Merge branch 'tj-percpu' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/misc...
[linux-2.6] / drivers / pci / dmar.c
1 /*
2  * Copyright (c) 2006, Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, write to the Free Software Foundation, Inc., 59 Temple
15  * Place - Suite 330, Boston, MA 02111-1307 USA.
16  *
17  * Copyright (C) 2006-2008 Intel Corporation
18  * Author: Ashok Raj <ashok.raj@intel.com>
19  * Author: Shaohua Li <shaohua.li@intel.com>
20  * Author: Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
21  *
22  * This file implements early detection/parsing of Remapping Devices
23  * reported to OS through BIOS via DMA remapping reporting (DMAR) ACPI
24  * tables.
25  *
26  * These routines are used by both DMA-remapping and Interrupt-remapping
27  */
28
29 #include <linux/pci.h>
30 #include <linux/dmar.h>
31 #include <linux/iova.h>
32 #include <linux/intel-iommu.h>
33 #include <linux/timer.h>
34
35 #undef PREFIX
36 #define PREFIX "DMAR:"
37
38 /* No locks are needed as DMA remapping hardware unit
39  * list is constructed at boot time and hotplug of
40  * these units are not supported by the architecture.
41  */
42 LIST_HEAD(dmar_drhd_units);
43
44 static struct acpi_table_header * __initdata dmar_tbl;
45 static acpi_size dmar_tbl_size;
46
47 static void __init dmar_register_drhd_unit(struct dmar_drhd_unit *drhd)
48 {
49         /*
50          * add INCLUDE_ALL at the tail, so scan the list will find it at
51          * the very end.
52          */
53         if (drhd->include_all)
54                 list_add_tail(&drhd->list, &dmar_drhd_units);
55         else
56                 list_add(&drhd->list, &dmar_drhd_units);
57 }
58
59 static int __init dmar_parse_one_dev_scope(struct acpi_dmar_device_scope *scope,
60                                            struct pci_dev **dev, u16 segment)
61 {
62         struct pci_bus *bus;
63         struct pci_dev *pdev = NULL;
64         struct acpi_dmar_pci_path *path;
65         int count;
66
67         bus = pci_find_bus(segment, scope->bus);
68         path = (struct acpi_dmar_pci_path *)(scope + 1);
69         count = (scope->length - sizeof(struct acpi_dmar_device_scope))
70                 / sizeof(struct acpi_dmar_pci_path);
71
72         while (count) {
73                 if (pdev)
74                         pci_dev_put(pdev);
75                 /*
76                  * Some BIOSes list non-exist devices in DMAR table, just
77                  * ignore it
78                  */
79                 if (!bus) {
80                         printk(KERN_WARNING
81                         PREFIX "Device scope bus [%d] not found\n",
82                         scope->bus);
83                         break;
84                 }
85                 pdev = pci_get_slot(bus, PCI_DEVFN(path->dev, path->fn));
86                 if (!pdev) {
87                         printk(KERN_WARNING PREFIX
88                         "Device scope device [%04x:%02x:%02x.%02x] not found\n",
89                                 segment, bus->number, path->dev, path->fn);
90                         break;
91                 }
92                 path ++;
93                 count --;
94                 bus = pdev->subordinate;
95         }
96         if (!pdev) {
97                 printk(KERN_WARNING PREFIX
98                 "Device scope device [%04x:%02x:%02x.%02x] not found\n",
99                 segment, scope->bus, path->dev, path->fn);
100                 *dev = NULL;
101                 return 0;
102         }
103         if ((scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT && \
104                         pdev->subordinate) || (scope->entry_type == \
105                         ACPI_DMAR_SCOPE_TYPE_BRIDGE && !pdev->subordinate)) {
106                 pci_dev_put(pdev);
107                 printk(KERN_WARNING PREFIX
108                         "Device scope type does not match for %s\n",
109                          pci_name(pdev));
110                 return -EINVAL;
111         }
112         *dev = pdev;
113         return 0;
114 }
115
116 static int __init dmar_parse_dev_scope(void *start, void *end, int *cnt,
117                                        struct pci_dev ***devices, u16 segment)
118 {
119         struct acpi_dmar_device_scope *scope;
120         void * tmp = start;
121         int index;
122         int ret;
123
124         *cnt = 0;
125         while (start < end) {
126                 scope = start;
127                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
128                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE)
129                         (*cnt)++;
130                 else
131                         printk(KERN_WARNING PREFIX
132                                 "Unsupported device scope\n");
133                 start += scope->length;
134         }
135         if (*cnt == 0)
136                 return 0;
137
138         *devices = kcalloc(*cnt, sizeof(struct pci_dev *), GFP_KERNEL);
139         if (!*devices)
140                 return -ENOMEM;
141
142         start = tmp;
143         index = 0;
144         while (start < end) {
145                 scope = start;
146                 if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_ENDPOINT ||
147                     scope->entry_type == ACPI_DMAR_SCOPE_TYPE_BRIDGE) {
148                         ret = dmar_parse_one_dev_scope(scope,
149                                 &(*devices)[index], segment);
150                         if (ret) {
151                                 kfree(*devices);
152                                 return ret;
153                         }
154                         index ++;
155                 }
156                 start += scope->length;
157         }
158
159         return 0;
160 }
161
162 /**
163  * dmar_parse_one_drhd - parses exactly one DMA remapping hardware definition
164  * structure which uniquely represent one DMA remapping hardware unit
165  * present in the platform
166  */
167 static int __init
168 dmar_parse_one_drhd(struct acpi_dmar_header *header)
169 {
170         struct acpi_dmar_hardware_unit *drhd;
171         struct dmar_drhd_unit *dmaru;
172         int ret = 0;
173
174         dmaru = kzalloc(sizeof(*dmaru), GFP_KERNEL);
175         if (!dmaru)
176                 return -ENOMEM;
177
178         dmaru->hdr = header;
179         drhd = (struct acpi_dmar_hardware_unit *)header;
180         dmaru->reg_base_addr = drhd->address;
181         dmaru->include_all = drhd->flags & 0x1; /* BIT0: INCLUDE_ALL */
182
183         ret = alloc_iommu(dmaru);
184         if (ret) {
185                 kfree(dmaru);
186                 return ret;
187         }
188         dmar_register_drhd_unit(dmaru);
189         return 0;
190 }
191
192 static int __init dmar_parse_dev(struct dmar_drhd_unit *dmaru)
193 {
194         struct acpi_dmar_hardware_unit *drhd;
195         int ret = 0;
196
197         drhd = (struct acpi_dmar_hardware_unit *) dmaru->hdr;
198
199         if (dmaru->include_all)
200                 return 0;
201
202         ret = dmar_parse_dev_scope((void *)(drhd + 1),
203                                 ((void *)drhd) + drhd->header.length,
204                                 &dmaru->devices_cnt, &dmaru->devices,
205                                 drhd->segment);
206         if (ret) {
207                 list_del(&dmaru->list);
208                 kfree(dmaru);
209         }
210         return ret;
211 }
212
213 #ifdef CONFIG_DMAR
214 LIST_HEAD(dmar_rmrr_units);
215
216 static void __init dmar_register_rmrr_unit(struct dmar_rmrr_unit *rmrr)
217 {
218         list_add(&rmrr->list, &dmar_rmrr_units);
219 }
220
221
222 static int __init
223 dmar_parse_one_rmrr(struct acpi_dmar_header *header)
224 {
225         struct acpi_dmar_reserved_memory *rmrr;
226         struct dmar_rmrr_unit *rmrru;
227
228         rmrru = kzalloc(sizeof(*rmrru), GFP_KERNEL);
229         if (!rmrru)
230                 return -ENOMEM;
231
232         rmrru->hdr = header;
233         rmrr = (struct acpi_dmar_reserved_memory *)header;
234         rmrru->base_address = rmrr->base_address;
235         rmrru->end_address = rmrr->end_address;
236
237         dmar_register_rmrr_unit(rmrru);
238         return 0;
239 }
240
241 static int __init
242 rmrr_parse_dev(struct dmar_rmrr_unit *rmrru)
243 {
244         struct acpi_dmar_reserved_memory *rmrr;
245         int ret;
246
247         rmrr = (struct acpi_dmar_reserved_memory *) rmrru->hdr;
248         ret = dmar_parse_dev_scope((void *)(rmrr + 1),
249                 ((void *)rmrr) + rmrr->header.length,
250                 &rmrru->devices_cnt, &rmrru->devices, rmrr->segment);
251
252         if (ret || (rmrru->devices_cnt == 0)) {
253                 list_del(&rmrru->list);
254                 kfree(rmrru);
255         }
256         return ret;
257 }
258 #endif
259
260 static void __init
261 dmar_table_print_dmar_entry(struct acpi_dmar_header *header)
262 {
263         struct acpi_dmar_hardware_unit *drhd;
264         struct acpi_dmar_reserved_memory *rmrr;
265
266         switch (header->type) {
267         case ACPI_DMAR_TYPE_HARDWARE_UNIT:
268                 drhd = (struct acpi_dmar_hardware_unit *)header;
269                 printk (KERN_INFO PREFIX
270                         "DRHD (flags: 0x%08x)base: 0x%016Lx\n",
271                         drhd->flags, (unsigned long long)drhd->address);
272                 break;
273         case ACPI_DMAR_TYPE_RESERVED_MEMORY:
274                 rmrr = (struct acpi_dmar_reserved_memory *)header;
275
276                 printk (KERN_INFO PREFIX
277                         "RMRR base: 0x%016Lx end: 0x%016Lx\n",
278                         (unsigned long long)rmrr->base_address,
279                         (unsigned long long)rmrr->end_address);
280                 break;
281         }
282 }
283
284 /**
285  * dmar_table_detect - checks to see if the platform supports DMAR devices
286  */
287 static int __init dmar_table_detect(void)
288 {
289         acpi_status status = AE_OK;
290
291         /* if we could find DMAR table, then there are DMAR devices */
292         status = acpi_get_table_with_size(ACPI_SIG_DMAR, 0,
293                                 (struct acpi_table_header **)&dmar_tbl,
294                                 &dmar_tbl_size);
295
296         if (ACPI_SUCCESS(status) && !dmar_tbl) {
297                 printk (KERN_WARNING PREFIX "Unable to map DMAR\n");
298                 status = AE_NOT_FOUND;
299         }
300
301         return (ACPI_SUCCESS(status) ? 1 : 0);
302 }
303
304 /**
305  * parse_dmar_table - parses the DMA reporting table
306  */
307 static int __init
308 parse_dmar_table(void)
309 {
310         struct acpi_table_dmar *dmar;
311         struct acpi_dmar_header *entry_header;
312         int ret = 0;
313
314         /*
315          * Do it again, earlier dmar_tbl mapping could be mapped with
316          * fixed map.
317          */
318         dmar_table_detect();
319
320         dmar = (struct acpi_table_dmar *)dmar_tbl;
321         if (!dmar)
322                 return -ENODEV;
323
324         if (dmar->width < PAGE_SHIFT - 1) {
325                 printk(KERN_WARNING PREFIX "Invalid DMAR haw\n");
326                 return -EINVAL;
327         }
328
329         printk (KERN_INFO PREFIX "Host address width %d\n",
330                 dmar->width + 1);
331
332         entry_header = (struct acpi_dmar_header *)(dmar + 1);
333         while (((unsigned long)entry_header) <
334                         (((unsigned long)dmar) + dmar_tbl->length)) {
335                 dmar_table_print_dmar_entry(entry_header);
336
337                 switch (entry_header->type) {
338                 case ACPI_DMAR_TYPE_HARDWARE_UNIT:
339                         ret = dmar_parse_one_drhd(entry_header);
340                         break;
341                 case ACPI_DMAR_TYPE_RESERVED_MEMORY:
342 #ifdef CONFIG_DMAR
343                         ret = dmar_parse_one_rmrr(entry_header);
344 #endif
345                         break;
346                 default:
347                         printk(KERN_WARNING PREFIX
348                                 "Unknown DMAR structure type\n");
349                         ret = 0; /* for forward compatibility */
350                         break;
351                 }
352                 if (ret)
353                         break;
354
355                 entry_header = ((void *)entry_header + entry_header->length);
356         }
357         return ret;
358 }
359
360 int dmar_pci_device_match(struct pci_dev *devices[], int cnt,
361                           struct pci_dev *dev)
362 {
363         int index;
364
365         while (dev) {
366                 for (index = 0; index < cnt; index++)
367                         if (dev == devices[index])
368                                 return 1;
369
370                 /* Check our parent */
371                 dev = dev->bus->self;
372         }
373
374         return 0;
375 }
376
377 struct dmar_drhd_unit *
378 dmar_find_matched_drhd_unit(struct pci_dev *dev)
379 {
380         struct dmar_drhd_unit *dmaru = NULL;
381         struct acpi_dmar_hardware_unit *drhd;
382
383         list_for_each_entry(dmaru, &dmar_drhd_units, list) {
384                 drhd = container_of(dmaru->hdr,
385                                     struct acpi_dmar_hardware_unit,
386                                     header);
387
388                 if (dmaru->include_all &&
389                     drhd->segment == pci_domain_nr(dev->bus))
390                         return dmaru;
391
392                 if (dmar_pci_device_match(dmaru->devices,
393                                           dmaru->devices_cnt, dev))
394                         return dmaru;
395         }
396
397         return NULL;
398 }
399
400 int __init dmar_dev_scope_init(void)
401 {
402         struct dmar_drhd_unit *drhd, *drhd_n;
403         int ret = -ENODEV;
404
405         list_for_each_entry_safe(drhd, drhd_n, &dmar_drhd_units, list) {
406                 ret = dmar_parse_dev(drhd);
407                 if (ret)
408                         return ret;
409         }
410
411 #ifdef CONFIG_DMAR
412         {
413                 struct dmar_rmrr_unit *rmrr, *rmrr_n;
414                 list_for_each_entry_safe(rmrr, rmrr_n, &dmar_rmrr_units, list) {
415                         ret = rmrr_parse_dev(rmrr);
416                         if (ret)
417                                 return ret;
418                 }
419         }
420 #endif
421
422         return ret;
423 }
424
425
426 int __init dmar_table_init(void)
427 {
428         static int dmar_table_initialized;
429         int ret;
430
431         if (dmar_table_initialized)
432                 return 0;
433
434         dmar_table_initialized = 1;
435
436         ret = parse_dmar_table();
437         if (ret) {
438                 if (ret != -ENODEV)
439                         printk(KERN_INFO PREFIX "parse DMAR table failure.\n");
440                 return ret;
441         }
442
443         if (list_empty(&dmar_drhd_units)) {
444                 printk(KERN_INFO PREFIX "No DMAR devices found\n");
445                 return -ENODEV;
446         }
447
448 #ifdef CONFIG_DMAR
449         if (list_empty(&dmar_rmrr_units))
450                 printk(KERN_INFO PREFIX "No RMRR found\n");
451 #endif
452
453 #ifdef CONFIG_INTR_REMAP
454         parse_ioapics_under_ir();
455 #endif
456         return 0;
457 }
458
459 void __init detect_intel_iommu(void)
460 {
461         int ret;
462
463         ret = dmar_table_detect();
464
465         {
466 #ifdef CONFIG_INTR_REMAP
467                 struct acpi_table_dmar *dmar;
468                 /*
469                  * for now we will disable dma-remapping when interrupt
470                  * remapping is enabled.
471                  * When support for queued invalidation for IOTLB invalidation
472                  * is added, we will not need this any more.
473                  */
474                 dmar = (struct acpi_table_dmar *) dmar_tbl;
475                 if (ret && cpu_has_x2apic && dmar->flags & 0x1)
476                         printk(KERN_INFO
477                                "Queued invalidation will be enabled to support "
478                                "x2apic and Intr-remapping.\n");
479 #endif
480 #ifdef CONFIG_DMAR
481                 if (ret && !no_iommu && !iommu_detected && !swiotlb &&
482                     !dmar_disabled)
483                         iommu_detected = 1;
484 #endif
485         }
486         early_acpi_os_unmap_memory(dmar_tbl, dmar_tbl_size);
487         dmar_tbl = NULL;
488 }
489
490
491 int alloc_iommu(struct dmar_drhd_unit *drhd)
492 {
493         struct intel_iommu *iommu;
494         int map_size;
495         u32 ver;
496         static int iommu_allocated = 0;
497         int agaw;
498
499         iommu = kzalloc(sizeof(*iommu), GFP_KERNEL);
500         if (!iommu)
501                 return -ENOMEM;
502
503         iommu->seq_id = iommu_allocated++;
504
505         iommu->reg = ioremap(drhd->reg_base_addr, VTD_PAGE_SIZE);
506         if (!iommu->reg) {
507                 printk(KERN_ERR "IOMMU: can't map the region\n");
508                 goto error;
509         }
510         iommu->cap = dmar_readq(iommu->reg + DMAR_CAP_REG);
511         iommu->ecap = dmar_readq(iommu->reg + DMAR_ECAP_REG);
512
513         agaw = iommu_calculate_agaw(iommu);
514         if (agaw < 0) {
515                 printk(KERN_ERR
516                         "Cannot get a valid agaw for iommu (seq_id = %d)\n",
517                         iommu->seq_id);
518                 goto error;
519         }
520         iommu->agaw = agaw;
521
522         /* the registers might be more than one page */
523         map_size = max_t(int, ecap_max_iotlb_offset(iommu->ecap),
524                 cap_max_fault_reg_offset(iommu->cap));
525         map_size = VTD_PAGE_ALIGN(map_size);
526         if (map_size > VTD_PAGE_SIZE) {
527                 iounmap(iommu->reg);
528                 iommu->reg = ioremap(drhd->reg_base_addr, map_size);
529                 if (!iommu->reg) {
530                         printk(KERN_ERR "IOMMU: can't map the region\n");
531                         goto error;
532                 }
533         }
534
535         ver = readl(iommu->reg + DMAR_VER_REG);
536         pr_debug("IOMMU %llx: ver %d:%d cap %llx ecap %llx\n",
537                 (unsigned long long)drhd->reg_base_addr,
538                 DMAR_VER_MAJOR(ver), DMAR_VER_MINOR(ver),
539                 (unsigned long long)iommu->cap,
540                 (unsigned long long)iommu->ecap);
541
542         spin_lock_init(&iommu->register_lock);
543
544         drhd->iommu = iommu;
545         return 0;
546 error:
547         kfree(iommu);
548         return -1;
549 }
550
551 void free_iommu(struct intel_iommu *iommu)
552 {
553         if (!iommu)
554                 return;
555
556 #ifdef CONFIG_DMAR
557         free_dmar_iommu(iommu);
558 #endif
559
560         if (iommu->reg)
561                 iounmap(iommu->reg);
562         kfree(iommu);
563 }
564
565 /*
566  * Reclaim all the submitted descriptors which have completed its work.
567  */
568 static inline void reclaim_free_desc(struct q_inval *qi)
569 {
570         while (qi->desc_status[qi->free_tail] == QI_DONE) {
571                 qi->desc_status[qi->free_tail] = QI_FREE;
572                 qi->free_tail = (qi->free_tail + 1) % QI_LENGTH;
573                 qi->free_cnt++;
574         }
575 }
576
577 /*
578  * Submit the queued invalidation descriptor to the remapping
579  * hardware unit and wait for its completion.
580  */
581 void qi_submit_sync(struct qi_desc *desc, struct intel_iommu *iommu)
582 {
583         struct q_inval *qi = iommu->qi;
584         struct qi_desc *hw, wait_desc;
585         int wait_index, index;
586         unsigned long flags;
587
588         if (!qi)
589                 return;
590
591         hw = qi->desc;
592
593         spin_lock_irqsave(&qi->q_lock, flags);
594         while (qi->free_cnt < 3) {
595                 spin_unlock_irqrestore(&qi->q_lock, flags);
596                 cpu_relax();
597                 spin_lock_irqsave(&qi->q_lock, flags);
598         }
599
600         index = qi->free_head;
601         wait_index = (index + 1) % QI_LENGTH;
602
603         qi->desc_status[index] = qi->desc_status[wait_index] = QI_IN_USE;
604
605         hw[index] = *desc;
606
607         wait_desc.low = QI_IWD_STATUS_DATA(2) | QI_IWD_STATUS_WRITE | QI_IWD_TYPE;
608         wait_desc.high = virt_to_phys(&qi->desc_status[wait_index]);
609
610         hw[wait_index] = wait_desc;
611
612         __iommu_flush_cache(iommu, &hw[index], sizeof(struct qi_desc));
613         __iommu_flush_cache(iommu, &hw[wait_index], sizeof(struct qi_desc));
614
615         qi->free_head = (qi->free_head + 2) % QI_LENGTH;
616         qi->free_cnt -= 2;
617
618         spin_lock(&iommu->register_lock);
619         /*
620          * update the HW tail register indicating the presence of
621          * new descriptors.
622          */
623         writel(qi->free_head << 4, iommu->reg + DMAR_IQT_REG);
624         spin_unlock(&iommu->register_lock);
625
626         while (qi->desc_status[wait_index] != QI_DONE) {
627                 /*
628                  * We will leave the interrupts disabled, to prevent interrupt
629                  * context to queue another cmd while a cmd is already submitted
630                  * and waiting for completion on this cpu. This is to avoid
631                  * a deadlock where the interrupt context can wait indefinitely
632                  * for free slots in the queue.
633                  */
634                 spin_unlock(&qi->q_lock);
635                 cpu_relax();
636                 spin_lock(&qi->q_lock);
637         }
638
639         qi->desc_status[index] = QI_DONE;
640
641         reclaim_free_desc(qi);
642         spin_unlock_irqrestore(&qi->q_lock, flags);
643 }
644
645 /*
646  * Flush the global interrupt entry cache.
647  */
648 void qi_global_iec(struct intel_iommu *iommu)
649 {
650         struct qi_desc desc;
651
652         desc.low = QI_IEC_TYPE;
653         desc.high = 0;
654
655         qi_submit_sync(&desc, iommu);
656 }
657
658 int qi_flush_context(struct intel_iommu *iommu, u16 did, u16 sid, u8 fm,
659                      u64 type, int non_present_entry_flush)
660 {
661
662         struct qi_desc desc;
663
664         if (non_present_entry_flush) {
665                 if (!cap_caching_mode(iommu->cap))
666                         return 1;
667                 else
668                         did = 0;
669         }
670
671         desc.low = QI_CC_FM(fm) | QI_CC_SID(sid) | QI_CC_DID(did)
672                         | QI_CC_GRAN(type) | QI_CC_TYPE;
673         desc.high = 0;
674
675         qi_submit_sync(&desc, iommu);
676
677         return 0;
678
679 }
680
681 int qi_flush_iotlb(struct intel_iommu *iommu, u16 did, u64 addr,
682                    unsigned int size_order, u64 type,
683                    int non_present_entry_flush)
684 {
685         u8 dw = 0, dr = 0;
686
687         struct qi_desc desc;
688         int ih = 0;
689
690         if (non_present_entry_flush) {
691                 if (!cap_caching_mode(iommu->cap))
692                         return 1;
693                 else
694                         did = 0;
695         }
696
697         if (cap_write_drain(iommu->cap))
698                 dw = 1;
699
700         if (cap_read_drain(iommu->cap))
701                 dr = 1;
702
703         desc.low = QI_IOTLB_DID(did) | QI_IOTLB_DR(dr) | QI_IOTLB_DW(dw)
704                 | QI_IOTLB_GRAN(type) | QI_IOTLB_TYPE;
705         desc.high = QI_IOTLB_ADDR(addr) | QI_IOTLB_IH(ih)
706                 | QI_IOTLB_AM(size_order);
707
708         qi_submit_sync(&desc, iommu);
709
710         return 0;
711
712 }
713
714 /*
715  * Enable Queued Invalidation interface. This is a must to support
716  * interrupt-remapping. Also used by DMA-remapping, which replaces
717  * register based IOTLB invalidation.
718  */
719 int dmar_enable_qi(struct intel_iommu *iommu)
720 {
721         u32 cmd, sts;
722         unsigned long flags;
723         struct q_inval *qi;
724
725         if (!ecap_qis(iommu->ecap))
726                 return -ENOENT;
727
728         /*
729          * queued invalidation is already setup and enabled.
730          */
731         if (iommu->qi)
732                 return 0;
733
734         iommu->qi = kmalloc(sizeof(*qi), GFP_KERNEL);
735         if (!iommu->qi)
736                 return -ENOMEM;
737
738         qi = iommu->qi;
739
740         qi->desc = (void *)(get_zeroed_page(GFP_KERNEL));
741         if (!qi->desc) {
742                 kfree(qi);
743                 iommu->qi = 0;
744                 return -ENOMEM;
745         }
746
747         qi->desc_status = kmalloc(QI_LENGTH * sizeof(int), GFP_KERNEL);
748         if (!qi->desc_status) {
749                 free_page((unsigned long) qi->desc);
750                 kfree(qi);
751                 iommu->qi = 0;
752                 return -ENOMEM;
753         }
754
755         qi->free_head = qi->free_tail = 0;
756         qi->free_cnt = QI_LENGTH;
757
758         spin_lock_init(&qi->q_lock);
759
760         spin_lock_irqsave(&iommu->register_lock, flags);
761         /* write zero to the tail reg */
762         writel(0, iommu->reg + DMAR_IQT_REG);
763
764         dmar_writeq(iommu->reg + DMAR_IQA_REG, virt_to_phys(qi->desc));
765
766         cmd = iommu->gcmd | DMA_GCMD_QIE;
767         iommu->gcmd |= DMA_GCMD_QIE;
768         writel(cmd, iommu->reg + DMAR_GCMD_REG);
769
770         /* Make sure hardware complete it */
771         IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_QIES), sts);
772         spin_unlock_irqrestore(&iommu->register_lock, flags);
773
774         return 0;
775 }