established) {
2820                 rv = probe_crypto_domain(cdx_p);
2821                 if (z90crypt.terminating)
2822                         return TSQ_FATAL_ERROR;
2823                 if (rv == Z90C_NO_DEVICES)
2824                         return 0; // try later
2825                 if (rv)
2826                         return rv;
2827                 z90crypt.cdx = *cdx_p;
2828                 z90crypt.domain_established = 1;
2829         }
2830         rv = find_crypto_devices(&local_mask);
2831         if (rv) {
2832                 PRINTK("find crypto devices returned %d\n", rv);
2833                 return rv;
2834         }
2835         if (!memcmp(&local_mask, &z90crypt.hdware_info->hdware_mask,
2836                     sizeof(struct status))) {
2837                 return_unchanged = 1;
2838                 for (i = 0; i < Z90CRYPT_NUM_TYPES; i++) {
2839                         /**
2840                          * Check for disabled cards.  If any device is marked
2841                          * disabled, destroy it.
2842                          */
2843                         for (j = 0;
2844                              j < z90crypt.hdware_info->type_mask[i].st_count;
2845                              j++) {
2846                                 indx = z90crypt.hdware_info->type_x_addr[i].
2847                                                                 device_index[j];
2848                                 devPtr = z90crypt.device_p[indx];
2849                                 if (devPtr && devPtr->disabled) {
2850                                         local_mask.st_mask[indx] = HD_NOT_THERE;
2851                                         return_unchanged = 0;
2852                                 }
2853                         }
2854                 }
2855                 if (return_unchanged == 1)
2856                         return 0;
2857         }
2858
2859         spin_lock_irq(&queuespinlock);
2860         for (i = 0; i < z90crypt.max_count; i++) {
2861                 oldStat = z90crypt.hdware_info->hdware_mask.st_mask[i];
2862                 newStat = local_mask.st_mask[i];
2863                 if ((oldStat == HD_ONLINE) && (newStat != HD_ONLINE))
2864                         destroy_crypto_device(i);
2865                 else if ((oldStat != HD_ONLINE) && (newStat == HD_ONLINE)) {
2866                         rv = create_crypto_device(i);
2867                         if (rv >= REC_FATAL_ERROR)
2868                                 return rv;
2869                         if (rv != 0) {
2870                                 local_mask.st_mask[i] = HD_NOT_THERE;
2871                                 local_mask.st_count--;
2872                         }
2873                 }
2874         }
2875         memcpy(z90crypt.hdware_info->hdware_mask.st_mask, local_mask.st_mask,
2876                sizeof(local_mask.st_mask));
2877         z90crypt.hdware_info->hdware_mask.st_count = local_mask.st_count;
2878         z90crypt.hdware_info->hdware_mask.disabled_count =
2879                                                       local_mask.disabled_count;
2880         refresh_index_array(&z90crypt.mask, &z90crypt.overall_device_x);
2881         for (i = 0; i < Z90CRYPT_NUM_TYPES; i++)
2882                 refresh_index_array(&(z90crypt.hdware_info->type_mask[i]),
2883                                     &(z90crypt.hdware_info->type_x_addr[i]));
2884         spin_unlock_irq(&queuespinlock);
2885
2886         return rv;
2887 }
2888
2889 static int
2890 find_crypto_devices(struct status *deviceMask)
2891 {
2892         int i, q_depth, dev_type;
2893         enum hdstat hd_stat;
2894
2895         deviceMask->st_count = 0;
2896         deviceMask->disabled_count = 0;
2897         deviceMask->user_disabled_count = 0;
2898
2899         for (i = 0; i < z90crypt.max_count; i++) {
2900                 hd_stat = query_online(i, z90crypt.cdx, MAX_RESET, &q_depth,
2901                                        &dev_type);
2902                 if (hd_stat == HD_TSQ_EXCEPTION) {
2903                         z90crypt.terminating = 1;
2904                         PRINTKC("Exception during probe for crypto devices\n");
2905                         return TSQ_FATAL_ERROR;
2906                 }
2907                 deviceMask->st_mask[i] = hd_stat;
2908                 if (hd_stat == HD_ONLINE) {
2909                         PDEBUG("Got an online crypto!: %d\n", i);
2910                         PDEBUG("Got a queue depth of %d\n", q_depth);
2911                         PDEBUG("Got a device type of %d\n", dev_type);
2912                         if (q_depth <= 0)
2913                                 return TSQ_FATAL_ERROR;
2914                         deviceMask->st_count++;
2915                         z90crypt.q_depth_array[i] = q_depth;
2916                         z90crypt.dev_type_array[i] = dev_type;
2917                 }
2918         }
2919
2920         return 0;
2921 }
2922
2923 static int
2924 refresh_index_array(struct status *status_str, struct device_x *index_array)
2925 {
2926         int i, count;
2927         enum devstat stat;
2928
2929         i = -1;
2930         count = 0;
2931         do {
2932                 stat = status_str->st_mask[++i];
2933                 if (stat == DEV_ONLINE)
2934                         index_array->device_index[count++] = i;
2935         } while ((i < Z90CRYPT_NUM_DEVS) && (count < status_str->st_count));
2936
2937         return count;
2938 }
2939
2940 static int
2941 create_crypto_device(int index)
2942 {
2943         int rv, devstat, total_size;
2944         struct device *dev_ptr;
2945         struct status *type_str_p;
2946         int deviceType;
2947
2948         dev_ptr = z90crypt.device_p[index];
2949         if (!dev_ptr) {
2950                 total_size = sizeof(struct device) +
2951                              z90crypt.q_depth_array[index] * sizeof(int);
2952
2953                 dev_ptr = (struct device *) kmalloc(total_size, GFP_ATOMIC);
2954                 if (!dev_ptr) {
2955                         PRINTK("kmalloc device %d failed\n", index);
2956                         return ENOMEM;
2957                 }
2958                 memset(dev_ptr, 0, total_size);
2959                 dev_ptr->dev_resp_p = kmalloc(MAX_RESPONSE_SIZE, GFP_ATOMIC);
2960                 if (!dev_ptr->dev_resp_p) {
2961                         kfree(dev_ptr);
2962                         PRINTK("kmalloc device %d rec buffer failed\n", index);
2963                         return ENOMEM;
2964                 }
2965                 dev_ptr->dev_resp_l = MAX_RESPONSE_SIZE;
2966                 INIT_LIST_HEAD(&(dev_ptr->dev_caller_list));
2967         }
2968
2969         devstat = reset_device(index, z90crypt.cdx, MAX_RESET);
2970         if (devstat == DEV_RSQ_EXCEPTION) {
2971                 PRINTK("exception during reset device %d\n", index);
2972                 kfree(dev_ptr->dev_resp_p);
2973                 kfree(dev_ptr);
2974                 return RSQ_FATAL_ERROR;
2975         }
2976         if (devstat == DEV_ONLINE) {
2977                 dev_ptr->dev_self_x = index;
2978                 dev_ptr->dev_type = z90crypt.dev_type_array[index];
2979                 if (dev_ptr->dev_type == NILDEV) {
2980                         rv = probe_device_type(dev_ptr);
2981                         if (rv) {
2982                                 PRINTK("rv = %d from probe_device_type %d\n",
2983                                        rv, index);
2984                                 kfree(dev_ptr->dev_resp_p);
2985                                 kfree(dev_ptr);
2986                                 return rv;
2987                         }
2988                 }
2989                 if (dev_ptr->dev_type == PCIXCC_UNK) {
2990                         rv = probe_PCIXCC_type(dev_ptr);
2991                         if (rv) {
2992                                 PRINTK("rv = %d from probe_PCIXCC_type %d\n",
2993                                        rv, index);
2994                                 kfree(dev_ptr->dev_resp_p);
2995                                 kfree(dev_ptr);
2996                                 return rv;
2997                         }
2998                 }
2999                 deviceType = dev_ptr->dev_type;
3000                 z90crypt.dev_type_array[index] = deviceType;
3001                 if (deviceType == PCICA)
3002                         z90crypt.hdware_info->device_type_array[index] = 1;
3003                 else if (deviceType == PCICC)
3004                         z90crypt.hdware_info->device_type_array[index] = 2;
3005                 else if (deviceType == PCIXCC_MCL2)
3006                         z90crypt.hdware_info->device_type_array[index] = 3;
3007                 else if (deviceType == PCIXCC_MCL3)
3008                         z90crypt.hdware_info->device_type_array[index] = 4;
3009                 else if (deviceType == CEX2C)
3010                         z90crypt.hdware_info->device_type_array[index] = 5;
3011                 else
3012                         z90crypt.hdware_info->device_type_array[index] = -1;
3013         }
3014
3015         /**
3016          * 'q_depth' returned by the hardware is one less than
3017          * the actual depth
3018          */
3019         dev_ptr->dev_q_depth = z90crypt.q_depth_array[index];
3020         dev_ptr->dev_type = z90crypt.dev_type_array[index];
3021         dev_ptr->dev_stat = devstat;
3022         dev_ptr->disabled = 0;
3023         z90crypt.device_p[index] = dev_ptr;
3024
3025         if (devstat == DEV_ONLINE) {
3026                 if (z90crypt.mask.st_mask[index] != DEV_ONLINE) {
3027                         z90crypt.mask.st_mask[index] = DEV_ONLINE;
3028                         z90crypt.mask.st_count++;
3029                 }
3030                 deviceType = dev_ptr->dev_type;
3031                 type_str_p = &z90crypt.hdware_info->type_mask[deviceType];
3032                 if (type_str_p->st_mask[index] != DEV_ONLINE) {
3033                         type_str_p->st_mask[index] = DEV_ONLINE;
3034                         type_str_p->st_count++;
3035                 }
3036         }
3037
3038         return 0;
3039 }
3040
3041 static int
3042 destroy_crypto_device(int index)
3043 {
3044         struct device *dev_ptr;
3045         int t, disabledFlag;
3046
3047         dev_ptr = z90crypt.device_p[index];
3048
3049         /* remember device type; get rid of device struct */
3050         if (dev_ptr) {
3051                 disabledFlag = dev_ptr->disabled;
3052                 t = dev_ptr->dev_type;
3053                 kfree(dev_ptr->dev_resp_p);
3054                 kfree(dev_ptr);
3055         } else {
3056                 disabledFlag = 0;
3057                 t = -1;
3058         }
3059         z90crypt.device_p[index] = 0;
3060
3061         /* if the type is valid, remove the device from the type_mask */
3062         if ((t != -1) && z90crypt.hdware_info->type_mask[t].st_mask[index]) {
3063                   z90crypt.hdware_info->type_mask[t].st_mask[index] = 0x00;
3064                   z90crypt.hdware_info->type_mask[t].st_count--;
3065                   if (disabledFlag == 1)
3066                         z90crypt.hdware_info->type_mask[t].disabled_count--;
3067         }
3068         if (z90crypt.mask.st_mask[index] != DEV_GONE) {
3069                 z90crypt.mask.st_mask[index] = DEV_GONE;
3070                 z90crypt.mask.st_count--;
3071         }
3072         z90crypt.hdware_info->device_type_array[index] = 0;
3073
3074         return 0;
3075 }
3076
3077 static void
3078 destroy_z90crypt(void)
3079 {
3080         int i;
3081
3082         for (i = 0; i < z90crypt.max_count; i++)
3083                 if (z90crypt.device_p[i])
3084                         destroy_crypto_device(i);
3085         kfree(z90crypt.hdware_info);
3086         memset((void *)&z90crypt, 0, sizeof(z90crypt));
3087 }
3088
3089 static unsigned char static_testmsg[384] = {
3090 0x00,0x00,0x00,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x00,0x06,0x00,0x00,
3091 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x58,
3092 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x00,0x43,0x43,
3093 0x41,0x2d,0x41,0x50,0x50,0x4c,0x20,0x20,0x20,0x01,0x01,0x01,0x00,0x00,0x00,0x00,
3094 0x50,0x4b,0x00,0x00,0x00,0x00,0x01,0x1c,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3095 0x00,0x00,0x00,0x00,0x00,0x00,0x05,0xb8,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3096 0x00,0x00,0x00,0x00,0x70,0x00,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x54,0x32,
3097 0x01,0x00,0xa0,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3098 0xb8,0x05,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3099 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3100 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3101 0x00,0x00,0x00,0x00,0x00,0x00,0x0a,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3102 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x08,0x00,0x49,0x43,0x53,0x46,
3103 0x20,0x20,0x20,0x20,0x50,0x4b,0x0a,0x00,0x50,0x4b,0x43,0x53,0x2d,0x31,0x2e,0x32,
3104 0x37,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,
3105 0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,
3106 0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x44,0x55,0x66,
3107 0x77,0x88,0x99,0x00,0x11,0x22,0x33,0x5d,0x00,0x5b,0x00,0x77,0x88,0x1e,0x00,0x00,
3108 0x57,0x00,0x00,0x00,0x00,0x04,0x00,0x00,0x4f,0x00,0x00,0x00,0x03,0x02,0x00,0x00,
3109 0x40,0x01,0x00,0x01,0xce,0x02,0x68,0x2d,0x5f,0xa9,0xde,0x0c,0xf6,0xd2,0x7b,0x58,
3110 0x4b,0xf9,0x28,0x68,0x3d,0xb4,0xf4,0xef,0x78,0xd5,0xbe,0x66,0x63,0x42,0xef,0xf8,
3111 0xfd,0xa4,0xf8,0xb0,0x8e,0x29,0xc2,0xc9,0x2e,0xd8,0x45,0xb8,0x53,0x8c,0x6f,0x4e,
3112 0x72,0x8f,0x6c,0x04,0x9c,0x88,0xfc,0x1e,0xc5,0x83,0x55,0x57,0xf7,0xdd,0xfd,0x4f,
3113 0x11,0x36,0x95,0x5d,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00
3114 };
3115
3116 static int
3117 probe_device_type(struct device *devPtr)
3118 {
3119         int rv, dv, i, index, length;
3120         unsigned char psmid[8];
3121         static unsigned char loc_testmsg[sizeof(static_testmsg)];
3122
3123         index = devPtr->dev_self_x;
3124         rv = 0;
3125         do {
3126                 memcpy(loc_testmsg, static_testmsg, sizeof(static_testmsg));
3127                 length = sizeof(static_testmsg) - 24;
3128                 /* the -24 allows for the header */
3129                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3130                 if (dv) {
3131                         PDEBUG("dv returned by send during probe: %d\n", dv);
3132                         if (dv == DEV_SEN_EXCEPTION) {
3133                                 rv = SEN_FATAL_ERROR;
3134                                 PRINTKC("exception in send to AP %d\n", index);
3135                                 break;
3136                         }
3137                         PDEBUG("return value from send_to_AP: %d\n", rv);
3138                         switch (dv) {
3139                         case DEV_GONE:
3140                                 PDEBUG("dev %d not available\n", index);
3141                                 rv = SEN_NOT_AVAIL;
3142                                 break;
3143                         case DEV_ONLINE:
3144                                 rv = 0;
3145                                 break;
3146                         case DEV_EMPTY:
3147                                 rv = SEN_NOT_AVAIL;
3148                                 break;
3149                         case DEV_NO_WORK:
3150                                 rv = SEN_FATAL_ERROR;
3151                                 break;
3152                         case DEV_BAD_MESSAGE:
3153                                 rv = SEN_USER_ERROR;
3154                                 break;
3155                         case DEV_QUEUE_FULL:
3156                                 rv = SEN_QUEUE_FULL;
3157                                 break;
3158                         default:
3159                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3160                                 rv = SEN_NOT_AVAIL;
3161                                 break;
3162                         }
3163                 }
3164
3165                 if (rv)
3166                         break;
3167
3168                 for (i = 0; i < 6; i++) {
3169                         mdelay(300);
3170                         dv = receive_from_AP(index, z90crypt.cdx,
3171                                              devPtr->dev_resp_l,
3172                                              devPtr->dev_resp_p, psmid);
3173                         PDEBUG("dv returned by DQ = %d\n", dv);
3174                         if (dv == DEV_REC_EXCEPTION) {
3175                                 rv = REC_FATAL_ERROR;
3176                                 PRINTKC("exception in dequeue %d\n",
3177                                         index);
3178                                 break;
3179                         }
3180                         switch (dv) {
3181                         case DEV_ONLINE:
3182                                 rv = 0;
3183                                 break;
3184                         case DEV_EMPTY:
3185                                 rv = REC_EMPTY;
3186                                 break;
3187                         case DEV_NO_WORK:
3188                                 rv = REC_NO_WORK;
3189                                 break;
3190                         case DEV_BAD_MESSAGE:
3191                         case DEV_GONE:
3192                         default:
3193                                 rv = REC_NO_RESPONSE;
3194                                 break;
3195                         }
3196                         if ((rv != 0) && (rv != REC_NO_WORK))
3197                                 break;
3198                         if (rv == 0)
3199                                 break;
3200                 }
3201                 if (rv)
3202                         break;
3203                 rv = (devPtr->dev_resp_p[0] == 0x00) &&
3204                      (devPtr->dev_resp_p[1] == 0x86);
3205                 if (rv)
3206                         devPtr->dev_type = PCICC;
3207                 else
3208                         devPtr->dev_type = PCICA;
3209                 rv = 0;
3210         } while (0);
3211         /* In a general error case, the card is not marked online */
3212         return rv;
3213 }
3214
3215 static unsigned char MCL3_testmsg[] = {
3216 0x00,0x00,0x00,0x00,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,0xEE,
3217 0x00,0x06,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3218 0x00,0x00,0x00,0x58,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3219 0x43,0x41,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3220 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x00,0x00,0x00,0x01,0xC4,0x00,0x00,0x00,0x00,
3221 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,0x00,0x00,0x00,0x00,
3222 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xDC,0x02,0x00,0x00,0x00,0x54,0x32,
3223 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0xE8,0x00,0x00,0x00,0x00,0x00,0x00,0x07,0x24,
3224 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3225 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3226 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3227 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3228 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3229 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3230 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3231 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3232 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3233 0x00,0x00,0x00,0x04,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3234 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3235 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
3236 0x00,0x00,0x00,0x00,0x50,0x4B,0x00,0x0A,0x4D,0x52,0x50,0x20,0x20,0x20,0x20,0x20,
3237 0x00,0x42,0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,0x0B,0x0C,0x0D,
3238 0x0E,0x0F,0x00,0x11,0x22,0x33,0x44,0x55,0x66,0x77,0x88,0x99,0xAA,0xBB,0xCC,0xDD,
3239 0xEE,0xFF,0xFF,0xEE,0xDD,0xCC,0xBB,0xAA,0x99,0x88,0x77,0x66,0x55,0x44,0x33,0x22,
3240 0x11,0x00,0x01,0x23,0x45,0x67,0x89,0xAB,0xCD,0xEF,0xFE,0xDC,0xBA,0x98,0x76,0x54,
3241 0x32,0x10,0x00,0x9A,0x00,0x98,0x00,0x00,0x1E,0x00,0x00,0x94,0x00,0x00,0x00,0x00,
3242 0x04,0x00,0x00,0x8C,0x00,0x00,0x00,0x40,0x02,0x00,0x00,0x40,0xBA,0xE8,0x23,0x3C,
3243 0x75,0xF3,0x91,0x61,0xD6,0x73,0x39,0xCF,0x7B,0x6D,0x8E,0x61,0x97,0x63,0x9E,0xD9,
3244 0x60,0x55,0xD6,0xC7,0xEF,0xF8,0x1E,0x63,0x95,0x17,0xCC,0x28,0x45,0x60,0x11,0xC5,
3245 0xC4,0x4E,0x66,0xC6,0xE6,0xC3,0xDE,0x8A,0x19,0x30,0xCF,0x0E,0xD7,0xAA,0xDB,0x01,
3246 0xD8,0x00,0xBB,0x8F,0x39,0x9F,0x64,0x28,0xF5,0x7A,0x77,0x49,0xCC,0x6B,0xA3,0x91,
3247 0x97,0x70,0xE7,0x60,0x1E,0x39,0xE1,0xE5,0x33,0xE1,0x15,0x63,0x69,0x08,0x80,0x4C,
3248 0x67,0xC4,0x41,0x8F,0x48,0xDF,0x26,0x98,0xF1,0xD5,0x8D,0x88,0xD9,0x6A,0xA4,0x96,
3249 0xC5,0x84,0xD9,0x30,0x49,0x67,0x7D,0x19,0xB1,0xB3,0x45,0x4D,0xB2,0x53,0x9A,0x47,
3250 0x3C,0x7C,0x55,0xBF,0xCC,0x85,0x00,0x36,0xF1,0x3D,0x93,0x53
3251 };
3252
3253 static int
3254 probe_PCIXCC_type(struct device *devPtr)
3255 {
3256         int rv, dv, i, index, length;
3257         unsigned char psmid[8];
3258         static unsigned char loc_testmsg[548];
3259         struct CPRBX *cprbx_p;
3260
3261         index = devPtr->dev_self_x;
3262         rv = 0;
3263         do {
3264                 memcpy(loc_testmsg, MCL3_testmsg, sizeof(MCL3_testmsg));
3265                 length = sizeof(MCL3_testmsg) - 0x0C;
3266                 dv = send_to_AP(index, z90crypt.cdx, length, loc_testmsg);
3267                 if (dv) {
3268                         PDEBUG("dv returned = %d\n", dv);
3269                         if (dv == DEV_SEN_EXCEPTION) {
3270                                 rv = SEN_FATAL_ERROR;
3271                                 PRINTKC("exception in send to AP %d\n", index);
3272                                 break;
3273                         }
3274                         PDEBUG("return value from send_to_AP: %d\n", rv);
3275                         switch (dv) {
3276                         case DEV_GONE:
3277                                 PDEBUG("dev %d not available\n", index);
3278                                 rv = SEN_NOT_AVAIL;
3279                                 break;
3280                         case DEV_ONLINE:
3281                                 rv = 0;
3282                                 break;
3283                         case DEV_EMPTY:
3284                                 rv = SEN_NOT_AVAIL;
3285                                 break;
3286                         case DEV_NO_WORK:
3287                                 rv = SEN_FATAL_ERROR;
3288                                 break;
3289                         case DEV_BAD_MESSAGE:
3290                                 rv = SEN_USER_ERROR;
3291                                 break;
3292                         case DEV_QUEUE_FULL:
3293                                 rv = SEN_QUEUE_FULL;
3294                                 break;
3295                         default:
3296                                 PRINTK("unknown dv=%d for dev %d\n", dv, index);
3297                                 rv = SEN_NOT_AVAIL;
3298                                 break;
3299                         }
3300                 }
3301
3302                 if (rv)
3303                         break;
3304
3305                 for (i = 0; i < 6; i++) {
3306                         mdelay(300);
3307                         dv = receive_from_AP(index, z90crypt.cdx,
3308                                              devPtr->dev_resp_l,
3309                                              devPtr->dev_resp_p, psmid);
3310                         PDEBUG("dv returned by DQ = %d\n", dv);
3311                         if (dv == DEV_REC_EXCEPTION) {
3312                                 rv = REC_FATAL_ERROR;
3313                                 PRINTKC("exception in dequeue %d\n",
3314                                         index);
3315                                 break;
3316                         }
3317                         switch (dv) {
3318                         case DEV_ONLINE:
3319                                 rv = 0;
3320                                 break;
3321                         case DEV_EMPTY:
3322                                 rv = REC_EMPTY;
3323                                 break;
3324                         case DEV_NO_WORK:
3325                                 rv = REC_NO_WORK;
3326                                 break;
3327                         case DEV_BAD_MESSAGE:
3328                         case DEV_GONE:
3329                         default:
3330                                 rv = REC_NO_RESPONSE;
3331                                 break;
3332                         }
3333                         if ((rv != 0) && (rv != REC_NO_WORK))
3334                                 break;
3335                         if (rv == 0)
3336                                 break;
3337                 }
3338                 if (rv)
3339                         break;
3340                 cprbx_p = (struct CPRBX *) (devPtr->dev_resp_p + 48);
3341                 if ((cprbx_p->ccp_rtcode == 8) && (cprbx_p->ccp_rscode == 33)) {
3342                         devPtr->dev_type = PCIXCC_MCL2;
3343                         PDEBUG("device %d is MCL2\n", index);
3344                 } else {
3345                         devPtr->dev_type = PCIXCC_MCL3;
3346                         PDEBUG("device %d is MCL3\n", index);
3347                 }
3348         } while (0);
3349         /* In a general error case, the card is not marked online */
3350         return rv;
3351 }
3352
3353 module_init(z90crypt_init_module);
3354 module_exit(z90crypt_cleanup_module);