Merge branches 'tracing/docs', 'tracing/function-graph-tracer' and 'linus' into traci...
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  * multiq: This parameter used to enable/disable MULTIQUEUE support.
54  *      Possible values '1' for enable and '0' for disable. Default is '0'
55  ************************************************************************/
56
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/errno.h>
60 #include <linux/ioport.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/kernel.h>
64 #include <linux/netdevice.h>
65 #include <linux/etherdevice.h>
66 #include <linux/skbuff.h>
67 #include <linux/init.h>
68 #include <linux/delay.h>
69 #include <linux/stddef.h>
70 #include <linux/ioctl.h>
71 #include <linux/timex.h>
72 #include <linux/ethtool.h>
73 #include <linux/workqueue.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <net/tcp.h>
78
79 #include <asm/system.h>
80 #include <asm/uaccess.h>
81 #include <asm/io.h>
82 #include <asm/div64.h>
83 #include <asm/irq.h>
84
85 /* local include */
86 #include "s2io.h"
87 #include "s2io-regs.h"
88
89 #define DRV_VERSION "2.0.26.25"
90
91 /* S2io Driver name & version. */
92 static char s2io_driver_name[] = "Neterion";
93 static char s2io_driver_version[] = DRV_VERSION;
94
95 static int rxd_size[2] = {32,48};
96 static int rxd_count[2] = {127,85};
97
98 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
99 {
100         int ret;
101
102         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
103                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
104
105         return ret;
106 }
107
108 /*
109  * Cards with following subsystem_id have a link state indication
110  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
111  * macro below identifies these cards given the subsystem_id.
112  */
113 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
114         (dev_type == XFRAME_I_DEVICE) ?                 \
115                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
116                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
117
118 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
119                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
120
121 static inline int is_s2io_card_up(const struct s2io_nic * sp)
122 {
123         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
124 }
125
126 /* Ethtool related variables and Macros. */
127 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
128         "Register test\t(offline)",
129         "Eeprom test\t(offline)",
130         "Link test\t(online)",
131         "RLDRAM test\t(offline)",
132         "BIST Test\t(offline)"
133 };
134
135 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
136         {"tmac_frms"},
137         {"tmac_data_octets"},
138         {"tmac_drop_frms"},
139         {"tmac_mcst_frms"},
140         {"tmac_bcst_frms"},
141         {"tmac_pause_ctrl_frms"},
142         {"tmac_ttl_octets"},
143         {"tmac_ucst_frms"},
144         {"tmac_nucst_frms"},
145         {"tmac_any_err_frms"},
146         {"tmac_ttl_less_fb_octets"},
147         {"tmac_vld_ip_octets"},
148         {"tmac_vld_ip"},
149         {"tmac_drop_ip"},
150         {"tmac_icmp"},
151         {"tmac_rst_tcp"},
152         {"tmac_tcp"},
153         {"tmac_udp"},
154         {"rmac_vld_frms"},
155         {"rmac_data_octets"},
156         {"rmac_fcs_err_frms"},
157         {"rmac_drop_frms"},
158         {"rmac_vld_mcst_frms"},
159         {"rmac_vld_bcst_frms"},
160         {"rmac_in_rng_len_err_frms"},
161         {"rmac_out_rng_len_err_frms"},
162         {"rmac_long_frms"},
163         {"rmac_pause_ctrl_frms"},
164         {"rmac_unsup_ctrl_frms"},
165         {"rmac_ttl_octets"},
166         {"rmac_accepted_ucst_frms"},
167         {"rmac_accepted_nucst_frms"},
168         {"rmac_discarded_frms"},
169         {"rmac_drop_events"},
170         {"rmac_ttl_less_fb_octets"},
171         {"rmac_ttl_frms"},
172         {"rmac_usized_frms"},
173         {"rmac_osized_frms"},
174         {"rmac_frag_frms"},
175         {"rmac_jabber_frms"},
176         {"rmac_ttl_64_frms"},
177         {"rmac_ttl_65_127_frms"},
178         {"rmac_ttl_128_255_frms"},
179         {"rmac_ttl_256_511_frms"},
180         {"rmac_ttl_512_1023_frms"},
181         {"rmac_ttl_1024_1518_frms"},
182         {"rmac_ip"},
183         {"rmac_ip_octets"},
184         {"rmac_hdr_err_ip"},
185         {"rmac_drop_ip"},
186         {"rmac_icmp"},
187         {"rmac_tcp"},
188         {"rmac_udp"},
189         {"rmac_err_drp_udp"},
190         {"rmac_xgmii_err_sym"},
191         {"rmac_frms_q0"},
192         {"rmac_frms_q1"},
193         {"rmac_frms_q2"},
194         {"rmac_frms_q3"},
195         {"rmac_frms_q4"},
196         {"rmac_frms_q5"},
197         {"rmac_frms_q6"},
198         {"rmac_frms_q7"},
199         {"rmac_full_q0"},
200         {"rmac_full_q1"},
201         {"rmac_full_q2"},
202         {"rmac_full_q3"},
203         {"rmac_full_q4"},
204         {"rmac_full_q5"},
205         {"rmac_full_q6"},
206         {"rmac_full_q7"},
207         {"rmac_pause_cnt"},
208         {"rmac_xgmii_data_err_cnt"},
209         {"rmac_xgmii_ctrl_err_cnt"},
210         {"rmac_accepted_ip"},
211         {"rmac_err_tcp"},
212         {"rd_req_cnt"},
213         {"new_rd_req_cnt"},
214         {"new_rd_req_rtry_cnt"},
215         {"rd_rtry_cnt"},
216         {"wr_rtry_rd_ack_cnt"},
217         {"wr_req_cnt"},
218         {"new_wr_req_cnt"},
219         {"new_wr_req_rtry_cnt"},
220         {"wr_rtry_cnt"},
221         {"wr_disc_cnt"},
222         {"rd_rtry_wr_ack_cnt"},
223         {"txp_wr_cnt"},
224         {"txd_rd_cnt"},
225         {"txd_wr_cnt"},
226         {"rxd_rd_cnt"},
227         {"rxd_wr_cnt"},
228         {"txf_rd_cnt"},
229         {"rxf_wr_cnt"}
230 };
231
232 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
233         {"rmac_ttl_1519_4095_frms"},
234         {"rmac_ttl_4096_8191_frms"},
235         {"rmac_ttl_8192_max_frms"},
236         {"rmac_ttl_gt_max_frms"},
237         {"rmac_osized_alt_frms"},
238         {"rmac_jabber_alt_frms"},
239         {"rmac_gt_max_alt_frms"},
240         {"rmac_vlan_frms"},
241         {"rmac_len_discard"},
242         {"rmac_fcs_discard"},
243         {"rmac_pf_discard"},
244         {"rmac_da_discard"},
245         {"rmac_red_discard"},
246         {"rmac_rts_discard"},
247         {"rmac_ingm_full_discard"},
248         {"link_fault_cnt"}
249 };
250
251 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
252         {"\n DRIVER STATISTICS"},
253         {"single_bit_ecc_errs"},
254         {"double_bit_ecc_errs"},
255         {"parity_err_cnt"},
256         {"serious_err_cnt"},
257         {"soft_reset_cnt"},
258         {"fifo_full_cnt"},
259         {"ring_0_full_cnt"},
260         {"ring_1_full_cnt"},
261         {"ring_2_full_cnt"},
262         {"ring_3_full_cnt"},
263         {"ring_4_full_cnt"},
264         {"ring_5_full_cnt"},
265         {"ring_6_full_cnt"},
266         {"ring_7_full_cnt"},
267         {"alarm_transceiver_temp_high"},
268         {"alarm_transceiver_temp_low"},
269         {"alarm_laser_bias_current_high"},
270         {"alarm_laser_bias_current_low"},
271         {"alarm_laser_output_power_high"},
272         {"alarm_laser_output_power_low"},
273         {"warn_transceiver_temp_high"},
274         {"warn_transceiver_temp_low"},
275         {"warn_laser_bias_current_high"},
276         {"warn_laser_bias_current_low"},
277         {"warn_laser_output_power_high"},
278         {"warn_laser_output_power_low"},
279         {"lro_aggregated_pkts"},
280         {"lro_flush_both_count"},
281         {"lro_out_of_sequence_pkts"},
282         {"lro_flush_due_to_max_pkts"},
283         {"lro_avg_aggr_pkts"},
284         {"mem_alloc_fail_cnt"},
285         {"pci_map_fail_cnt"},
286         {"watchdog_timer_cnt"},
287         {"mem_allocated"},
288         {"mem_freed"},
289         {"link_up_cnt"},
290         {"link_down_cnt"},
291         {"link_up_time"},
292         {"link_down_time"},
293         {"tx_tcode_buf_abort_cnt"},
294         {"tx_tcode_desc_abort_cnt"},
295         {"tx_tcode_parity_err_cnt"},
296         {"tx_tcode_link_loss_cnt"},
297         {"tx_tcode_list_proc_err_cnt"},
298         {"rx_tcode_parity_err_cnt"},
299         {"rx_tcode_abort_cnt"},
300         {"rx_tcode_parity_abort_cnt"},
301         {"rx_tcode_rda_fail_cnt"},
302         {"rx_tcode_unkn_prot_cnt"},
303         {"rx_tcode_fcs_err_cnt"},
304         {"rx_tcode_buf_size_err_cnt"},
305         {"rx_tcode_rxd_corrupt_cnt"},
306         {"rx_tcode_unkn_err_cnt"},
307         {"tda_err_cnt"},
308         {"pfc_err_cnt"},
309         {"pcc_err_cnt"},
310         {"tti_err_cnt"},
311         {"tpa_err_cnt"},
312         {"sm_err_cnt"},
313         {"lso_err_cnt"},
314         {"mac_tmac_err_cnt"},
315         {"mac_rmac_err_cnt"},
316         {"xgxs_txgxs_err_cnt"},
317         {"xgxs_rxgxs_err_cnt"},
318         {"rc_err_cnt"},
319         {"prc_pcix_err_cnt"},
320         {"rpa_err_cnt"},
321         {"rda_err_cnt"},
322         {"rti_err_cnt"},
323         {"mc_err_cnt"}
324 };
325
326 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
327 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
328 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
329
330 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
331 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
332
333 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
334 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
335
336 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
337 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
338
339 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
340                         init_timer(&timer);                     \
341                         timer.function = handle;                \
342                         timer.data = (unsigned long) arg;       \
343                         mod_timer(&timer, (jiffies + exp))      \
344
345 /* copy mac addr to def_mac_addr array */
346 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
347 {
348         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
349         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
350         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
351         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
352         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
353         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
354 }
355
356 /* Add the vlan */
357 static void s2io_vlan_rx_register(struct net_device *dev,
358                                   struct vlan_group *grp)
359 {
360         int i;
361         struct s2io_nic *nic = netdev_priv(dev);
362         unsigned long flags[MAX_TX_FIFOS];
363         struct mac_info *mac_control = &nic->mac_control;
364         struct config_param *config = &nic->config;
365
366         for (i = 0; i < config->tx_fifo_num; i++)
367                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
368
369         nic->vlgrp = grp;
370         for (i = config->tx_fifo_num - 1; i >= 0; i--)
371                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
372                                 flags[i]);
373 }
374
375 /* Unregister the vlan */
376 static void s2io_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
377 {
378         int i;
379         struct s2io_nic *nic = netdev_priv(dev);
380         unsigned long flags[MAX_TX_FIFOS];
381         struct mac_info *mac_control = &nic->mac_control;
382         struct config_param *config = &nic->config;
383
384         for (i = 0; i < config->tx_fifo_num; i++)
385                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
386
387         if (nic->vlgrp)
388                 vlan_group_set_device(nic->vlgrp, vid, NULL);
389
390         for (i = config->tx_fifo_num - 1; i >= 0; i--)
391                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
392                         flags[i]);
393 }
394
395 /*
396  * Constants to be programmed into the Xena's registers, to configure
397  * the XAUI.
398  */
399
400 #define END_SIGN        0x0
401 static const u64 herc_act_dtx_cfg[] = {
402         /* Set address */
403         0x8000051536750000ULL, 0x80000515367500E0ULL,
404         /* Write data */
405         0x8000051536750004ULL, 0x80000515367500E4ULL,
406         /* Set address */
407         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
408         /* Write data */
409         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
410         /* Set address */
411         0x801205150D440000ULL, 0x801205150D4400E0ULL,
412         /* Write data */
413         0x801205150D440004ULL, 0x801205150D4400E4ULL,
414         /* Set address */
415         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
416         /* Write data */
417         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
418         /* Done */
419         END_SIGN
420 };
421
422 static const u64 xena_dtx_cfg[] = {
423         /* Set address */
424         0x8000051500000000ULL, 0x80000515000000E0ULL,
425         /* Write data */
426         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
427         /* Set address */
428         0x8001051500000000ULL, 0x80010515000000E0ULL,
429         /* Write data */
430         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
431         /* Set address */
432         0x8002051500000000ULL, 0x80020515000000E0ULL,
433         /* Write data */
434         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
435         END_SIGN
436 };
437
438 /*
439  * Constants for Fixing the MacAddress problem seen mostly on
440  * Alpha machines.
441  */
442 static const u64 fix_mac[] = {
443         0x0060000000000000ULL, 0x0060600000000000ULL,
444         0x0040600000000000ULL, 0x0000600000000000ULL,
445         0x0020600000000000ULL, 0x0060600000000000ULL,
446         0x0020600000000000ULL, 0x0060600000000000ULL,
447         0x0020600000000000ULL, 0x0060600000000000ULL,
448         0x0020600000000000ULL, 0x0060600000000000ULL,
449         0x0020600000000000ULL, 0x0060600000000000ULL,
450         0x0020600000000000ULL, 0x0060600000000000ULL,
451         0x0020600000000000ULL, 0x0060600000000000ULL,
452         0x0020600000000000ULL, 0x0060600000000000ULL,
453         0x0020600000000000ULL, 0x0060600000000000ULL,
454         0x0020600000000000ULL, 0x0060600000000000ULL,
455         0x0020600000000000ULL, 0x0000600000000000ULL,
456         0x0040600000000000ULL, 0x0060600000000000ULL,
457         END_SIGN
458 };
459
460 MODULE_LICENSE("GPL");
461 MODULE_VERSION(DRV_VERSION);
462
463
464 /* Module Loadable parameters. */
465 S2IO_PARM_INT(tx_fifo_num, FIFO_DEFAULT_NUM);
466 S2IO_PARM_INT(rx_ring_num, 1);
467 S2IO_PARM_INT(multiq, 0);
468 S2IO_PARM_INT(rx_ring_mode, 1);
469 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
470 S2IO_PARM_INT(rmac_pause_time, 0x100);
471 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
472 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
473 S2IO_PARM_INT(shared_splits, 0);
474 S2IO_PARM_INT(tmac_util_period, 5);
475 S2IO_PARM_INT(rmac_util_period, 5);
476 S2IO_PARM_INT(l3l4hdr_size, 128);
477 /* 0 is no steering, 1 is Priority steering, 2 is Default steering */
478 S2IO_PARM_INT(tx_steering_type, TX_DEFAULT_STEERING);
479 /* Frequency of Rx desc syncs expressed as power of 2 */
480 S2IO_PARM_INT(rxsync_frequency, 3);
481 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
482 S2IO_PARM_INT(intr_type, 2);
483 /* Large receive offload feature */
484 static unsigned int lro_enable;
485 module_param_named(lro, lro_enable, uint, 0);
486
487 /* Max pkts to be aggregated by LRO at one time. If not specified,
488  * aggregation happens until we hit max IP pkt size(64K)
489  */
490 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
491 S2IO_PARM_INT(indicate_max_pkts, 0);
492
493 S2IO_PARM_INT(napi, 1);
494 S2IO_PARM_INT(ufo, 0);
495 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
496
497 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
498     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
499 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
500     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
501 static unsigned int rts_frm_len[MAX_RX_RINGS] =
502     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
503
504 module_param_array(tx_fifo_len, uint, NULL, 0);
505 module_param_array(rx_ring_sz, uint, NULL, 0);
506 module_param_array(rts_frm_len, uint, NULL, 0);
507
508 /*
509  * S2IO device table.
510  * This table lists all the devices that this driver supports.
511  */
512 static struct pci_device_id s2io_tbl[] __devinitdata = {
513         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
514          PCI_ANY_ID, PCI_ANY_ID},
515         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
516          PCI_ANY_ID, PCI_ANY_ID},
517         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
518          PCI_ANY_ID, PCI_ANY_ID},
519         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
520          PCI_ANY_ID, PCI_ANY_ID},
521         {0,}
522 };
523
524 MODULE_DEVICE_TABLE(pci, s2io_tbl);
525
526 static struct pci_error_handlers s2io_err_handler = {
527         .error_detected = s2io_io_error_detected,
528         .slot_reset = s2io_io_slot_reset,
529         .resume = s2io_io_resume,
530 };
531
532 static struct pci_driver s2io_driver = {
533       .name = "S2IO",
534       .id_table = s2io_tbl,
535       .probe = s2io_init_nic,
536       .remove = __devexit_p(s2io_rem_nic),
537       .err_handler = &s2io_err_handler,
538 };
539
540 /* A simplifier macro used both by init and free shared_mem Fns(). */
541 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
542
543 /* netqueue manipulation helper functions */
544 static inline void s2io_stop_all_tx_queue(struct s2io_nic *sp)
545 {
546         if (!sp->config.multiq) {
547                 int i;
548
549                 for (i = 0; i < sp->config.tx_fifo_num; i++)
550                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_STOP;
551         }
552         netif_tx_stop_all_queues(sp->dev);
553 }
554
555 static inline void s2io_stop_tx_queue(struct s2io_nic *sp, int fifo_no)
556 {
557         if (!sp->config.multiq)
558                 sp->mac_control.fifos[fifo_no].queue_state =
559                         FIFO_QUEUE_STOP;
560
561         netif_tx_stop_all_queues(sp->dev);
562 }
563
564 static inline void s2io_start_all_tx_queue(struct s2io_nic *sp)
565 {
566         if (!sp->config.multiq) {
567                 int i;
568
569                 for (i = 0; i < sp->config.tx_fifo_num; i++)
570                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
571         }
572         netif_tx_start_all_queues(sp->dev);
573 }
574
575 static inline void s2io_start_tx_queue(struct s2io_nic *sp, int fifo_no)
576 {
577         if (!sp->config.multiq)
578                 sp->mac_control.fifos[fifo_no].queue_state =
579                         FIFO_QUEUE_START;
580
581         netif_tx_start_all_queues(sp->dev);
582 }
583
584 static inline void s2io_wake_all_tx_queue(struct s2io_nic *sp)
585 {
586         if (!sp->config.multiq) {
587                 int i;
588
589                 for (i = 0; i < sp->config.tx_fifo_num; i++)
590                         sp->mac_control.fifos[i].queue_state = FIFO_QUEUE_START;
591         }
592         netif_tx_wake_all_queues(sp->dev);
593 }
594
595 static inline void s2io_wake_tx_queue(
596         struct fifo_info *fifo, int cnt, u8 multiq)
597 {
598
599         if (multiq) {
600                 if (cnt && __netif_subqueue_stopped(fifo->dev, fifo->fifo_no))
601                         netif_wake_subqueue(fifo->dev, fifo->fifo_no);
602         } else if (cnt && (fifo->queue_state == FIFO_QUEUE_STOP)) {
603                 if (netif_queue_stopped(fifo->dev)) {
604                         fifo->queue_state = FIFO_QUEUE_START;
605                         netif_wake_queue(fifo->dev);
606                 }
607         }
608 }
609
610 /**
611  * init_shared_mem - Allocation and Initialization of Memory
612  * @nic: Device private variable.
613  * Description: The function allocates all the memory areas shared
614  * between the NIC and the driver. This includes Tx descriptors,
615  * Rx descriptors and the statistics block.
616  */
617
618 static int init_shared_mem(struct s2io_nic *nic)
619 {
620         u32 size;
621         void *tmp_v_addr, *tmp_v_addr_next;
622         dma_addr_t tmp_p_addr, tmp_p_addr_next;
623         struct RxD_block *pre_rxd_blk = NULL;
624         int i, j, blk_cnt;
625         int lst_size, lst_per_page;
626         struct net_device *dev = nic->dev;
627         unsigned long tmp;
628         struct buffAdd *ba;
629
630         struct mac_info *mac_control;
631         struct config_param *config;
632         unsigned long long mem_allocated = 0;
633
634         mac_control = &nic->mac_control;
635         config = &nic->config;
636
637
638         /* Allocation and initialization of TXDLs in FIOFs */
639         size = 0;
640         for (i = 0; i < config->tx_fifo_num; i++) {
641                 size += config->tx_cfg[i].fifo_len;
642         }
643         if (size > MAX_AVAILABLE_TXDS) {
644                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
645                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
646                 return -EINVAL;
647         }
648
649         size = 0;
650         for (i = 0; i < config->tx_fifo_num; i++) {
651                 size = config->tx_cfg[i].fifo_len;
652                 /*
653                  * Legal values are from 2 to 8192
654                  */
655                 if (size < 2) {
656                         DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
657                         DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
658                         DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
659                                 "are 2 to 8192\n");
660                         return -EINVAL;
661                 }
662         }
663
664         lst_size = (sizeof(struct TxD) * config->max_txds);
665         lst_per_page = PAGE_SIZE / lst_size;
666
667         for (i = 0; i < config->tx_fifo_num; i++) {
668                 int fifo_len = config->tx_cfg[i].fifo_len;
669                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
670                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
671                                                           GFP_KERNEL);
672                 if (!mac_control->fifos[i].list_info) {
673                         DBG_PRINT(INFO_DBG,
674                                   "Malloc failed for list_info\n");
675                         return -ENOMEM;
676                 }
677                 mem_allocated += list_holder_size;
678         }
679         for (i = 0; i < config->tx_fifo_num; i++) {
680                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
681                                                 lst_per_page);
682                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
683                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
684                     config->tx_cfg[i].fifo_len - 1;
685                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
686                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
687                     config->tx_cfg[i].fifo_len - 1;
688                 mac_control->fifos[i].fifo_no = i;
689                 mac_control->fifos[i].nic = nic;
690                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
691                 mac_control->fifos[i].dev = dev;
692
693                 for (j = 0; j < page_num; j++) {
694                         int k = 0;
695                         dma_addr_t tmp_p;
696                         void *tmp_v;
697                         tmp_v = pci_alloc_consistent(nic->pdev,
698                                                      PAGE_SIZE, &tmp_p);
699                         if (!tmp_v) {
700                                 DBG_PRINT(INFO_DBG,
701                                           "pci_alloc_consistent ");
702                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
703                                 return -ENOMEM;
704                         }
705                         /* If we got a zero DMA address(can happen on
706                          * certain platforms like PPC), reallocate.
707                          * Store virtual address of page we don't want,
708                          * to be freed later.
709                          */
710                         if (!tmp_p) {
711                                 mac_control->zerodma_virt_addr = tmp_v;
712                                 DBG_PRINT(INIT_DBG,
713                                 "%s: Zero DMA address for TxDL. ", dev->name);
714                                 DBG_PRINT(INIT_DBG,
715                                 "Virtual address %p\n", tmp_v);
716                                 tmp_v = pci_alloc_consistent(nic->pdev,
717                                                      PAGE_SIZE, &tmp_p);
718                                 if (!tmp_v) {
719                                         DBG_PRINT(INFO_DBG,
720                                           "pci_alloc_consistent ");
721                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
722                                         return -ENOMEM;
723                                 }
724                                 mem_allocated += PAGE_SIZE;
725                         }
726                         while (k < lst_per_page) {
727                                 int l = (j * lst_per_page) + k;
728                                 if (l == config->tx_cfg[i].fifo_len)
729                                         break;
730                                 mac_control->fifos[i].list_info[l].list_virt_addr =
731                                     tmp_v + (k * lst_size);
732                                 mac_control->fifos[i].list_info[l].list_phy_addr =
733                                     tmp_p + (k * lst_size);
734                                 k++;
735                         }
736                 }
737         }
738
739         for (i = 0; i < config->tx_fifo_num; i++) {
740                 size = config->tx_cfg[i].fifo_len;
741                 mac_control->fifos[i].ufo_in_band_v
742                         = kcalloc(size, sizeof(u64), GFP_KERNEL);
743                 if (!mac_control->fifos[i].ufo_in_band_v)
744                         return -ENOMEM;
745                 mem_allocated += (size * sizeof(u64));
746         }
747
748         /* Allocation and initialization of RXDs in Rings */
749         size = 0;
750         for (i = 0; i < config->rx_ring_num; i++) {
751                 if (config->rx_cfg[i].num_rxd %
752                     (rxd_count[nic->rxd_mode] + 1)) {
753                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
754                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
755                                   i);
756                         DBG_PRINT(ERR_DBG, "RxDs per Block");
757                         return FAILURE;
758                 }
759                 size += config->rx_cfg[i].num_rxd;
760                 mac_control->rings[i].block_count =
761                         config->rx_cfg[i].num_rxd /
762                         (rxd_count[nic->rxd_mode] + 1 );
763                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
764                         mac_control->rings[i].block_count;
765         }
766         if (nic->rxd_mode == RXD_MODE_1)
767                 size = (size * (sizeof(struct RxD1)));
768         else
769                 size = (size * (sizeof(struct RxD3)));
770
771         for (i = 0; i < config->rx_ring_num; i++) {
772                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
773                 mac_control->rings[i].rx_curr_get_info.offset = 0;
774                 mac_control->rings[i].rx_curr_get_info.ring_len =
775                     config->rx_cfg[i].num_rxd - 1;
776                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
777                 mac_control->rings[i].rx_curr_put_info.offset = 0;
778                 mac_control->rings[i].rx_curr_put_info.ring_len =
779                     config->rx_cfg[i].num_rxd - 1;
780                 mac_control->rings[i].nic = nic;
781                 mac_control->rings[i].ring_no = i;
782                 mac_control->rings[i].lro = lro_enable;
783
784                 blk_cnt = config->rx_cfg[i].num_rxd /
785                                 (rxd_count[nic->rxd_mode] + 1);
786                 /*  Allocating all the Rx blocks */
787                 for (j = 0; j < blk_cnt; j++) {
788                         struct rx_block_info *rx_blocks;
789                         int l;
790
791                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
792                         size = SIZE_OF_BLOCK; //size is always page size
793                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
794                                                           &tmp_p_addr);
795                         if (tmp_v_addr == NULL) {
796                                 /*
797                                  * In case of failure, free_shared_mem()
798                                  * is called, which should free any
799                                  * memory that was alloced till the
800                                  * failure happened.
801                                  */
802                                 rx_blocks->block_virt_addr = tmp_v_addr;
803                                 return -ENOMEM;
804                         }
805                         mem_allocated += size;
806                         memset(tmp_v_addr, 0, size);
807                         rx_blocks->block_virt_addr = tmp_v_addr;
808                         rx_blocks->block_dma_addr = tmp_p_addr;
809                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
810                                                   rxd_count[nic->rxd_mode],
811                                                   GFP_KERNEL);
812                         if (!rx_blocks->rxds)
813                                 return -ENOMEM;
814                         mem_allocated +=
815                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
816                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
817                                 rx_blocks->rxds[l].virt_addr =
818                                         rx_blocks->block_virt_addr +
819                                         (rxd_size[nic->rxd_mode] * l);
820                                 rx_blocks->rxds[l].dma_addr =
821                                         rx_blocks->block_dma_addr +
822                                         (rxd_size[nic->rxd_mode] * l);
823                         }
824                 }
825                 /* Interlinking all Rx Blocks */
826                 for (j = 0; j < blk_cnt; j++) {
827                         tmp_v_addr =
828                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
829                         tmp_v_addr_next =
830                                 mac_control->rings[i].rx_blocks[(j + 1) %
831                                               blk_cnt].block_virt_addr;
832                         tmp_p_addr =
833                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
834                         tmp_p_addr_next =
835                                 mac_control->rings[i].rx_blocks[(j + 1) %
836                                               blk_cnt].block_dma_addr;
837
838                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
839                         pre_rxd_blk->reserved_2_pNext_RxD_block =
840                             (unsigned long) tmp_v_addr_next;
841                         pre_rxd_blk->pNext_RxD_Blk_physical =
842                             (u64) tmp_p_addr_next;
843                 }
844         }
845         if (nic->rxd_mode == RXD_MODE_3B) {
846                 /*
847                  * Allocation of Storages for buffer addresses in 2BUFF mode
848                  * and the buffers as well.
849                  */
850                 for (i = 0; i < config->rx_ring_num; i++) {
851                         blk_cnt = config->rx_cfg[i].num_rxd /
852                            (rxd_count[nic->rxd_mode]+ 1);
853                         mac_control->rings[i].ba =
854                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
855                                      GFP_KERNEL);
856                         if (!mac_control->rings[i].ba)
857                                 return -ENOMEM;
858                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
859                         for (j = 0; j < blk_cnt; j++) {
860                                 int k = 0;
861                                 mac_control->rings[i].ba[j] =
862                                         kmalloc((sizeof(struct buffAdd) *
863                                                 (rxd_count[nic->rxd_mode] + 1)),
864                                                 GFP_KERNEL);
865                                 if (!mac_control->rings[i].ba[j])
866                                         return -ENOMEM;
867                                 mem_allocated += (sizeof(struct buffAdd) *  \
868                                         (rxd_count[nic->rxd_mode] + 1));
869                                 while (k != rxd_count[nic->rxd_mode]) {
870                                         ba = &mac_control->rings[i].ba[j][k];
871
872                                         ba->ba_0_org = (void *) kmalloc
873                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
874                                         if (!ba->ba_0_org)
875                                                 return -ENOMEM;
876                                         mem_allocated +=
877                                                 (BUF0_LEN + ALIGN_SIZE);
878                                         tmp = (unsigned long)ba->ba_0_org;
879                                         tmp += ALIGN_SIZE;
880                                         tmp &= ~((unsigned long) ALIGN_SIZE);
881                                         ba->ba_0 = (void *) tmp;
882
883                                         ba->ba_1_org = (void *) kmalloc
884                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
885                                         if (!ba->ba_1_org)
886                                                 return -ENOMEM;
887                                         mem_allocated
888                                                 += (BUF1_LEN + ALIGN_SIZE);
889                                         tmp = (unsigned long) ba->ba_1_org;
890                                         tmp += ALIGN_SIZE;
891                                         tmp &= ~((unsigned long) ALIGN_SIZE);
892                                         ba->ba_1 = (void *) tmp;
893                                         k++;
894                                 }
895                         }
896                 }
897         }
898
899         /* Allocation and initialization of Statistics block */
900         size = sizeof(struct stat_block);
901         mac_control->stats_mem = pci_alloc_consistent
902             (nic->pdev, size, &mac_control->stats_mem_phy);
903
904         if (!mac_control->stats_mem) {
905                 /*
906                  * In case of failure, free_shared_mem() is called, which
907                  * should free any memory that was alloced till the
908                  * failure happened.
909                  */
910                 return -ENOMEM;
911         }
912         mem_allocated += size;
913         mac_control->stats_mem_sz = size;
914
915         tmp_v_addr = mac_control->stats_mem;
916         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
917         memset(tmp_v_addr, 0, size);
918         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
919                   (unsigned long long) tmp_p_addr);
920         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
921         return SUCCESS;
922 }
923
924 /**
925  * free_shared_mem - Free the allocated Memory
926  * @nic:  Device private variable.
927  * Description: This function is to free all memory locations allocated by
928  * the init_shared_mem() function and return it to the kernel.
929  */
930
931 static void free_shared_mem(struct s2io_nic *nic)
932 {
933         int i, j, blk_cnt, size;
934         void *tmp_v_addr;
935         dma_addr_t tmp_p_addr;
936         struct mac_info *mac_control;
937         struct config_param *config;
938         int lst_size, lst_per_page;
939         struct net_device *dev;
940         int page_num = 0;
941
942         if (!nic)
943                 return;
944
945         dev = nic->dev;
946
947         mac_control = &nic->mac_control;
948         config = &nic->config;
949
950         lst_size = (sizeof(struct TxD) * config->max_txds);
951         lst_per_page = PAGE_SIZE / lst_size;
952
953         for (i = 0; i < config->tx_fifo_num; i++) {
954                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
955                                                         lst_per_page);
956                 for (j = 0; j < page_num; j++) {
957                         int mem_blks = (j * lst_per_page);
958                         if (!mac_control->fifos[i].list_info)
959                                 return;
960                         if (!mac_control->fifos[i].list_info[mem_blks].
961                                  list_virt_addr)
962                                 break;
963                         pci_free_consistent(nic->pdev, PAGE_SIZE,
964                                             mac_control->fifos[i].
965                                             list_info[mem_blks].
966                                             list_virt_addr,
967                                             mac_control->fifos[i].
968                                             list_info[mem_blks].
969                                             list_phy_addr);
970                         nic->mac_control.stats_info->sw_stat.mem_freed
971                                                 += PAGE_SIZE;
972                 }
973                 /* If we got a zero DMA address during allocation,
974                  * free the page now
975                  */
976                 if (mac_control->zerodma_virt_addr) {
977                         pci_free_consistent(nic->pdev, PAGE_SIZE,
978                                             mac_control->zerodma_virt_addr,
979                                             (dma_addr_t)0);
980                         DBG_PRINT(INIT_DBG,
981                                 "%s: Freeing TxDL with zero DMA addr. ",
982                                 dev->name);
983                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
984                                 mac_control->zerodma_virt_addr);
985                         nic->mac_control.stats_info->sw_stat.mem_freed
986                                                 += PAGE_SIZE;
987                 }
988                 kfree(mac_control->fifos[i].list_info);
989                 nic->mac_control.stats_info->sw_stat.mem_freed +=
990                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
991         }
992
993         size = SIZE_OF_BLOCK;
994         for (i = 0; i < config->rx_ring_num; i++) {
995                 blk_cnt = mac_control->rings[i].block_count;
996                 for (j = 0; j < blk_cnt; j++) {
997                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
998                                 block_virt_addr;
999                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
1000                                 block_dma_addr;
1001                         if (tmp_v_addr == NULL)
1002                                 break;
1003                         pci_free_consistent(nic->pdev, size,
1004                                             tmp_v_addr, tmp_p_addr);
1005                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
1006                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
1007                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1008                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
1009                 }
1010         }
1011
1012         if (nic->rxd_mode == RXD_MODE_3B) {
1013                 /* Freeing buffer storage addresses in 2BUFF mode. */
1014                 for (i = 0; i < config->rx_ring_num; i++) {
1015                         blk_cnt = config->rx_cfg[i].num_rxd /
1016                             (rxd_count[nic->rxd_mode] + 1);
1017                         for (j = 0; j < blk_cnt; j++) {
1018                                 int k = 0;
1019                                 if (!mac_control->rings[i].ba[j])
1020                                         continue;
1021                                 while (k != rxd_count[nic->rxd_mode]) {
1022                                         struct buffAdd *ba =
1023                                                 &mac_control->rings[i].ba[j][k];
1024                                         kfree(ba->ba_0_org);
1025                                         nic->mac_control.stats_info->sw_stat.\
1026                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
1027                                         kfree(ba->ba_1_org);
1028                                         nic->mac_control.stats_info->sw_stat.\
1029                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
1030                                         k++;
1031                                 }
1032                                 kfree(mac_control->rings[i].ba[j]);
1033                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1034                                         (sizeof(struct buffAdd) *
1035                                         (rxd_count[nic->rxd_mode] + 1));
1036                         }
1037                         kfree(mac_control->rings[i].ba);
1038                         nic->mac_control.stats_info->sw_stat.mem_freed +=
1039                         (sizeof(struct buffAdd *) * blk_cnt);
1040                 }
1041         }
1042
1043         for (i = 0; i < nic->config.tx_fifo_num; i++) {
1044                 if (mac_control->fifos[i].ufo_in_band_v) {
1045                         nic->mac_control.stats_info->sw_stat.mem_freed
1046                                 += (config->tx_cfg[i].fifo_len * sizeof(u64));
1047                         kfree(mac_control->fifos[i].ufo_in_band_v);
1048                 }
1049         }
1050
1051         if (mac_control->stats_mem) {
1052                 nic->mac_control.stats_info->sw_stat.mem_freed +=
1053                         mac_control->stats_mem_sz;
1054                 pci_free_consistent(nic->pdev,
1055                                     mac_control->stats_mem_sz,
1056                                     mac_control->stats_mem,
1057                                     mac_control->stats_mem_phy);
1058         }
1059 }
1060
1061 /**
1062  * s2io_verify_pci_mode -
1063  */
1064
1065 static int s2io_verify_pci_mode(struct s2io_nic *nic)
1066 {
1067         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1068         register u64 val64 = 0;
1069         int     mode;
1070
1071         val64 = readq(&bar0->pci_mode);
1072         mode = (u8)GET_PCI_MODE(val64);
1073
1074         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1075                 return -1;      /* Unknown PCI mode */
1076         return mode;
1077 }
1078
1079 #define NEC_VENID   0x1033
1080 #define NEC_DEVID   0x0125
1081 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1082 {
1083         struct pci_dev *tdev = NULL;
1084         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1085                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1086                         if (tdev->bus == s2io_pdev->bus->parent) {
1087                                 pci_dev_put(tdev);
1088                                 return 1;
1089                         }
1090                 }
1091         }
1092         return 0;
1093 }
1094
1095 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1096 /**
1097  * s2io_print_pci_mode -
1098  */
1099 static int s2io_print_pci_mode(struct s2io_nic *nic)
1100 {
1101         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1102         register u64 val64 = 0;
1103         int     mode;
1104         struct config_param *config = &nic->config;
1105
1106         val64 = readq(&bar0->pci_mode);
1107         mode = (u8)GET_PCI_MODE(val64);
1108
1109         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1110                 return -1;      /* Unknown PCI mode */
1111
1112         config->bus_speed = bus_speed[mode];
1113
1114         if (s2io_on_nec_bridge(nic->pdev)) {
1115                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1116                                                         nic->dev->name);
1117                 return mode;
1118         }
1119
1120         if (val64 & PCI_MODE_32_BITS) {
1121                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1122         } else {
1123                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1124         }
1125
1126         switch(mode) {
1127                 case PCI_MODE_PCI_33:
1128                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1129                         break;
1130                 case PCI_MODE_PCI_66:
1131                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1132                         break;
1133                 case PCI_MODE_PCIX_M1_66:
1134                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1135                         break;
1136                 case PCI_MODE_PCIX_M1_100:
1137                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1138                         break;
1139                 case PCI_MODE_PCIX_M1_133:
1140                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1141                         break;
1142                 case PCI_MODE_PCIX_M2_66:
1143                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1144                         break;
1145                 case PCI_MODE_PCIX_M2_100:
1146                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1147                         break;
1148                 case PCI_MODE_PCIX_M2_133:
1149                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1150                         break;
1151                 default:
1152                         return -1;      /* Unsupported bus speed */
1153         }
1154
1155         return mode;
1156 }
1157
1158 /**
1159  *  init_tti - Initialization transmit traffic interrupt scheme
1160  *  @nic: device private variable
1161  *  @link: link status (UP/DOWN) used to enable/disable continuous
1162  *  transmit interrupts
1163  *  Description: The function configures transmit traffic interrupts
1164  *  Return Value:  SUCCESS on success and
1165  *  '-1' on failure
1166  */
1167
1168 static int init_tti(struct s2io_nic *nic, int link)
1169 {
1170         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1171         register u64 val64 = 0;
1172         int i;
1173         struct config_param *config;
1174
1175         config = &nic->config;
1176
1177         for (i = 0; i < config->tx_fifo_num; i++) {
1178                 /*
1179                  * TTI Initialization. Default Tx timer gets us about
1180                  * 250 interrupts per sec. Continuous interrupts are enabled
1181                  * by default.
1182                  */
1183                 if (nic->device_type == XFRAME_II_DEVICE) {
1184                         int count = (nic->config.bus_speed * 125)/2;
1185                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1186                 } else
1187                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1188
1189                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1190                                 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1191                                 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1192                                 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1193                 if (i == 0)
1194                         if (use_continuous_tx_intrs && (link == LINK_UP))
1195                                 val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1196                 writeq(val64, &bar0->tti_data1_mem);
1197
1198                 if (nic->config.intr_type == MSI_X) {
1199                         val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1200                                 TTI_DATA2_MEM_TX_UFC_B(0x100) |
1201                                 TTI_DATA2_MEM_TX_UFC_C(0x200) |
1202                                 TTI_DATA2_MEM_TX_UFC_D(0x300);
1203                 } else {
1204                         if ((nic->config.tx_steering_type ==
1205                                 TX_DEFAULT_STEERING) &&
1206                                 (config->tx_fifo_num > 1) &&
1207                                 (i >= nic->udp_fifo_idx) &&
1208                                 (i < (nic->udp_fifo_idx +
1209                                 nic->total_udp_fifos)))
1210                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x50) |
1211                                         TTI_DATA2_MEM_TX_UFC_B(0x80) |
1212                                         TTI_DATA2_MEM_TX_UFC_C(0x100) |
1213                                         TTI_DATA2_MEM_TX_UFC_D(0x120);
1214                         else
1215                                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1216                                         TTI_DATA2_MEM_TX_UFC_B(0x20) |
1217                                         TTI_DATA2_MEM_TX_UFC_C(0x40) |
1218                                         TTI_DATA2_MEM_TX_UFC_D(0x80);
1219                 }
1220
1221                 writeq(val64, &bar0->tti_data2_mem);
1222
1223                 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1224                                 TTI_CMD_MEM_OFFSET(i);
1225                 writeq(val64, &bar0->tti_command_mem);
1226
1227                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1228                         TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1229                         return FAILURE;
1230         }
1231
1232         return SUCCESS;
1233 }
1234
1235 /**
1236  *  init_nic - Initialization of hardware
1237  *  @nic: device private variable
1238  *  Description: The function sequentially configures every block
1239  *  of the H/W from their reset values.
1240  *  Return Value:  SUCCESS on success and
1241  *  '-1' on failure (endian settings incorrect).
1242  */
1243
1244 static int init_nic(struct s2io_nic *nic)
1245 {
1246         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1247         struct net_device *dev = nic->dev;
1248         register u64 val64 = 0;
1249         void __iomem *add;
1250         u32 time;
1251         int i, j;
1252         struct mac_info *mac_control;
1253         struct config_param *config;
1254         int dtx_cnt = 0;
1255         unsigned long long mem_share;
1256         int mem_size;
1257
1258         mac_control = &nic->mac_control;
1259         config = &nic->config;
1260
1261         /* to set the swapper controle on the card */
1262         if(s2io_set_swapper(nic)) {
1263                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1264                 return -EIO;
1265         }
1266
1267         /*
1268          * Herc requires EOI to be removed from reset before XGXS, so..
1269          */
1270         if (nic->device_type & XFRAME_II_DEVICE) {
1271                 val64 = 0xA500000000ULL;
1272                 writeq(val64, &bar0->sw_reset);
1273                 msleep(500);
1274                 val64 = readq(&bar0->sw_reset);
1275         }
1276
1277         /* Remove XGXS from reset state */
1278         val64 = 0;
1279         writeq(val64, &bar0->sw_reset);
1280         msleep(500);
1281         val64 = readq(&bar0->sw_reset);
1282
1283         /* Ensure that it's safe to access registers by checking
1284          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1285          */
1286         if (nic->device_type == XFRAME_II_DEVICE) {
1287                 for (i = 0; i < 50; i++) {
1288                         val64 = readq(&bar0->adapter_status);
1289                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1290                                 break;
1291                         msleep(10);
1292                 }
1293                 if (i == 50)
1294                         return -ENODEV;
1295         }
1296
1297         /*  Enable Receiving broadcasts */
1298         add = &bar0->mac_cfg;
1299         val64 = readq(&bar0->mac_cfg);
1300         val64 |= MAC_RMAC_BCAST_ENABLE;
1301         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1302         writel((u32) val64, add);
1303         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1304         writel((u32) (val64 >> 32), (add + 4));
1305
1306         /* Read registers in all blocks */
1307         val64 = readq(&bar0->mac_int_mask);
1308         val64 = readq(&bar0->mc_int_mask);
1309         val64 = readq(&bar0->xgxs_int_mask);
1310
1311         /*  Set MTU */
1312         val64 = dev->mtu;
1313         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1314
1315         if (nic->device_type & XFRAME_II_DEVICE) {
1316                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1317                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1318                                           &bar0->dtx_control, UF);
1319                         if (dtx_cnt & 0x1)
1320                                 msleep(1); /* Necessary!! */
1321                         dtx_cnt++;
1322                 }
1323         } else {
1324                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1325                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1326                                           &bar0->dtx_control, UF);
1327                         val64 = readq(&bar0->dtx_control);
1328                         dtx_cnt++;
1329                 }
1330         }
1331
1332         /*  Tx DMA Initialization */
1333         val64 = 0;
1334         writeq(val64, &bar0->tx_fifo_partition_0);
1335         writeq(val64, &bar0->tx_fifo_partition_1);
1336         writeq(val64, &bar0->tx_fifo_partition_2);
1337         writeq(val64, &bar0->tx_fifo_partition_3);
1338
1339
1340         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1341                 val64 |=
1342                     vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1343                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1344                                     ((j * 32) + 5), 3);
1345
1346                 if (i == (config->tx_fifo_num - 1)) {
1347                         if (i % 2 == 0)
1348                                 i++;
1349                 }
1350
1351                 switch (i) {
1352                 case 1:
1353                         writeq(val64, &bar0->tx_fifo_partition_0);
1354                         val64 = 0;
1355                         j = 0;
1356                         break;
1357                 case 3:
1358                         writeq(val64, &bar0->tx_fifo_partition_1);
1359                         val64 = 0;
1360                         j = 0;
1361                         break;
1362                 case 5:
1363                         writeq(val64, &bar0->tx_fifo_partition_2);
1364                         val64 = 0;
1365                         j = 0;
1366                         break;
1367                 case 7:
1368                         writeq(val64, &bar0->tx_fifo_partition_3);
1369                         val64 = 0;
1370                         j = 0;
1371                         break;
1372                 default:
1373                         j++;
1374                         break;
1375                 }
1376         }
1377
1378         /*
1379          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1380          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1381          */
1382         if ((nic->device_type == XFRAME_I_DEVICE) &&
1383                 (nic->pdev->revision < 4))
1384                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1385
1386         val64 = readq(&bar0->tx_fifo_partition_0);
1387         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1388                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1389
1390         /*
1391          * Initialization of Tx_PA_CONFIG register to ignore packet
1392          * integrity checking.
1393          */
1394         val64 = readq(&bar0->tx_pa_cfg);
1395         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1396             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1397         writeq(val64, &bar0->tx_pa_cfg);
1398
1399         /* Rx DMA intialization. */
1400         val64 = 0;
1401         for (i = 0; i < config->rx_ring_num; i++) {
1402                 val64 |=
1403                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1404                          3);
1405         }
1406         writeq(val64, &bar0->rx_queue_priority);
1407
1408         /*
1409          * Allocating equal share of memory to all the
1410          * configured Rings.
1411          */
1412         val64 = 0;
1413         if (nic->device_type & XFRAME_II_DEVICE)
1414                 mem_size = 32;
1415         else
1416                 mem_size = 64;
1417
1418         for (i = 0; i < config->rx_ring_num; i++) {
1419                 switch (i) {
1420                 case 0:
1421                         mem_share = (mem_size / config->rx_ring_num +
1422                                      mem_size % config->rx_ring_num);
1423                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1424                         continue;
1425                 case 1:
1426                         mem_share = (mem_size / config->rx_ring_num);
1427                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1428                         continue;
1429                 case 2:
1430                         mem_share = (mem_size / config->rx_ring_num);
1431                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1432                         continue;
1433                 case 3:
1434                         mem_share = (mem_size / config->rx_ring_num);
1435                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1436                         continue;
1437                 case 4:
1438                         mem_share = (mem_size / config->rx_ring_num);
1439                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1440                         continue;
1441                 case 5:
1442                         mem_share = (mem_size / config->rx_ring_num);
1443                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1444                         continue;
1445                 case 6:
1446                         mem_share = (mem_size / config->rx_ring_num);
1447                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1448                         continue;
1449                 case 7:
1450                         mem_share = (mem_size / config->rx_ring_num);
1451                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1452                         continue;
1453                 }
1454         }
1455         writeq(val64, &bar0->rx_queue_cfg);
1456
1457         /*
1458          * Filling Tx round robin registers
1459          * as per the number of FIFOs for equal scheduling priority
1460          */
1461         switch (config->tx_fifo_num) {
1462         case 1:
1463                 val64 = 0x0;
1464                 writeq(val64, &bar0->tx_w_round_robin_0);
1465                 writeq(val64, &bar0->tx_w_round_robin_1);
1466                 writeq(val64, &bar0->tx_w_round_robin_2);
1467                 writeq(val64, &bar0->tx_w_round_robin_3);
1468                 writeq(val64, &bar0->tx_w_round_robin_4);
1469                 break;
1470         case 2:
1471                 val64 = 0x0001000100010001ULL;
1472                 writeq(val64, &bar0->tx_w_round_robin_0);
1473                 writeq(val64, &bar0->tx_w_round_robin_1);
1474                 writeq(val64, &bar0->tx_w_round_robin_2);
1475                 writeq(val64, &bar0->tx_w_round_robin_3);
1476                 val64 = 0x0001000100000000ULL;
1477                 writeq(val64, &bar0->tx_w_round_robin_4);
1478                 break;
1479         case 3:
1480                 val64 = 0x0001020001020001ULL;
1481                 writeq(val64, &bar0->tx_w_round_robin_0);
1482                 val64 = 0x0200010200010200ULL;
1483                 writeq(val64, &bar0->tx_w_round_robin_1);
1484                 val64 = 0x0102000102000102ULL;
1485                 writeq(val64, &bar0->tx_w_round_robin_2);
1486                 val64 = 0x0001020001020001ULL;
1487                 writeq(val64, &bar0->tx_w_round_robin_3);
1488                 val64 = 0x0200010200000000ULL;
1489                 writeq(val64, &bar0->tx_w_round_robin_4);
1490                 break;
1491         case 4:
1492                 val64 = 0x0001020300010203ULL;
1493                 writeq(val64, &bar0->tx_w_round_robin_0);
1494                 writeq(val64, &bar0->tx_w_round_robin_1);
1495                 writeq(val64, &bar0->tx_w_round_robin_2);
1496                 writeq(val64, &bar0->tx_w_round_robin_3);
1497                 val64 = 0x0001020300000000ULL;
1498                 writeq(val64, &bar0->tx_w_round_robin_4);
1499                 break;
1500         case 5:
1501                 val64 = 0x0001020304000102ULL;
1502                 writeq(val64, &bar0->tx_w_round_robin_0);
1503                 val64 = 0x0304000102030400ULL;
1504                 writeq(val64, &bar0->tx_w_round_robin_1);
1505                 val64 = 0x0102030400010203ULL;
1506                 writeq(val64, &bar0->tx_w_round_robin_2);
1507                 val64 = 0x0400010203040001ULL;
1508                 writeq(val64, &bar0->tx_w_round_robin_3);
1509                 val64 = 0x0203040000000000ULL;
1510                 writeq(val64, &bar0->tx_w_round_robin_4);
1511                 break;
1512         case 6:
1513                 val64 = 0x0001020304050001ULL;
1514                 writeq(val64, &bar0->tx_w_round_robin_0);
1515                 val64 = 0x0203040500010203ULL;
1516                 writeq(val64, &bar0->tx_w_round_robin_1);
1517                 val64 = 0x0405000102030405ULL;
1518                 writeq(val64, &bar0->tx_w_round_robin_2);
1519                 val64 = 0x0001020304050001ULL;
1520                 writeq(val64, &bar0->tx_w_round_robin_3);
1521                 val64 = 0x0203040500000000ULL;
1522                 writeq(val64, &bar0->tx_w_round_robin_4);
1523                 break;
1524         case 7:
1525                 val64 = 0x0001020304050600ULL;
1526                 writeq(val64, &bar0->tx_w_round_robin_0);
1527                 val64 = 0x0102030405060001ULL;
1528                 writeq(val64, &bar0->tx_w_round_robin_1);
1529                 val64 = 0x0203040506000102ULL;
1530                 writeq(val64, &bar0->tx_w_round_robin_2);
1531                 val64 = 0x0304050600010203ULL;
1532                 writeq(val64, &bar0->tx_w_round_robin_3);
1533                 val64 = 0x0405060000000000ULL;
1534                 writeq(val64, &bar0->tx_w_round_robin_4);
1535                 break;
1536         case 8:
1537                 val64 = 0x0001020304050607ULL;
1538                 writeq(val64, &bar0->tx_w_round_robin_0);
1539                 writeq(val64, &bar0->tx_w_round_robin_1);
1540                 writeq(val64, &bar0->tx_w_round_robin_2);
1541                 writeq(val64, &bar0->tx_w_round_robin_3);
1542                 val64 = 0x0001020300000000ULL;
1543                 writeq(val64, &bar0->tx_w_round_robin_4);
1544                 break;
1545         }
1546
1547         /* Enable all configured Tx FIFO partitions */
1548         val64 = readq(&bar0->tx_fifo_partition_0);
1549         val64 |= (TX_FIFO_PARTITION_EN);
1550         writeq(val64, &bar0->tx_fifo_partition_0);
1551
1552         /* Filling the Rx round robin registers as per the
1553          * number of Rings and steering based on QoS with
1554          * equal priority.
1555          */
1556         switch (config->rx_ring_num) {
1557         case 1:
1558                 val64 = 0x0;
1559                 writeq(val64, &bar0->rx_w_round_robin_0);
1560                 writeq(val64, &bar0->rx_w_round_robin_1);
1561                 writeq(val64, &bar0->rx_w_round_robin_2);
1562                 writeq(val64, &bar0->rx_w_round_robin_3);
1563                 writeq(val64, &bar0->rx_w_round_robin_4);
1564
1565                 val64 = 0x8080808080808080ULL;
1566                 writeq(val64, &bar0->rts_qos_steering);
1567                 break;
1568         case 2:
1569                 val64 = 0x0001000100010001ULL;
1570                 writeq(val64, &bar0->rx_w_round_robin_0);
1571                 writeq(val64, &bar0->rx_w_round_robin_1);
1572                 writeq(val64, &bar0->rx_w_round_robin_2);
1573                 writeq(val64, &bar0->rx_w_round_robin_3);
1574                 val64 = 0x0001000100000000ULL;
1575                 writeq(val64, &bar0->rx_w_round_robin_4);
1576
1577                 val64 = 0x8080808040404040ULL;
1578                 writeq(val64, &bar0->rts_qos_steering);
1579                 break;
1580         case 3:
1581                 val64 = 0x0001020001020001ULL;
1582                 writeq(val64, &bar0->rx_w_round_robin_0);
1583                 val64 = 0x0200010200010200ULL;
1584                 writeq(val64, &bar0->rx_w_round_robin_1);
1585                 val64 = 0x0102000102000102ULL;
1586                 writeq(val64, &bar0->rx_w_round_robin_2);
1587                 val64 = 0x0001020001020001ULL;
1588                 writeq(val64, &bar0->rx_w_round_robin_3);
1589                 val64 = 0x0200010200000000ULL;
1590                 writeq(val64, &bar0->rx_w_round_robin_4);
1591
1592                 val64 = 0x8080804040402020ULL;
1593                 writeq(val64, &bar0->rts_qos_steering);
1594                 break;
1595         case 4:
1596                 val64 = 0x0001020300010203ULL;
1597                 writeq(val64, &bar0->rx_w_round_robin_0);
1598                 writeq(val64, &bar0->rx_w_round_robin_1);
1599                 writeq(val64, &bar0->rx_w_round_robin_2);
1600                 writeq(val64, &bar0->rx_w_round_robin_3);
1601                 val64 = 0x0001020300000000ULL;
1602                 writeq(val64, &bar0->rx_w_round_robin_4);
1603
1604                 val64 = 0x8080404020201010ULL;
1605                 writeq(val64, &bar0->rts_qos_steering);
1606                 break;
1607         case 5:
1608                 val64 = 0x0001020304000102ULL;
1609                 writeq(val64, &bar0->rx_w_round_robin_0);
1610                 val64 = 0x0304000102030400ULL;
1611                 writeq(val64, &bar0->rx_w_round_robin_1);
1612                 val64 = 0x0102030400010203ULL;
1613                 writeq(val64, &bar0->rx_w_round_robin_2);
1614                 val64 = 0x0400010203040001ULL;
1615                 writeq(val64, &bar0->rx_w_round_robin_3);
1616                 val64 = 0x0203040000000000ULL;
1617                 writeq(val64, &bar0->rx_w_round_robin_4);
1618
1619                 val64 = 0x8080404020201008ULL;
1620                 writeq(val64, &bar0->rts_qos_steering);
1621                 break;
1622         case 6:
1623                 val64 = 0x0001020304050001ULL;
1624                 writeq(val64, &bar0->rx_w_round_robin_0);
1625                 val64 = 0x0203040500010203ULL;
1626                 writeq(val64, &bar0->rx_w_round_robin_1);
1627                 val64 = 0x0405000102030405ULL;
1628                 writeq(val64, &bar0->rx_w_round_robin_2);
1629                 val64 = 0x0001020304050001ULL;
1630                 writeq(val64, &bar0->rx_w_round_robin_3);
1631                 val64 = 0x0203040500000000ULL;
1632                 writeq(val64, &bar0->rx_w_round_robin_4);
1633
1634                 val64 = 0x8080404020100804ULL;
1635                 writeq(val64, &bar0->rts_qos_steering);
1636                 break;
1637         case 7:
1638                 val64 = 0x0001020304050600ULL;
1639                 writeq(val64, &bar0->rx_w_round_robin_0);
1640                 val64 = 0x0102030405060001ULL;
1641                 writeq(val64, &bar0->rx_w_round_robin_1);
1642                 val64 = 0x0203040506000102ULL;
1643                 writeq(val64, &bar0->rx_w_round_robin_2);
1644                 val64 = 0x0304050600010203ULL;
1645                 writeq(val64, &bar0->rx_w_round_robin_3);
1646                 val64 = 0x0405060000000000ULL;
1647                 writeq(val64, &bar0->rx_w_round_robin_4);
1648
1649                 val64 = 0x8080402010080402ULL;
1650                 writeq(val64, &bar0->rts_qos_steering);
1651                 break;
1652         case 8:
1653                 val64 = 0x0001020304050607ULL;
1654                 writeq(val64, &bar0->rx_w_round_robin_0);
1655                 writeq(val64, &bar0->rx_w_round_robin_1);
1656                 writeq(val64, &bar0->rx_w_round_robin_2);
1657                 writeq(val64, &bar0->rx_w_round_robin_3);
1658                 val64 = 0x0001020300000000ULL;
1659                 writeq(val64, &bar0->rx_w_round_robin_4);
1660
1661                 val64 = 0x8040201008040201ULL;
1662                 writeq(val64, &bar0->rts_qos_steering);
1663                 break;
1664         }
1665
1666         /* UDP Fix */
1667         val64 = 0;
1668         for (i = 0; i < 8; i++)
1669                 writeq(val64, &bar0->rts_frm_len_n[i]);
1670
1671         /* Set the default rts frame length for the rings configured */
1672         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1673         for (i = 0 ; i < config->rx_ring_num ; i++)
1674                 writeq(val64, &bar0->rts_frm_len_n[i]);
1675
1676         /* Set the frame length for the configured rings
1677          * desired by the user
1678          */
1679         for (i = 0; i < config->rx_ring_num; i++) {
1680                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1681                  * specified frame length steering.
1682                  * If the user provides the frame length then program
1683                  * the rts_frm_len register for those values or else
1684                  * leave it as it is.
1685                  */
1686                 if (rts_frm_len[i] != 0) {
1687                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1688                                 &bar0->rts_frm_len_n[i]);
1689                 }
1690         }
1691
1692         /* Disable differentiated services steering logic */
1693         for (i = 0; i < 64; i++) {
1694                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1695                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1696                                 dev->name);
1697                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1698                         return -ENODEV;
1699                 }
1700         }
1701
1702         /* Program statistics memory */
1703         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1704
1705         if (nic->device_type == XFRAME_II_DEVICE) {
1706                 val64 = STAT_BC(0x320);
1707                 writeq(val64, &bar0->stat_byte_cnt);
1708         }
1709
1710         /*
1711          * Initializing the sampling rate for the device to calculate the
1712          * bandwidth utilization.
1713          */
1714         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1715             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1716         writeq(val64, &bar0->mac_link_util);
1717
1718         /*
1719          * Initializing the Transmit and Receive Traffic Interrupt
1720          * Scheme.
1721          */
1722
1723         /* Initialize TTI */
1724         if (SUCCESS != init_tti(nic, nic->last_link_state))
1725                 return -ENODEV;
1726
1727         /* RTI Initialization */
1728         if (nic->device_type == XFRAME_II_DEVICE) {
1729                 /*
1730                  * Programmed to generate Apprx 500 Intrs per
1731                  * second
1732                  */
1733                 int count = (nic->config.bus_speed * 125)/4;
1734                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1735         } else
1736                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1737         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1738                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1739                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1740
1741         writeq(val64, &bar0->rti_data1_mem);
1742
1743         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1744                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1745         if (nic->config.intr_type == MSI_X)
1746             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1747                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1748         else
1749             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1750                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1751         writeq(val64, &bar0->rti_data2_mem);
1752
1753         for (i = 0; i < config->rx_ring_num; i++) {
1754                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1755                                 | RTI_CMD_MEM_OFFSET(i);
1756                 writeq(val64, &bar0->rti_command_mem);
1757
1758                 /*
1759                  * Once the operation completes, the Strobe bit of the
1760                  * command register will be reset. We poll for this
1761                  * particular condition. We wait for a maximum of 500ms
1762                  * for the operation to complete, if it's not complete
1763                  * by then we return error.
1764                  */
1765                 time = 0;
1766                 while (TRUE) {
1767                         val64 = readq(&bar0->rti_command_mem);
1768                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1769                                 break;
1770
1771                         if (time > 10) {
1772                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1773                                           dev->name);
1774                                 return -ENODEV;
1775                         }
1776                         time++;
1777                         msleep(50);
1778                 }
1779         }
1780
1781         /*
1782          * Initializing proper values as Pause threshold into all
1783          * the 8 Queues on Rx side.
1784          */
1785         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1786         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1787
1788         /* Disable RMAC PAD STRIPPING */
1789         add = &bar0->mac_cfg;
1790         val64 = readq(&bar0->mac_cfg);
1791         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1792         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1793         writel((u32) (val64), add);
1794         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1795         writel((u32) (val64 >> 32), (add + 4));
1796         val64 = readq(&bar0->mac_cfg);
1797
1798         /* Enable FCS stripping by adapter */
1799         add = &bar0->mac_cfg;
1800         val64 = readq(&bar0->mac_cfg);
1801         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1802         if (nic->device_type == XFRAME_II_DEVICE)
1803                 writeq(val64, &bar0->mac_cfg);
1804         else {
1805                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1806                 writel((u32) (val64), add);
1807                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1808                 writel((u32) (val64 >> 32), (add + 4));
1809         }
1810
1811         /*
1812          * Set the time value to be inserted in the pause frame
1813          * generated by xena.
1814          */
1815         val64 = readq(&bar0->rmac_pause_cfg);
1816         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1817         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1818         writeq(val64, &bar0->rmac_pause_cfg);
1819
1820         /*
1821          * Set the Threshold Limit for Generating the pause frame
1822          * If the amount of data in any Queue exceeds ratio of
1823          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1824          * pause frame is generated
1825          */
1826         val64 = 0;
1827         for (i = 0; i < 4; i++) {
1828                 val64 |=
1829                     (((u64) 0xFF00 | nic->mac_control.
1830                       mc_pause_threshold_q0q3)
1831                      << (i * 2 * 8));
1832         }
1833         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1834
1835         val64 = 0;
1836         for (i = 0; i < 4; i++) {
1837                 val64 |=
1838                     (((u64) 0xFF00 | nic->mac_control.
1839                       mc_pause_threshold_q4q7)
1840                      << (i * 2 * 8));
1841         }
1842         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1843
1844         /*
1845          * TxDMA will stop Read request if the number of read split has
1846          * exceeded the limit pointed by shared_splits
1847          */
1848         val64 = readq(&bar0->pic_control);
1849         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1850         writeq(val64, &bar0->pic_control);
1851
1852         if (nic->config.bus_speed == 266) {
1853                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1854                 writeq(0x0, &bar0->read_retry_delay);
1855                 writeq(0x0, &bar0->write_retry_delay);
1856         }
1857
1858         /*
1859          * Programming the Herc to split every write transaction
1860          * that does not start on an ADB to reduce disconnects.
1861          */
1862         if (nic->device_type == XFRAME_II_DEVICE) {
1863                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1864                         MISC_LINK_STABILITY_PRD(3);
1865                 writeq(val64, &bar0->misc_control);
1866                 val64 = readq(&bar0->pic_control2);
1867                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1868                 writeq(val64, &bar0->pic_control2);
1869         }
1870         if (strstr(nic->product_name, "CX4")) {
1871                 val64 = TMAC_AVG_IPG(0x17);
1872                 writeq(val64, &bar0->tmac_avg_ipg);
1873         }
1874
1875         return SUCCESS;
1876 }
1877 #define LINK_UP_DOWN_INTERRUPT          1
1878 #define MAC_RMAC_ERR_TIMER              2
1879
1880 static int s2io_link_fault_indication(struct s2io_nic *nic)
1881 {
1882         if (nic->device_type == XFRAME_II_DEVICE)
1883                 return LINK_UP_DOWN_INTERRUPT;
1884         else
1885                 return MAC_RMAC_ERR_TIMER;
1886 }
1887
1888 /**
1889  *  do_s2io_write_bits -  update alarm bits in alarm register
1890  *  @value: alarm bits
1891  *  @flag: interrupt status
1892  *  @addr: address value
1893  *  Description: update alarm bits in alarm register
1894  *  Return Value:
1895  *  NONE.
1896  */
1897 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1898 {
1899         u64 temp64;
1900
1901         temp64 = readq(addr);
1902
1903         if(flag == ENABLE_INTRS)
1904                 temp64 &= ~((u64) value);
1905         else
1906                 temp64 |= ((u64) value);
1907         writeq(temp64, addr);
1908 }
1909
1910 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1911 {
1912         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1913         register u64 gen_int_mask = 0;
1914         u64 interruptible;
1915
1916         writeq(DISABLE_ALL_INTRS, &bar0->general_int_mask);
1917         if (mask & TX_DMA_INTR) {
1918
1919                 gen_int_mask |= TXDMA_INT_M;
1920
1921                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1922                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1923                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1924                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1925
1926                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1927                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1928                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1929                                 &bar0->pfc_err_mask);
1930
1931                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1932                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1933                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1934
1935                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1936                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1937                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1938                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1939                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1940                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1941
1942                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1943                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1944
1945                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1946                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1947                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1948                                 flag, &bar0->lso_err_mask);
1949
1950                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1951                                 flag, &bar0->tpa_err_mask);
1952
1953                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1954
1955         }
1956
1957         if (mask & TX_MAC_INTR) {
1958                 gen_int_mask |= TXMAC_INT_M;
1959                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1960                                 &bar0->mac_int_mask);
1961                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1962                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1963                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1964                                 flag, &bar0->mac_tmac_err_mask);
1965         }
1966
1967         if (mask & TX_XGXS_INTR) {
1968                 gen_int_mask |= TXXGXS_INT_M;
1969                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1970                                 &bar0->xgxs_int_mask);
1971                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1972                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1973                                 flag, &bar0->xgxs_txgxs_err_mask);
1974         }
1975
1976         if (mask & RX_DMA_INTR) {
1977                 gen_int_mask |= RXDMA_INT_M;
1978                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1979                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1980                                 flag, &bar0->rxdma_int_mask);
1981                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1982                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1983                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1984                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1985                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1986                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1987                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1988                                 &bar0->prc_pcix_err_mask);
1989                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1990                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1991                                 &bar0->rpa_err_mask);
1992                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1993                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1994                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1995                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1996                                 flag, &bar0->rda_err_mask);
1997                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1998                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1999                                 flag, &bar0->rti_err_mask);
2000         }
2001
2002         if (mask & RX_MAC_INTR) {
2003                 gen_int_mask |= RXMAC_INT_M;
2004                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
2005                                 &bar0->mac_int_mask);
2006                 interruptible = RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
2007                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
2008                                 RMAC_DOUBLE_ECC_ERR;
2009                 if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER)
2010                         interruptible |= RMAC_LINK_STATE_CHANGE_INT;
2011                 do_s2io_write_bits(interruptible,
2012                                 flag, &bar0->mac_rmac_err_mask);
2013         }
2014
2015         if (mask & RX_XGXS_INTR)
2016         {
2017                 gen_int_mask |= RXXGXS_INT_M;
2018                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
2019                                 &bar0->xgxs_int_mask);
2020                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
2021                                 &bar0->xgxs_rxgxs_err_mask);
2022         }
2023
2024         if (mask & MC_INTR) {
2025                 gen_int_mask |= MC_INT_M;
2026                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
2027                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
2028                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
2029                                 &bar0->mc_err_mask);
2030         }
2031         nic->general_int_mask = gen_int_mask;
2032
2033         /* Remove this line when alarm interrupts are enabled */
2034         nic->general_int_mask = 0;
2035 }
2036 /**
2037  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
2038  *  @nic: device private variable,
2039  *  @mask: A mask indicating which Intr block must be modified and,
2040  *  @flag: A flag indicating whether to enable or disable the Intrs.
2041  *  Description: This function will either disable or enable the interrupts
2042  *  depending on the flag argument. The mask argument can be used to
2043  *  enable/disable any Intr block.
2044  *  Return Value: NONE.
2045  */
2046
2047 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
2048 {
2049         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2050         register u64 temp64 = 0, intr_mask = 0;
2051
2052         intr_mask = nic->general_int_mask;
2053
2054         /*  Top level interrupt classification */
2055         /*  PIC Interrupts */
2056         if (mask & TX_PIC_INTR) {
2057                 /*  Enable PIC Intrs in the general intr mask register */
2058                 intr_mask |= TXPIC_INT_M;
2059                 if (flag == ENABLE_INTRS) {
2060                         /*
2061                          * If Hercules adapter enable GPIO otherwise
2062                          * disable all PCIX, Flash, MDIO, IIC and GPIO
2063                          * interrupts for now.
2064                          * TODO
2065                          */
2066                         if (s2io_link_fault_indication(nic) ==
2067                                         LINK_UP_DOWN_INTERRUPT ) {
2068                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
2069                                                 &bar0->pic_int_mask);
2070                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
2071                                                 &bar0->gpio_int_mask);
2072                         } else
2073                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2074                 } else if (flag == DISABLE_INTRS) {
2075                         /*
2076                          * Disable PIC Intrs in the general
2077                          * intr mask register
2078                          */
2079                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
2080                 }
2081         }
2082
2083         /*  Tx traffic interrupts */
2084         if (mask & TX_TRAFFIC_INTR) {
2085                 intr_mask |= TXTRAFFIC_INT_M;
2086                 if (flag == ENABLE_INTRS) {
2087                         /*
2088                          * Enable all the Tx side interrupts
2089                          * writing 0 Enables all 64 TX interrupt levels
2090                          */
2091                         writeq(0x0, &bar0->tx_traffic_mask);
2092                 } else if (flag == DISABLE_INTRS) {
2093                         /*
2094                          * Disable Tx Traffic Intrs in the general intr mask
2095                          * register.
2096                          */
2097                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2098                 }
2099         }
2100
2101         /*  Rx traffic interrupts */
2102         if (mask & RX_TRAFFIC_INTR) {
2103                 intr_mask |= RXTRAFFIC_INT_M;
2104                 if (flag == ENABLE_INTRS) {
2105                         /* writing 0 Enables all 8 RX interrupt levels */
2106                         writeq(0x0, &bar0->rx_traffic_mask);
2107                 } else if (flag == DISABLE_INTRS) {
2108                         /*
2109                          * Disable Rx Traffic Intrs in the general intr mask
2110                          * register.
2111                          */
2112                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2113                 }
2114         }
2115
2116         temp64 = readq(&bar0->general_int_mask);
2117         if (flag == ENABLE_INTRS)
2118                 temp64 &= ~((u64) intr_mask);
2119         else
2120                 temp64 = DISABLE_ALL_INTRS;
2121         writeq(temp64, &bar0->general_int_mask);
2122
2123         nic->general_int_mask = readq(&bar0->general_int_mask);
2124 }
2125
2126 /**
2127  *  verify_pcc_quiescent- Checks for PCC quiescent state
2128  *  Return: 1 If PCC is quiescence
2129  *          0 If PCC is not quiescence
2130  */
2131 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2132 {
2133         int ret = 0, herc;
2134         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2135         u64 val64 = readq(&bar0->adapter_status);
2136
2137         herc = (sp->device_type == XFRAME_II_DEVICE);
2138
2139         if (flag == FALSE) {
2140                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2141                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2142                                 ret = 1;
2143                 } else {
2144                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2145                                 ret = 1;
2146                 }
2147         } else {
2148                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2149                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2150                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2151                                 ret = 1;
2152                 } else {
2153                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2154                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2155                                 ret = 1;
2156                 }
2157         }
2158
2159         return ret;
2160 }
2161 /**
2162  *  verify_xena_quiescence - Checks whether the H/W is ready
2163  *  Description: Returns whether the H/W is ready to go or not. Depending
2164  *  on whether adapter enable bit was written or not the comparison
2165  *  differs and the calling function passes the input argument flag to
2166  *  indicate this.
2167  *  Return: 1 If xena is quiescence
2168  *          0 If Xena is not quiescence
2169  */
2170
2171 static int verify_xena_quiescence(struct s2io_nic *sp)
2172 {
2173         int  mode;
2174         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2175         u64 val64 = readq(&bar0->adapter_status);
2176         mode = s2io_verify_pci_mode(sp);
2177
2178         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2179                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2180                 return 0;
2181         }
2182         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2183         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2184                 return 0;
2185         }
2186         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2187                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2188                 return 0;
2189         }
2190         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2191                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2192                 return 0;
2193         }
2194         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2195                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2196                 return 0;
2197         }
2198         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2199                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2200                 return 0;
2201         }
2202         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2203                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2204                 return 0;
2205         }
2206         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2207                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2208                 return 0;
2209         }
2210
2211         /*
2212          * In PCI 33 mode, the P_PLL is not used, and therefore,
2213          * the the P_PLL_LOCK bit in the adapter_status register will
2214          * not be asserted.
2215          */
2216         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2217                 sp->device_type == XFRAME_II_DEVICE && mode !=
2218                 PCI_MODE_PCI_33) {
2219                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2220                 return 0;
2221         }
2222         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2223                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2224                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2225                 return 0;
2226         }
2227         return 1;
2228 }
2229
2230 /**
2231  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2232  * @sp: Pointer to device specifc structure
2233  * Description :
2234  * New procedure to clear mac address reading  problems on Alpha platforms
2235  *
2236  */
2237
2238 static void fix_mac_address(struct s2io_nic * sp)
2239 {
2240         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2241         u64 val64;
2242         int i = 0;
2243
2244         while (fix_mac[i] != END_SIGN) {
2245                 writeq(fix_mac[i++], &bar0->gpio_control);
2246                 udelay(10);
2247                 val64 = readq(&bar0->gpio_control);
2248         }
2249 }
2250
2251 /**
2252  *  start_nic - Turns the device on
2253  *  @nic : device private variable.
2254  *  Description:
2255  *  This function actually turns the device on. Before this  function is
2256  *  called,all Registers are configured from their reset states
2257  *  and shared memory is allocated but the NIC is still quiescent. On
2258  *  calling this function, the device interrupts are cleared and the NIC is
2259  *  literally switched on by writing into the adapter control register.
2260  *  Return Value:
2261  *  SUCCESS on success and -1 on failure.
2262  */
2263
2264 static int start_nic(struct s2io_nic *nic)
2265 {
2266         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2267         struct net_device *dev = nic->dev;
2268         register u64 val64 = 0;
2269         u16 subid, i;
2270         struct mac_info *mac_control;
2271         struct config_param *config;
2272
2273         mac_control = &nic->mac_control;
2274         config = &nic->config;
2275
2276         /*  PRC Initialization and configuration */
2277         for (i = 0; i < config->rx_ring_num; i++) {
2278                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2279                        &bar0->prc_rxd0_n[i]);
2280
2281                 val64 = readq(&bar0->prc_ctrl_n[i]);
2282                 if (nic->rxd_mode == RXD_MODE_1)
2283                         val64 |= PRC_CTRL_RC_ENABLED;
2284                 else
2285                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2286                 if (nic->device_type == XFRAME_II_DEVICE)
2287                         val64 |= PRC_CTRL_GROUP_READS;
2288                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2289                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2290                 writeq(val64, &bar0->prc_ctrl_n[i]);
2291         }
2292
2293         if (nic->rxd_mode == RXD_MODE_3B) {
2294                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2295                 val64 = readq(&bar0->rx_pa_cfg);
2296                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2297                 writeq(val64, &bar0->rx_pa_cfg);
2298         }
2299
2300         if (vlan_tag_strip == 0) {
2301                 val64 = readq(&bar0->rx_pa_cfg);
2302                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2303                 writeq(val64, &bar0->rx_pa_cfg);
2304                 nic->vlan_strip_flag = 0;
2305         }
2306
2307         /*
2308          * Enabling MC-RLDRAM. After enabling the device, we timeout
2309          * for around 100ms, which is approximately the time required
2310          * for the device to be ready for operation.
2311          */
2312         val64 = readq(&bar0->mc_rldram_mrs);
2313         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2314         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2315         val64 = readq(&bar0->mc_rldram_mrs);
2316
2317         msleep(100);    /* Delay by around 100 ms. */
2318
2319         /* Enabling ECC Protection. */
2320         val64 = readq(&bar0->adapter_control);
2321         val64 &= ~ADAPTER_ECC_EN;
2322         writeq(val64, &bar0->adapter_control);
2323
2324         /*
2325          * Verify if the device is ready to be enabled, if so enable
2326          * it.
2327          */
2328         val64 = readq(&bar0->adapter_status);
2329         if (!verify_xena_quiescence(nic)) {
2330                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2331                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2332                           (unsigned long long) val64);
2333                 return FAILURE;
2334         }
2335
2336         /*
2337          * With some switches, link might be already up at this point.
2338          * Because of this weird behavior, when we enable laser,
2339          * we may not get link. We need to handle this. We cannot
2340          * figure out which switch is misbehaving. So we are forced to
2341          * make a global change.
2342          */
2343
2344         /* Enabling Laser. */
2345         val64 = readq(&bar0->adapter_control);
2346         val64 |= ADAPTER_EOI_TX_ON;
2347         writeq(val64, &bar0->adapter_control);
2348
2349         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2350                 /*
2351                  * Dont see link state interrupts initally on some switches,
2352                  * so directly scheduling the link state task here.
2353                  */
2354                 schedule_work(&nic->set_link_task);
2355         }
2356         /* SXE-002: Initialize link and activity LED */
2357         subid = nic->pdev->subsystem_device;
2358         if (((subid & 0xFF) >= 0x07) &&
2359             (nic->device_type == XFRAME_I_DEVICE)) {
2360                 val64 = readq(&bar0->gpio_control);
2361                 val64 |= 0x0000800000000000ULL;
2362                 writeq(val64, &bar0->gpio_control);
2363                 val64 = 0x0411040400000000ULL;
2364                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2365         }
2366
2367         return SUCCESS;
2368 }
2369 /**
2370  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2371  */
2372 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2373                                         TxD *txdlp, int get_off)
2374 {
2375         struct s2io_nic *nic = fifo_data->nic;
2376         struct sk_buff *skb;
2377         struct TxD *txds;
2378         u16 j, frg_cnt;
2379
2380         txds = txdlp;
2381         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2382                 pci_unmap_single(nic->pdev, (dma_addr_t)
2383                         txds->Buffer_Pointer, sizeof(u64),
2384                         PCI_DMA_TODEVICE);
2385                 txds++;
2386         }
2387
2388         skb = (struct sk_buff *) ((unsigned long)
2389                         txds->Host_Control);
2390         if (!skb) {
2391                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2392                 return NULL;
2393         }
2394         pci_unmap_single(nic->pdev, (dma_addr_t)
2395                          txds->Buffer_Pointer,
2396                          skb->len - skb->data_len,
2397                          PCI_DMA_TODEVICE);
2398         frg_cnt = skb_shinfo(skb)->nr_frags;
2399         if (frg_cnt) {
2400                 txds++;
2401                 for (j = 0; j < frg_cnt; j++, txds++) {
2402                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2403                         if (!txds->Buffer_Pointer)
2404                                 break;
2405                         pci_unmap_page(nic->pdev, (dma_addr_t)
2406                                         txds->Buffer_Pointer,
2407                                        frag->size, PCI_DMA_TODEVICE);
2408                 }
2409         }
2410         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2411         return(skb);
2412 }
2413
2414 /**
2415  *  free_tx_buffers - Free all queued Tx buffers
2416  *  @nic : device private variable.
2417  *  Description:
2418  *  Free all queued Tx buffers.
2419  *  Return Value: void
2420 */
2421
2422 static void free_tx_buffers(struct s2io_nic *nic)
2423 {
2424         struct net_device *dev = nic->dev;
2425         struct sk_buff *skb;
2426         struct TxD *txdp;
2427         int i, j;
2428         struct mac_info *mac_control;
2429         struct config_param *config;
2430         int cnt = 0;
2431
2432         mac_control = &nic->mac_control;
2433         config = &nic->config;
2434
2435         for (i = 0; i < config->tx_fifo_num; i++) {
2436                 unsigned long flags;
2437                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2438                 for (j = 0; j < config->tx_cfg[i].fifo_len; j++) {
2439                         txdp = (struct TxD *) \
2440                         mac_control->fifos[i].list_info[j].list_virt_addr;
2441                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2442                         if (skb) {
2443                                 nic->mac_control.stats_info->sw_stat.mem_freed
2444                                         += skb->truesize;
2445                                 dev_kfree_skb(skb);
2446                                 cnt++;
2447                         }
2448                 }
2449                 DBG_PRINT(INTR_DBG,
2450                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2451                           dev->name, cnt, i);
2452                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2453                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2454                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2455         }
2456 }
2457
2458 /**
2459  *   stop_nic -  To stop the nic
2460  *   @nic ; device private variable.
2461  *   Description:
2462  *   This function does exactly the opposite of what the start_nic()
2463  *   function does. This function is called to stop the device.
2464  *   Return Value:
2465  *   void.
2466  */
2467
2468 static void stop_nic(struct s2io_nic *nic)
2469 {
2470         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2471         register u64 val64 = 0;
2472         u16 interruptible;
2473         struct mac_info *mac_control;
2474         struct config_param *config;
2475
2476         mac_control = &nic->mac_control;
2477         config = &nic->config;
2478
2479         /*  Disable all interrupts */
2480         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2481         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2482         interruptible |= TX_PIC_INTR;
2483         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2484
2485         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2486         val64 = readq(&bar0->adapter_control);
2487         val64 &= ~(ADAPTER_CNTL_EN);
2488         writeq(val64, &bar0->adapter_control);
2489 }
2490
2491 /**
2492  *  fill_rx_buffers - Allocates the Rx side skbs
2493  *  @ring_info: per ring structure
2494  *  @from_card_up: If this is true, we will map the buffer to get
2495  *     the dma address for buf0 and buf1 to give it to the card.
2496  *     Else we will sync the already mapped buffer to give it to the card.
2497  *  Description:
2498  *  The function allocates Rx side skbs and puts the physical
2499  *  address of these buffers into the RxD buffer pointers, so that the NIC
2500  *  can DMA the received frame into these locations.
2501  *  The NIC supports 3 receive modes, viz
2502  *  1. single buffer,
2503  *  2. three buffer and
2504  *  3. Five buffer modes.
2505  *  Each mode defines how many fragments the received frame will be split
2506  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2507  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2508  *  is split into 3 fragments. As of now only single buffer mode is
2509  *  supported.
2510  *   Return Value:
2511  *  SUCCESS on success or an appropriate -ve value on failure.
2512  */
2513 static int fill_rx_buffers(struct s2io_nic *nic, struct ring_info *ring,
2514                                 int from_card_up)
2515 {
2516         struct sk_buff *skb;
2517         struct RxD_t *rxdp;
2518         int off, size, block_no, block_no1;
2519         u32 alloc_tab = 0;
2520         u32 alloc_cnt;
2521         u64 tmp;
2522         struct buffAdd *ba;
2523         struct RxD_t *first_rxdp = NULL;
2524         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2525         int rxd_index = 0;
2526         struct RxD1 *rxdp1;
2527         struct RxD3 *rxdp3;
2528         struct swStat *stats = &ring->nic->mac_control.stats_info->sw_stat;
2529
2530         alloc_cnt = ring->pkt_cnt - ring->rx_bufs_left;
2531
2532         block_no1 = ring->rx_curr_get_info.block_index;
2533         while (alloc_tab < alloc_cnt) {
2534                 block_no = ring->rx_curr_put_info.block_index;
2535
2536                 off = ring->rx_curr_put_info.offset;
2537
2538                 rxdp = ring->rx_blocks[block_no].rxds[off].virt_addr;
2539
2540                 rxd_index = off + 1;
2541                 if (block_no)
2542                         rxd_index += (block_no * ring->rxd_count);
2543
2544                 if ((block_no == block_no1) &&
2545                         (off == ring->rx_curr_get_info.offset) &&
2546                         (rxdp->Host_Control)) {
2547                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2548                                 ring->dev->name);
2549                         DBG_PRINT(INTR_DBG, " info equated\n");
2550                         goto end;
2551                 }
2552                 if (off && (off == ring->rxd_count)) {
2553                         ring->rx_curr_put_info.block_index++;
2554                         if (ring->rx_curr_put_info.block_index ==
2555                                                         ring->block_count)
2556                                 ring->rx_curr_put_info.block_index = 0;
2557                         block_no = ring->rx_curr_put_info.block_index;
2558                         off = 0;
2559                         ring->rx_curr_put_info.offset = off;
2560                         rxdp = ring->rx_blocks[block_no].block_virt_addr;
2561                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2562                                   ring->dev->name, rxdp);
2563
2564                 }
2565
2566                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2567                         ((ring->rxd_mode == RXD_MODE_3B) &&
2568                                 (rxdp->Control_2 & s2BIT(0)))) {
2569                         ring->rx_curr_put_info.offset = off;
2570                         goto end;
2571                 }
2572                 /* calculate size of skb based on ring mode */
2573                 size = ring->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2574                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2575                 if (ring->rxd_mode == RXD_MODE_1)
2576                         size += NET_IP_ALIGN;
2577                 else
2578                         size = ring->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2579
2580                 /* allocate skb */
2581                 skb = dev_alloc_skb(size);
2582                 if(!skb) {
2583                         DBG_PRINT(INFO_DBG, "%s: Out of ", ring->dev->name);
2584                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2585                         if (first_rxdp) {
2586                                 wmb();
2587                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2588                         }
2589                         stats->mem_alloc_fail_cnt++;
2590
2591                         return -ENOMEM ;
2592                 }
2593                 stats->mem_allocated += skb->truesize;
2594
2595                 if (ring->rxd_mode == RXD_MODE_1) {
2596                         /* 1 buffer mode - normal operation mode */
2597                         rxdp1 = (struct RxD1*)rxdp;
2598                         memset(rxdp, 0, sizeof(struct RxD1));
2599                         skb_reserve(skb, NET_IP_ALIGN);
2600                         rxdp1->Buffer0_ptr = pci_map_single
2601                             (ring->pdev, skb->data, size - NET_IP_ALIGN,
2602                                 PCI_DMA_FROMDEVICE);
2603                         if (pci_dma_mapping_error(nic->pdev,
2604                                                 rxdp1->Buffer0_ptr))
2605                                 goto pci_map_failed;
2606
2607                         rxdp->Control_2 =
2608                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2609                         rxdp->Host_Control = (unsigned long) (skb);
2610                 } else if (ring->rxd_mode == RXD_MODE_3B) {
2611                         /*
2612                          * 2 buffer mode -
2613                          * 2 buffer mode provides 128
2614                          * byte aligned receive buffers.
2615                          */
2616
2617                         rxdp3 = (struct RxD3*)rxdp;
2618                         /* save buffer pointers to avoid frequent dma mapping */
2619                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2620                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2621                         memset(rxdp, 0, sizeof(struct RxD3));
2622                         /* restore the buffer pointers for dma sync*/
2623                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2624                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2625
2626                         ba = &ring->ba[block_no][off];
2627                         skb_reserve(skb, BUF0_LEN);
2628                         tmp = (u64)(unsigned long) skb->data;
2629                         tmp += ALIGN_SIZE;
2630                         tmp &= ~ALIGN_SIZE;
2631                         skb->data = (void *) (unsigned long)tmp;
2632                         skb_reset_tail_pointer(skb);
2633
2634                         if (from_card_up) {
2635                                 rxdp3->Buffer0_ptr =
2636                                    pci_map_single(ring->pdev, ba->ba_0,
2637                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
2638                         if (pci_dma_mapping_error(nic->pdev,
2639                                                 rxdp3->Buffer0_ptr))
2640                                         goto pci_map_failed;
2641                         } else
2642                                 pci_dma_sync_single_for_device(ring->pdev,
2643                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2644                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2645
2646                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2647                         if (ring->rxd_mode == RXD_MODE_3B) {
2648                                 /* Two buffer mode */
2649
2650                                 /*
2651                                  * Buffer2 will have L3/L4 header plus
2652                                  * L4 payload
2653                                  */
2654                                 rxdp3->Buffer2_ptr = pci_map_single
2655                                 (ring->pdev, skb->data, ring->mtu + 4,
2656                                                 PCI_DMA_FROMDEVICE);
2657
2658                                 if (pci_dma_mapping_error(nic->pdev,
2659                                                         rxdp3->Buffer2_ptr))
2660                                         goto pci_map_failed;
2661
2662                                 if (from_card_up) {
2663                                         rxdp3->Buffer1_ptr =
2664                                                 pci_map_single(ring->pdev,
2665                                                 ba->ba_1, BUF1_LEN,
2666                                                 PCI_DMA_FROMDEVICE);
2667
2668                                         if (pci_dma_mapping_error(nic->pdev,
2669                                                 rxdp3->Buffer1_ptr)) {
2670                                                 pci_unmap_single
2671                                                         (ring->pdev,
2672                                                     (dma_addr_t)(unsigned long)
2673                                                         skb->data,
2674                                                         ring->mtu + 4,
2675                                                         PCI_DMA_FROMDEVICE);
2676                                                 goto pci_map_failed;
2677                                         }
2678                                 }
2679                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2680                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2681                                                                 (ring->mtu + 4);
2682                         }
2683                         rxdp->Control_2 |= s2BIT(0);
2684                         rxdp->Host_Control = (unsigned long) (skb);
2685                 }
2686                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2687                         rxdp->Control_1 |= RXD_OWN_XENA;
2688                 off++;
2689                 if (off == (ring->rxd_count + 1))
2690                         off = 0;
2691                 ring->rx_curr_put_info.offset = off;
2692
2693                 rxdp->Control_2 |= SET_RXD_MARKER;
2694                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2695                         if (first_rxdp) {
2696                                 wmb();
2697                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2698                         }
2699                         first_rxdp = rxdp;
2700                 }
2701                 ring->rx_bufs_left += 1;
2702                 alloc_tab++;
2703         }
2704
2705       end:
2706         /* Transfer ownership of first descriptor to adapter just before
2707          * exiting. Before that, use memory barrier so that ownership
2708          * and other fields are seen by adapter correctly.
2709          */
2710         if (first_rxdp) {
2711                 wmb();
2712                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2713         }
2714
2715         return SUCCESS;
2716 pci_map_failed:
2717         stats->pci_map_fail_cnt++;
2718         stats->mem_freed += skb->truesize;
2719         dev_kfree_skb_irq(skb);
2720         return -ENOMEM;
2721 }
2722
2723 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2724 {
2725         struct net_device *dev = sp->dev;
2726         int j;
2727         struct sk_buff *skb;
2728         struct RxD_t *rxdp;
2729         struct mac_info *mac_control;
2730         struct buffAdd *ba;
2731         struct RxD1 *rxdp1;
2732         struct RxD3 *rxdp3;
2733
2734         mac_control = &sp->mac_control;
2735         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2736                 rxdp = mac_control->rings[ring_no].
2737                                 rx_blocks[blk].rxds[j].virt_addr;
2738                 skb = (struct sk_buff *)
2739                         ((unsigned long) rxdp->Host_Control);
2740                 if (!skb) {
2741                         continue;
2742                 }
2743                 if (sp->rxd_mode == RXD_MODE_1) {
2744                         rxdp1 = (struct RxD1*)rxdp;
2745                         pci_unmap_single(sp->pdev, (dma_addr_t)
2746                                 rxdp1->Buffer0_ptr,
2747                                 dev->mtu +
2748                                 HEADER_ETHERNET_II_802_3_SIZE
2749                                 + HEADER_802_2_SIZE +
2750                                 HEADER_SNAP_SIZE,
2751                                 PCI_DMA_FROMDEVICE);
2752                         memset(rxdp, 0, sizeof(struct RxD1));
2753                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2754                         rxdp3 = (struct RxD3*)rxdp;
2755                         ba = &mac_control->rings[ring_no].
2756                                 ba[blk][j];
2757                         pci_unmap_single(sp->pdev, (dma_addr_t)
2758                                 rxdp3->Buffer0_ptr,
2759                                 BUF0_LEN,
2760                                 PCI_DMA_FROMDEVICE);
2761                         pci_unmap_single(sp->pdev, (dma_addr_t)
2762                                 rxdp3->Buffer1_ptr,
2763                                 BUF1_LEN,
2764                                 PCI_DMA_FROMDEVICE);
2765                         pci_unmap_single(sp->pdev, (dma_addr_t)
2766                                 rxdp3->Buffer2_ptr,
2767                                 dev->mtu + 4,
2768                                 PCI_DMA_FROMDEVICE);
2769                         memset(rxdp, 0, sizeof(struct RxD3));
2770                 }
2771                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2772                 dev_kfree_skb(skb);
2773                 mac_control->rings[ring_no].rx_bufs_left -= 1;
2774         }
2775 }
2776
2777 /**
2778  *  free_rx_buffers - Frees all Rx buffers
2779  *  @sp: device private variable.
2780  *  Description:
2781  *  This function will free all Rx buffers allocated by host.
2782  *  Return Value:
2783  *  NONE.
2784  */
2785
2786 static void free_rx_buffers(struct s2io_nic *sp)
2787 {
2788         struct net_device *dev = sp->dev;
2789         int i, blk = 0, buf_cnt = 0;
2790         struct mac_info *mac_control;
2791         struct config_param *config;
2792
2793         mac_control = &sp->mac_control;
2794         config = &sp->config;
2795
2796         for (i = 0; i < config->rx_ring_num; i++) {
2797                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2798                         free_rxd_blk(sp,i,blk);
2799
2800                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2801                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2802                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2803                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2804                 mac_control->rings[i].rx_bufs_left = 0;
2805                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2806                           dev->name, buf_cnt, i);
2807         }
2808 }
2809
2810 static int s2io_chk_rx_buffers(struct s2io_nic *nic, struct ring_info *ring)
2811 {
2812         if (fill_rx_buffers(nic, ring, 0) == -ENOMEM) {
2813                 DBG_PRINT(INFO_DBG, "%s:Out of memory", ring->dev->name);
2814                 DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
2815         }
2816         return 0;
2817 }
2818
2819 /**
2820  * s2io_poll - Rx interrupt handler for NAPI support
2821  * @napi : pointer to the napi structure.
2822  * @budget : The number of packets that were budgeted to be processed
2823  * during  one pass through the 'Poll" function.
2824  * Description:
2825  * Comes into picture only if NAPI support has been incorporated. It does
2826  * the same thing that rx_intr_handler does, but not in a interrupt context
2827  * also It will process only a given number of packets.
2828  * Return value:
2829  * 0 on success and 1 if there are No Rx packets to be processed.
2830  */
2831
2832 static int s2io_poll_msix(struct napi_struct *napi, int budget)
2833 {
2834         struct ring_info *ring = container_of(napi, struct ring_info, napi);
2835         struct net_device *dev = ring->dev;
2836         struct config_param *config;
2837         struct mac_info *mac_control;
2838         int pkts_processed = 0;
2839         u8 __iomem *addr = NULL;
2840         u8 val8 = 0;
2841         struct s2io_nic *nic = netdev_priv(dev);
2842         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2843         int budget_org = budget;
2844
2845         config = &nic->config;
2846         mac_control = &nic->mac_control;
2847
2848         if (unlikely(!is_s2io_card_up(nic)))
2849                 return 0;
2850
2851         pkts_processed = rx_intr_handler(ring, budget);
2852         s2io_chk_rx_buffers(nic, ring);
2853
2854         if (pkts_processed < budget_org) {
2855                 netif_rx_complete(napi);
2856                 /*Re Enable MSI-Rx Vector*/
2857                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
2858                 addr += 7 - ring->ring_no;
2859                 val8 = (ring->ring_no == 0) ? 0x3f : 0xbf;
2860                 writeb(val8, addr);
2861                 val8 = readb(addr);
2862         }
2863         return pkts_processed;
2864 }
2865 static int s2io_poll_inta(struct napi_struct *napi, int budget)
2866 {
2867         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2868         struct ring_info *ring;
2869         struct config_param *config;
2870         struct mac_info *mac_control;
2871         int pkts_processed = 0;
2872         int ring_pkts_processed, i;
2873         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2874         int budget_org = budget;
2875
2876         config = &nic->config;
2877         mac_control = &nic->mac_control;
2878
2879         if (unlikely(!is_s2io_card_up(nic)))
2880                 return 0;
2881
2882         for (i = 0; i < config->rx_ring_num; i++) {
2883                 ring = &mac_control->rings[i];
2884                 ring_pkts_processed = rx_intr_handler(ring, budget);
2885                 s2io_chk_rx_buffers(nic, ring);
2886                 pkts_processed += ring_pkts_processed;
2887                 budget -= ring_pkts_processed;
2888                 if (budget <= 0)
2889                         break;
2890         }
2891         if (pkts_processed < budget_org) {
2892                 netif_rx_complete(napi);
2893                 /* Re enable the Rx interrupts for the ring */
2894                 writeq(0, &bar0->rx_traffic_mask);
2895                 readl(&bar0->rx_traffic_mask);
2896         }
2897         return pkts_processed;
2898 }
2899
2900 #ifdef CONFIG_NET_POLL_CONTROLLER
2901 /**
2902  * s2io_netpoll - netpoll event handler entry point
2903  * @dev : pointer to the device structure.
2904  * Description:
2905  *      This function will be called by upper layer to check for events on the
2906  * interface in situations where interrupts are disabled. It is used for
2907  * specific in-kernel networking tasks, such as remote consoles and kernel
2908  * debugging over the network (example netdump in RedHat).
2909  */
2910 static void s2io_netpoll(struct net_device *dev)
2911 {
2912         struct s2io_nic *nic = netdev_priv(dev);
2913         struct mac_info *mac_control;
2914         struct config_param *config;
2915         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2916         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2917         int i;
2918
2919         if (pci_channel_offline(nic->pdev))
2920                 return;
2921
2922         disable_irq(dev->irq);
2923
2924         mac_control = &nic->mac_control;
2925         config = &nic->config;
2926
2927         writeq(val64, &bar0->rx_traffic_int);
2928         writeq(val64, &bar0->tx_traffic_int);
2929
2930         /* we need to free up the transmitted skbufs or else netpoll will
2931          * run out of skbs and will fail and eventually netpoll application such
2932          * as netdump will fail.
2933          */
2934         for (i = 0; i < config->tx_fifo_num; i++)
2935                 tx_intr_handler(&mac_control->fifos[i]);
2936
2937         /* check for received packet and indicate up to network */
2938         for (i = 0; i < config->rx_ring_num; i++)
2939                 rx_intr_handler(&mac_control->rings[i], 0);
2940
2941         for (i = 0; i < config->rx_ring_num; i++) {
2942                 if (fill_rx_buffers(nic, &mac_control->rings[i], 0) ==
2943                                 -ENOMEM) {
2944                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2945                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2946                         break;
2947                 }
2948         }
2949         enable_irq(dev->irq);
2950         return;
2951 }
2952 #endif
2953
2954 /**
2955  *  rx_intr_handler - Rx interrupt handler
2956  *  @ring_info: per ring structure.
2957  *  @budget: budget for napi processing.
2958  *  Description:
2959  *  If the interrupt is because of a received frame or if the
2960  *  receive ring contains fresh as yet un-processed frames,this function is
2961  *  called. It picks out the RxD at which place the last Rx processing had
2962  *  stopped and sends the skb to the OSM's Rx handler and then increments
2963  *  the offset.
2964  *  Return Value:
2965  *  No. of napi packets processed.
2966  */
2967 static int rx_intr_handler(struct ring_info *ring_data, int budget)
2968 {
2969         int get_block, put_block;
2970         struct rx_curr_get_info get_info, put_info;
2971         struct RxD_t *rxdp;
2972         struct sk_buff *skb;
2973         int pkt_cnt = 0, napi_pkts = 0;
2974         int i;
2975         struct RxD1* rxdp1;
2976         struct RxD3* rxdp3;
2977
2978         get_info = ring_data->rx_curr_get_info;
2979         get_block = get_info.block_index;
2980         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2981         put_block = put_info.block_index;
2982         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2983
2984         while (RXD_IS_UP2DT(rxdp)) {
2985                 /*
2986                  * If your are next to put index then it's
2987                  * FIFO full condition
2988                  */
2989                 if ((get_block == put_block) &&
2990                     (get_info.offset + 1) == put_info.offset) {
2991                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",
2992                                 ring_data->dev->name);
2993                         break;
2994                 }
2995                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2996                 if (skb == NULL) {
2997                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2998                                   ring_data->dev->name);
2999                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
3000                         return 0;
3001                 }
3002                 if (ring_data->rxd_mode == RXD_MODE_1) {
3003                         rxdp1 = (struct RxD1*)rxdp;
3004                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
3005                                 rxdp1->Buffer0_ptr,
3006                                 ring_data->mtu +
3007                                 HEADER_ETHERNET_II_802_3_SIZE +
3008                                 HEADER_802_2_SIZE +
3009                                 HEADER_SNAP_SIZE,
3010                                 PCI_DMA_FROMDEVICE);
3011                 } else if (ring_data->rxd_mode == RXD_MODE_3B) {
3012                         rxdp3 = (struct RxD3*)rxdp;
3013                         pci_dma_sync_single_for_cpu(ring_data->pdev, (dma_addr_t)
3014                                 rxdp3->Buffer0_ptr,
3015                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
3016                         pci_unmap_single(ring_data->pdev, (dma_addr_t)
3017                                 rxdp3->Buffer2_ptr,
3018                                 ring_data->mtu + 4,
3019                                 PCI_DMA_FROMDEVICE);
3020                 }
3021                 prefetch(skb->data);
3022                 rx_osm_handler(ring_data, rxdp);
3023                 get_info.offset++;
3024                 ring_data->rx_curr_get_info.offset = get_info.offset;
3025                 rxdp = ring_data->rx_blocks[get_block].
3026                                 rxds[get_info.offset].virt_addr;
3027                 if (get_info.offset == rxd_count[ring_data->rxd_mode]) {
3028                         get_info.offset = 0;
3029                         ring_data->rx_curr_get_info.offset = get_info.offset;
3030                         get_block++;
3031                         if (get_block == ring_data->block_count)
3032                                 get_block = 0;
3033                         ring_data->rx_curr_get_info.block_index = get_block;
3034                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
3035                 }
3036
3037                 if (ring_data->nic->config.napi) {
3038                         budget--;
3039                         napi_pkts++;
3040                         if (!budget)
3041                                 break;
3042                 }
3043                 pkt_cnt++;
3044                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
3045                         break;
3046         }
3047         if (ring_data->lro) {
3048                 /* Clear all LRO sessions before exiting */
3049                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
3050                         struct lro *lro = &ring_data->lro0_n[i];
3051                         if (lro->in_use) {
3052                                 update_L3L4_header(ring_data->nic, lro);
3053                                 queue_rx_frame(lro->parent, lro->vlan_tag);
3054                                 clear_lro_session(lro);
3055                         }
3056                 }
3057         }
3058         return(napi_pkts);
3059 }
3060
3061 /**
3062  *  tx_intr_handler - Transmit interrupt handler
3063  *  @nic : device private variable
3064  *  Description:
3065  *  If an interrupt was raised to indicate DMA complete of the
3066  *  Tx packet, this function is called. It identifies the last TxD
3067  *  whose buffer was freed and frees all skbs whose data have already
3068  *  DMA'ed into the NICs internal memory.
3069  *  Return Value:
3070  *  NONE
3071  */
3072
3073 static void tx_intr_handler(struct fifo_info *fifo_data)
3074 {
3075         struct s2io_nic *nic = fifo_data->nic;
3076         struct tx_curr_get_info get_info, put_info;
3077         struct sk_buff *skb = NULL;
3078         struct TxD *txdlp;
3079         int pkt_cnt = 0;
3080         unsigned long flags = 0;
3081         u8 err_mask;
3082
3083         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
3084                         return;
3085
3086         get_info = fifo_data->tx_curr_get_info;
3087         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
3088         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
3089             list_virt_addr;
3090         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
3091                (get_info.offset != put_info.offset) &&
3092                (txdlp->Host_Control)) {
3093                 /* Check for TxD errors */
3094                 if (txdlp->Control_1 & TXD_T_CODE) {
3095                         unsigned long long err;
3096                         err = txdlp->Control_1 & TXD_T_CODE;
3097                         if (err & 0x1) {
3098                                 nic->mac_control.stats_info->sw_stat.
3099                                                 parity_err_cnt++;
3100                         }
3101
3102                         /* update t_code statistics */
3103                         err_mask = err >> 48;
3104                         switch(err_mask) {
3105                                 case 2:
3106                                         nic->mac_control.stats_info->sw_stat.
3107                                                         tx_buf_abort_cnt++;
3108                                 break;
3109
3110                                 case 3:
3111                                         nic->mac_control.stats_info->sw_stat.
3112                                                         tx_desc_abort_cnt++;
3113                                 break;
3114
3115                                 case 7:
3116                                         nic->mac_control.stats_info->sw_stat.
3117                                                         tx_parity_err_cnt++;
3118                                 break;
3119
3120                                 case 10:
3121                                         nic->mac_control.stats_info->sw_stat.
3122                                                         tx_link_loss_cnt++;
3123                                 break;
3124
3125                                 case 15:
3126                                         nic->mac_control.stats_info->sw_stat.
3127                                                         tx_list_proc_err_cnt++;
3128                                 break;
3129                         }
3130                 }
3131
3132                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3133                 if (skb == NULL) {
3134                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3135                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
3136                         __func__);
3137                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3138                         return;
3139                 }
3140                 pkt_cnt++;
3141
3142                 /* Updating the statistics block */
3143                 nic->dev->stats.tx_bytes += skb->len;
3144                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3145                 dev_kfree_skb_irq(skb);
3146
3147                 get_info.offset++;
3148                 if (get_info.offset == get_info.fifo_len + 1)
3149                         get_info.offset = 0;
3150                 txdlp = (struct TxD *) fifo_data->list_info
3151                     [get_info.offset].list_virt_addr;
3152                 fifo_data->tx_curr_get_info.offset =
3153                     get_info.offset;
3154         }
3155
3156         s2io_wake_tx_queue(fifo_data, pkt_cnt, nic->config.multiq);
3157
3158         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3159 }
3160
3161 /**
3162  *  s2io_mdio_write - Function to write in to MDIO registers
3163  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3164  *  @addr     : address value
3165  *  @value    : data value
3166  *  @dev      : pointer to net_device structure
3167  *  Description:
3168  *  This function is used to write values to the MDIO registers
3169  *  NONE
3170  */
3171 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3172 {
3173         u64 val64 = 0x0;
3174         struct s2io_nic *sp = netdev_priv(dev);
3175         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3176
3177         //address transaction
3178         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3179                         | MDIO_MMD_DEV_ADDR(mmd_type)
3180                         | MDIO_MMS_PRT_ADDR(0x0);
3181         writeq(val64, &bar0->mdio_control);
3182         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3183         writeq(val64, &bar0->mdio_control);
3184         udelay(100);
3185
3186         //Data transaction
3187         val64 = 0x0;
3188         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3189                         | MDIO_MMD_DEV_ADDR(mmd_type)
3190                         | MDIO_MMS_PRT_ADDR(0x0)
3191                         | MDIO_MDIO_DATA(value)
3192                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3193         writeq(val64, &bar0->mdio_control);
3194         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3195         writeq(val64, &bar0->mdio_control);
3196         udelay(100);
3197
3198         val64 = 0x0;
3199         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3200         | MDIO_MMD_DEV_ADDR(mmd_type)
3201         | MDIO_MMS_PRT_ADDR(0x0)
3202         | MDIO_OP(MDIO_OP_READ_TRANS);
3203         writeq(val64, &bar0->mdio_control);
3204         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3205         writeq(val64, &bar0->mdio_control);
3206         udelay(100);
3207
3208 }
3209
3210 /**
3211  *  s2io_mdio_read - Function to write in to MDIO registers
3212  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3213  *  @addr     : address value
3214  *  @dev      : pointer to net_device structure
3215  *  Description:
3216  *  This function is used to read values to the MDIO registers
3217  *  NONE
3218  */
3219 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3220 {
3221         u64 val64 = 0x0;
3222         u64 rval64 = 0x0;
3223         struct s2io_nic *sp = netdev_priv(dev);
3224         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3225
3226         /* address transaction */
3227         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3228                         | MDIO_MMD_DEV_ADDR(mmd_type)
3229                         | MDIO_MMS_PRT_ADDR(0x0);
3230         writeq(val64, &bar0->mdio_control);
3231         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3232         writeq(val64, &bar0->mdio_control);
3233         udelay(100);
3234
3235         /* Data transaction */
3236         val64 = 0x0;
3237         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3238                         | MDIO_MMD_DEV_ADDR(mmd_type)
3239                         | MDIO_MMS_PRT_ADDR(0x0)
3240                         | MDIO_OP(MDIO_OP_READ_TRANS);
3241         writeq(val64, &bar0->mdio_control);
3242         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3243         writeq(val64, &bar0->mdio_control);
3244         udelay(100);
3245
3246         /* Read the value from regs */
3247         rval64 = readq(&bar0->mdio_control);
3248         rval64 = rval64 & 0xFFFF0000;
3249         rval64 = rval64 >> 16;
3250         return rval64;
3251 }
3252 /**
3253  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3254  *  @counter      : couter value to be updated
3255  *  @flag         : flag to indicate the status
3256  *  @type         : counter type
3257  *  Description:
3258  *  This function is to check the status of the xpak counters value
3259  *  NONE
3260  */
3261
3262 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3263 {
3264         u64 mask = 0x3;
3265         u64 val64;
3266         int i;
3267         for(i = 0; i <index; i++)
3268                 mask = mask << 0x2;
3269
3270         if(flag > 0)
3271         {
3272                 *counter = *counter + 1;
3273                 val64 = *regs_stat & mask;
3274                 val64 = val64 >> (index * 0x2);
3275                 val64 = val64 + 1;
3276                 if(val64 == 3)
3277                 {
3278                         switch(type)
3279                         {
3280                         case 1:
3281                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3282                                           "service. Excessive temperatures may "
3283                                           "result in premature transceiver "
3284                                           "failure \n");
3285                         break;
3286                         case 2:
3287                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3288                                           "service Excessive bias currents may "
3289                                           "indicate imminent laser diode "
3290                                           "failure \n");
3291                         break;
3292                         case 3:
3293                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3294                                           "service Excessive laser output "
3295                                           "power may saturate far-end "
3296                                           "receiver\n");
3297                         break;
3298                         default:
3299                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3300                                           "type \n");
3301                         }
3302                         val64 = 0x0;
3303                 }
3304                 val64 = val64 << (index * 0x2);
3305                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3306
3307         } else {
3308                 *regs_stat = *regs_stat & (~mask);
3309         }
3310 }
3311
3312 /**
3313  *  s2io_updt_xpak_counter - Function to update the xpak counters
3314  *  @dev         : pointer to net_device struct
3315  *  Description:
3316  *  This function is to upate the status of the xpak counters value
3317  *  NONE
3318  */
3319 static void s2io_updt_xpak_counter(struct net_device *dev)
3320 {
3321         u16 flag  = 0x0;
3322         u16 type  = 0x0;
3323         u16 val16 = 0x0;
3324         u64 val64 = 0x0;
3325         u64 addr  = 0x0;
3326
3327         struct s2io_nic *sp = netdev_priv(dev);
3328         struct stat_block *stat_info = sp->mac_control.stats_info;
3329
3330         /* Check the communication with the MDIO slave */
3331         addr = 0x0000;
3332         val64 = 0x0;
3333         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3334         if((val64 == 0xFFFF) || (val64 == 0x0000))
3335         {
3336                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3337                           "Returned %llx\n", (unsigned long long)val64);
3338                 return;
3339         }
3340
3341         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3342         if(val64 != 0x2040)
3343         {
3344                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3345                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3346                           (unsigned long long)val64);
3347                 return;
3348         }
3349
3350         /* Loading the DOM register to MDIO register */
3351         addr = 0xA100;
3352         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3353         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3354
3355         /* Reading the Alarm flags */
3356         addr = 0xA070;
3357         val64 = 0x0;
3358         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3359
3360         flag = CHECKBIT(val64, 0x7);
3361         type = 1;
3362         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3363                                 &stat_info->xpak_stat.xpak_regs_stat,
3364                                 0x0, flag, type);
3365
3366         if(CHECKBIT(val64, 0x6))
3367                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3368
3369         flag = CHECKBIT(val64, 0x3);
3370         type = 2;
3371         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3372                                 &stat_info->xpak_stat.xpak_regs_stat,
3373                                 0x2, flag, type);
3374
3375         if(CHECKBIT(val64, 0x2))
3376                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3377
3378         flag = CHECKBIT(val64, 0x1);
3379         type = 3;
3380         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3381                                 &stat_info->xpak_stat.xpak_regs_stat,
3382                                 0x4, flag, type);
3383
3384         if(CHECKBIT(val64, 0x0))
3385                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3386
3387         /* Reading the Warning flags */
3388         addr = 0xA074;
3389         val64 = 0x0;
3390         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3391
3392         if(CHECKBIT(val64, 0x7))
3393                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3394
3395         if(CHECKBIT(val64, 0x6))
3396                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3397
3398         if(CHECKBIT(val64, 0x3))
3399                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3400
3401         if(CHECKBIT(val64, 0x2))
3402                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3403
3404         if(CHECKBIT(val64, 0x1))
3405                 stat_info->xpak_stat.warn_laser_output_power_high++;
3406
3407         if(CHECKBIT(val64, 0x0))
3408                 stat_info->xpak_stat.warn_laser_output_power_low++;
3409 }
3410
3411 /**
3412  *  wait_for_cmd_complete - waits for a command to complete.
3413  *  @sp : private member of the device structure, which is a pointer to the
3414  *  s2io_nic structure.
3415  *  Description: Function that waits for a command to Write into RMAC
3416  *  ADDR DATA registers to be completed and returns either success or
3417  *  error depending on whether the command was complete or not.
3418  *  Return value:
3419  *   SUCCESS on success and FAILURE on failure.
3420  */
3421
3422 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3423                                 int bit_state)
3424 {
3425         int ret = FAILURE, cnt = 0, delay = 1;
3426         u64 val64;
3427
3428         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3429                 return FAILURE;
3430
3431         do {
3432                 val64 = readq(addr);
3433                 if (bit_state == S2IO_BIT_RESET) {
3434                         if (!(val64 & busy_bit)) {
3435                                 ret = SUCCESS;
3436                                 break;
3437                         }
3438                 } else {
3439                         if (!(val64 & busy_bit)) {
3440                                 ret = SUCCESS;
3441                                 break;
3442                         }
3443                 }
3444
3445                 if(in_interrupt())
3446                         mdelay(delay);
3447                 else
3448                         msleep(delay);
3449
3450                 if (++cnt >= 10)
3451                         delay = 50;
3452         } while (cnt < 20);
3453         return ret;
3454 }
3455 /*
3456  * check_pci_device_id - Checks if the device id is supported
3457  * @id : device id
3458  * Description: Function to check if the pci device id is supported by driver.
3459  * Return value: Actual device id if supported else PCI_ANY_ID
3460  */
3461 static u16 check_pci_device_id(u16 id)
3462 {
3463         switch (id) {
3464         case PCI_DEVICE_ID_HERC_WIN:
3465         case PCI_DEVICE_ID_HERC_UNI:
3466                 return XFRAME_II_DEVICE;
3467         case PCI_DEVICE_ID_S2IO_UNI:
3468         case PCI_DEVICE_ID_S2IO_WIN:
3469                 return XFRAME_I_DEVICE;
3470         default:
3471                 return PCI_ANY_ID;
3472         }
3473 }
3474
3475 /**
3476  *  s2io_reset - Resets the card.
3477  *  @sp : private member of the device structure.
3478  *  Description: Function to Reset the card. This function then also
3479  *  restores the previously saved PCI configuration space registers as
3480  *  the card reset also resets the configuration space.
3481  *  Return value:
3482  *  void.
3483  */
3484
3485 static void s2io_reset(struct s2io_nic * sp)
3486 {
3487         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3488         u64 val64;
3489         u16 subid, pci_cmd;
3490         int i;
3491         u16 val16;
3492         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3493         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3494
3495         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3496                         __func__, sp->dev->name);
3497
3498         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3499         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3500
3501         val64 = SW_RESET_ALL;
3502         writeq(val64, &bar0->sw_reset);
3503         if (strstr(sp->product_name, "CX4")) {
3504                 msleep(750);
3505         }
3506         msleep(250);
3507         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3508
3509                 /* Restore the PCI state saved during initialization. */
3510                 pci_restore_state(sp->pdev);
3511                 pci_read_config_word(sp->pdev, 0x2, &val16);
3512                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3513                         break;
3514                 msleep(200);
3515         }
3516
3517         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3518                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __func__);
3519         }
3520
3521         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3522
3523         s2io_init_pci(sp);
3524
3525         /* Set swapper to enable I/O register access */
3526         s2io_set_swapper(sp);
3527
3528         /* restore mac_addr entries */
3529         do_s2io_restore_unicast_mc(sp);
3530
3531         /* Restore the MSIX table entries from local variables */
3532         restore_xmsi_data(sp);
3533
3534         /* Clear certain PCI/PCI-X fields after reset */
3535         if (sp->device_type == XFRAME_II_DEVICE) {
3536                 /* Clear "detected parity error" bit */
3537                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3538
3539                 /* Clearing PCIX Ecc status register */
3540                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3541
3542                 /* Clearing PCI_STATUS error reflected here */
3543                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3544         }
3545
3546         /* Reset device statistics maintained by OS */
3547         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3548
3549         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3550         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3551         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3552         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3553         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3554         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3555         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3556         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3557         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3558         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3559         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3560         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3561         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3562         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3563         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3564         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3565         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3566         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3567         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3568
3569         /* SXE-002: Configure link and activity LED to turn it off */
3570         subid = sp->pdev->subsystem_device;
3571         if (((subid & 0xFF) >= 0x07) &&
3572             (sp->device_type == XFRAME_I_DEVICE)) {
3573                 val64 = readq(&bar0->gpio_control);
3574                 val64 |= 0x0000800000000000ULL;
3575                 writeq(val64, &bar0->gpio_control);
3576                 val64 = 0x0411040400000000ULL;
3577                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3578         }
3579
3580         /*
3581          * Clear spurious ECC interrupts that would have occured on
3582          * XFRAME II cards after reset.
3583          */
3584         if (sp->device_type == XFRAME_II_DEVICE) {
3585                 val64 = readq(&bar0->pcc_err_reg);
3586                 writeq(val64, &bar0->pcc_err_reg);
3587         }
3588
3589         sp->device_enabled_once = FALSE;
3590 }
3591
3592 /**
3593  *  s2io_set_swapper - to set the swapper controle on the card
3594  *  @sp : private member of the device structure,
3595  *  pointer to the s2io_nic structure.
3596  *  Description: Function to set the swapper control on the card
3597  *  correctly depending on the 'endianness' of the system.
3598  *  Return value:
3599  *  SUCCESS on success and FAILURE on failure.
3600  */
3601
3602 static int s2io_set_swapper(struct s2io_nic * sp)
3603 {
3604         struct net_device *dev = sp->dev;
3605         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3606         u64 val64, valt, valr;
3607
3608         /*
3609          * Set proper endian settings and verify the same by reading
3610          * the PIF Feed-back register.
3611          */
3612
3613         val64 = readq(&bar0->pif_rd_swapper_fb);
3614         if (val64 != 0x0123456789ABCDEFULL) {
3615                 int i = 0;
3616                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3617                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3618                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3619                                 0};                     /* FE=0, SE=0 */
3620
3621                 while(i<4) {
3622                         writeq(value[i], &bar0->swapper_ctrl);
3623                         val64 = readq(&bar0->pif_rd_swapper_fb);
3624                         if (val64 == 0x0123456789ABCDEFULL)
3625                                 break;
3626                         i++;
3627                 }
3628                 if (i == 4) {
3629                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3630                                 dev->name);
3631                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3632                                 (unsigned long long) val64);
3633                         return FAILURE;
3634                 }
3635                 valr = value[i];
3636         } else {
3637                 valr = readq(&bar0->swapper_ctrl);
3638         }
3639
3640         valt = 0x0123456789ABCDEFULL;
3641         writeq(valt, &bar0->xmsi_address);
3642         val64 = readq(&bar0->xmsi_address);
3643
3644         if(val64 != valt) {
3645                 int i = 0;
3646                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3647                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3648                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3649                                 0};                     /* FE=0, SE=0 */
3650
3651                 while(i<4) {
3652                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3653                         writeq(valt, &bar0->xmsi_address);
3654                         val64 = readq(&bar0->xmsi_address);
3655                         if(val64 == valt)
3656                                 break;
3657                         i++;
3658                 }
3659                 if(i == 4) {
3660                         unsigned long long x = val64;
3661                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3662                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3663                         return FAILURE;
3664                 }
3665         }
3666         val64 = readq(&bar0->swapper_ctrl);
3667         val64 &= 0xFFFF000000000000ULL;
3668
3669 #ifdef  __BIG_ENDIAN
3670         /*
3671          * The device by default set to a big endian format, so a
3672          * big endian driver need not set anything.
3673          */
3674         val64 |= (SWAPPER_CTRL_TXP_FE |
3675                  SWAPPER_CTRL_TXP_SE |
3676                  SWAPPER_CTRL_TXD_R_FE |
3677                  SWAPPER_CTRL_TXD_W_FE |
3678                  SWAPPER_CTRL_TXF_R_FE |
3679                  SWAPPER_CTRL_RXD_R_FE |
3680                  SWAPPER_CTRL_RXD_W_FE |
3681                  SWAPPER_CTRL_RXF_W_FE |
3682                  SWAPPER_CTRL_XMSI_FE |
3683                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3684         if (sp->config.intr_type == INTA)
3685                 val64 |= SWAPPER_CTRL_XMSI_SE;
3686         writeq(val64, &bar0->swapper_ctrl);
3687 #else
3688         /*
3689          * Initially we enable all bits to make it accessible by the
3690          * driver, then we selectively enable only those bits that
3691          * we want to set.
3692          */
3693         val64 |= (SWAPPER_CTRL_TXP_FE |
3694                  SWAPPER_CTRL_TXP_SE |
3695                  SWAPPER_CTRL_TXD_R_FE |
3696                  SWAPPER_CTRL_TXD_R_SE |
3697                  SWAPPER_CTRL_TXD_W_FE |
3698                  SWAPPER_CTRL_TXD_W_SE |
3699                  SWAPPER_CTRL_TXF_R_FE |
3700                  SWAPPER_CTRL_RXD_R_FE |
3701                  SWAPPER_CTRL_RXD_R_SE |
3702                  SWAPPER_CTRL_RXD_W_FE |
3703                  SWAPPER_CTRL_RXD_W_SE |
3704                  SWAPPER_CTRL_RXF_W_FE |
3705                  SWAPPER_CTRL_XMSI_FE |
3706                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3707         if (sp->config.intr_type == INTA)
3708                 val64 |= SWAPPER_CTRL_XMSI_SE;
3709         writeq(val64, &bar0->swapper_ctrl);
3710 #endif
3711         val64 = readq(&bar0->swapper_ctrl);
3712
3713         /*
3714          * Verifying if endian settings are accurate by reading a
3715          * feedback register.
3716          */
3717         val64 = readq(&bar0->pif_rd_swapper_fb);
3718         if (val64 != 0x0123456789ABCDEFULL) {
3719                 /* Endian settings are incorrect, calls for another dekko. */
3720                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3721                           dev->name);
3722                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3723                           (unsigned long long) val64);
3724                 return FAILURE;
3725         }
3726
3727         return SUCCESS;
3728 }
3729
3730 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3731 {
3732         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3733         u64 val64;
3734         int ret = 0, cnt = 0;
3735
3736         do {
3737                 val64 = readq(&bar0->xmsi_access);
3738                 if (!(val64 & s2BIT(15)))
3739                         break;
3740                 mdelay(1);
3741                 cnt++;
3742         } while(cnt < 5);
3743         if (cnt == 5) {
3744                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3745                 ret = 1;
3746         }
3747
3748         return ret;
3749 }
3750
3751 static void restore_xmsi_data(struct s2io_nic *nic)
3752 {
3753         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3754         u64 val64;
3755         int i, msix_index;
3756
3757
3758         if (nic->device_type == XFRAME_I_DEVICE)
3759                 return;
3760
3761         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3762                 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3763                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3764                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3765                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(msix_index, 26, 6));
3766                 writeq(val64, &bar0->xmsi_access);
3767                 if (wait_for_msix_trans(nic, msix_index)) {
3768                         DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3769                         continue;
3770                 }
3771         }
3772 }
3773
3774 static void store_xmsi_data(struct s2io_nic *nic)
3775 {
3776         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3777         u64 val64, addr, data;
3778         int i, msix_index;
3779
3780         if (nic->device_type == XFRAME_I_DEVICE)
3781                 return;
3782
3783         /* Store and display */
3784         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3785                 msix_index = (i) ? ((i-1) * 8 + 1): 0;
3786                 val64 = (s2BIT(15) | vBIT(msix_index, 26, 6));
3787                 writeq(val64, &bar0->xmsi_access);
3788                 if (wait_for_msix_trans(nic, msix_index)) {
3789                         DBG_PRINT(ERR_DBG, "failed in %s\n", __func__);
3790                         continue;
3791                 }
3792                 addr = readq(&bar0->xmsi_address);
3793                 data = readq(&bar0->xmsi_data);
3794                 if (addr && data) {
3795                         nic->msix_info[i].addr = addr;
3796                         nic->msix_info[i].data = data;
3797                 }
3798         }
3799 }
3800
3801 static int s2io_enable_msi_x(struct s2io_nic *nic)
3802 {
3803         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3804         u64 rx_mat;
3805         u16 msi_control; /* Temp variable */
3806         int ret, i, j, msix_indx = 1;
3807
3808         nic->entries = kmalloc(nic->num_entries * sizeof(struct msix_entry),
3809                                GFP_KERNEL);
3810         if (!nic->entries) {
3811                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3812                         __func__);
3813                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3814                 return -ENOMEM;
3815         }
3816         nic->mac_control.stats_info->sw_stat.mem_allocated
3817                 += (nic->num_entries * sizeof(struct msix_entry));
3818
3819         memset(nic->entries, 0, nic->num_entries * sizeof(struct msix_entry));
3820
3821         nic->s2io_entries =
3822                 kmalloc(nic->num_entries * sizeof(struct s2io_msix_entry),
3823                                    GFP_KERNEL);
3824         if (!nic->s2io_entries) {
3825                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3826                         __func__);
3827                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3828                 kfree(nic->entries);
3829                 nic->mac_control.stats_info->sw_stat.mem_freed
3830                         += (nic->num_entries * sizeof(struct msix_entry));
3831                 return -ENOMEM;
3832         }
3833          nic->mac_control.stats_info->sw_stat.mem_allocated
3834                 += (nic->num_entries * sizeof(struct s2io_msix_entry));
3835         memset(nic->s2io_entries, 0,
3836                 nic->num_entries * sizeof(struct s2io_msix_entry));
3837
3838         nic->entries[0].entry = 0;
3839         nic->s2io_entries[0].entry = 0;
3840         nic->s2io_entries[0].in_use = MSIX_FLG;
3841         nic->s2io_entries[0].type = MSIX_ALARM_TYPE;
3842         nic->s2io_entries[0].arg = &nic->mac_control.fifos;
3843
3844         for (i = 1; i < nic->num_entries; i++) {
3845                 nic->entries[i].entry = ((i - 1) * 8) + 1;
3846                 nic->s2io_entries[i].entry = ((i - 1) * 8) + 1;
3847                 nic->s2io_entries[i].arg = NULL;
3848                 nic->s2io_entries[i].in_use = 0;
3849         }
3850
3851         rx_mat = readq(&bar0->rx_mat);
3852         for (j = 0; j < nic->config.rx_ring_num; j++) {
3853                 rx_mat |= RX_MAT_SET(j, msix_indx);
3854                 nic->s2io_entries[j+1].arg = &nic->mac_control.rings[j];
3855                 nic->s2io_entries[j+1].type = MSIX_RING_TYPE;
3856                 nic->s2io_entries[j+1].in_use = MSIX_FLG;
3857                 msix_indx += 8;
3858         }
3859         writeq(rx_mat, &bar0->rx_mat);
3860         readq(&bar0->rx_mat);
3861
3862         ret = pci_enable_msix(nic->pdev, nic->entries, nic->num_entries);
3863         /* We fail init if error or we get less vectors than min required */
3864         if (ret) {
3865                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3866                 kfree(nic->entries);
3867                 nic->mac_control.stats_info->sw_stat.mem_freed
3868                         += (nic->num_entries * sizeof(struct msix_entry));
3869                 kfree(nic->s2io_entries);
3870                 nic->mac_control.stats_info->sw_stat.mem_freed
3871                         += (nic->num_entries * sizeof(struct s2io_msix_entry));
3872                 nic->entries = NULL;
3873                 nic->s2io_entries = NULL;
3874                 return -ENOMEM;
3875         }
3876
3877         /*
3878          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3879          * in the herc NIC. (Temp change, needs to be removed later)
3880          */
3881         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3882         msi_control |= 0x1; /* Enable MSI */
3883         pci_write_config_word(nic->pdev, 0x42, msi_control);
3884
3885         return 0;
3886 }
3887
3888 /* Handle software interrupt used during MSI(X) test */
3889 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3890 {
3891         struct s2io_nic *sp = dev_id;
3892
3893         sp->msi_detected = 1;
3894         wake_up(&sp->msi_wait);
3895
3896         return IRQ_HANDLED;
3897 }
3898
3899 /* Test interrupt path by forcing a a software IRQ */
3900 static int s2io_test_msi(struct s2io_nic *sp)
3901 {
3902         struct pci_dev *pdev = sp->pdev;
3903         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3904         int err;
3905         u64 val64, saved64;
3906
3907         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3908                         sp->name, sp);
3909         if (err) {
3910                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3911                        sp->dev->name, pci_name(pdev), pdev->irq);
3912                 return err;
3913         }
3914
3915         init_waitqueue_head (&sp->msi_wait);
3916         sp->msi_detected = 0;
3917
3918         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3919         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3920         val64 |= SCHED_INT_CTRL_TIMER_EN;
3921         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3922         writeq(val64, &bar0->scheduled_int_ctrl);
3923
3924         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3925
3926         if (!sp->msi_detected) {
3927                 /* MSI(X) test failed, go back to INTx mode */
3928                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3929                         "using MSI(X) during test\n", sp->dev->name,
3930                         pci_name(pdev));
3931
3932                 err = -EOPNOTSUPP;
3933         }
3934
3935         free_irq(sp->entries[1].vector, sp);
3936
3937         writeq(saved64, &bar0->scheduled_int_ctrl);
3938
3939         return err;
3940 }
3941
3942 static void remove_msix_isr(struct s2io_nic *sp)
3943 {
3944         int i;
3945         u16 msi_control;
3946
3947         for (i = 0; i < sp->num_entries; i++) {
3948                 if (sp->s2io_entries[i].in_use ==
3949                         MSIX_REGISTERED_SUCCESS) {
3950                         int vector = sp->entries[i].vector;
3951                         void *arg = sp->s2io_entries[i].arg;
3952                         free_irq(vector, arg);
3953                 }
3954         }
3955
3956         kfree(sp->entries);
3957         kfree(sp->s2io_entries);
3958         sp->entries = NULL;
3959         sp->s2io_entries = NULL;
3960
3961         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3962         msi_control &= 0xFFFE; /* Disable MSI */
3963         pci_write_config_word(sp->pdev, 0x42, msi_control);
3964
3965         pci_disable_msix(sp->pdev);
3966 }
3967
3968 static void remove_inta_isr(struct s2io_nic *sp)
3969 {
3970         struct net_device *dev = sp->dev;
3971
3972         free_irq(sp->pdev->irq, dev);
3973 }
3974
3975 /* ********************************************************* *
3976  * Functions defined below concern the OS part of the driver *
3977  * ********************************************************* */
3978
3979 /**
3980  *  s2io_open - open entry point of the driver
3981  *  @dev : pointer to the device structure.
3982  *  Description:
3983  *  This function is the open entry point of the driver. It mainly calls a
3984  *  function to allocate Rx buffers and inserts them into the buffer
3985  *  descriptors and then enables the Rx part of the NIC.
3986  *  Return value:
3987  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3988  *   file on failure.
3989  */
3990
3991 static int s2io_open(struct net_device *dev)
3992 {
3993         struct s2io_nic *sp = netdev_priv(dev);
3994         int err = 0;
3995
3996         /*
3997          * Make sure you have link off by default every time
3998          * Nic is initialized
3999          */
4000         netif_carrier_off(dev);
4001         sp->last_link_state = 0;
4002
4003         /* Initialize H/W and enable interrupts */
4004         err = s2io_card_up(sp);
4005         if (err) {
4006                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
4007                           dev->name);
4008                 goto hw_init_failed;
4009         }
4010
4011         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
4012                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
4013                 s2io_card_down(sp);
4014                 err = -ENODEV;
4015                 goto hw_init_failed;
4016         }
4017         s2io_start_all_tx_queue(sp);
4018         return 0;
4019
4020 hw_init_failed:
4021         if (sp->config.intr_type == MSI_X) {
4022                 if (sp->entries) {
4023                         kfree(sp->entries);
4024                         sp->mac_control.stats_info->sw_stat.mem_freed
4025                         += (sp->num_entries * sizeof(struct msix_entry));
4026                 }
4027                 if (sp->s2io_entries) {
4028                         kfree(sp->s2io_entries);
4029                         sp->mac_control.stats_info->sw_stat.mem_freed
4030                         += (sp->num_entries * sizeof(struct s2io_msix_entry));
4031                 }
4032         }
4033         return err;
4034 }
4035
4036 /**
4037  *  s2io_close -close entry point of the driver
4038  *  @dev : device pointer.
4039  *  Description:
4040  *  This is the stop entry point of the driver. It needs to undo exactly
4041  *  whatever was done by the open entry point,thus it's usually referred to
4042  *  as the close function.Among other things this function mainly stops the
4043  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
4044  *  Return value:
4045  *  0 on success and an appropriate (-)ve integer as defined in errno.h
4046  *  file on failure.
4047  */
4048
4049 static int s2io_close(struct net_device *dev)
4050 {
4051         struct s2io_nic *sp = netdev_priv(dev);
4052         struct config_param *config = &sp->config;
4053         u64 tmp64;
4054         int offset;
4055
4056         /* Return if the device is already closed               *
4057         *  Can happen when s2io_card_up failed in change_mtu    *
4058         */
4059         if (!is_s2io_card_up(sp))
4060                 return 0;
4061
4062         s2io_stop_all_tx_queue(sp);
4063         /* delete all populated mac entries */
4064         for (offset = 1; offset < config->max_mc_addr; offset++) {
4065                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
4066                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
4067                         do_s2io_delete_unicast_mc(sp, tmp64);
4068         }
4069
4070         s2io_card_down(sp);
4071
4072         return 0;
4073 }
4074
4075 /**
4076  *  s2io_xmit - Tx entry point of te driver
4077  *  @skb : the socket buffer containing the Tx data.
4078  *  @dev : device pointer.
4079  *  Description :
4080  *  This function is the Tx entry point of the driver. S2IO NIC supports
4081  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4082  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4083  *  not be upadted.
4084  *  Return value:
4085  *  0 on success & 1 on failure.
4086  */
4087
4088 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4089 {
4090         struct s2io_nic *sp = netdev_priv(dev);
4091         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4092         register u64 val64;
4093         struct TxD *txdp;
4094         struct TxFIFO_element __iomem *tx_fifo;
4095         unsigned long flags = 0;
4096         u16 vlan_tag = 0;
4097         struct fifo_info *fifo = NULL;
4098         struct mac_info *mac_control;
4099         struct config_param *config;
4100         int do_spin_lock = 1;
4101         int offload_type;
4102         int enable_per_list_interrupt = 0;
4103         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4104
4105         mac_control = &sp->mac_control;
4106         config = &sp->config;
4107
4108         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4109
4110         if (unlikely(skb->len <= 0)) {
4111                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4112                 dev_kfree_skb_any(skb);
4113                 return 0;
4114         }
4115
4116         if (!is_s2io_card_up(sp)) {
4117                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4118                           dev->name);
4119                 dev_kfree_skb(skb);
4120                 return 0;
4121         }
4122
4123         queue = 0;
4124         if (sp->vlgrp && vlan_tx_tag_present(skb))
4125                 vlan_tag = vlan_tx_tag_get(skb);
4126         if (sp->config.tx_steering_type == TX_DEFAULT_STEERING) {
4127                 if (skb->protocol == htons(ETH_P_IP)) {
4128                         struct iphdr *ip;
4129                         struct tcphdr *th;
4130                         ip = ip_hdr(skb);
4131
4132                         if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
4133                                 th = (struct tcphdr *)(((unsigned char *)ip) +
4134                                                 ip->ihl*4);
4135
4136                                 if (ip->protocol == IPPROTO_TCP) {
4137                                         queue_len = sp->total_tcp_fifos;
4138                                         queue = (ntohs(th->source) +
4139                                                         ntohs(th->dest)) &
4140                                             sp->fifo_selector[queue_len - 1];
4141                                         if (queue >= queue_len)
4142                                                 queue = queue_len - 1;
4143                                 } else if (ip->protocol == IPPROTO_UDP) {
4144                                         queue_len = sp->total_udp_fifos;
4145                                         queue = (ntohs(th->source) +
4146                                                         ntohs(th->dest)) &
4147                                             sp->fifo_selector[queue_len - 1];
4148                                         if (queue >= queue_len)
4149                                                 queue = queue_len - 1;
4150                                         queue += sp->udp_fifo_idx;
4151                                         if (skb->len > 1024)
4152                                                 enable_per_list_interrupt = 1;
4153                                         do_spin_lock = 0;
4154                                 }
4155                         }
4156                 }
4157         } else if (sp->config.tx_steering_type == TX_PRIORITY_STEERING)
4158                 /* get fifo number based on skb->priority value */
4159                 queue = config->fifo_mapping
4160                                         [skb->priority & (MAX_TX_FIFOS - 1)];
4161         fifo = &mac_control->fifos[queue];
4162
4163         if (do_spin_lock)
4164                 spin_lock_irqsave(&fifo->tx_lock, flags);
4165         else {
4166                 if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
4167                         return NETDEV_TX_LOCKED;
4168         }
4169
4170         if (sp->config.multiq) {
4171                 if (__netif_subqueue_stopped(dev, fifo->fifo_no)) {
4172                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4173                         return NETDEV_TX_BUSY;
4174                 }
4175         } else if (unlikely(fifo->queue_state == FIFO_QUEUE_STOP)) {
4176                 if (netif_queue_stopped(dev)) {
4177                         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4178                         return NETDEV_TX_BUSY;
4179                 }
4180         }
4181
4182         put_off = (u16) fifo->tx_curr_put_info.offset;
4183         get_off = (u16) fifo->tx_curr_get_info.offset;
4184         txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4185
4186         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4187         /* Avoid "put" pointer going beyond "get" pointer */
4188         if (txdp->Host_Control ||
4189                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4190                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4191                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4192                 dev_kfree_skb(skb);
4193                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4194                 return 0;
4195         }
4196
4197         offload_type = s2io_offload_type(skb);
4198         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4199                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4200                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4201         }
4202         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4203                 txdp->Control_2 |=
4204                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4205                      TXD_TX_CKO_UDP_EN);
4206         }
4207         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4208         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4209         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4210         if (enable_per_list_interrupt)
4211                 if (put_off & (queue_len >> 5))
4212                         txdp->Control_2 |= TXD_INT_TYPE_PER_LIST;
4213         if (vlan_tag) {
4214                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4215                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4216         }
4217
4218         frg_len = skb->len - skb->data_len;
4219         if (offload_type == SKB_GSO_UDP) {
4220                 int ufo_size;
4221
4222                 ufo_size = s2io_udp_mss(skb);
4223                 ufo_size &= ~7;
4224                 txdp->Control_1 |= TXD_UFO_EN;
4225                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4226                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4227 #ifdef __BIG_ENDIAN
4228                 /* both variants do cpu_to_be64(be32_to_cpu(...)) */
4229                 fifo->ufo_in_band_v[put_off] =
4230                                 (__force u64)skb_shinfo(skb)->ip6_frag_id;
4231 #else
4232                 fifo->ufo_in_band_v[put_off] =
4233                                 (__force u64)skb_shinfo(skb)->ip6_frag_id << 32;
4234 #endif
4235                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4236                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4237                                         fifo->ufo_in_band_v,
4238                                         sizeof(u64), PCI_DMA_TODEVICE);
4239                 if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4240                         goto pci_map_failed;
4241                 txdp++;
4242         }
4243
4244         txdp->Buffer_Pointer = pci_map_single
4245             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4246         if (pci_dma_mapping_error(sp->pdev, txdp->Buffer_Pointer))
4247                 goto pci_map_failed;
4248
4249         txdp->Host_Control = (unsigned long) skb;
4250         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4251         if (offload_type == SKB_GSO_UDP)
4252                 txdp->Control_1 |= TXD_UFO_EN;
4253
4254         frg_cnt = skb_shinfo(skb)->nr_frags;
4255         /* For fragmented SKB. */
4256         for (i = 0; i < frg_cnt; i++) {
4257                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4258                 /* A '0' length fragment will be ignored */
4259                 if (!frag->size)
4260                         continue;
4261                 txdp++;
4262                 txdp->Buffer_Pointer = (u64) pci_map_page
4263                     (sp->pdev, frag->page, frag->page_offset,
4264                      frag->size, PCI_DMA_TODEVICE);
4265                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4266                 if (offload_type == SKB_GSO_UDP)
4267                         txdp->Control_1 |= TXD_UFO_EN;
4268         }
4269         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4270
4271         if (offload_type == SKB_GSO_UDP)
4272                 frg_cnt++; /* as Txd0 was used for inband header */
4273
4274         tx_fifo = mac_control->tx_FIFO_start[queue];
4275         val64 = fifo->list_info[put_off].list_phy_addr;
4276         writeq(val64, &tx_fifo->TxDL_Pointer);
4277
4278         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4279                  TX_FIFO_LAST_LIST);
4280         if (offload_type)
4281                 val64 |= TX_FIFO_SPECIAL_FUNC;
4282
4283         writeq(val64, &tx_fifo->List_Control);
4284
4285         mmiowb();
4286
4287         put_off++;
4288         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4289                 put_off = 0;
4290         fifo->tx_curr_put_info.offset = put_off;
4291
4292         /* Avoid "put" pointer going beyond "get" pointer */
4293         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4294                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4295                 DBG_PRINT(TX_DBG,
4296                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4297                           put_off, get_off);
4298                 s2io_stop_tx_queue(sp, fifo->fifo_no);
4299         }
4300         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4301         dev->trans_start = jiffies;
4302         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4303
4304         if (sp->config.intr_type == MSI_X)
4305                 tx_intr_handler(fifo);
4306
4307         return 0;
4308 pci_map_failed:
4309         stats->pci_map_fail_cnt++;
4310         s2io_stop_tx_queue(sp, fifo->fifo_no);
4311         stats->mem_freed += skb->truesize;
4312         dev_kfree_skb(skb);
4313         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4314         return 0;
4315 }
4316
4317 static void
4318 s2io_alarm_handle(unsigned long data)
4319 {
4320         struct s2io_nic *sp = (struct s2io_nic *)data;
4321         struct net_device *dev = sp->dev;
4322
4323         s2io_handle_errors(dev);
4324         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4325 }
4326
4327 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4328 {
4329         struct ring_info *ring = (struct ring_info *)dev_id;
4330         struct s2io_nic *sp = ring->nic;
4331         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4332
4333         if (unlikely(!is_s2io_card_up(sp)))
4334                 return IRQ_HANDLED;
4335
4336         if (sp->config.napi) {
4337                 u8 __iomem *addr = NULL;
4338                 u8 val8 = 0;
4339
4340                 addr = (u8 __iomem *)&bar0->xmsi_mask_reg;
4341                 addr += (7 - ring->ring_no);
4342                 val8 = (ring->ring_no == 0) ? 0x7f : 0xff;
4343                 writeb(val8, addr);
4344                 val8 = readb(addr);
4345                 netif_rx_schedule(&ring->napi);
4346         } else {
4347                 rx_intr_handler(ring, 0);
4348                 s2io_chk_rx_buffers(sp, ring);
4349         }
4350
4351         return IRQ_HANDLED;
4352 }
4353
4354 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4355 {
4356         int i;
4357         struct fifo_info *fifos = (struct fifo_info *)dev_id;
4358         struct s2io_nic *sp = fifos->nic;
4359         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4360         struct config_param *config  = &sp->config;
4361         u64 reason;
4362
4363         if (unlikely(!is_s2io_card_up(sp)))
4364                 return IRQ_NONE;
4365
4366         reason = readq(&bar0->general_int_status);
4367         if (unlikely(reason == S2IO_MINUS_ONE))
4368                 /* Nothing much can be done. Get out */
4369                 return IRQ_HANDLED;
4370
4371         if (reason & (GEN_INTR_TXPIC | GEN_INTR_TXTRAFFIC)) {
4372                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4373
4374                 if (reason & GEN_INTR_TXPIC)
4375                         s2io_txpic_intr_handle(sp);
4376
4377                 if (reason & GEN_INTR_TXTRAFFIC)
4378                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4379
4380                 for (i = 0; i < config->tx_fifo_num; i++)
4381                         tx_intr_handler(&fifos[i]);
4382
4383                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4384                 readl(&bar0->general_int_status);
4385                 return IRQ_HANDLED;
4386         }
4387         /* The interrupt was not raised by us */
4388         return IRQ_NONE;
4389 }
4390
4391 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4392 {
4393         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4394         u64 val64;
4395
4396         val64 = readq(&bar0->pic_int_status);
4397         if (val64 & PIC_INT_GPIO) {
4398                 val64 = readq(&bar0->gpio_int_reg);
4399                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4400                     (val64 & GPIO_INT_REG_LINK_UP)) {
4401                         /*
4402                          * This is unstable state so clear both up/down
4403                          * interrupt and adapter to re-evaluate the link state.
4404                          */
4405                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4406                         val64 |= GPIO_INT_REG_LINK_UP;
4407                         writeq(val64, &bar0->gpio_int_reg);
4408                         val64 = readq(&bar0->gpio_int_mask);
4409                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4410                                    GPIO_INT_MASK_LINK_DOWN);
4411                         writeq(val64, &bar0->gpio_int_mask);
4412                 }
4413                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4414                         val64 = readq(&bar0->adapter_status);
4415                                 /* Enable Adapter */
4416                         val64 = readq(&bar0->adapter_control);
4417                         val64 |= ADAPTER_CNTL_EN;
4418                         writeq(val64, &bar0->adapter_control);
4419                         val64 |= ADAPTER_LED_ON;
4420                         writeq(val64, &bar0->adapter_control);
4421                         if (!sp->device_enabled_once)
4422                                 sp->device_enabled_once = 1;
4423
4424                         s2io_link(sp, LINK_UP);
4425                         /*
4426                          * unmask link down interrupt and mask link-up
4427                          * intr
4428                          */
4429                         val64 = readq(&bar0->gpio_int_mask);
4430                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4431                         val64 |= GPIO_INT_MASK_LINK_UP;
4432                         writeq(val64, &bar0->gpio_int_mask);
4433
4434                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4435                         val64 = readq(&bar0->adapter_status);
4436                         s2io_link(sp, LINK_DOWN);
4437                         /* Link is down so unmaks link up interrupt */
4438                         val64 = readq(&bar0->gpio_int_mask);
4439                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4440                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4441                         writeq(val64, &bar0->gpio_int_mask);
4442
4443                         /* turn off LED */
4444                         val64 = readq(&bar0->adapter_control);
4445                         val64 = val64 &(~ADAPTER_LED_ON);
4446                         writeq(val64, &bar0->adapter_control);
4447                 }
4448         }
4449         val64 = readq(&bar0->gpio_int_mask);
4450 }
4451
4452 /**
4453  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4454  *  @value: alarm bits
4455  *  @addr: address value
4456  *  @cnt: counter variable
4457  *  Description: Check for alarm and increment the counter
4458  *  Return Value:
4459  *  1 - if alarm bit set
4460  *  0 - if alarm bit is not set
4461  */
4462 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4463                           unsigned long long *cnt)
4464 {
4465         u64 val64;
4466         val64 = readq(addr);
4467         if ( val64 & value ) {
4468                 writeq(val64, addr);
4469                 (*cnt)++;
4470                 return 1;
4471         }
4472         return 0;
4473
4474 }
4475
4476 /**
4477  *  s2io_handle_errors - Xframe error indication handler
4478  *  @nic: device private variable
4479  *  Description: Handle alarms such as loss of link, single or
4480  *  double ECC errors, critical and serious errors.
4481  *  Return Value:
4482  *  NONE
4483  */
4484 static void s2io_handle_errors(void * dev_id)
4485 {
4486         struct net_device *dev = (struct net_device *) dev_id;
4487         struct s2io_nic *sp = netdev_priv(dev);
4488         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4489         u64 temp64 = 0,val64=0;
4490         int i = 0;
4491
4492         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4493         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4494
4495         if (!is_s2io_card_up(sp))
4496                 return;
4497
4498         if (pci_channel_offline(sp->pdev))
4499                 return;
4500
4501         memset(&sw_stat->ring_full_cnt, 0,
4502                 sizeof(sw_stat->ring_full_cnt));
4503
4504         /* Handling the XPAK counters update */
4505         if(stats->xpak_timer_count < 72000) {
4506                 /* waiting for an hour */
4507                 stats->xpak_timer_count++;
4508         } else {
4509                 s2io_updt_xpak_counter(dev);
4510                 /* reset the count to zero */
4511                 stats->xpak_timer_count = 0;
4512         }
4513
4514         /* Handling link status change error Intr */
4515         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4516                 val64 = readq(&bar0->mac_rmac_err_reg);
4517                 writeq(val64, &bar0->mac_rmac_err_reg);
4518                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4519                         schedule_work(&sp->set_link_task);
4520         }
4521
4522         /* In case of a serious error, the device will be Reset. */
4523         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4524                                 &sw_stat->serious_err_cnt))
4525                 goto reset;
4526
4527         /* Check for data parity error */
4528         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4529                                 &sw_stat->parity_err_cnt))
4530                 goto reset;
4531
4532         /* Check for ring full counter */
4533         if (sp->device_type == XFRAME_II_DEVICE) {
4534                 val64 = readq(&bar0->ring_bump_counter1);
4535                 for (i=0; i<4; i++) {
4536                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4537                         temp64 >>= 64 - ((i+1)*16);
4538                         sw_stat->ring_full_cnt[i] += temp64;
4539                 }
4540
4541                 val64 = readq(&bar0->ring_bump_counter2);
4542                 for (i=0; i<4; i++) {
4543                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4544                         temp64 >>= 64 - ((i+1)*16);
4545                          sw_stat->ring_full_cnt[i+4] += temp64;
4546                 }
4547         }
4548
4549         val64 = readq(&bar0->txdma_int_status);
4550         /*check for pfc_err*/
4551         if (val64 & TXDMA_PFC_INT) {
4552                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4553                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4554                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4555                                 &sw_stat->pfc_err_cnt))
4556                         goto reset;
4557                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4558                                 &sw_stat->pfc_err_cnt);
4559         }
4560
4561         /*check for tda_err*/
4562         if (val64 & TXDMA_TDA_INT) {
4563                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4564                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4565                                 &sw_stat->tda_err_cnt))
4566                         goto reset;
4567                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4568                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4569         }
4570         /*check for pcc_err*/
4571         if (val64 & TXDMA_PCC_INT) {
4572                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4573                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4574                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4575                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4576                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4577                                 &sw_stat->pcc_err_cnt))
4578                         goto reset;
4579                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4580                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4581         }
4582
4583         /*check for tti_err*/
4584         if (val64 & TXDMA_TTI_INT) {
4585                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4586                                 &sw_stat->tti_err_cnt))
4587                         goto reset;
4588                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4589                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4590         }
4591
4592         /*check for lso_err*/
4593         if (val64 & TXDMA_LSO_INT) {
4594                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4595                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4596                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4597                         goto reset;
4598                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4599                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4600         }
4601
4602         /*check for tpa_err*/
4603         if (val64 & TXDMA_TPA_INT) {
4604                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4605                         &sw_stat->tpa_err_cnt))
4606                         goto reset;
4607                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4608                         &sw_stat->tpa_err_cnt);
4609         }
4610
4611         /*check for sm_err*/
4612         if (val64 & TXDMA_SM_INT) {
4613                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4614                         &sw_stat->sm_err_cnt))
4615                         goto reset;
4616         }
4617
4618         val64 = readq(&bar0->mac_int_status);
4619         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4620                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4621                                 &bar0->mac_tmac_err_reg,
4622                                 &sw_stat->mac_tmac_err_cnt))
4623                         goto reset;
4624                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4625                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4626                                 &bar0->mac_tmac_err_reg,
4627                                 &sw_stat->mac_tmac_err_cnt);
4628         }
4629
4630         val64 = readq(&bar0->xgxs_int_status);
4631         if (val64 & XGXS_INT_STATUS_TXGXS) {
4632                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4633                                 &bar0->xgxs_txgxs_err_reg,
4634                                 &sw_stat->xgxs_txgxs_err_cnt))
4635                         goto reset;
4636                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4637                                 &bar0->xgxs_txgxs_err_reg,
4638                                 &sw_stat->xgxs_txgxs_err_cnt);
4639         }
4640
4641         val64 = readq(&bar0->rxdma_int_status);
4642         if (val64 & RXDMA_INT_RC_INT_M) {
4643                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4644                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4645                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4646                         goto reset;
4647                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4648                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4649                                 &sw_stat->rc_err_cnt);
4650                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4651                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4652                                 &sw_stat->prc_pcix_err_cnt))
4653                         goto reset;
4654                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4655                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4656                                 &sw_stat->prc_pcix_err_cnt);
4657         }
4658
4659         if (val64 & RXDMA_INT_RPA_INT_M) {
4660                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4661                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4662                         goto reset;
4663                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4664                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4665         }
4666
4667         if (val64 & RXDMA_INT_RDA_INT_M) {
4668                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4669                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4670                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4671                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4672                         goto reset;
4673                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4674                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4675                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4676         }
4677
4678         if (val64 & RXDMA_INT_RTI_INT_M) {
4679                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4680                                 &sw_stat->rti_err_cnt))
4681                         goto reset;
4682                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4683                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4684         }
4685
4686         val64 = readq(&bar0->mac_int_status);
4687         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4688                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4689                                 &bar0->mac_rmac_err_reg,
4690                                 &sw_stat->mac_rmac_err_cnt))
4691                         goto reset;
4692                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4693                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4694                                 &sw_stat->mac_rmac_err_cnt);
4695         }
4696
4697         val64 = readq(&bar0->xgxs_int_status);
4698         if (val64 & XGXS_INT_STATUS_RXGXS) {
4699                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4700                                 &bar0->xgxs_rxgxs_err_reg,
4701                                 &sw_stat->xgxs_rxgxs_err_cnt))
4702                         goto reset;
4703         }
4704
4705         val64 = readq(&bar0->mc_int_status);
4706         if(val64 & MC_INT_STATUS_MC_INT) {
4707                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4708                                 &sw_stat->mc_err_cnt))
4709                         goto reset;
4710
4711                 /* Handling Ecc errors */
4712                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4713                         writeq(val64, &bar0->mc_err_reg);
4714                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4715                                 sw_stat->double_ecc_errs++;
4716                                 if (sp->device_type != XFRAME_II_DEVICE) {
4717                                         /*
4718                                          * Reset XframeI only if critical error
4719                                          */
4720                                         if (val64 &
4721                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4722                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4723                                                                 goto reset;
4724                                         }
4725                         } else
4726                                 sw_stat->single_ecc_errs++;
4727                 }
4728         }
4729         return;
4730
4731 reset:
4732         s2io_stop_all_tx_queue(sp);
4733         schedule_work(&sp->rst_timer_task);
4734         sw_stat->soft_reset_cnt++;
4735         return;
4736 }
4737
4738 /**
4739  *  s2io_isr - ISR handler of the device .
4740  *  @irq: the irq of the device.
4741  *  @dev_id: a void pointer to the dev structure of the NIC.
4742  *  Description:  This function is the ISR handler of the device. It
4743  *  identifies the reason for the interrupt and calls the relevant
4744  *  service routines. As a contongency measure, this ISR allocates the
4745  *  recv buffers, if their numbers are below the panic value which is
4746  *  presently set to 25% of the original number of rcv buffers allocated.
4747  *  Return value:
4748  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4749  *   IRQ_NONE: will be returned if interrupt is not from our device
4750  */
4751 static irqreturn_t s2io_isr(int irq, void *dev_id)
4752 {
4753         struct net_device *dev = (struct net_device *) dev_id;
4754         struct s2io_nic *sp = netdev_priv(dev);
4755         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4756         int i;
4757         u64 reason = 0;
4758         struct mac_info *mac_control;
4759         struct config_param *config;
4760
4761         /* Pretend we handled any irq's from a disconnected card */
4762         if (pci_channel_offline(sp->pdev))
4763                 return IRQ_NONE;
4764
4765         if (!is_s2io_card_up(sp))
4766                 return IRQ_NONE;
4767
4768         mac_control = &sp->mac_control;
4769         config = &sp->config;
4770
4771         /*
4772          * Identify the cause for interrupt and call the appropriate
4773          * interrupt handler. Causes for the interrupt could be;
4774          * 1. Rx of packet.
4775          * 2. Tx complete.
4776          * 3. Link down.
4777          */
4778         reason = readq(&bar0->general_int_status);
4779
4780         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4781                 /* Nothing much can be done. Get out */
4782                 return IRQ_HANDLED;
4783         }
4784
4785         if (reason & (GEN_INTR_RXTRAFFIC |
4786                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4787         {
4788                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4789
4790                 if (config->napi) {
4791                         if (reason & GEN_INTR_RXTRAFFIC) {
4792                                 netif_rx_schedule(&sp->napi);
4793                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_mask);
4794                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4795                                 readl(&bar0->rx_traffic_int);
4796                         }
4797                 } else {
4798                         /*
4799                          * rx_traffic_int reg is an R1 register, writing all 1's
4800                          * will ensure that the actual interrupt causing bit
4801                          * get's cleared and hence a read can be avoided.
4802                          */
4803                         if (reason & GEN_INTR_RXTRAFFIC)
4804                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4805
4806                         for (i = 0; i < config->rx_ring_num; i++)
4807                                 rx_intr_handler(&mac_control->rings[i], 0);
4808                 }
4809
4810                 /*
4811                  * tx_traffic_int reg is an R1 register, writing all 1's
4812                  * will ensure that the actual interrupt causing bit get's
4813                  * cleared and hence a read can be avoided.
4814                  */
4815                 if (reason & GEN_INTR_TXTRAFFIC)
4816                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4817
4818                 for (i = 0; i < config->tx_fifo_num; i++)
4819                         tx_intr_handler(&mac_control->fifos[i]);
4820
4821                 if (reason & GEN_INTR_TXPIC)
4822                         s2io_txpic_intr_handle(sp);
4823
4824                 /*
4825                  * Reallocate the buffers from the interrupt handler itself.
4826                  */
4827                 if (!config->napi) {
4828                         for (i = 0; i < config->rx_ring_num; i++)
4829                                 s2io_chk_rx_buffers(sp, &mac_control->rings[i]);
4830                 }
4831                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4832                 readl(&bar0->general_int_status);
4833
4834                 return IRQ_HANDLED;
4835
4836         }
4837         else if (!reason) {
4838                 /* The interrupt was not raised by us */
4839                 return IRQ_NONE;
4840         }
4841
4842         return IRQ_HANDLED;
4843 }
4844
4845 /**
4846  * s2io_updt_stats -
4847  */
4848 static void s2io_updt_stats(struct s2io_nic *sp)
4849 {
4850         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4851         u64 val64;
4852         int cnt = 0;
4853
4854         if (is_s2io_card_up(sp)) {
4855                 /* Apprx 30us on a 133 MHz bus */
4856                 val64 = SET_UPDT_CLICKS(10) |
4857                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4858                 writeq(val64, &bar0->stat_cfg);
4859                 do {
4860                         udelay(100);
4861                         val64 = readq(&bar0->stat_cfg);
4862                         if (!(val64 & s2BIT(0)))
4863                                 break;
4864                         cnt++;
4865                         if (cnt == 5)
4866                                 break; /* Updt failed */
4867                 } while(1);
4868         }
4869 }
4870
4871 /**
4872  *  s2io_get_stats - Updates the device statistics structure.
4873  *  @dev : pointer to the device structure.
4874  *  Description:
4875  *  This function updates the device statistics structure in the s2io_nic
4876  *  structure and returns a pointer to the same.
4877  *  Return value:
4878  *  pointer to the updated net_device_stats structure.
4879  */
4880
4881 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4882 {
4883         struct s2io_nic *sp = netdev_priv(dev);
4884         struct mac_info *mac_control;
4885         struct config_param *config;
4886         int i;
4887
4888
4889         mac_control = &sp->mac_control;
4890         config = &sp->config;
4891
4892         /* Configure Stats for immediate updt */
4893         s2io_updt_stats(sp);
4894
4895         /* Using sp->stats as a staging area, because reset (due to mtu
4896            change, for example) will clear some hardware counters */
4897         dev->stats.tx_packets +=
4898                 le32_to_cpu(mac_control->stats_info->tmac_frms) - 
4899                 sp->stats.tx_packets;
4900         sp->stats.tx_packets =
4901                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4902         dev->stats.tx_errors +=
4903                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms) -
4904                 sp->stats.tx_errors;
4905         sp->stats.tx_errors =
4906                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4907         dev->stats.rx_errors +=
4908                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms) -
4909                 sp->stats.rx_errors;
4910         sp->stats.rx_errors =
4911                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4912         dev->stats.multicast =
4913                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms) - 
4914                 sp->stats.multicast;
4915         sp->stats.multicast =
4916                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4917         dev->stats.rx_length_errors =
4918                 le64_to_cpu(mac_control->stats_info->rmac_long_frms) - 
4919                 sp->stats.rx_length_errors;
4920         sp->stats.rx_length_errors =
4921                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4922
4923         /* collect per-ring rx_packets and rx_bytes */
4924         dev->stats.rx_packets = dev->stats.rx_bytes = 0;
4925         for (i = 0; i < config->rx_ring_num; i++) {
4926                 dev->stats.rx_packets += mac_control->rings[i].rx_packets;
4927                 dev->stats.rx_bytes += mac_control->rings[i].rx_bytes;
4928         }
4929
4930         return (&dev->stats);
4931 }
4932
4933 /**
4934  *  s2io_set_multicast - entry point for multicast address enable/disable.
4935  *  @dev : pointer to the device structure
4936  *  Description:
4937  *  This function is a driver entry point which gets called by the kernel
4938  *  whenever multicast addresses must be enabled/disabled. This also gets
4939  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4940  *  determine, if multicast address must be enabled or if promiscuous mode
4941  *  is to be disabled etc.
4942  *  Return value:
4943  *  void.
4944  */
4945
4946 static void s2io_set_multicast(struct net_device *dev)
4947 {
4948         int i, j, prev_cnt;
4949         struct dev_mc_list *mclist;
4950         struct s2io_nic *sp = netdev_priv(dev);
4951         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4952         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4953             0xfeffffffffffULL;
4954         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4955         void __iomem *add;
4956         struct config_param *config = &sp->config;
4957
4958         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4959                 /*  Enable all Multicast addresses */
4960                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4961                        &bar0->rmac_addr_data0_mem);
4962                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4963                        &bar0->rmac_addr_data1_mem);
4964                 val64 = RMAC_ADDR_CMD_MEM_WE |
4965                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4966                     RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4967                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4968                 /* Wait till command completes */
4969                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4970                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4971                                         S2IO_BIT_RESET);
4972
4973                 sp->m_cast_flg = 1;
4974                 sp->all_multi_pos = config->max_mc_addr - 1;
4975         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4976                 /*  Disable all Multicast addresses */
4977                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4978                        &bar0->rmac_addr_data0_mem);
4979                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4980                        &bar0->rmac_addr_data1_mem);
4981                 val64 = RMAC_ADDR_CMD_MEM_WE |
4982                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4983                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4984                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4985                 /* Wait till command completes */
4986                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4987                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4988                                         S2IO_BIT_RESET);
4989
4990                 sp->m_cast_flg = 0;
4991                 sp->all_multi_pos = 0;
4992         }
4993
4994         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4995                 /*  Put the NIC into promiscuous mode */
4996                 add = &bar0->mac_cfg;
4997                 val64 = readq(&bar0->mac_cfg);
4998                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4999
5000                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5001                 writel((u32) val64, add);
5002                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5003                 writel((u32) (val64 >> 32), (add + 4));
5004
5005                 if (vlan_tag_strip != 1) {
5006                         val64 = readq(&bar0->rx_pa_cfg);
5007                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
5008                         writeq(val64, &bar0->rx_pa_cfg);
5009                         sp->vlan_strip_flag = 0;
5010                 }
5011
5012                 val64 = readq(&bar0->mac_cfg);
5013                 sp->promisc_flg = 1;
5014                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
5015                           dev->name);
5016         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
5017                 /*  Remove the NIC from promiscuous mode */
5018                 add = &bar0->mac_cfg;
5019                 val64 = readq(&bar0->mac_cfg);
5020                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
5021
5022                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5023                 writel((u32) val64, add);
5024                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
5025                 writel((u32) (val64 >> 32), (add + 4));
5026
5027                 if (vlan_tag_strip != 0) {
5028                         val64 = readq(&bar0->rx_pa_cfg);
5029                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
5030                         writeq(val64, &bar0->rx_pa_cfg);
5031                         sp->vlan_strip_flag = 1;
5032                 }
5033
5034                 val64 = readq(&bar0->mac_cfg);
5035                 sp->promisc_flg = 0;
5036                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
5037                           dev->name);
5038         }
5039
5040         /*  Update individual M_CAST address list */
5041         if ((!sp->m_cast_flg) && dev->mc_count) {
5042                 if (dev->mc_count >
5043                     (config->max_mc_addr - config->max_mac_addr)) {
5044                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
5045                                   dev->name);
5046                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
5047                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
5048                         return;
5049                 }
5050
5051                 prev_cnt = sp->mc_addr_count;
5052                 sp->mc_addr_count = dev->mc_count;
5053
5054                 /* Clear out the previous list of Mc in the H/W. */
5055                 for (i = 0; i < prev_cnt; i++) {
5056                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
5057                                &bar0->rmac_addr_data0_mem);
5058                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5059                                 &bar0->rmac_addr_data1_mem);
5060                         val64 = RMAC_ADDR_CMD_MEM_WE |
5061                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5062                             RMAC_ADDR_CMD_MEM_OFFSET
5063                             (config->mc_start_offset + i);
5064                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5065
5066                         /* Wait for command completes */
5067                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5068                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5069                                         S2IO_BIT_RESET)) {
5070                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5071                                           dev->name);
5072                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5073                                 return;
5074                         }
5075                 }
5076
5077                 /* Create the new Rx filter list and update the same in H/W. */
5078                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
5079                      i++, mclist = mclist->next) {
5080                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
5081                                ETH_ALEN);
5082                         mac_addr = 0;
5083                         for (j = 0; j < ETH_ALEN; j++) {
5084                                 mac_addr |= mclist->dmi_addr[j];
5085                                 mac_addr <<= 8;
5086                         }
5087                         mac_addr >>= 8;
5088                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
5089                                &bar0->rmac_addr_data0_mem);
5090                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
5091                                 &bar0->rmac_addr_data1_mem);
5092                         val64 = RMAC_ADDR_CMD_MEM_WE |
5093                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5094                             RMAC_ADDR_CMD_MEM_OFFSET
5095                             (i + config->mc_start_offset);
5096                         writeq(val64, &bar0->rmac_addr_cmd_mem);
5097
5098                         /* Wait for command completes */
5099                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5100                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5101                                         S2IO_BIT_RESET)) {
5102                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
5103                                           dev->name);
5104                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
5105                                 return;
5106                         }
5107                 }
5108         }
5109 }
5110
5111 /* read from CAM unicast & multicast addresses and store it in
5112  * def_mac_addr structure
5113  */
5114 static void do_s2io_store_unicast_mc(struct s2io_nic *sp)
5115 {
5116         int offset;
5117         u64 mac_addr = 0x0;
5118         struct config_param *config = &sp->config;
5119
5120         /* store unicast & multicast mac addresses */
5121         for (offset = 0; offset < config->max_mc_addr; offset++) {
5122                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
5123                 /* if read fails disable the entry */
5124                 if (mac_addr == FAILURE)
5125                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
5126                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
5127         }
5128 }
5129
5130 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
5131 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
5132 {
5133         int offset;
5134         struct config_param *config = &sp->config;
5135         /* restore unicast mac address */
5136         for (offset = 0; offset < config->max_mac_addr; offset++)
5137                 do_s2io_prog_unicast(sp->dev,
5138                         sp->def_mac_addr[offset].mac_addr);
5139
5140         /* restore multicast mac address */
5141         for (offset = config->mc_start_offset;
5142                 offset < config->max_mc_addr; offset++)
5143                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
5144 }
5145
5146 /* add a multicast MAC address to CAM */
5147 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
5148 {
5149         int i;
5150         u64 mac_addr = 0;
5151         struct config_param *config = &sp->config;
5152
5153         for (i = 0; i < ETH_ALEN; i++) {
5154                 mac_addr <<= 8;
5155                 mac_addr |= addr[i];
5156         }
5157         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
5158                 return SUCCESS;
5159
5160         /* check if the multicast mac already preset in CAM */
5161         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
5162                 u64 tmp64;
5163                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5164                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5165                         break;
5166
5167                 if (tmp64 == mac_addr)
5168                         return SUCCESS;
5169         }
5170         if (i == config->max_mc_addr) {
5171                 DBG_PRINT(ERR_DBG,
5172                         "CAM full no space left for multicast MAC\n");
5173                 return FAILURE;
5174         }
5175         /* Update the internal structure with this new mac address */
5176         do_s2io_copy_mac_addr(sp, i, mac_addr);
5177
5178         return (do_s2io_add_mac(sp, mac_addr, i));
5179 }
5180
5181 /* add MAC address to CAM */
5182 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5183 {
5184         u64 val64;
5185         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5186
5187         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5188                 &bar0->rmac_addr_data0_mem);
5189
5190         val64 =
5191                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5192                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5193         writeq(val64, &bar0->rmac_addr_cmd_mem);
5194
5195         /* Wait till command completes */
5196         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5197                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5198                 S2IO_BIT_RESET)) {
5199                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5200                 return FAILURE;
5201         }
5202         return SUCCESS;
5203 }
5204 /* deletes a specified unicast/multicast mac entry from CAM */
5205 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5206 {
5207         int offset;
5208         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5209         struct config_param *config = &sp->config;
5210
5211         for (offset = 1;
5212                 offset < config->max_mc_addr; offset++) {
5213                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5214                 if (tmp64 == addr) {
5215                         /* disable the entry by writing  0xffffffffffffULL */
5216                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5217                                 return FAILURE;
5218                         /* store the new mac list from CAM */
5219                         do_s2io_store_unicast_mc(sp);
5220                         return SUCCESS;
5221                 }
5222         }
5223         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5224                         (unsigned long long)addr);
5225         return FAILURE;
5226 }
5227
5228 /* read mac entries from CAM */
5229 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5230 {
5231         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5232         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5233
5234         /* read mac addr */
5235         val64 =
5236                 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5237                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5238         writeq(val64, &bar0->rmac_addr_cmd_mem);
5239
5240         /* Wait till command completes */
5241         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5242                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5243                 S2IO_BIT_RESET)) {
5244                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5245                 return FAILURE;
5246         }
5247         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5248         return (tmp64 >> 16);
5249 }
5250
5251 /**
5252  * s2io_set_mac_addr driver entry point
5253  */
5254
5255 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5256 {
5257         struct sockaddr *addr = p;
5258
5259         if (!is_valid_ether_addr(addr->sa_data))
5260                 return -EINVAL;
5261
5262         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5263
5264         /* store the MAC address in CAM */
5265         return (do_s2io_prog_unicast(dev, dev->dev_addr));
5266 }
5267 /**
5268  *  do_s2io_prog_unicast - Programs the Xframe mac address
5269  *  @dev : pointer to the device structure.
5270  *  @addr: a uchar pointer to the new mac address which is to be set.
5271  *  Description : This procedure will program the Xframe to receive
5272  *  frames with new Mac Address
5273  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5274  *  as defined in errno.h file on failure.
5275  */
5276
5277 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5278 {
5279         struct s2io_nic *sp = netdev_priv(dev);
5280         register u64 mac_addr = 0, perm_addr = 0;
5281         int i;
5282         u64 tmp64;
5283         struct config_param *config = &sp->config;
5284
5285         /*
5286         * Set the new MAC address as the new unicast filter and reflect this
5287         * change on the device address registered with the OS. It will be
5288         * at offset 0.
5289         */
5290         for (i = 0; i < ETH_ALEN; i++) {
5291                 mac_addr <<= 8;
5292                 mac_addr |= addr[i];
5293                 perm_addr <<= 8;
5294                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5295         }
5296
5297         /* check if the dev_addr is different than perm_addr */
5298         if (mac_addr == perm_addr)
5299                 return SUCCESS;
5300
5301         /* check if the mac already preset in CAM */
5302         for (i = 1; i < config->max_mac_addr; i++) {
5303                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5304                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5305                         break;
5306
5307                 if (tmp64 == mac_addr) {
5308                         DBG_PRINT(INFO_DBG,
5309                         "MAC addr:0x%llx already present in CAM\n",
5310                         (unsigned long long)mac_addr);
5311                         return SUCCESS;
5312                 }
5313         }
5314         if (i == config->max_mac_addr) {
5315                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5316                 return FAILURE;
5317         }
5318         /* Update the internal structure with this new mac address */
5319         do_s2io_copy_mac_addr(sp, i, mac_addr);
5320         return (do_s2io_add_mac(sp, mac_addr, i));
5321 }
5322
5323 /**
5324  * s2io_ethtool_sset - Sets different link parameters.
5325  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5326  * @info: pointer to the structure with parameters given by ethtool to set
5327  * link information.
5328  * Description:
5329  * The function sets different link parameters provided by the user onto
5330  * the NIC.
5331  * Return value:
5332  * 0 on success.
5333 */
5334
5335 static int s2io_ethtool_sset(struct net_device *dev,
5336                              struct ethtool_cmd *info)
5337 {
5338         struct s2io_nic *sp = netdev_priv(dev);
5339         if ((info->autoneg == AUTONEG_ENABLE) ||
5340             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5341                 return -EINVAL;
5342         else {
5343                 s2io_close(sp->dev);
5344                 s2io_open(sp->dev);
5345         }
5346
5347         return 0;
5348 }
5349
5350 /**
5351  * s2io_ethtol_gset - Return link specific information.
5352  * @sp : private member of the device structure, pointer to the
5353  *      s2io_nic structure.
5354  * @info : pointer to the structure with parameters given by ethtool
5355  * to return link information.
5356  * Description:
5357  * Returns link specific information like speed, duplex etc.. to ethtool.
5358  * Return value :
5359  * return 0 on success.
5360  */
5361
5362 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5363 {
5364         struct s2io_nic *sp = netdev_priv(dev);
5365         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5366         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5367         info->port = PORT_FIBRE;
5368
5369         /* info->transceiver */
5370         info->transceiver = XCVR_EXTERNAL;
5371
5372         if (netif_carrier_ok(sp->dev)) {
5373                 info->speed = 10000;
5374                 info->duplex = DUPLEX_FULL;
5375         } else {
5376                 info->speed = -1;
5377                 info->duplex = -1;
5378         }
5379
5380         info->autoneg = AUTONEG_DISABLE;
5381         return 0;
5382 }
5383
5384 /**
5385  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5386  * @sp : private member of the device structure, which is a pointer to the
5387  * s2io_nic structure.
5388  * @info : pointer to the structure with parameters given by ethtool to
5389  * return driver information.
5390  * Description:
5391  * Returns driver specefic information like name, version etc.. to ethtool.
5392  * Return value:
5393  *  void
5394  */
5395
5396 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5397                                   struct ethtool_drvinfo *info)
5398 {
5399         struct s2io_nic *sp = netdev_priv(dev);
5400
5401         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5402         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5403         strncpy(info->fw_version, "", sizeof(info->fw_version));
5404         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5405         info->regdump_len = XENA_REG_SPACE;
5406         info->eedump_len = XENA_EEPROM_SPACE;
5407 }
5408
5409 /**
5410  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5411  *  @sp: private member of the device structure, which is a pointer to the
5412  *  s2io_nic structure.
5413  *  @regs : pointer to the structure with parameters given by ethtool for
5414  *  dumping the registers.
5415  *  @reg_space: The input argumnet into which all the registers are dumped.
5416  *  Description:
5417  *  Dumps the entire register space of xFrame NIC into the user given
5418  *  buffer area.
5419  * Return value :
5420  * void .
5421 */
5422
5423 static void s2io_ethtool_gregs(struct net_device *dev,
5424                                struct ethtool_regs *regs, void *space)
5425 {
5426         int i;
5427         u64 reg;
5428         u8 *reg_space = (u8 *) space;
5429         struct s2io_nic *sp = netdev_priv(dev);
5430
5431         regs->len = XENA_REG_SPACE;
5432         regs->version = sp->pdev->subsystem_device;
5433
5434         for (i = 0; i < regs->len; i += 8) {
5435                 reg = readq(sp->bar0 + i);
5436                 memcpy((reg_space + i), &reg, 8);
5437         }
5438 }
5439
5440 /**
5441  *  s2io_phy_id  - timer function that alternates adapter LED.
5442  *  @data : address of the private member of the device structure, which
5443  *  is a pointer to the s2io_nic structure, provided as an u32.
5444  * Description: This is actually the timer function that alternates the
5445  * adapter LED bit of the adapter control bit to set/reset every time on
5446  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5447  *  once every second.
5448 */
5449 static void s2io_phy_id(unsigned long data)
5450 {
5451         struct s2io_nic *sp = (struct s2io_nic *) data;
5452         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5453         u64 val64 = 0;
5454         u16 subid;
5455
5456         subid = sp->pdev->subsystem_device;
5457         if ((sp->device_type == XFRAME_II_DEVICE) ||
5458                    ((subid & 0xFF) >= 0x07)) {
5459                 val64 = readq(&bar0->gpio_control);
5460                 val64 ^= GPIO_CTRL_GPIO_0;
5461                 writeq(val64, &bar0->gpio_control);
5462         } else {
5463                 val64 = readq(&bar0->adapter_control);
5464                 val64 ^= ADAPTER_LED_ON;
5465                 writeq(val64, &bar0->adapter_control);
5466         }
5467
5468         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5469 }
5470
5471 /**
5472  * s2io_ethtool_idnic - To physically identify the nic on the system.
5473  * @sp : private member of the device structure, which is a pointer to the
5474  * s2io_nic structure.
5475  * @id : pointer to the structure with identification parameters given by
5476  * ethtool.
5477  * Description: Used to physically identify the NIC on the system.
5478  * The Link LED will blink for a time specified by the user for
5479  * identification.
5480  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5481  * identification is possible only if it's link is up.
5482  * Return value:
5483  * int , returns 0 on success
5484  */
5485
5486 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5487 {
5488         u64 val64 = 0, last_gpio_ctrl_val;
5489         struct s2io_nic *sp = netdev_priv(dev);
5490         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5491         u16 subid;
5492
5493         subid = sp->pdev->subsystem_device;
5494         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5495         if ((sp->device_type == XFRAME_I_DEVICE) &&
5496                 ((subid & 0xFF) < 0x07)) {
5497                 val64 = readq(&bar0->adapter_control);
5498                 if (!(val64 & ADAPTER_CNTL_EN)) {
5499                         printk(KERN_ERR
5500                                "Adapter Link down, cannot blink LED\n");
5501                         return -EFAULT;
5502                 }
5503         }
5504         if (sp->id_timer.function == NULL) {
5505                 init_timer(&sp->id_timer);
5506                 sp->id_timer.function = s2io_phy_id;
5507                 sp->id_timer.data = (unsigned long) sp;
5508         }
5509         mod_timer(&sp->id_timer, jiffies);
5510         if (data)
5511                 msleep_interruptible(data * HZ);
5512         else
5513                 msleep_interruptible(MAX_FLICKER_TIME);
5514         del_timer_sync(&sp->id_timer);
5515
5516         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5517                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5518                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5519         }
5520
5521         return 0;
5522 }
5523
5524 static void s2io_ethtool_gringparam(struct net_device *dev,
5525                                     struct ethtool_ringparam *ering)
5526 {
5527         struct s2io_nic *sp = netdev_priv(dev);
5528         int i,tx_desc_count=0,rx_desc_count=0;
5529
5530         if (sp->rxd_mode == RXD_MODE_1)
5531                 ering->rx_max_pending = MAX_RX_DESC_1;
5532         else if (sp->rxd_mode == RXD_MODE_3B)
5533                 ering->rx_max_pending = MAX_RX_DESC_2;
5534
5535         ering->tx_max_pending = MAX_TX_DESC;
5536         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5537                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5538
5539         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5540         ering->tx_pending = tx_desc_count;
5541         rx_desc_count = 0;
5542         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5543                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5544
5545         ering->rx_pending = rx_desc_count;
5546
5547         ering->rx_mini_max_pending = 0;
5548         ering->rx_mini_pending = 0;
5549         if(sp->rxd_mode == RXD_MODE_1)
5550                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5551         else if (sp->rxd_mode == RXD_MODE_3B)
5552                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5553         ering->rx_jumbo_pending = rx_desc_count;
5554 }
5555
5556 /**
5557  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5558  * @sp : private member of the device structure, which is a pointer to the
5559  *      s2io_nic structure.
5560  * @ep : pointer to the structure with pause parameters given by ethtool.
5561  * Description:
5562  * Returns the Pause frame generation and reception capability of the NIC.
5563  * Return value:
5564  *  void
5565  */
5566 static void s2io_ethtool_getpause_data(struct net_device *dev,
5567                                        struct ethtool_pauseparam *ep)
5568 {
5569         u64 val64;
5570         struct s2io_nic *sp = netdev_priv(dev);
5571         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5572
5573         val64 = readq(&bar0->rmac_pause_cfg);
5574         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5575                 ep->tx_pause = TRUE;
5576         if (val64 & RMAC_PAUSE_RX_ENABLE)
5577                 ep->rx_pause = TRUE;
5578         ep->autoneg = FALSE;
5579 }
5580
5581 /**
5582  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5583  * @sp : private member of the device structure, which is a pointer to the
5584  *      s2io_nic structure.
5585  * @ep : pointer to the structure with pause parameters given by ethtool.
5586  * Description:
5587  * It can be used to set or reset Pause frame generation or reception
5588  * support of the NIC.
5589  * Return value:
5590  * int, returns 0 on Success
5591  */
5592
5593 static int s2io_ethtool_setpause_data(struct net_device *dev,
5594                                struct ethtool_pauseparam *ep)
5595 {
5596         u64 val64;
5597         struct s2io_nic *sp = netdev_priv(dev);
5598         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5599
5600         val64 = readq(&bar0->rmac_pause_cfg);
5601         if (ep->tx_pause)
5602                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5603         else
5604                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5605         if (ep->rx_pause)
5606                 val64 |= RMAC_PAUSE_RX_ENABLE;
5607         else
5608                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5609         writeq(val64, &bar0->rmac_pause_cfg);
5610         return 0;
5611 }
5612
5613 /**
5614  * read_eeprom - reads 4 bytes of data from user given offset.
5615  * @sp : private member of the device structure, which is a pointer to the
5616  *      s2io_nic structure.
5617  * @off : offset at which the data must be written
5618  * @data : Its an output parameter where the data read at the given
5619  *      offset is stored.
5620  * Description:
5621  * Will read 4 bytes of data from the user given offset and return the
5622  * read data.
5623  * NOTE: Will allow to read only part of the EEPROM visible through the
5624  *   I2C bus.
5625  * Return value:
5626  *  -1 on failure and 0 on success.
5627  */
5628
5629 #define S2IO_DEV_ID             5
5630 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5631 {
5632         int ret = -1;
5633         u32 exit_cnt = 0;
5634         u64 val64;
5635         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5636
5637         if (sp->device_type == XFRAME_I_DEVICE) {
5638                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5639                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5640                     I2C_CONTROL_CNTL_START;
5641                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5642
5643                 while (exit_cnt < 5) {
5644                         val64 = readq(&bar0->i2c_control);
5645                         if (I2C_CONTROL_CNTL_END(val64)) {
5646                                 *data = I2C_CONTROL_GET_DATA(val64);
5647                                 ret = 0;
5648                                 break;
5649                         }
5650                         msleep(50);
5651                         exit_cnt++;
5652                 }
5653         }
5654
5655         if (sp->device_type == XFRAME_II_DEVICE) {
5656                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5657                         SPI_CONTROL_BYTECNT(0x3) |
5658                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5659                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5660                 val64 |= SPI_CONTROL_REQ;
5661                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5662                 while (exit_cnt < 5) {
5663                         val64 = readq(&bar0->spi_control);
5664                         if (val64 & SPI_CONTROL_NACK) {
5665                                 ret = 1;
5666                                 break;
5667                         } else if (val64 & SPI_CONTROL_DONE) {
5668                                 *data = readq(&bar0->spi_data);
5669                                 *data &= 0xffffff;
5670                                 ret = 0;
5671                                 break;
5672                         }
5673                         msleep(50);
5674                         exit_cnt++;
5675                 }
5676         }
5677         return ret;
5678 }
5679
5680 /**
5681  *  write_eeprom - actually writes the relevant part of the data value.
5682  *  @sp : private member of the device structure, which is a pointer to the
5683  *       s2io_nic structure.
5684  *  @off : offset at which the data must be written
5685  *  @data : The data that is to be written
5686  *  @cnt : Number of bytes of the data that are actually to be written into
5687  *  the Eeprom. (max of 3)
5688  * Description:
5689  *  Actually writes the relevant part of the data value into the Eeprom
5690  *  through the I2C bus.
5691  * Return value:
5692  *  0 on success, -1 on failure.
5693  */
5694
5695 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5696 {
5697         int exit_cnt = 0, ret = -1;
5698         u64 val64;
5699         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5700
5701         if (sp->device_type == XFRAME_I_DEVICE) {
5702                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5703                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5704                     I2C_CONTROL_CNTL_START;
5705                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5706
5707                 while (exit_cnt < 5) {
5708                         val64 = readq(&bar0->i2c_control);
5709                         if (I2C_CONTROL_CNTL_END(val64)) {
5710                                 if (!(val64 & I2C_CONTROL_NACK))
5711                                         ret = 0;
5712                                 break;
5713                         }
5714                         msleep(50);
5715                         exit_cnt++;
5716                 }
5717         }
5718
5719         if (sp->device_type == XFRAME_II_DEVICE) {
5720                 int write_cnt = (cnt == 8) ? 0 : cnt;
5721                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5722
5723                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5724                         SPI_CONTROL_BYTECNT(write_cnt) |
5725                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5726                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5727                 val64 |= SPI_CONTROL_REQ;
5728                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5729                 while (exit_cnt < 5) {
5730                         val64 = readq(&bar0->spi_control);
5731                         if (val64 & SPI_CONTROL_NACK) {
5732                                 ret = 1;
5733                                 break;
5734                         } else if (val64 & SPI_CONTROL_DONE) {
5735                                 ret = 0;
5736                                 break;
5737                         }
5738                         msleep(50);
5739                         exit_cnt++;
5740                 }
5741         }
5742         return ret;
5743 }
5744 static void s2io_vpd_read(struct s2io_nic *nic)
5745 {
5746         u8 *vpd_data;
5747         u8 data;
5748         int i=0, cnt, fail = 0;
5749         int vpd_addr = 0x80;
5750
5751         if (nic->device_type == XFRAME_II_DEVICE) {
5752                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5753                 vpd_addr = 0x80;
5754         }
5755         else {
5756                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5757                 vpd_addr = 0x50;
5758         }
5759         strcpy(nic->serial_num, "NOT AVAILABLE");
5760
5761         vpd_data = kmalloc(256, GFP_KERNEL);
5762         if (!vpd_data) {
5763                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5764                 return;
5765         }
5766         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5767
5768         for (i = 0; i < 256; i +=4 ) {
5769                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5770                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5771                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5772                 for (cnt = 0; cnt <5; cnt++) {
5773                         msleep(2);
5774                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5775                         if (data == 0x80)
5776                                 break;
5777                 }
5778                 if (cnt >= 5) {
5779                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5780                         fail = 1;
5781                         break;
5782                 }
5783                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5784                                       (u32 *)&vpd_data[i]);
5785         }
5786
5787         if(!fail) {
5788                 /* read serial number of adapter */
5789                 for (cnt = 0; cnt < 256; cnt++) {
5790                 if ((vpd_data[cnt] == 'S') &&
5791                         (vpd_data[cnt+1] == 'N') &&
5792                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5793                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5794                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5795                                         vpd_data[cnt+2]);
5796                                 break;
5797                         }
5798                 }
5799         }
5800
5801         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5802                 memset(nic->product_name, 0, vpd_data[1]);
5803                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5804         }
5805         kfree(vpd_data);
5806         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5807 }
5808
5809 /**
5810  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5811  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5812  *  @eeprom : pointer to the user level structure provided by ethtool,
5813  *  containing all relevant information.
5814  *  @data_buf : user defined value to be written into Eeprom.
5815  *  Description: Reads the values stored in the Eeprom at given offset
5816  *  for a given length. Stores these values int the input argument data
5817  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5818  *  Return value:
5819  *  int  0 on success
5820  */
5821
5822 static int s2io_ethtool_geeprom(struct net_device *dev,
5823                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5824 {
5825         u32 i, valid;
5826         u64 data;
5827         struct s2io_nic *sp = netdev_priv(dev);
5828
5829         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5830
5831         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5832                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5833
5834         for (i = 0; i < eeprom->len; i += 4) {
5835                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5836                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5837                         return -EFAULT;
5838                 }
5839                 valid = INV(data);
5840                 memcpy((data_buf + i), &valid, 4);
5841         }
5842         return 0;
5843 }
5844
5845 /**
5846  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5847  *  @sp : private member of the device structure, which is a pointer to the
5848  *  s2io_nic structure.
5849  *  @eeprom : pointer to the user level structure provided by ethtool,
5850  *  containing all relevant information.
5851  *  @data_buf ; user defined value to be written into Eeprom.
5852  *  Description:
5853  *  Tries to write the user provided value in the Eeprom, at the offset
5854  *  given by the user.
5855  *  Return value:
5856  *  0 on success, -EFAULT on failure.
5857  */
5858
5859 static int s2io_ethtool_seeprom(struct net_device *dev,
5860                                 struct ethtool_eeprom *eeprom,
5861                                 u8 * data_buf)
5862 {
5863         int len = eeprom->len, cnt = 0;
5864         u64 valid = 0, data;
5865         struct s2io_nic *sp = netdev_priv(dev);
5866
5867         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5868                 DBG_PRINT(ERR_DBG,
5869                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5870                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5871                           eeprom->magic);
5872                 return -EFAULT;
5873         }
5874
5875         while (len) {
5876                 data = (u32) data_buf[cnt] & 0x000000FF;
5877                 if (data) {
5878                         valid = (u32) (data << 24);
5879                 } else
5880                         valid = data;
5881
5882                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5883                         DBG_PRINT(ERR_DBG,
5884                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5885                         DBG_PRINT(ERR_DBG,
5886                                   "write into the specified offset\n");
5887                         return -EFAULT;
5888                 }
5889                 cnt++;
5890                 len--;
5891         }
5892
5893         return 0;
5894 }
5895
5896 /**
5897  * s2io_register_test - reads and writes into all clock domains.
5898  * @sp : private member of the device structure, which is a pointer to the
5899  * s2io_nic structure.
5900  * @data : variable that returns the result of each of the test conducted b
5901  * by the driver.
5902  * Description:
5903  * Read and write into all clock domains. The NIC has 3 clock domains,
5904  * see that registers in all the three regions are accessible.
5905  * Return value:
5906  * 0 on success.
5907  */
5908
5909 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5910 {
5911         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5912         u64 val64 = 0, exp_val;
5913         int fail = 0;
5914
5915         val64 = readq(&bar0->pif_rd_swapper_fb);
5916         if (val64 != 0x123456789abcdefULL) {
5917                 fail = 1;
5918                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5919         }
5920
5921         val64 = readq(&bar0->rmac_pause_cfg);
5922         if (val64 != 0xc000ffff00000000ULL) {
5923                 fail = 1;
5924                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5925         }
5926
5927         val64 = readq(&bar0->rx_queue_cfg);
5928         if (sp->device_type == XFRAME_II_DEVICE)
5929                 exp_val = 0x0404040404040404ULL;
5930         else
5931                 exp_val = 0x0808080808080808ULL;
5932         if (val64 != exp_val) {
5933                 fail = 1;
5934                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5935         }
5936
5937         val64 = readq(&bar0->xgxs_efifo_cfg);
5938         if (val64 != 0x000000001923141EULL) {
5939                 fail = 1;
5940                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5941         }
5942
5943         val64 = 0x5A5A5A5A5A5A5A5AULL;
5944         writeq(val64, &bar0->xmsi_data);
5945         val64 = readq(&bar0->xmsi_data);
5946         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5947                 fail = 1;
5948                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5949         }
5950
5951         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5952         writeq(val64, &bar0->xmsi_data);
5953         val64 = readq(&bar0->xmsi_data);
5954         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5955                 fail = 1;
5956                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5957         }
5958
5959         *data = fail;
5960         return fail;
5961 }
5962
5963 /**
5964  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5965  * @sp : private member of the device structure, which is a pointer to the
5966  * s2io_nic structure.
5967  * @data:variable that returns the result of each of the test conducted by
5968  * the driver.
5969  * Description:
5970  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5971  * register.
5972  * Return value:
5973  * 0 on success.
5974  */
5975
5976 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5977 {
5978         int fail = 0;
5979         u64 ret_data, org_4F0, org_7F0;
5980         u8 saved_4F0 = 0, saved_7F0 = 0;
5981         struct net_device *dev = sp->dev;
5982
5983         /* Test Write Error at offset 0 */
5984         /* Note that SPI interface allows write access to all areas
5985          * of EEPROM. Hence doing all negative testing only for Xframe I.
5986          */
5987         if (sp->device_type == XFRAME_I_DEVICE)
5988                 if (!write_eeprom(sp, 0, 0, 3))
5989                         fail = 1;
5990
5991         /* Save current values at offsets 0x4F0 and 0x7F0 */
5992         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5993                 saved_4F0 = 1;
5994         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5995                 saved_7F0 = 1;
5996
5997         /* Test Write at offset 4f0 */
5998         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5999                 fail = 1;
6000         if (read_eeprom(sp, 0x4F0, &ret_data))
6001                 fail = 1;
6002
6003         if (ret_data != 0x012345) {
6004                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
6005                         "Data written %llx Data read %llx\n",
6006                         dev->name, (unsigned long long)0x12345,
6007                         (unsigned long long)ret_data);
6008                 fail = 1;
6009         }
6010
6011         /* Reset the EEPROM data go FFFF */
6012         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
6013
6014         /* Test Write Request Error at offset 0x7c */
6015         if (sp->device_type == XFRAME_I_DEVICE)
6016                 if (!write_eeprom(sp, 0x07C, 0, 3))
6017                         fail = 1;
6018
6019         /* Test Write Request at offset 0x7f0 */
6020         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
6021                 fail = 1;
6022         if (read_eeprom(sp, 0x7F0, &ret_data))
6023                 fail = 1;
6024
6025         if (ret_data != 0x012345) {
6026                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
6027                         "Data written %llx Data read %llx\n",
6028                         dev->name, (unsigned long long)0x12345,
6029                         (unsigned long long)ret_data);
6030                 fail = 1;
6031         }
6032
6033         /* Reset the EEPROM data go FFFF */
6034         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
6035
6036         if (sp->device_type == XFRAME_I_DEVICE) {
6037                 /* Test Write Error at offset 0x80 */
6038                 if (!write_eeprom(sp, 0x080, 0, 3))
6039                         fail = 1;
6040
6041                 /* Test Write Error at offset 0xfc */
6042                 if (!write_eeprom(sp, 0x0FC, 0, 3))
6043                         fail = 1;
6044
6045                 /* Test Write Error at offset 0x100 */
6046                 if (!write_eeprom(sp, 0x100, 0, 3))
6047                         fail = 1;
6048
6049                 /* Test Write Error at offset 4ec */
6050                 if (!write_eeprom(sp, 0x4EC, 0, 3))
6051                         fail = 1;
6052         }
6053
6054         /* Restore values at offsets 0x4F0 and 0x7F0 */
6055         if (saved_4F0)
6056                 write_eeprom(sp, 0x4F0, org_4F0, 3);
6057         if (saved_7F0)
6058                 write_eeprom(sp, 0x7F0, org_7F0, 3);
6059
6060         *data = fail;
6061         return fail;
6062 }
6063
6064 /**
6065  * s2io_bist_test - invokes the MemBist test of the card .
6066  * @sp : private member of the device structure, which is a pointer to the
6067  * s2io_nic structure.
6068  * @data:variable that returns the result of each of the test conducted by
6069  * the driver.
6070  * Description:
6071  * This invokes the MemBist test of the card. We give around
6072  * 2 secs time for the Test to complete. If it's still not complete
6073  * within this peiod, we consider that the test failed.
6074  * Return value:
6075  * 0 on success and -1 on failure.
6076  */
6077
6078 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
6079 {
6080         u8 bist = 0;
6081         int cnt = 0, ret = -1;
6082
6083         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6084         bist |= PCI_BIST_START;
6085         pci_write_config_word(sp->pdev, PCI_BIST, bist);
6086
6087         while (cnt < 20) {
6088                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
6089                 if (!(bist & PCI_BIST_START)) {
6090                         *data = (bist & PCI_BIST_CODE_MASK);
6091                         ret = 0;
6092                         break;
6093                 }
6094                 msleep(100);
6095                 cnt++;
6096         }
6097
6098         return ret;
6099 }
6100
6101 /**
6102  * s2io-link_test - verifies the link state of the nic
6103  * @sp ; private member of the device structure, which is a pointer to the
6104  * s2io_nic structure.
6105  * @data: variable that returns the result of each of the test conducted by
6106  * the driver.
6107  * Description:
6108  * The function verifies the link state of the NIC and updates the input
6109  * argument 'data' appropriately.
6110  * Return value:
6111  * 0 on success.
6112  */
6113
6114 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
6115 {
6116         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6117         u64 val64;
6118
6119         val64 = readq(&bar0->adapter_status);
6120         if(!(LINK_IS_UP(val64)))
6121                 *data = 1;
6122         else
6123                 *data = 0;
6124
6125         return *data;
6126 }
6127
6128 /**
6129  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
6130  * @sp - private member of the device structure, which is a pointer to the
6131  * s2io_nic structure.
6132  * @data - variable that returns the result of each of the test
6133  * conducted by the driver.
6134  * Description:
6135  *  This is one of the offline test that tests the read and write
6136  *  access to the RldRam chip on the NIC.
6137  * Return value:
6138  *  0 on success.
6139  */
6140
6141 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
6142 {
6143         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6144         u64 val64;
6145         int cnt, iteration = 0, test_fail = 0;
6146
6147         val64 = readq(&bar0->adapter_control);
6148         val64 &= ~ADAPTER_ECC_EN;
6149         writeq(val64, &bar0->adapter_control);
6150
6151         val64 = readq(&bar0->mc_rldram_test_ctrl);
6152         val64 |= MC_RLDRAM_TEST_MODE;
6153         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6154
6155         val64 = readq(&bar0->mc_rldram_mrs);
6156         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
6157         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6158
6159         val64 |= MC_RLDRAM_MRS_ENABLE;
6160         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
6161
6162         while (iteration < 2) {
6163                 val64 = 0x55555555aaaa0000ULL;
6164                 if (iteration == 1) {
6165                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6166                 }
6167                 writeq(val64, &bar0->mc_rldram_test_d0);
6168
6169                 val64 = 0xaaaa5a5555550000ULL;
6170                 if (iteration == 1) {
6171                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6172                 }
6173                 writeq(val64, &bar0->mc_rldram_test_d1);
6174
6175                 val64 = 0x55aaaaaaaa5a0000ULL;
6176                 if (iteration == 1) {
6177                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6178                 }
6179                 writeq(val64, &bar0->mc_rldram_test_d2);
6180
6181                 val64 = (u64) (0x0000003ffffe0100ULL);
6182                 writeq(val64, &bar0->mc_rldram_test_add);
6183
6184                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6185                         MC_RLDRAM_TEST_GO;
6186                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6187
6188                 for (cnt = 0; cnt < 5; cnt++) {
6189                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6190                         if (val64 & MC_RLDRAM_TEST_DONE)
6191                                 break;
6192                         msleep(200);
6193                 }
6194
6195                 if (cnt == 5)
6196                         break;
6197
6198                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6199                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6200
6201                 for (cnt = 0; cnt < 5; cnt++) {
6202                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6203                         if (val64 & MC_RLDRAM_TEST_DONE)
6204                                 break;
6205                         msleep(500);
6206                 }
6207
6208                 if (cnt == 5)
6209                         break;
6210
6211                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6212                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6213                         test_fail = 1;
6214
6215                 iteration++;
6216         }
6217
6218         *data = test_fail;
6219
6220         /* Bring the adapter out of test mode */
6221         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6222
6223         return test_fail;
6224 }
6225
6226 /**
6227  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6228  *  @sp : private member of the device structure, which is a pointer to the
6229  *  s2io_nic structure.
6230  *  @ethtest : pointer to a ethtool command specific structure that will be
6231  *  returned to the user.
6232  *  @data : variable that returns the result of each of the test
6233  * conducted by the driver.
6234  * Description:
6235  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6236  *  the health of the card.
6237  * Return value:
6238  *  void
6239  */
6240
6241 static void s2io_ethtool_test(struct net_device *dev,
6242                               struct ethtool_test *ethtest,
6243                               uint64_t * data)
6244 {
6245         struct s2io_nic *sp = netdev_priv(dev);
6246         int orig_state = netif_running(sp->dev);
6247
6248         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6249                 /* Offline Tests. */
6250                 if (orig_state)
6251                         s2io_close(sp->dev);
6252
6253                 if (s2io_register_test(sp, &data[0]))
6254                         ethtest->flags |= ETH_TEST_FL_FAILED;
6255
6256                 s2io_reset(sp);
6257
6258                 if (s2io_rldram_test(sp, &data[3]))
6259                         ethtest->flags |= ETH_TEST_FL_FAILED;
6260
6261                 s2io_reset(sp);
6262
6263                 if (s2io_eeprom_test(sp, &data[1]))
6264                         ethtest->flags |= ETH_TEST_FL_FAILED;
6265
6266                 if (s2io_bist_test(sp, &data[4]))
6267                         ethtest->flags |= ETH_TEST_FL_FAILED;
6268
6269                 if (orig_state)
6270                         s2io_open(sp->dev);
6271
6272                 data[2] = 0;
6273         } else {
6274                 /* Online Tests. */
6275                 if (!orig_state) {
6276                         DBG_PRINT(ERR_DBG,
6277                                   "%s: is not up, cannot run test\n",
6278                                   dev->name);
6279                         data[0] = -1;
6280                         data[1] = -1;
6281                         data[2] = -1;
6282                         data[3] = -1;
6283                         data[4] = -1;
6284                 }
6285
6286                 if (s2io_link_test(sp, &data[2]))
6287                         ethtest->flags |= ETH_TEST_FL_FAILED;
6288
6289                 data[0] = 0;
6290                 data[1] = 0;
6291                 data[3] = 0;
6292                 data[4] = 0;
6293         }
6294 }
6295
6296 static void s2io_get_ethtool_stats(struct net_device *dev,
6297                                    struct ethtool_stats *estats,
6298                                    u64 * tmp_stats)
6299 {
6300         int i = 0, k;
6301         struct s2io_nic *sp = netdev_priv(dev);
6302         struct stat_block *stat_info = sp->mac_control.stats_info;
6303
6304         s2io_updt_stats(sp);
6305         tmp_stats[i++] =
6306                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
6307                 le32_to_cpu(stat_info->tmac_frms);
6308         tmp_stats[i++] =
6309                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6310                 le32_to_cpu(stat_info->tmac_data_octets);
6311         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6312         tmp_stats[i++] =
6313                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6314                 le32_to_cpu(stat_info->tmac_mcst_frms);
6315         tmp_stats[i++] =
6316                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6317                 le32_to_cpu(stat_info->tmac_bcst_frms);
6318         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6319         tmp_stats[i++] =
6320                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6321                 le32_to_cpu(stat_info->tmac_ttl_octets);
6322         tmp_stats[i++] =
6323                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6324                 le32_to_cpu(stat_info->tmac_ucst_frms);
6325         tmp_stats[i++] =
6326                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6327                 le32_to_cpu(stat_info->tmac_nucst_frms);
6328         tmp_stats[i++] =
6329                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6330                 le32_to_cpu(stat_info->tmac_any_err_frms);
6331         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6332         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6333         tmp_stats[i++] =
6334                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6335                 le32_to_cpu(stat_info->tmac_vld_ip);
6336         tmp_stats[i++] =
6337                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6338                 le32_to_cpu(stat_info->tmac_drop_ip);
6339         tmp_stats[i++] =
6340                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6341                 le32_to_cpu(stat_info->tmac_icmp);
6342         tmp_stats[i++] =
6343                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6344                 le32_to_cpu(stat_info->tmac_rst_tcp);
6345         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6346         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6347                 le32_to_cpu(stat_info->tmac_udp);
6348         tmp_stats[i++] =
6349                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6350                 le32_to_cpu(stat_info->rmac_vld_frms);
6351         tmp_stats[i++] =
6352                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6353                 le32_to_cpu(stat_info->rmac_data_octets);
6354         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6355         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6356         tmp_stats[i++] =
6357                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6358                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6359         tmp_stats[i++] =
6360                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6361                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6362         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6363         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6364         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6365         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6366         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6367         tmp_stats[i++] =
6368                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6369                 le32_to_cpu(stat_info->rmac_ttl_octets);
6370         tmp_stats[i++] =
6371                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6372                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6373         tmp_stats[i++] =
6374                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6375                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6376         tmp_stats[i++] =
6377                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6378                 le32_to_cpu(stat_info->rmac_discarded_frms);
6379         tmp_stats[i++] =
6380                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6381                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6382         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6383         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6384         tmp_stats[i++] =
6385                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6386                 le32_to_cpu(stat_info->rmac_usized_frms);
6387         tmp_stats[i++] =
6388                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6389                 le32_to_cpu(stat_info->rmac_osized_frms);
6390         tmp_stats[i++] =
6391                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6392                 le32_to_cpu(stat_info->rmac_frag_frms);
6393         tmp_stats[i++] =
6394                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6395                 le32_to_cpu(stat_info->rmac_jabber_frms);
6396         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6397         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6398         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6399         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6400         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6401         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6402         tmp_stats[i++] =
6403                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6404                 le32_to_cpu(stat_info->rmac_ip);
6405         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6406         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6407         tmp_stats[i++] =
6408                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6409                 le32_to_cpu(stat_info->rmac_drop_ip);
6410         tmp_stats[i++] =
6411                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6412                 le32_to_cpu(stat_info->rmac_icmp);
6413         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6414         tmp_stats[i++] =
6415                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6416                 le32_to_cpu(stat_info->rmac_udp);
6417         tmp_stats[i++] =
6418                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6419                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6420         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6421         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6422         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6423         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6424         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6425         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6426         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6427         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6428         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6429         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6430         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6431         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6432         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6433         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6434         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6435         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6436         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6437         tmp_stats[i++] =
6438                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6439                 le32_to_cpu(stat_info->rmac_pause_cnt);
6440         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6441         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6442         tmp_stats[i++] =
6443                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6444                 le32_to_cpu(stat_info->rmac_accepted_ip);
6445         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6446         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6447         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6448         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6449         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6450         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6451         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6452         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6453         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6454         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6455         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6456         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6457         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6458         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6459         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6460         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6461         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6462         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6463         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6464
6465         /* Enhanced statistics exist only for Hercules */
6466         if(sp->device_type == XFRAME_II_DEVICE) {
6467                 tmp_stats[i++] =
6468                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6469                 tmp_stats[i++] =
6470                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6471                 tmp_stats[i++] =
6472                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6473                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6474                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6475                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6476                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6477                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6478                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6479                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6480                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6481                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6482                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6483                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6484                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6485                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6486         }
6487
6488         tmp_stats[i++] = 0;
6489         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6490         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6491         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6492         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6493         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6494         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6495         for (k = 0; k < MAX_RX_RINGS; k++)
6496                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6497         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6498         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6499         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6500         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6501         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6502         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6503         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6504         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6505         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6506         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6507         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6508         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6509         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6510         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6511         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6512         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6513         if (stat_info->sw_stat.num_aggregations) {
6514                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6515                 int count = 0;
6516                 /*
6517                  * Since 64-bit divide does not work on all platforms,
6518                  * do repeated subtraction.
6519                  */
6520                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6521                         tmp -= stat_info->sw_stat.num_aggregations;
6522                         count++;
6523                 }
6524                 tmp_stats[i++] = count;
6525         }
6526         else
6527                 tmp_stats[i++] = 0;
6528         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6529         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6530         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6531         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6532         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6533         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6534         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6535         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6536         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6537
6538         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6539         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6540         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6541         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6542         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6543
6544         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6545         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6546         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6547         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6548         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6549         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6550         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6551         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6552         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6553         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6554         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6555         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6556         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6557         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6558         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6559         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6560         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6561         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6562         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6563         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6564         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6565         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6566         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6567         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6568         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6569         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6570 }
6571
6572 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6573 {
6574         return (XENA_REG_SPACE);
6575 }
6576
6577
6578 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6579 {
6580         struct s2io_nic *sp = netdev_priv(dev);
6581
6582         return (sp->rx_csum);
6583 }
6584
6585 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6586 {
6587         struct s2io_nic *sp = netdev_priv(dev);
6588
6589         if (data)
6590                 sp->rx_csum = 1;
6591         else
6592                 sp->rx_csum = 0;
6593
6594         return 0;
6595 }
6596
6597 static int s2io_get_eeprom_len(struct net_device *dev)
6598 {
6599         return (XENA_EEPROM_SPACE);
6600 }
6601
6602 static int s2io_get_sset_count(struct net_device *dev, int sset)
6603 {
6604         struct s2io_nic *sp = netdev_priv(dev);
6605
6606         switch (sset) {
6607         case ETH_SS_TEST:
6608                 return S2IO_TEST_LEN;
6609         case ETH_SS_STATS:
6610                 switch(sp->device_type) {
6611                 case XFRAME_I_DEVICE:
6612                         return XFRAME_I_STAT_LEN;
6613                 case XFRAME_II_DEVICE:
6614                         return XFRAME_II_STAT_LEN;
6615                 default:
6616                         return 0;
6617                 }
6618         default:
6619                 return -EOPNOTSUPP;
6620         }
6621 }
6622
6623 static void s2io_ethtool_get_strings(struct net_device *dev,
6624                                      u32 stringset, u8 * data)
6625 {
6626         int stat_size = 0;
6627         struct s2io_nic *sp = netdev_priv(dev);
6628
6629         switch (stringset) {
6630         case ETH_SS_TEST:
6631                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6632                 break;
6633         case ETH_SS_STATS:
6634                 stat_size = sizeof(ethtool_xena_stats_keys);
6635                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6636                 if(sp->device_type == XFRAME_II_DEVICE) {
6637                         memcpy(data + stat_size,
6638                                 &ethtool_enhanced_stats_keys,
6639                                 sizeof(ethtool_enhanced_stats_keys));
6640                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6641                 }
6642
6643                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6644                         sizeof(ethtool_driver_stats_keys));
6645         }
6646 }
6647
6648 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6649 {
6650         if (data)
6651                 dev->features |= NETIF_F_IP_CSUM;
6652         else
6653                 dev->features &= ~NETIF_F_IP_CSUM;
6654
6655         return 0;
6656 }
6657
6658 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6659 {
6660         return (dev->features & NETIF_F_TSO) != 0;
6661 }
6662 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6663 {
6664         if (data)
6665                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6666         else
6667                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6668
6669         return 0;
6670 }
6671
6672 static const struct ethtool_ops netdev_ethtool_ops = {
6673         .get_settings = s2io_ethtool_gset,
6674         .set_settings = s2io_ethtool_sset,
6675         .get_drvinfo = s2io_ethtool_gdrvinfo,
6676         .get_regs_len = s2io_ethtool_get_regs_len,
6677         .get_regs = s2io_ethtool_gregs,
6678         .get_link = ethtool_op_get_link,
6679         .get_eeprom_len = s2io_get_eeprom_len,
6680         .get_eeprom = s2io_ethtool_geeprom,
6681         .set_eeprom = s2io_ethtool_seeprom,
6682         .get_ringparam = s2io_ethtool_gringparam,
6683         .get_pauseparam = s2io_ethtool_getpause_data,
6684         .set_pauseparam = s2io_ethtool_setpause_data,
6685         .get_rx_csum = s2io_ethtool_get_rx_csum,
6686         .set_rx_csum = s2io_ethtool_set_rx_csum,
6687         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6688         .set_sg = ethtool_op_set_sg,
6689         .get_tso = s2io_ethtool_op_get_tso,
6690         .set_tso = s2io_ethtool_op_set_tso,
6691         .set_ufo = ethtool_op_set_ufo,
6692         .self_test = s2io_ethtool_test,
6693         .get_strings = s2io_ethtool_get_strings,
6694         .phys_id = s2io_ethtool_idnic,
6695         .get_ethtool_stats = s2io_get_ethtool_stats,
6696         .get_sset_count = s2io_get_sset_count,
6697 };
6698
6699 /**
6700  *  s2io_ioctl - Entry point for the Ioctl
6701  *  @dev :  Device pointer.
6702  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6703  *  a proprietary structure used to pass information to the driver.
6704  *  @cmd :  This is used to distinguish between the different commands that
6705  *  can be passed to the IOCTL functions.
6706  *  Description:
6707  *  Currently there are no special functionality supported in IOCTL, hence
6708  *  function always return EOPNOTSUPPORTED
6709  */
6710
6711 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6712 {
6713         return -EOPNOTSUPP;
6714 }
6715
6716 /**
6717  *  s2io_change_mtu - entry point to change MTU size for the device.
6718  *   @dev : device pointer.
6719  *   @new_mtu : the new MTU size for the device.
6720  *   Description: A driver entry point to change MTU size for the device.
6721  *   Before changing the MTU the device must be stopped.
6722  *  Return value:
6723  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6724  *   file on failure.
6725  */
6726
6727 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6728 {
6729         struct s2io_nic *sp = netdev_priv(dev);
6730         int ret = 0;
6731
6732         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6733                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6734                           dev->name);
6735                 return -EPERM;
6736         }
6737
6738         dev->mtu = new_mtu;
6739         if (netif_running(dev)) {
6740                 s2io_stop_all_tx_queue(sp);
6741                 s2io_card_down(sp);
6742                 ret = s2io_card_up(sp);
6743                 if (ret) {
6744                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6745                                   __func__);
6746                         return ret;
6747                 }
6748                 s2io_wake_all_tx_queue(sp);
6749         } else { /* Device is down */
6750                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6751                 u64 val64 = new_mtu;
6752
6753                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6754         }
6755
6756         return ret;
6757 }
6758
6759 /**
6760  * s2io_set_link - Set the LInk status
6761  * @data: long pointer to device private structue
6762  * Description: Sets the link status for the adapter
6763  */
6764
6765 static void s2io_set_link(struct work_struct *work)
6766 {
6767         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6768         struct net_device *dev = nic->dev;
6769         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6770         register u64 val64;
6771         u16 subid;
6772
6773         rtnl_lock();
6774
6775         if (!netif_running(dev))
6776                 goto out_unlock;
6777
6778         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6779                 /* The card is being reset, no point doing anything */
6780                 goto out_unlock;
6781         }
6782
6783         subid = nic->pdev->subsystem_device;
6784         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6785                 /*
6786                  * Allow a small delay for the NICs self initiated
6787                  * cleanup to complete.
6788                  */
6789                 msleep(100);
6790         }
6791
6792         val64 = readq(&bar0->adapter_status);
6793         if (LINK_IS_UP(val64)) {
6794                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6795                         if (verify_xena_quiescence(nic)) {
6796                                 val64 = readq(&bar0->adapter_control);
6797                                 val64 |= ADAPTER_CNTL_EN;
6798                                 writeq(val64, &bar0->adapter_control);
6799                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6800                                         nic->device_type, subid)) {
6801                                         val64 = readq(&bar0->gpio_control);
6802                                         val64 |= GPIO_CTRL_GPIO_0;
6803                                         writeq(val64, &bar0->gpio_control);
6804                                         val64 = readq(&bar0->gpio_control);
6805                                 } else {
6806                                         val64 |= ADAPTER_LED_ON;
6807                                         writeq(val64, &bar0->adapter_control);
6808                                 }
6809                                 nic->device_enabled_once = TRUE;
6810                         } else {
6811                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6812                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6813                                 s2io_stop_all_tx_queue(nic);
6814                         }
6815                 }
6816                 val64 = readq(&bar0->adapter_control);
6817                 val64 |= ADAPTER_LED_ON;
6818                 writeq(val64, &bar0->adapter_control);
6819                 s2io_link(nic, LINK_UP);
6820         } else {
6821                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6822                                                       subid)) {
6823                         val64 = readq(&bar0->gpio_control);
6824                         val64 &= ~GPIO_CTRL_GPIO_0;
6825                         writeq(val64, &bar0->gpio_control);
6826                         val64 = readq(&bar0->gpio_control);
6827                 }
6828                 /* turn off LED */
6829                 val64 = readq(&bar0->adapter_control);
6830                 val64 = val64 &(~ADAPTER_LED_ON);
6831                 writeq(val64, &bar0->adapter_control);
6832                 s2io_link(nic, LINK_DOWN);
6833         }
6834         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6835
6836 out_unlock:
6837         rtnl_unlock();
6838 }
6839
6840 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6841                                 struct buffAdd *ba,
6842                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6843                                 u64 *temp2, int size)
6844 {
6845         struct net_device *dev = sp->dev;
6846         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6847
6848         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6849                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6850                 /* allocate skb */
6851                 if (*skb) {
6852                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6853                         /*
6854                          * As Rx frame are not going to be processed,
6855                          * using same mapped address for the Rxd
6856                          * buffer pointer
6857                          */
6858                         rxdp1->Buffer0_ptr = *temp0;
6859                 } else {
6860                         *skb = dev_alloc_skb(size);
6861                         if (!(*skb)) {
6862                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6863                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6864                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6865                                 sp->mac_control.stats_info->sw_stat. \
6866                                         mem_alloc_fail_cnt++;
6867                                 return -ENOMEM ;
6868                         }
6869                         sp->mac_control.stats_info->sw_stat.mem_allocated
6870                                 += (*skb)->truesize;
6871                         /* storing the mapped addr in a temp variable
6872                          * such it will be used for next rxd whose
6873                          * Host Control is NULL
6874                          */
6875                         rxdp1->Buffer0_ptr = *temp0 =
6876                                 pci_map_single( sp->pdev, (*skb)->data,
6877                                         size - NET_IP_ALIGN,
6878                                         PCI_DMA_FROMDEVICE);
6879                         if (pci_dma_mapping_error(sp->pdev, rxdp1->Buffer0_ptr))
6880                                 goto memalloc_failed;
6881                         rxdp->Host_Control = (unsigned long) (*skb);
6882                 }
6883         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6884                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6885                 /* Two buffer Mode */
6886                 if (*skb) {
6887                         rxdp3->Buffer2_ptr = *temp2;
6888                         rxdp3->Buffer0_ptr = *temp0;
6889                         rxdp3->Buffer1_ptr = *temp1;
6890                 } else {
6891                         *skb = dev_alloc_skb(size);
6892                         if (!(*skb)) {
6893                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6894                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6895                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6896                                 sp->mac_control.stats_info->sw_stat. \
6897                                         mem_alloc_fail_cnt++;
6898                                 return -ENOMEM;
6899                         }
6900                         sp->mac_control.stats_info->sw_stat.mem_allocated
6901                                 += (*skb)->truesize;
6902                         rxdp3->Buffer2_ptr = *temp2 =
6903                                 pci_map_single(sp->pdev, (*skb)->data,
6904                                                dev->mtu + 4,
6905                                                PCI_DMA_FROMDEVICE);
6906                         if (pci_dma_mapping_error(sp->pdev, rxdp3->Buffer2_ptr))
6907                                 goto memalloc_failed;
6908                         rxdp3->Buffer0_ptr = *temp0 =
6909                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6910                                                 PCI_DMA_FROMDEVICE);
6911                         if (pci_dma_mapping_error(sp->pdev,
6912                                                 rxdp3->Buffer0_ptr)) {
6913                                 pci_unmap_single (sp->pdev,
6914                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6915                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6916                                 goto memalloc_failed;
6917                         }
6918                         rxdp->Host_Control = (unsigned long) (*skb);
6919
6920                         /* Buffer-1 will be dummy buffer not used */
6921                         rxdp3->Buffer1_ptr = *temp1 =
6922                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6923                                                 PCI_DMA_FROMDEVICE);
6924                         if (pci_dma_mapping_error(sp->pdev,
6925                                                 rxdp3->Buffer1_ptr)) {
6926                                 pci_unmap_single (sp->pdev,
6927                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6928                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6929                                 pci_unmap_single (sp->pdev,
6930                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6931                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6932                                 goto memalloc_failed;
6933                         }
6934                 }
6935         }
6936         return 0;
6937         memalloc_failed:
6938                 stats->pci_map_fail_cnt++;
6939                 stats->mem_freed += (*skb)->truesize;
6940                 dev_kfree_skb(*skb);
6941                 return -ENOMEM;
6942 }
6943
6944 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6945                                 int size)
6946 {
6947         struct net_device *dev = sp->dev;
6948         if (sp->rxd_mode == RXD_MODE_1) {
6949                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6950         } else if (sp->rxd_mode == RXD_MODE_3B) {
6951                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6952                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6953                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6954         }
6955 }
6956
6957 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6958 {
6959         int i, j, k, blk_cnt = 0, size;
6960         struct mac_info * mac_control = &sp->mac_control;
6961         struct config_param *config = &sp->config;
6962         struct net_device *dev = sp->dev;
6963         struct RxD_t *rxdp = NULL;
6964         struct sk_buff *skb = NULL;
6965         struct buffAdd *ba = NULL;
6966         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6967
6968         /* Calculate the size based on ring mode */
6969         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6970                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6971         if (sp->rxd_mode == RXD_MODE_1)
6972                 size += NET_IP_ALIGN;
6973         else if (sp->rxd_mode == RXD_MODE_3B)
6974                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6975
6976         for (i = 0; i < config->rx_ring_num; i++) {
6977                 blk_cnt = config->rx_cfg[i].num_rxd /
6978                         (rxd_count[sp->rxd_mode] +1);
6979
6980                 for (j = 0; j < blk_cnt; j++) {
6981                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6982                                 rxdp = mac_control->rings[i].
6983                                         rx_blocks[j].rxds[k].virt_addr;
6984                                 if(sp->rxd_mode == RXD_MODE_3B)
6985                                         ba = &mac_control->rings[i].ba[j][k];
6986                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6987                                                        &skb,(u64 *)&temp0_64,
6988                                                        (u64 *)&temp1_64,
6989                                                        (u64 *)&temp2_64,
6990                                                         size) == -ENOMEM) {
6991                                         return 0;
6992                                 }
6993
6994                                 set_rxd_buffer_size(sp, rxdp, size);
6995                                 wmb();
6996                                 /* flip the Ownership bit to Hardware */
6997                                 rxdp->Control_1 |= RXD_OWN_XENA;
6998                         }
6999                 }
7000         }
7001         return 0;
7002
7003 }
7004
7005 static int s2io_add_isr(struct s2io_nic * sp)
7006 {
7007         int ret = 0;
7008         struct net_device *dev = sp->dev;
7009         int err = 0;
7010
7011         if (sp->config.intr_type == MSI_X)
7012                 ret = s2io_enable_msi_x(sp);
7013         if (ret) {
7014                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
7015                 sp->config.intr_type = INTA;
7016         }
7017
7018         /* Store the values of the MSIX table in the struct s2io_nic structure */
7019         store_xmsi_data(sp);
7020
7021         /* After proper initialization of H/W, register ISR */
7022         if (sp->config.intr_type == MSI_X) {
7023                 int i, msix_rx_cnt = 0;
7024
7025                 for (i = 0; i < sp->num_entries; i++) {
7026                         if (sp->s2io_entries[i].in_use == MSIX_FLG) {
7027                                 if (sp->s2io_entries[i].type ==
7028                                         MSIX_RING_TYPE) {
7029                                         sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
7030                                                 dev->name, i);
7031                                         err = request_irq(sp->entries[i].vector,
7032                                                 s2io_msix_ring_handle, 0,
7033                                                 sp->desc[i],
7034                                                 sp->s2io_entries[i].arg);
7035                                 } else if (sp->s2io_entries[i].type ==
7036                                         MSIX_ALARM_TYPE) {
7037                                         sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
7038                                         dev->name, i);
7039                                         err = request_irq(sp->entries[i].vector,
7040                                                 s2io_msix_fifo_handle, 0,
7041                                                 sp->desc[i],
7042                                                 sp->s2io_entries[i].arg);
7043
7044                                 }
7045                                 /* if either data or addr is zero print it. */
7046                                 if (!(sp->msix_info[i].addr &&
7047                                         sp->msix_info[i].data)) {
7048                                         DBG_PRINT(ERR_DBG,
7049                                                 "%s @Addr:0x%llx Data:0x%llx\n",
7050                                                 sp->desc[i],
7051                                                 (unsigned long long)
7052                                                 sp->msix_info[i].addr,
7053                                                 (unsigned long long)
7054                                                 ntohl(sp->msix_info[i].data));
7055                                 } else
7056                                         msix_rx_cnt++;
7057                                 if (err) {
7058                                         remove_msix_isr(sp);
7059
7060                                         DBG_PRINT(ERR_DBG,
7061                                                 "%s:MSI-X-%d registration "
7062                                                 "failed\n", dev->name, i);
7063
7064                                         DBG_PRINT(ERR_DBG,
7065                                                 "%s: Defaulting to INTA\n",
7066                                                 dev->name);
7067                                         sp->config.intr_type = INTA;
7068                                         break;
7069                                 }
7070                                 sp->s2io_entries[i].in_use =
7071                                         MSIX_REGISTERED_SUCCESS;
7072                         }
7073                 }
7074                 if (!err) {
7075                         printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
7076                                 --msix_rx_cnt);
7077                         DBG_PRINT(INFO_DBG, "MSI-X-TX entries enabled"
7078                                                 " through alarm vector\n");
7079                 }
7080         }
7081         if (sp->config.intr_type == INTA) {
7082                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
7083                                 sp->name, dev);
7084                 if (err) {
7085                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
7086                                   dev->name);
7087                         return -1;
7088                 }
7089         }
7090         return 0;
7091 }
7092 static void s2io_rem_isr(struct s2io_nic * sp)
7093 {
7094         if (sp->config.intr_type == MSI_X)
7095                 remove_msix_isr(sp);
7096         else
7097                 remove_inta_isr(sp);
7098 }
7099
7100 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
7101 {
7102         int cnt = 0;
7103         struct XENA_dev_config __iomem *bar0 = sp->bar0;
7104         register u64 val64 = 0;
7105         struct config_param *config;
7106         config = &sp->config;
7107
7108         if (!is_s2io_card_up(sp))
7109                 return;
7110
7111         del_timer_sync(&sp->alarm_timer);
7112         /* If s2io_set_link task is executing, wait till it completes. */
7113         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7114                 msleep(50);
7115         }
7116         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7117
7118         /* Disable napi */
7119         if (sp->config.napi) {
7120                 int off = 0;
7121                 if (config->intr_type ==  MSI_X) {
7122                         for (; off < sp->config.rx_ring_num; off++)
7123                                 napi_disable(&sp->mac_control.rings[off].napi);
7124                         }
7125                 else
7126                         napi_disable(&sp->napi);
7127         }
7128
7129         /* disable Tx and Rx traffic on the NIC */
7130         if (do_io)
7131                 stop_nic(sp);
7132
7133         s2io_rem_isr(sp);
7134
7135         /* stop the tx queue, indicate link down */
7136         s2io_link(sp, LINK_DOWN);
7137
7138         /* Check if the device is Quiescent and then Reset the NIC */
7139         while(do_io) {
7140                 /* As per the HW requirement we need to replenish the
7141                  * receive buffer to avoid the ring bump. Since there is
7142                  * no intention of processing the Rx frame at this pointwe are
7143                  * just settting the ownership bit of rxd in Each Rx
7144                  * ring to HW and set the appropriate buffer size
7145                  * based on the ring mode
7146                  */
7147                 rxd_owner_bit_reset(sp);
7148
7149                 val64 = readq(&bar0->adapter_status);
7150                 if (verify_xena_quiescence(sp)) {
7151                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7152                         break;
7153                 }
7154
7155                 msleep(50);
7156                 cnt++;
7157                 if (cnt == 10) {
7158                         DBG_PRINT(ERR_DBG,
7159                                   "s2io_close:Device not Quiescent ");
7160                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7161                                   (unsigned long long) val64);
7162                         break;
7163                 }
7164         }
7165         if (do_io)
7166                 s2io_reset(sp);
7167
7168         /* Free all Tx buffers */
7169         free_tx_buffers(sp);
7170
7171         /* Free all Rx buffers */
7172         free_rx_buffers(sp);
7173
7174         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7175 }
7176
7177 static void s2io_card_down(struct s2io_nic * sp)
7178 {
7179         do_s2io_card_down(sp, 1);
7180 }
7181
7182 static int s2io_card_up(struct s2io_nic * sp)
7183 {
7184         int i, ret = 0;
7185         struct mac_info *mac_control;
7186         struct config_param *config;
7187         struct net_device *dev = (struct net_device *) sp->dev;
7188         u16 interruptible;
7189
7190         /* Initialize the H/W I/O registers */
7191         ret = init_nic(sp);
7192         if (ret != 0) {
7193                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7194                           dev->name);
7195                 if (ret != -EIO)
7196                         s2io_reset(sp);
7197                 return ret;
7198         }
7199
7200         /*
7201          * Initializing the Rx buffers. For now we are considering only 1
7202          * Rx ring and initializing buffers into 30 Rx blocks
7203          */
7204         mac_control = &sp->mac_control;
7205         config = &sp->config;
7206
7207         for (i = 0; i < config->rx_ring_num; i++) {
7208                 mac_control->rings[i].mtu = dev->mtu;
7209                 ret = fill_rx_buffers(sp, &mac_control->rings[i], 1);
7210                 if (ret) {
7211                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7212                                   dev->name);
7213                         s2io_reset(sp);
7214                         free_rx_buffers(sp);
7215                         return -ENOMEM;
7216                 }
7217                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7218                           mac_control->rings[i].rx_bufs_left);
7219         }
7220
7221         /* Initialise napi */
7222         if (config->napi) {
7223                 int i;
7224                 if (config->intr_type ==  MSI_X) {
7225                         for (i = 0; i < sp->config.rx_ring_num; i++)
7226                                 napi_enable(&sp->mac_control.rings[i].napi);
7227                 } else {
7228                         napi_enable(&sp->napi);
7229                 }
7230         }
7231
7232         /* Maintain the state prior to the open */
7233         if (sp->promisc_flg)
7234                 sp->promisc_flg = 0;
7235         if (sp->m_cast_flg) {
7236                 sp->m_cast_flg = 0;
7237                 sp->all_multi_pos= 0;
7238         }
7239
7240         /* Setting its receive mode */
7241         s2io_set_multicast(dev);
7242
7243         if (sp->lro) {
7244                 /* Initialize max aggregatable pkts per session based on MTU */
7245                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7246                 /* Check if we can use(if specified) user provided value */
7247                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7248                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7249         }
7250
7251         /* Enable Rx Traffic and interrupts on the NIC */
7252         if (start_nic(sp)) {
7253                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7254                 s2io_reset(sp);
7255                 free_rx_buffers(sp);
7256                 return -ENODEV;
7257         }
7258
7259         /* Add interrupt service routine */
7260         if (s2io_add_isr(sp) != 0) {
7261                 if (sp->config.intr_type == MSI_X)
7262                         s2io_rem_isr(sp);
7263                 s2io_reset(sp);
7264                 free_rx_buffers(sp);
7265                 return -ENODEV;
7266         }
7267
7268         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7269
7270         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7271
7272         /*  Enable select interrupts */
7273         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7274         if (sp->config.intr_type != INTA) {
7275                 interruptible = TX_TRAFFIC_INTR | TX_PIC_INTR;
7276                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7277         } else {
7278                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7279                 interruptible |= TX_PIC_INTR;
7280                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7281         }
7282
7283         return 0;
7284 }
7285
7286 /**
7287  * s2io_restart_nic - Resets the NIC.
7288  * @data : long pointer to the device private structure
7289  * Description:
7290  * This function is scheduled to be run by the s2io_tx_watchdog
7291  * function after 0.5 secs to reset the NIC. The idea is to reduce
7292  * the run time of the watch dog routine which is run holding a
7293  * spin lock.
7294  */
7295
7296 static void s2io_restart_nic(struct work_struct *work)
7297 {
7298         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7299         struct net_device *dev = sp->dev;
7300
7301         rtnl_lock();
7302
7303         if (!netif_running(dev))
7304                 goto out_unlock;
7305
7306         s2io_card_down(sp);
7307         if (s2io_card_up(sp)) {
7308                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7309                           dev->name);
7310         }
7311         s2io_wake_all_tx_queue(sp);
7312         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7313                   dev->name);
7314 out_unlock:
7315         rtnl_unlock();
7316 }
7317
7318 /**
7319  *  s2io_tx_watchdog - Watchdog for transmit side.
7320  *  @dev : Pointer to net device structure
7321  *  Description:
7322  *  This function is triggered if the Tx Queue is stopped
7323  *  for a pre-defined amount of time when the Interface is still up.
7324  *  If the Interface is jammed in such a situation, the hardware is
7325  *  reset (by s2io_close) and restarted again (by s2io_open) to
7326  *  overcome any problem that might have been caused in the hardware.
7327  *  Return value:
7328  *  void
7329  */
7330
7331 static void s2io_tx_watchdog(struct net_device *dev)
7332 {
7333         struct s2io_nic *sp = netdev_priv(dev);
7334
7335         if (netif_carrier_ok(dev)) {
7336                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7337                 schedule_work(&sp->rst_timer_task);
7338                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7339         }
7340 }
7341
7342 /**
7343  *   rx_osm_handler - To perform some OS related operations on SKB.
7344  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7345  *   @skb : the socket buffer pointer.
7346  *   @len : length of the packet
7347  *   @cksum : FCS checksum of the frame.
7348  *   @ring_no : the ring from which this RxD was extracted.
7349  *   Description:
7350  *   This function is called by the Rx interrupt serivce routine to perform
7351  *   some OS related operations on the SKB before passing it to the upper
7352  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7353  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7354  *   to the upper layer. If the checksum is wrong, it increments the Rx
7355  *   packet error count, frees the SKB and returns error.
7356  *   Return value:
7357  *   SUCCESS on success and -1 on failure.
7358  */
7359 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7360 {
7361         struct s2io_nic *sp = ring_data->nic;
7362         struct net_device *dev = (struct net_device *) ring_data->dev;
7363         struct sk_buff *skb = (struct sk_buff *)
7364                 ((unsigned long) rxdp->Host_Control);
7365         int ring_no = ring_data->ring_no;
7366         u16 l3_csum, l4_csum;
7367         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7368         struct lro *uninitialized_var(lro);
7369         u8 err_mask;
7370
7371         skb->dev = dev;
7372
7373         if (err) {
7374                 /* Check for parity error */
7375                 if (err & 0x1) {
7376                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7377                 }
7378                 err_mask = err >> 48;
7379                 switch(err_mask) {
7380                         case 1:
7381                                 sp->mac_control.stats_info->sw_stat.
7382                                 rx_parity_err_cnt++;
7383                         break;
7384
7385                         case 2:
7386                                 sp->mac_control.stats_info->sw_stat.
7387                                 rx_abort_cnt++;
7388                         break;
7389
7390                         case 3:
7391                                 sp->mac_control.stats_info->sw_stat.
7392                                 rx_parity_abort_cnt++;
7393                         break;
7394
7395                         case 4:
7396                                 sp->mac_control.stats_info->sw_stat.
7397                                 rx_rda_fail_cnt++;
7398                         break;
7399
7400                         case 5:
7401                                 sp->mac_control.stats_info->sw_stat.
7402                                 rx_unkn_prot_cnt++;
7403                         break;
7404
7405                         case 6:
7406                                 sp->mac_control.stats_info->sw_stat.
7407                                 rx_fcs_err_cnt++;
7408                         break;
7409
7410                         case 7:
7411                                 sp->mac_control.stats_info->sw_stat.
7412                                 rx_buf_size_err_cnt++;
7413                         break;
7414
7415                         case 8:
7416                                 sp->mac_control.stats_info->sw_stat.
7417                                 rx_rxd_corrupt_cnt++;
7418                         break;
7419
7420                         case 15:
7421                                 sp->mac_control.stats_info->sw_stat.
7422                                 rx_unkn_err_cnt++;
7423                         break;
7424                 }
7425                 /*
7426                 * Drop the packet if bad transfer code. Exception being
7427                 * 0x5, which could be due to unsupported IPv6 extension header.
7428                 * In this case, we let stack handle the packet.
7429                 * Note that in this case, since checksum will be incorrect,
7430                 * stack will validate the same.
7431                 */
7432                 if (err_mask != 0x5) {
7433                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7434                                 dev->name, err_mask);
7435                         dev->stats.rx_crc_errors++;
7436                         sp->mac_control.stats_info->sw_stat.mem_freed
7437                                 += skb->truesize;
7438                         dev_kfree_skb(skb);
7439                         ring_data->rx_bufs_left -= 1;
7440                         rxdp->Host_Control = 0;
7441                         return 0;
7442                 }
7443         }
7444
7445         /* Updating statistics */
7446         ring_data->rx_packets++;
7447         rxdp->Host_Control = 0;
7448         if (sp->rxd_mode == RXD_MODE_1) {
7449                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7450
7451                 ring_data->rx_bytes += len;
7452                 skb_put(skb, len);
7453
7454         } else if (sp->rxd_mode == RXD_MODE_3B) {
7455                 int get_block = ring_data->rx_curr_get_info.block_index;
7456                 int get_off = ring_data->rx_curr_get_info.offset;
7457                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7458                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7459                 unsigned char *buff = skb_push(skb, buf0_len);
7460
7461                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7462                 ring_data->rx_bytes += buf0_len + buf2_len;
7463                 memcpy(buff, ba->ba_0, buf0_len);
7464                 skb_put(skb, buf2_len);
7465         }
7466
7467         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!ring_data->lro) ||
7468             (ring_data->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7469             (sp->rx_csum)) {
7470                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7471                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7472                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7473                         /*
7474                          * NIC verifies if the Checksum of the received
7475                          * frame is Ok or not and accordingly returns
7476                          * a flag in the RxD.
7477                          */
7478                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7479                         if (ring_data->lro) {
7480                                 u32 tcp_len;
7481                                 u8 *tcp;
7482                                 int ret = 0;
7483
7484                                 ret = s2io_club_tcp_session(ring_data,
7485                                         skb->data, &tcp, &tcp_len, &lro,
7486                                         rxdp, sp);
7487                                 switch (ret) {
7488                                         case 3: /* Begin anew */
7489                                                 lro->parent = skb;
7490                                                 goto aggregate;
7491                                         case 1: /* Aggregate */
7492                                         {
7493                                                 lro_append_pkt(sp, lro,
7494                                                         skb, tcp_len);
7495                                                 goto aggregate;
7496                                         }
7497                                         case 4: /* Flush session */
7498                                         {
7499                                                 lro_append_pkt(sp, lro,
7500                                                         skb, tcp_len);
7501                                                 queue_rx_frame(lro->parent,
7502                                                         lro->vlan_tag);
7503                                                 clear_lro_session(lro);
7504                                                 sp->mac_control.stats_info->
7505                                                     sw_stat.flush_max_pkts++;
7506                                                 goto aggregate;
7507                                         }
7508                                         case 2: /* Flush both */
7509                                                 lro->parent->data_len =
7510                                                         lro->frags_len;
7511                                                 sp->mac_control.stats_info->
7512                                                      sw_stat.sending_both++;
7513                                                 queue_rx_frame(lro->parent,
7514                                                         lro->vlan_tag);
7515                                                 clear_lro_session(lro);
7516                                                 goto send_up;
7517                                         case 0: /* sessions exceeded */
7518                                         case -1: /* non-TCP or not
7519                                                   * L2 aggregatable
7520                                                   */
7521                                         case 5: /*
7522                                                  * First pkt in session not
7523                                                  * L3/L4 aggregatable
7524                                                  */
7525                                                 break;
7526                                         default:
7527                                                 DBG_PRINT(ERR_DBG,
7528                                                         "%s: Samadhana!!\n",
7529                                                          __func__);
7530                                                 BUG();
7531                                 }
7532                         }
7533                 } else {
7534                         /*
7535                          * Packet with erroneous checksum, let the
7536                          * upper layers deal with it.
7537                          */
7538                         skb->ip_summed = CHECKSUM_NONE;
7539                 }
7540         } else
7541                 skb->ip_summed = CHECKSUM_NONE;
7542
7543         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7544 send_up:
7545         queue_rx_frame(skb, RXD_GET_VLAN_TAG(rxdp->Control_2));
7546 aggregate:
7547         sp->mac_control.rings[ring_no].rx_bufs_left -= 1;
7548         return SUCCESS;
7549 }
7550
7551 /**
7552  *  s2io_link - stops/starts the Tx queue.
7553  *  @sp : private member of the device structure, which is a pointer to the
7554  *  s2io_nic structure.
7555  *  @link : inidicates whether link is UP/DOWN.
7556  *  Description:
7557  *  This function stops/starts the Tx queue depending on whether the link
7558  *  status of the NIC is is down or up. This is called by the Alarm
7559  *  interrupt handler whenever a link change interrupt comes up.
7560  *  Return value:
7561  *  void.
7562  */
7563
7564 static void s2io_link(struct s2io_nic * sp, int link)
7565 {
7566         struct net_device *dev = (struct net_device *) sp->dev;
7567
7568         if (link != sp->last_link_state) {
7569                 init_tti(sp, link);
7570                 if (link == LINK_DOWN) {
7571                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7572                         s2io_stop_all_tx_queue(sp);
7573                         netif_carrier_off(dev);
7574                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7575                         sp->mac_control.stats_info->sw_stat.link_up_time =
7576                                 jiffies - sp->start_time;
7577                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7578                 } else {
7579                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7580                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7581                         sp->mac_control.stats_info->sw_stat.link_down_time =
7582                                 jiffies - sp->start_time;
7583                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7584                         netif_carrier_on(dev);
7585                         s2io_wake_all_tx_queue(sp);
7586                 }
7587         }
7588         sp->last_link_state = link;
7589         sp->start_time = jiffies;
7590 }
7591
7592 /**
7593  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7594  *  @sp : private member of the device structure, which is a pointer to the
7595  *  s2io_nic structure.
7596  *  Description:
7597  *  This function initializes a few of the PCI and PCI-X configuration registers
7598  *  with recommended values.
7599  *  Return value:
7600  *  void
7601  */
7602
7603 static void s2io_init_pci(struct s2io_nic * sp)
7604 {
7605         u16 pci_cmd = 0, pcix_cmd = 0;
7606
7607         /* Enable Data Parity Error Recovery in PCI-X command register. */
7608         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7609                              &(pcix_cmd));
7610         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7611                               (pcix_cmd | 1));
7612         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7613                              &(pcix_cmd));
7614
7615         /* Set the PErr Response bit in PCI command register. */
7616         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7617         pci_write_config_word(sp->pdev, PCI_COMMAND,
7618                               (pci_cmd | PCI_COMMAND_PARITY));
7619         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7620 }
7621
7622 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type,
7623         u8 *dev_multiq)
7624 {
7625         if ((tx_fifo_num > MAX_TX_FIFOS) ||
7626                 (tx_fifo_num < 1)) {
7627                 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7628                         "(%d) not supported\n", tx_fifo_num);
7629
7630                 if (tx_fifo_num < 1)
7631                         tx_fifo_num = 1;
7632                 else
7633                         tx_fifo_num = MAX_TX_FIFOS;
7634
7635                 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7636                 DBG_PRINT(ERR_DBG, "tx fifos\n");
7637         }
7638
7639         if (multiq)
7640                 *dev_multiq = multiq;
7641
7642         if (tx_steering_type && (1 == tx_fifo_num)) {
7643                 if (tx_steering_type != TX_DEFAULT_STEERING)
7644                         DBG_PRINT(ERR_DBG,
7645                                 "s2io: Tx steering is not supported with "
7646                                 "one fifo. Disabling Tx steering.\n");
7647                 tx_steering_type = NO_STEERING;
7648         }
7649
7650         if ((tx_steering_type < NO_STEERING) ||
7651                 (tx_steering_type > TX_DEFAULT_STEERING)) {
7652                 DBG_PRINT(ERR_DBG, "s2io: Requested transmit steering not "
7653                          "supported\n");
7654                 DBG_PRINT(ERR_DBG, "s2io: Disabling transmit steering\n");
7655                 tx_steering_type = NO_STEERING;
7656         }
7657
7658         if (rx_ring_num > MAX_RX_RINGS) {
7659                 DBG_PRINT(ERR_DBG, "s2io: Requested number of rx rings not "
7660                          "supported\n");
7661                 DBG_PRINT(ERR_DBG, "s2io: Default to %d rx rings\n",
7662                         MAX_RX_RINGS);
7663                 rx_ring_num = MAX_RX_RINGS;
7664         }
7665
7666         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7667                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7668                           "Defaulting to INTA\n");
7669                 *dev_intr_type = INTA;
7670         }
7671
7672         if ((*dev_intr_type == MSI_X) &&
7673                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7674                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7675                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7676                                         "Defaulting to INTA\n");
7677                 *dev_intr_type = INTA;
7678         }
7679
7680         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7681                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7682                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7683                 rx_ring_mode = 1;
7684         }
7685         return SUCCESS;
7686 }
7687
7688 /**
7689  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7690  * or Traffic class respectively.
7691  * @nic: device private variable
7692  * Description: The function configures the receive steering to
7693  * desired receive ring.
7694  * Return Value:  SUCCESS on success and
7695  * '-1' on failure (endian settings incorrect).
7696  */
7697 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7698 {
7699         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7700         register u64 val64 = 0;
7701
7702         if (ds_codepoint > 63)
7703                 return FAILURE;
7704
7705         val64 = RTS_DS_MEM_DATA(ring);
7706         writeq(val64, &bar0->rts_ds_mem_data);
7707
7708         val64 = RTS_DS_MEM_CTRL_WE |
7709                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7710                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7711
7712         writeq(val64, &bar0->rts_ds_mem_ctrl);
7713
7714         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7715                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7716                                 S2IO_BIT_RESET);
7717 }
7718
7719 static const struct net_device_ops s2io_netdev_ops = {
7720         .ndo_open               = s2io_open,
7721         .ndo_stop               = s2io_close,
7722         .ndo_get_stats          = s2io_get_stats,
7723         .ndo_start_xmit         = s2io_xmit,
7724         .ndo_validate_addr      = eth_validate_addr,
7725         .ndo_set_multicast_list = s2io_set_multicast,
7726         .ndo_do_ioctl           = s2io_ioctl,
7727         .ndo_set_mac_address    = s2io_set_mac_addr,
7728         .ndo_change_mtu         = s2io_change_mtu,
7729         .ndo_vlan_rx_register   = s2io_vlan_rx_register,
7730         .ndo_vlan_rx_kill_vid   = s2io_vlan_rx_kill_vid,
7731         .ndo_tx_timeout         = s2io_tx_watchdog,
7732 #ifdef CONFIG_NET_POLL_CONTROLLER
7733         .ndo_poll_controller    = s2io_netpoll,
7734 #endif
7735 };
7736
7737 /**
7738  *  s2io_init_nic - Initialization of the adapter .
7739  *  @pdev : structure containing the PCI related information of the device.
7740  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7741  *  Description:
7742  *  The function initializes an adapter identified by the pci_dec structure.
7743  *  All OS related initialization including memory and device structure and
7744  *  initlaization of the device private variable is done. Also the swapper
7745  *  control register is initialized to enable read and write into the I/O
7746  *  registers of the device.
7747  *  Return value:
7748  *  returns 0 on success and negative on failure.
7749  */
7750
7751 static int __devinit
7752 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7753 {
7754         struct s2io_nic *sp;
7755         struct net_device *dev;
7756         int i, j, ret;
7757         int dma_flag = FALSE;
7758         u32 mac_up, mac_down;
7759         u64 val64 = 0, tmp64 = 0;
7760         struct XENA_dev_config __iomem *bar0 = NULL;
7761         u16 subid;
7762         struct mac_info *mac_control;
7763         struct config_param *config;
7764         int mode;
7765         u8 dev_intr_type = intr_type;
7766         u8 dev_multiq = 0;
7767
7768         ret = s2io_verify_parm(pdev, &dev_intr_type, &dev_multiq);
7769         if (ret)
7770                 return ret;
7771
7772         if ((ret = pci_enable_device(pdev))) {
7773                 DBG_PRINT(ERR_DBG,
7774                           "s2io_init_nic: pci_enable_device failed\n");
7775                 return ret;
7776         }
7777
7778         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7779                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7780                 dma_flag = TRUE;
7781                 if (pci_set_consistent_dma_mask
7782                     (pdev, DMA_64BIT_MASK)) {
7783                         DBG_PRINT(ERR_DBG,
7784                                   "Unable to obtain 64bit DMA for \
7785                                         consistent allocations\n");
7786                         pci_disable_device(pdev);
7787                         return -ENOMEM;
7788                 }
7789         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7790                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7791         } else {
7792                 pci_disable_device(pdev);
7793                 return -ENOMEM;
7794         }
7795         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7796                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __func__, ret);
7797                 pci_disable_device(pdev);
7798                 return -ENODEV;
7799         }
7800         if (dev_multiq)
7801                 dev = alloc_etherdev_mq(sizeof(struct s2io_nic), tx_fifo_num);
7802         else
7803                 dev = alloc_etherdev(sizeof(struct s2io_nic));
7804         if (dev == NULL) {
7805                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7806                 pci_disable_device(pdev);
7807                 pci_release_regions(pdev);
7808                 return -ENODEV;
7809         }
7810
7811         pci_set_master(pdev);
7812         pci_set_drvdata(pdev, dev);
7813         SET_NETDEV_DEV(dev, &pdev->dev);
7814
7815         /*  Private member variable initialized to s2io NIC structure */
7816         sp = netdev_priv(dev);
7817         memset(sp, 0, sizeof(struct s2io_nic));
7818         sp->dev = dev;
7819         sp->pdev = pdev;
7820         sp->high_dma_flag = dma_flag;
7821         sp->device_enabled_once = FALSE;
7822         if (rx_ring_mode == 1)
7823                 sp->rxd_mode = RXD_MODE_1;
7824         if (rx_ring_mode == 2)
7825                 sp->rxd_mode = RXD_MODE_3B;
7826
7827         sp->config.intr_type = dev_intr_type;
7828
7829         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7830                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7831                 sp->device_type = XFRAME_II_DEVICE;
7832         else
7833                 sp->device_type = XFRAME_I_DEVICE;
7834
7835         sp->lro = lro_enable;
7836
7837         /* Initialize some PCI/PCI-X fields of the NIC. */
7838         s2io_init_pci(sp);
7839
7840         /*
7841          * Setting the device configuration parameters.
7842          * Most of these parameters can be specified by the user during
7843          * module insertion as they are module loadable parameters. If
7844          * these parameters are not not specified during load time, they
7845          * are initialized with default values.
7846          */
7847         mac_control = &sp->mac_control;
7848         config = &sp->config;
7849
7850         config->napi = napi;
7851         config->tx_steering_type = tx_steering_type;
7852
7853         /* Tx side parameters. */
7854         if (config->tx_steering_type == TX_PRIORITY_STEERING)
7855                 config->tx_fifo_num = MAX_TX_FIFOS;
7856         else
7857                 config->tx_fifo_num = tx_fifo_num;
7858
7859         /* Initialize the fifos used for tx steering */
7860         if (config->tx_fifo_num < 5) {
7861                         if (config->tx_fifo_num  == 1)
7862                                 sp->total_tcp_fifos = 1;
7863                         else
7864                                 sp->total_tcp_fifos = config->tx_fifo_num - 1;
7865                         sp->udp_fifo_idx = config->tx_fifo_num - 1;
7866                         sp->total_udp_fifos = 1;
7867                         sp->other_fifo_idx = sp->total_tcp_fifos - 1;
7868         } else {
7869                 sp->total_tcp_fifos = (tx_fifo_num - FIFO_UDP_MAX_NUM -
7870                                                 FIFO_OTHER_MAX_NUM);
7871                 sp->udp_fifo_idx = sp->total_tcp_fifos;
7872                 sp->total_udp_fifos = FIFO_UDP_MAX_NUM;
7873                 sp->other_fifo_idx = sp->udp_fifo_idx + FIFO_UDP_MAX_NUM;
7874         }
7875
7876         config->multiq = dev_multiq;
7877         for (i = 0; i < config->tx_fifo_num; i++) {
7878                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7879                 config->tx_cfg[i].fifo_priority = i;
7880         }
7881
7882         /* mapping the QoS priority to the configured fifos */
7883         for (i = 0; i < MAX_TX_FIFOS; i++)
7884                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num - 1][i];
7885
7886         /* map the hashing selector table to the configured fifos */
7887         for (i = 0; i < config->tx_fifo_num; i++)
7888                 sp->fifo_selector[i] = fifo_selector[i];
7889
7890
7891         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7892         for (i = 0; i < config->tx_fifo_num; i++) {
7893                 config->tx_cfg[i].f_no_snoop =
7894                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7895                 if (config->tx_cfg[i].fifo_len < 65) {
7896                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7897                         break;
7898                 }
7899         }
7900         /* + 2 because one Txd for skb->data and one Txd for UFO */
7901         config->max_txds = MAX_SKB_FRAGS + 2;
7902
7903         /* Rx side parameters. */
7904         config->rx_ring_num = rx_ring_num;
7905         for (i = 0; i < config->rx_ring_num; i++) {
7906                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7907                     (rxd_count[sp->rxd_mode] + 1);
7908                 config->rx_cfg[i].ring_priority = i;
7909                 mac_control->rings[i].rx_bufs_left = 0;
7910                 mac_control->rings[i].rxd_mode = sp->rxd_mode;
7911                 mac_control->rings[i].rxd_count = rxd_count[sp->rxd_mode];
7912                 mac_control->rings[i].pdev = sp->pdev;
7913                 mac_control->rings[i].dev = sp->dev;
7914         }
7915
7916         for (i = 0; i < rx_ring_num; i++) {
7917                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7918                 config->rx_cfg[i].f_no_snoop =
7919                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7920         }
7921
7922         /*  Setting Mac Control parameters */
7923         mac_control->rmac_pause_time = rmac_pause_time;
7924         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7925         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7926
7927
7928         /*  initialize the shared memory used by the NIC and the host */
7929         if (init_shared_mem(sp)) {
7930                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7931                           dev->name);
7932                 ret = -ENOMEM;
7933                 goto mem_alloc_failed;
7934         }
7935
7936         sp->bar0 = pci_ioremap_bar(pdev, 0);
7937         if (!sp->bar0) {
7938                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7939                           dev->name);
7940                 ret = -ENOMEM;
7941                 goto bar0_remap_failed;
7942         }
7943
7944         sp->bar1 = pci_ioremap_bar(pdev, 2);
7945         if (!sp->bar1) {
7946                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7947                           dev->name);
7948                 ret = -ENOMEM;
7949                 goto bar1_remap_failed;
7950         }
7951
7952         dev->irq = pdev->irq;
7953         dev->base_addr = (unsigned long) sp->bar0;
7954
7955         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7956         for (j = 0; j < MAX_TX_FIFOS; j++) {
7957                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7958                     (sp->bar1 + (j * 0x00020000));
7959         }
7960
7961         /*  Driver entry points */
7962         dev->netdev_ops = &s2io_netdev_ops;
7963         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7964         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7965
7966         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7967         if (sp->high_dma_flag == TRUE)
7968                 dev->features |= NETIF_F_HIGHDMA;
7969         dev->features |= NETIF_F_TSO;
7970         dev->features |= NETIF_F_TSO6;
7971         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7972                 dev->features |= NETIF_F_UFO;
7973                 dev->features |= NETIF_F_HW_CSUM;
7974         }
7975         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7976         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7977         INIT_WORK(&sp->set_link_task, s2io_set_link);
7978
7979         pci_save_state(sp->pdev);
7980
7981         /* Setting swapper control on the NIC, for proper reset operation */
7982         if (s2io_set_swapper(sp)) {
7983                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7984                           dev->name);
7985                 ret = -EAGAIN;
7986                 goto set_swap_failed;
7987         }
7988
7989         /* Verify if the Herc works on the slot its placed into */
7990         if (sp->device_type & XFRAME_II_DEVICE) {
7991                 mode = s2io_verify_pci_mode(sp);
7992                 if (mode < 0) {
7993                         DBG_PRINT(ERR_DBG, "%s: ", __func__);
7994                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7995                         ret = -EBADSLT;
7996                         goto set_swap_failed;
7997                 }
7998         }
7999
8000         if (sp->config.intr_type == MSI_X) {
8001                 sp->num_entries = config->rx_ring_num + 1;
8002                 ret = s2io_enable_msi_x(sp);
8003
8004                 if (!ret) {
8005                         ret = s2io_test_msi(sp);
8006                         /* rollback MSI-X, will re-enable during add_isr() */
8007                         remove_msix_isr(sp);
8008                 }
8009                 if (ret) {
8010
8011                         DBG_PRINT(ERR_DBG,
8012                           "%s: MSI-X requested but failed to enable\n",
8013                           dev->name);
8014                         sp->config.intr_type = INTA;
8015                 }
8016         }
8017
8018         if (config->intr_type ==  MSI_X) {
8019                 for (i = 0; i < config->rx_ring_num ; i++)
8020                         netif_napi_add(dev, &mac_control->rings[i].napi,
8021                                 s2io_poll_msix, 64);
8022         } else {
8023                 netif_napi_add(dev, &sp->napi, s2io_poll_inta, 64);
8024         }
8025
8026         /* Not needed for Herc */
8027         if (sp->device_type & XFRAME_I_DEVICE) {
8028                 /*
8029                  * Fix for all "FFs" MAC address problems observed on
8030                  * Alpha platforms
8031                  */
8032                 fix_mac_address(sp);
8033                 s2io_reset(sp);
8034         }
8035
8036         /*
8037          * MAC address initialization.
8038          * For now only one mac address will be read and used.
8039          */
8040         bar0 = sp->bar0;
8041         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
8042             RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
8043         writeq(val64, &bar0->rmac_addr_cmd_mem);
8044         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
8045                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
8046         tmp64 = readq(&bar0->rmac_addr_data0_mem);
8047         mac_down = (u32) tmp64;
8048         mac_up = (u32) (tmp64 >> 32);
8049
8050         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
8051         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
8052         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
8053         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
8054         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
8055         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
8056
8057         /*  Set the factory defined MAC address initially   */
8058         dev->addr_len = ETH_ALEN;
8059         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
8060         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
8061
8062         /* initialize number of multicast & unicast MAC entries variables */
8063         if (sp->device_type == XFRAME_I_DEVICE) {
8064                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
8065                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
8066                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
8067         } else if (sp->device_type == XFRAME_II_DEVICE) {
8068                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
8069                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
8070                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
8071         }
8072
8073         /* store mac addresses from CAM to s2io_nic structure */
8074         do_s2io_store_unicast_mc(sp);
8075
8076         /* Configure MSIX vector for number of rings configured plus one */
8077         if ((sp->device_type == XFRAME_II_DEVICE) &&
8078                 (config->intr_type == MSI_X))
8079                 sp->num_entries = config->rx_ring_num + 1;
8080
8081          /* Store the values of the MSIX table in the s2io_nic structure */
8082         store_xmsi_data(sp);
8083         /* reset Nic and bring it to known state */
8084         s2io_reset(sp);
8085
8086         /*
8087          * Initialize link state flags
8088          * and the card state parameter
8089          */
8090         sp->state = 0;
8091
8092         /* Initialize spinlocks */
8093         for (i = 0; i < sp->config.tx_fifo_num; i++)
8094                 spin_lock_init(&mac_control->fifos[i].tx_lock);
8095
8096         /*
8097          * SXE-002: Configure link and activity LED to init state
8098          * on driver load.
8099          */
8100         subid = sp->pdev->subsystem_device;
8101         if ((subid & 0xFF) >= 0x07) {
8102                 val64 = readq(&bar0->gpio_control);
8103                 val64 |= 0x0000800000000000ULL;
8104                 writeq(val64, &bar0->gpio_control);
8105                 val64 = 0x0411040400000000ULL;
8106                 writeq(val64, (void __iomem *) bar0 + 0x2700);
8107                 val64 = readq(&bar0->gpio_control);
8108         }
8109
8110         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
8111
8112         if (register_netdev(dev)) {
8113                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
8114                 ret = -ENODEV;
8115                 goto register_failed;
8116         }
8117         s2io_vpd_read(sp);
8118         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
8119         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
8120                   sp->product_name, pdev->revision);
8121         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
8122                   s2io_driver_version);
8123         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %pM\n", dev->name, dev->dev_addr);
8124         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
8125         if (sp->device_type & XFRAME_II_DEVICE) {
8126                 mode = s2io_print_pci_mode(sp);
8127                 if (mode < 0) {
8128                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
8129                         ret = -EBADSLT;
8130                         unregister_netdev(dev);
8131                         goto set_swap_failed;
8132                 }
8133         }
8134         switch(sp->rxd_mode) {
8135                 case RXD_MODE_1:
8136                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
8137                                                 dev->name);
8138                     break;
8139                 case RXD_MODE_3B:
8140                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
8141                                                 dev->name);
8142                     break;
8143         }
8144
8145         switch (sp->config.napi) {
8146         case 0:
8147                 DBG_PRINT(ERR_DBG, "%s: NAPI disabled\n", dev->name);
8148                 break;
8149         case 1:
8150                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
8151                 break;
8152         }
8153
8154         DBG_PRINT(ERR_DBG, "%s: Using %d Tx fifo(s)\n", dev->name,
8155                 sp->config.tx_fifo_num);
8156
8157         DBG_PRINT(ERR_DBG, "%s: Using %d Rx ring(s)\n", dev->name,
8158                   sp->config.rx_ring_num);
8159
8160         switch(sp->config.intr_type) {
8161                 case INTA:
8162                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
8163                     break;
8164                 case MSI_X:
8165                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
8166                     break;
8167         }
8168         if (sp->config.multiq) {
8169                 for (i = 0; i < sp->config.tx_fifo_num; i++)
8170                         mac_control->fifos[i].multiq = config->multiq;
8171                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support enabled\n",
8172                         dev->name);
8173         } else
8174                 DBG_PRINT(ERR_DBG, "%s: Multiqueue support disabled\n",
8175                         dev->name);
8176
8177         switch (sp->config.tx_steering_type) {
8178         case NO_STEERING:
8179                 DBG_PRINT(ERR_DBG, "%s: No steering enabled for"
8180                         " transmit\n", dev->name);
8181                         break;
8182         case TX_PRIORITY_STEERING:
8183                 DBG_PRINT(ERR_DBG, "%s: Priority steering enabled for"
8184                         " transmit\n", dev->name);
8185                 break;
8186         case TX_DEFAULT_STEERING:
8187                 DBG_PRINT(ERR_DBG, "%s: Default steering enabled for"
8188                         " transmit\n", dev->name);
8189         }
8190
8191         if (sp->lro)
8192                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
8193                           dev->name);
8194         if (ufo)
8195                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
8196                                         " enabled\n", dev->name);
8197         /* Initialize device name */
8198         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
8199
8200         if (vlan_tag_strip)
8201                 sp->vlan_strip_flag = 1;
8202         else
8203                 sp->vlan_strip_flag = 0;
8204
8205         /*
8206          * Make Link state as off at this point, when the Link change
8207          * interrupt comes the state will be automatically changed to
8208          * the right state.
8209          */
8210         netif_carrier_off(dev);
8211
8212         return 0;
8213
8214       register_failed:
8215       set_swap_failed:
8216         iounmap(sp->bar1);
8217       bar1_remap_failed:
8218         iounmap(sp->bar0);
8219       bar0_remap_failed:
8220       mem_alloc_failed:
8221         free_shared_mem(sp);
8222         pci_disable_device(pdev);
8223         pci_release_regions(pdev);
8224         pci_set_drvdata(pdev, NULL);
8225         free_netdev(dev);
8226
8227         return ret;
8228 }
8229
8230 /**
8231  * s2io_rem_nic - Free the PCI device
8232  * @pdev: structure containing the PCI related information of the device.
8233  * Description: This function is called by the Pci subsystem to release a
8234  * PCI device and free up all resource held up by the device. This could
8235  * be in response to a Hot plug event or when the driver is to be removed
8236  * from memory.
8237  */
8238
8239 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8240 {
8241         struct net_device *dev =
8242             (struct net_device *) pci_get_drvdata(pdev);
8243         struct s2io_nic *sp;
8244
8245         if (dev == NULL) {
8246                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8247                 return;
8248         }
8249
8250         flush_scheduled_work();
8251
8252         sp = netdev_priv(dev);
8253         unregister_netdev(dev);
8254
8255         free_shared_mem(sp);
8256         iounmap(sp->bar0);
8257         iounmap(sp->bar1);
8258         pci_release_regions(pdev);
8259         pci_set_drvdata(pdev, NULL);
8260         free_netdev(dev);
8261         pci_disable_device(pdev);
8262 }
8263
8264 /**
8265  * s2io_starter - Entry point for the driver
8266  * Description: This function is the entry point for the driver. It verifies
8267  * the module loadable parameters and initializes PCI configuration space.
8268  */
8269
8270 static int __init s2io_starter(void)
8271 {
8272         return pci_register_driver(&s2io_driver);
8273 }
8274
8275 /**
8276  * s2io_closer - Cleanup routine for the driver
8277  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8278  */
8279
8280 static __exit void s2io_closer(void)
8281 {
8282         pci_unregister_driver(&s2io_driver);
8283         DBG_PRINT(INIT_DBG, "cleanup done\n");
8284 }
8285
8286 module_init(s2io_starter);
8287 module_exit(s2io_closer);
8288
8289 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8290                 struct tcphdr **tcp, struct RxD_t *rxdp,
8291                 struct s2io_nic *sp)
8292 {
8293         int ip_off;
8294         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8295
8296         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8297                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8298                           __func__);
8299                 return -1;
8300         }
8301
8302         /* Checking for DIX type or DIX type with VLAN */
8303         if ((l2_type == 0)
8304                 || (l2_type == 4)) {
8305                 ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8306                 /*
8307                  * If vlan stripping is disabled and the frame is VLAN tagged,
8308                  * shift the offset by the VLAN header size bytes.
8309                  */
8310                 if ((!sp->vlan_strip_flag) &&
8311                         (rxdp->Control_1 & RXD_FRAME_VLAN_TAG))
8312                         ip_off += HEADER_VLAN_SIZE;
8313         } else {
8314                 /* LLC, SNAP etc are considered non-mergeable */
8315                 return -1;
8316         }
8317
8318         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8319         ip_len = (u8)((*ip)->ihl);
8320         ip_len <<= 2;
8321         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8322
8323         return 0;
8324 }
8325
8326 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8327                                   struct tcphdr *tcp)
8328 {
8329         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8330         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8331            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8332                 return -1;
8333         return 0;
8334 }
8335
8336 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8337 {
8338         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8339 }
8340
8341 static void initiate_new_session(struct lro *lro, u8 *l2h,
8342         struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len, u16 vlan_tag)
8343 {
8344         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8345         lro->l2h = l2h;
8346         lro->iph = ip;
8347         lro->tcph = tcp;
8348         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8349         lro->tcp_ack = tcp->ack_seq;
8350         lro->sg_num = 1;
8351         lro->total_len = ntohs(ip->tot_len);
8352         lro->frags_len = 0;
8353         lro->vlan_tag = vlan_tag;
8354         /*
8355          * check if we saw TCP timestamp. Other consistency checks have
8356          * already been done.
8357          */
8358         if (tcp->doff == 8) {
8359                 __be32 *ptr;
8360                 ptr = (__be32 *)(tcp+1);
8361                 lro->saw_ts = 1;
8362                 lro->cur_tsval = ntohl(*(ptr+1));
8363                 lro->cur_tsecr = *(ptr+2);
8364         }
8365         lro->in_use = 1;
8366 }
8367
8368 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8369 {
8370         struct iphdr *ip = lro->iph;
8371         struct tcphdr *tcp = lro->tcph;
8372         __sum16 nchk;
8373         struct stat_block *statinfo = sp->mac_control.stats_info;
8374         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8375
8376         /* Update L3 header */
8377         ip->tot_len = htons(lro->total_len);
8378         ip->check = 0;
8379         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8380         ip->check = nchk;
8381
8382         /* Update L4 header */
8383         tcp->ack_seq = lro->tcp_ack;
8384         tcp->window = lro->window;
8385
8386         /* Update tsecr field if this session has timestamps enabled */
8387         if (lro->saw_ts) {
8388                 __be32 *ptr = (__be32 *)(tcp + 1);
8389                 *(ptr+2) = lro->cur_tsecr;
8390         }
8391
8392         /* Update counters required for calculation of
8393          * average no. of packets aggregated.
8394          */
8395         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8396         statinfo->sw_stat.num_aggregations++;
8397 }
8398
8399 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8400                 struct tcphdr *tcp, u32 l4_pyld)
8401 {
8402         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8403         lro->total_len += l4_pyld;
8404         lro->frags_len += l4_pyld;
8405         lro->tcp_next_seq += l4_pyld;
8406         lro->sg_num++;
8407
8408         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8409         lro->tcp_ack = tcp->ack_seq;
8410         lro->window = tcp->window;
8411
8412         if (lro->saw_ts) {
8413                 __be32 *ptr;
8414                 /* Update tsecr and tsval from this packet */
8415                 ptr = (__be32 *)(tcp+1);
8416                 lro->cur_tsval = ntohl(*(ptr+1));
8417                 lro->cur_tsecr = *(ptr + 2);
8418         }
8419 }
8420
8421 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8422                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8423 {
8424         u8 *ptr;
8425
8426         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __func__);
8427
8428         if (!tcp_pyld_len) {
8429                 /* Runt frame or a pure ack */
8430                 return -1;
8431         }
8432
8433         if (ip->ihl != 5) /* IP has options */
8434                 return -1;
8435
8436         /* If we see CE codepoint in IP header, packet is not mergeable */
8437         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8438                 return -1;
8439
8440         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8441         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8442                                     tcp->ece || tcp->cwr || !tcp->ack) {
8443                 /*
8444                  * Currently recognize only the ack control word and
8445                  * any other control field being set would result in
8446                  * flushing the LRO session
8447                  */
8448                 return -1;
8449         }
8450
8451         /*
8452          * Allow only one TCP timestamp option. Don't aggregate if
8453          * any other options are detected.
8454          */
8455         if (tcp->doff != 5 && tcp->doff != 8)
8456                 return -1;
8457
8458         if (tcp->doff == 8) {
8459                 ptr = (u8 *)(tcp + 1);
8460                 while (*ptr == TCPOPT_NOP)
8461                         ptr++;
8462                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8463                         return -1;
8464
8465                 /* Ensure timestamp value increases monotonically */
8466                 if (l_lro)
8467                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8468                                 return -1;
8469
8470                 /* timestamp echo reply should be non-zero */
8471                 if (*((__be32 *)(ptr+6)) == 0)
8472                         return -1;
8473         }
8474
8475         return 0;
8476 }
8477
8478 static int
8479 s2io_club_tcp_session(struct ring_info *ring_data, u8 *buffer, u8 **tcp,
8480         u32 *tcp_len, struct lro **lro, struct RxD_t *rxdp,
8481         struct s2io_nic *sp)
8482 {
8483         struct iphdr *ip;
8484         struct tcphdr *tcph;
8485         int ret = 0, i;
8486         u16 vlan_tag = 0;
8487
8488         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8489                                          rxdp, sp))) {
8490                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8491                           ip->saddr, ip->daddr);
8492         } else
8493                 return ret;
8494
8495         vlan_tag = RXD_GET_VLAN_TAG(rxdp->Control_2);
8496         tcph = (struct tcphdr *)*tcp;
8497         *tcp_len = get_l4_pyld_length(ip, tcph);
8498         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8499                 struct lro *l_lro = &ring_data->lro0_n[i];
8500                 if (l_lro->in_use) {
8501                         if (check_for_socket_match(l_lro, ip, tcph))
8502                                 continue;
8503                         /* Sock pair matched */
8504                         *lro = l_lro;
8505
8506                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8507                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8508                                           "0x%x, actual 0x%x\n", __func__,
8509                                           (*lro)->tcp_next_seq,
8510                                           ntohl(tcph->seq));
8511
8512                                 sp->mac_control.stats_info->
8513                                    sw_stat.outof_sequence_pkts++;
8514                                 ret = 2;
8515                                 break;
8516                         }
8517
8518                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8519                                 ret = 1; /* Aggregate */
8520                         else
8521                                 ret = 2; /* Flush both */
8522                         break;
8523                 }
8524         }
8525
8526         if (ret == 0) {
8527                 /* Before searching for available LRO objects,
8528                  * check if the pkt is L3/L4 aggregatable. If not
8529                  * don't create new LRO session. Just send this
8530                  * packet up.
8531                  */
8532                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8533                         return 5;
8534                 }
8535
8536                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8537                         struct lro *l_lro = &ring_data->lro0_n[i];
8538                         if (!(l_lro->in_use)) {
8539                                 *lro = l_lro;
8540                                 ret = 3; /* Begin anew */
8541                                 break;
8542                         }
8543                 }
8544         }
8545
8546         if (ret == 0) { /* sessions exceeded */
8547                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8548                           __func__);
8549                 *lro = NULL;
8550                 return ret;
8551         }
8552
8553         switch (ret) {
8554                 case 3:
8555                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len,
8556                                                                 vlan_tag);
8557                         break;
8558                 case 2:
8559                         update_L3L4_header(sp, *lro);
8560                         break;
8561                 case 1:
8562                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8563                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8564                                 update_L3L4_header(sp, *lro);
8565                                 ret = 4; /* Flush the LRO */
8566                         }
8567                         break;
8568                 default:
8569                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8570                                 __func__);
8571                         break;
8572         }
8573
8574         return ret;
8575 }
8576
8577 static void clear_lro_session(struct lro *lro)
8578 {
8579         static u16 lro_struct_size = sizeof(struct lro);
8580
8581         memset(lro, 0, lro_struct_size);
8582 }
8583
8584 static void queue_rx_frame(struct sk_buff *skb, u16 vlan_tag)
8585 {
8586         struct net_device *dev = skb->dev;
8587         struct s2io_nic *sp = netdev_priv(dev);
8588
8589         skb->protocol = eth_type_trans(skb, dev);
8590         if (sp->vlgrp && vlan_tag
8591                 && (sp->vlan_strip_flag)) {
8592                 /* Queueing the vlan frame to the upper layer */
8593                 if (sp->config.napi)
8594                         vlan_hwaccel_receive_skb(skb, sp->vlgrp, vlan_tag);
8595                 else
8596                         vlan_hwaccel_rx(skb, sp->vlgrp, vlan_tag);
8597         } else {
8598                 if (sp->config.napi)
8599                         netif_receive_skb(skb);
8600                 else
8601                         netif_rx(skb);
8602         }
8603 }
8604
8605 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8606                            struct sk_buff *skb,
8607                            u32 tcp_len)
8608 {
8609         struct sk_buff *first = lro->parent;
8610
8611         first->len += tcp_len;
8612         first->data_len = lro->frags_len;
8613         skb_pull(skb, (skb->len - tcp_len));
8614         if (skb_shinfo(first)->frag_list)
8615                 lro->last_frag->next = skb;
8616         else
8617                 skb_shinfo(first)->frag_list = skb;
8618         first->truesize += skb->truesize;
8619         lro->last_frag = skb;
8620         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8621         return;
8622 }
8623
8624 /**
8625  * s2io_io_error_detected - called when PCI error is detected
8626  * @pdev: Pointer to PCI device
8627  * @state: The current pci connection state
8628  *
8629  * This function is called after a PCI bus error affecting
8630  * this device has been detected.
8631  */
8632 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8633                                                pci_channel_state_t state)
8634 {
8635         struct net_device *netdev = pci_get_drvdata(pdev);
8636         struct s2io_nic *sp = netdev_priv(netdev);
8637
8638         netif_device_detach(netdev);
8639
8640         if (netif_running(netdev)) {
8641                 /* Bring down the card, while avoiding PCI I/O */
8642                 do_s2io_card_down(sp, 0);
8643         }
8644         pci_disable_device(pdev);
8645
8646         return PCI_ERS_RESULT_NEED_RESET;
8647 }
8648
8649 /**
8650  * s2io_io_slot_reset - called after the pci bus has been reset.
8651  * @pdev: Pointer to PCI device
8652  *
8653  * Restart the card from scratch, as if from a cold-boot.
8654  * At this point, the card has exprienced a hard reset,
8655  * followed by fixups by BIOS, and has its config space
8656  * set up identically to what it was at cold boot.
8657  */
8658 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8659 {
8660         struct net_device *netdev = pci_get_drvdata(pdev);
8661         struct s2io_nic *sp = netdev_priv(netdev);
8662
8663         if (pci_enable_device(pdev)) {
8664                 printk(KERN_ERR "s2io: "
8665                        "Cannot re-enable PCI device after reset.\n");
8666                 return PCI_ERS_RESULT_DISCONNECT;
8667         }
8668
8669         pci_set_master(pdev);
8670         s2io_reset(sp);
8671
8672         return PCI_ERS_RESULT_RECOVERED;
8673 }
8674
8675 /**
8676  * s2io_io_resume - called when traffic can start flowing again.
8677  * @pdev: Pointer to PCI device
8678  *
8679  * This callback is called when the error recovery driver tells
8680  * us that its OK to resume normal operation.
8681  */
8682 static void s2io_io_resume(struct pci_dev *pdev)
8683 {
8684         struct net_device *netdev = pci_get_drvdata(pdev);
8685         struct s2io_nic *sp = netdev_priv(netdev);
8686
8687         if (netif_running(netdev)) {
8688                 if (s2io_card_up(sp)) {
8689                         printk(KERN_ERR "s2io: "
8690                                "Can't bring device back up after reset.\n");
8691                         return;
8692                 }
8693
8694                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8695                         s2io_card_down(sp);
8696                         printk(KERN_ERR "s2io: "
8697                                "Can't resetore mac addr after reset.\n");
8698                         return;
8699                 }
8700         }
8701
8702         netif_device_attach(netdev);
8703         netif_tx_wake_all_queues(netdev);
8704 }