Merge branch 'x86/doc' into x86/core
[linux-2.6] / net / sched / cls_flow.c
1 /*
2  * net/sched/cls_flow.c         Generic flow classifier
3  *
4  * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  */
11
12 #include <linux/kernel.h>
13 #include <linux/init.h>
14 #include <linux/list.h>
15 #include <linux/jhash.h>
16 #include <linux/random.h>
17 #include <linux/pkt_cls.h>
18 #include <linux/skbuff.h>
19 #include <linux/in.h>
20 #include <linux/ip.h>
21 #include <linux/ipv6.h>
22 #include <linux/if_vlan.h>
23
24 #include <net/pkt_cls.h>
25 #include <net/ip.h>
26 #include <net/route.h>
27 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
28 #include <net/netfilter/nf_conntrack.h>
29 #endif
30
31 struct flow_head {
32         struct list_head        filters;
33 };
34
35 struct flow_filter {
36         struct list_head        list;
37         struct tcf_exts         exts;
38         struct tcf_ematch_tree  ematches;
39         struct timer_list       perturb_timer;
40         u32                     perturb_period;
41         u32                     handle;
42
43         u32                     nkeys;
44         u32                     keymask;
45         u32                     mode;
46         u32                     mask;
47         u32                     xor;
48         u32                     rshift;
49         u32                     addend;
50         u32                     divisor;
51         u32                     baseclass;
52         u32                     hashrnd;
53 };
54
55 static const struct tcf_ext_map flow_ext_map = {
56         .action = TCA_FLOW_ACT,
57         .police = TCA_FLOW_POLICE,
58 };
59
60 static inline u32 addr_fold(void *addr)
61 {
62         unsigned long a = (unsigned long)addr;
63
64         return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
65 }
66
67 static u32 flow_get_src(const struct sk_buff *skb)
68 {
69         switch (skb->protocol) {
70         case htons(ETH_P_IP):
71                 return ntohl(ip_hdr(skb)->saddr);
72         case htons(ETH_P_IPV6):
73                 return ntohl(ipv6_hdr(skb)->saddr.s6_addr32[3]);
74         default:
75                 return addr_fold(skb->sk);
76         }
77 }
78
79 static u32 flow_get_dst(const struct sk_buff *skb)
80 {
81         switch (skb->protocol) {
82         case htons(ETH_P_IP):
83                 return ntohl(ip_hdr(skb)->daddr);
84         case htons(ETH_P_IPV6):
85                 return ntohl(ipv6_hdr(skb)->daddr.s6_addr32[3]);
86         default:
87                 return addr_fold(skb->dst) ^ (__force u16)skb->protocol;
88         }
89 }
90
91 static u32 flow_get_proto(const struct sk_buff *skb)
92 {
93         switch (skb->protocol) {
94         case htons(ETH_P_IP):
95                 return ip_hdr(skb)->protocol;
96         case htons(ETH_P_IPV6):
97                 return ipv6_hdr(skb)->nexthdr;
98         default:
99                 return 0;
100         }
101 }
102
103 static int has_ports(u8 protocol)
104 {
105         switch (protocol) {
106         case IPPROTO_TCP:
107         case IPPROTO_UDP:
108         case IPPROTO_UDPLITE:
109         case IPPROTO_SCTP:
110         case IPPROTO_DCCP:
111         case IPPROTO_ESP:
112                 return 1;
113         default:
114                 return 0;
115         }
116 }
117
118 static u32 flow_get_proto_src(const struct sk_buff *skb)
119 {
120         u32 res = 0;
121
122         switch (skb->protocol) {
123         case htons(ETH_P_IP): {
124                 struct iphdr *iph = ip_hdr(skb);
125
126                 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
127                     has_ports(iph->protocol))
128                         res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4));
129                 break;
130         }
131         case htons(ETH_P_IPV6): {
132                 struct ipv6hdr *iph = ipv6_hdr(skb);
133
134                 if (has_ports(iph->nexthdr))
135                         res = ntohs(*(__be16 *)&iph[1]);
136                 break;
137         }
138         default:
139                 res = addr_fold(skb->sk);
140         }
141
142         return res;
143 }
144
145 static u32 flow_get_proto_dst(const struct sk_buff *skb)
146 {
147         u32 res = 0;
148
149         switch (skb->protocol) {
150         case htons(ETH_P_IP): {
151                 struct iphdr *iph = ip_hdr(skb);
152
153                 if (!(iph->frag_off&htons(IP_MF|IP_OFFSET)) &&
154                     has_ports(iph->protocol))
155                         res = ntohs(*(__be16 *)((void *)iph + iph->ihl * 4 + 2));
156                 break;
157         }
158         case htons(ETH_P_IPV6): {
159                 struct ipv6hdr *iph = ipv6_hdr(skb);
160
161                 if (has_ports(iph->nexthdr))
162                         res = ntohs(*(__be16 *)((void *)&iph[1] + 2));
163                 break;
164         }
165         default:
166                 res = addr_fold(skb->dst) ^ (__force u16)skb->protocol;
167         }
168
169         return res;
170 }
171
172 static u32 flow_get_iif(const struct sk_buff *skb)
173 {
174         return skb->iif;
175 }
176
177 static u32 flow_get_priority(const struct sk_buff *skb)
178 {
179         return skb->priority;
180 }
181
182 static u32 flow_get_mark(const struct sk_buff *skb)
183 {
184         return skb->mark;
185 }
186
187 static u32 flow_get_nfct(const struct sk_buff *skb)
188 {
189 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
190         return addr_fold(skb->nfct);
191 #else
192         return 0;
193 #endif
194 }
195
196 #if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
197 #define CTTUPLE(skb, member)                                            \
198 ({                                                                      \
199         enum ip_conntrack_info ctinfo;                                  \
200         struct nf_conn *ct = nf_ct_get(skb, &ctinfo);                   \
201         if (ct == NULL)                                                 \
202                 goto fallback;                                          \
203         ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;                 \
204 })
205 #else
206 #define CTTUPLE(skb, member)                                            \
207 ({                                                                      \
208         goto fallback;                                                  \
209         0;                                                              \
210 })
211 #endif
212
213 static u32 flow_get_nfct_src(const struct sk_buff *skb)
214 {
215         switch (skb->protocol) {
216         case htons(ETH_P_IP):
217                 return ntohl(CTTUPLE(skb, src.u3.ip));
218         case htons(ETH_P_IPV6):
219                 return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
220         }
221 fallback:
222         return flow_get_src(skb);
223 }
224
225 static u32 flow_get_nfct_dst(const struct sk_buff *skb)
226 {
227         switch (skb->protocol) {
228         case htons(ETH_P_IP):
229                 return ntohl(CTTUPLE(skb, dst.u3.ip));
230         case htons(ETH_P_IPV6):
231                 return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
232         }
233 fallback:
234         return flow_get_dst(skb);
235 }
236
237 static u32 flow_get_nfct_proto_src(const struct sk_buff *skb)
238 {
239         return ntohs(CTTUPLE(skb, src.u.all));
240 fallback:
241         return flow_get_proto_src(skb);
242 }
243
244 static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb)
245 {
246         return ntohs(CTTUPLE(skb, dst.u.all));
247 fallback:
248         return flow_get_proto_dst(skb);
249 }
250
251 static u32 flow_get_rtclassid(const struct sk_buff *skb)
252 {
253 #ifdef CONFIG_NET_CLS_ROUTE
254         if (skb->dst)
255                 return skb->dst->tclassid;
256 #endif
257         return 0;
258 }
259
260 static u32 flow_get_skuid(const struct sk_buff *skb)
261 {
262         if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
263                 return skb->sk->sk_socket->file->f_cred->fsuid;
264         return 0;
265 }
266
267 static u32 flow_get_skgid(const struct sk_buff *skb)
268 {
269         if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file)
270                 return skb->sk->sk_socket->file->f_cred->fsgid;
271         return 0;
272 }
273
274 static u32 flow_get_vlan_tag(const struct sk_buff *skb)
275 {
276         u16 uninitialized_var(tag);
277
278         if (vlan_get_tag(skb, &tag) < 0)
279                 return 0;
280         return tag & VLAN_VID_MASK;
281 }
282
283 static u32 flow_key_get(const struct sk_buff *skb, int key)
284 {
285         switch (key) {
286         case FLOW_KEY_SRC:
287                 return flow_get_src(skb);
288         case FLOW_KEY_DST:
289                 return flow_get_dst(skb);
290         case FLOW_KEY_PROTO:
291                 return flow_get_proto(skb);
292         case FLOW_KEY_PROTO_SRC:
293                 return flow_get_proto_src(skb);
294         case FLOW_KEY_PROTO_DST:
295                 return flow_get_proto_dst(skb);
296         case FLOW_KEY_IIF:
297                 return flow_get_iif(skb);
298         case FLOW_KEY_PRIORITY:
299                 return flow_get_priority(skb);
300         case FLOW_KEY_MARK:
301                 return flow_get_mark(skb);
302         case FLOW_KEY_NFCT:
303                 return flow_get_nfct(skb);
304         case FLOW_KEY_NFCT_SRC:
305                 return flow_get_nfct_src(skb);
306         case FLOW_KEY_NFCT_DST:
307                 return flow_get_nfct_dst(skb);
308         case FLOW_KEY_NFCT_PROTO_SRC:
309                 return flow_get_nfct_proto_src(skb);
310         case FLOW_KEY_NFCT_PROTO_DST:
311                 return flow_get_nfct_proto_dst(skb);
312         case FLOW_KEY_RTCLASSID:
313                 return flow_get_rtclassid(skb);
314         case FLOW_KEY_SKUID:
315                 return flow_get_skuid(skb);
316         case FLOW_KEY_SKGID:
317                 return flow_get_skgid(skb);
318         case FLOW_KEY_VLAN_TAG:
319                 return flow_get_vlan_tag(skb);
320         default:
321                 WARN_ON(1);
322                 return 0;
323         }
324 }
325
326 static int flow_classify(struct sk_buff *skb, struct tcf_proto *tp,
327                          struct tcf_result *res)
328 {
329         struct flow_head *head = tp->root;
330         struct flow_filter *f;
331         u32 keymask;
332         u32 classid;
333         unsigned int n, key;
334         int r;
335
336         list_for_each_entry(f, &head->filters, list) {
337                 u32 keys[f->nkeys];
338
339                 if (!tcf_em_tree_match(skb, &f->ematches, NULL))
340                         continue;
341
342                 keymask = f->keymask;
343
344                 for (n = 0; n < f->nkeys; n++) {
345                         key = ffs(keymask) - 1;
346                         keymask &= ~(1 << key);
347                         keys[n] = flow_key_get(skb, key);
348                 }
349
350                 if (f->mode == FLOW_MODE_HASH)
351                         classid = jhash2(keys, f->nkeys, f->hashrnd);
352                 else {
353                         classid = keys[0];
354                         classid = (classid & f->mask) ^ f->xor;
355                         classid = (classid >> f->rshift) + f->addend;
356                 }
357
358                 if (f->divisor)
359                         classid %= f->divisor;
360
361                 res->class   = 0;
362                 res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);
363
364                 r = tcf_exts_exec(skb, &f->exts, res);
365                 if (r < 0)
366                         continue;
367                 return r;
368         }
369         return -1;
370 }
371
372 static void flow_perturbation(unsigned long arg)
373 {
374         struct flow_filter *f = (struct flow_filter *)arg;
375
376         get_random_bytes(&f->hashrnd, 4);
377         if (f->perturb_period)
378                 mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
379 }
380
381 static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
382         [TCA_FLOW_KEYS]         = { .type = NLA_U32 },
383         [TCA_FLOW_MODE]         = { .type = NLA_U32 },
384         [TCA_FLOW_BASECLASS]    = { .type = NLA_U32 },
385         [TCA_FLOW_RSHIFT]       = { .type = NLA_U32 },
386         [TCA_FLOW_ADDEND]       = { .type = NLA_U32 },
387         [TCA_FLOW_MASK]         = { .type = NLA_U32 },
388         [TCA_FLOW_XOR]          = { .type = NLA_U32 },
389         [TCA_FLOW_DIVISOR]      = { .type = NLA_U32 },
390         [TCA_FLOW_ACT]          = { .type = NLA_NESTED },
391         [TCA_FLOW_POLICE]       = { .type = NLA_NESTED },
392         [TCA_FLOW_EMATCHES]     = { .type = NLA_NESTED },
393         [TCA_FLOW_PERTURB]      = { .type = NLA_U32 },
394 };
395
396 static int flow_change(struct tcf_proto *tp, unsigned long base,
397                        u32 handle, struct nlattr **tca,
398                        unsigned long *arg)
399 {
400         struct flow_head *head = tp->root;
401         struct flow_filter *f;
402         struct nlattr *opt = tca[TCA_OPTIONS];
403         struct nlattr *tb[TCA_FLOW_MAX + 1];
404         struct tcf_exts e;
405         struct tcf_ematch_tree t;
406         unsigned int nkeys = 0;
407         unsigned int perturb_period = 0;
408         u32 baseclass = 0;
409         u32 keymask = 0;
410         u32 mode;
411         int err;
412
413         if (opt == NULL)
414                 return -EINVAL;
415
416         err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
417         if (err < 0)
418                 return err;
419
420         if (tb[TCA_FLOW_BASECLASS]) {
421                 baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
422                 if (TC_H_MIN(baseclass) == 0)
423                         return -EINVAL;
424         }
425
426         if (tb[TCA_FLOW_KEYS]) {
427                 keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);
428
429                 nkeys = hweight32(keymask);
430                 if (nkeys == 0)
431                         return -EINVAL;
432
433                 if (fls(keymask) - 1 > FLOW_KEY_MAX)
434                         return -EOPNOTSUPP;
435         }
436
437         err = tcf_exts_validate(tp, tb, tca[TCA_RATE], &e, &flow_ext_map);
438         if (err < 0)
439                 return err;
440
441         err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
442         if (err < 0)
443                 goto err1;
444
445         f = (struct flow_filter *)*arg;
446         if (f != NULL) {
447                 err = -EINVAL;
448                 if (f->handle != handle && handle)
449                         goto err2;
450
451                 mode = f->mode;
452                 if (tb[TCA_FLOW_MODE])
453                         mode = nla_get_u32(tb[TCA_FLOW_MODE]);
454                 if (mode != FLOW_MODE_HASH && nkeys > 1)
455                         goto err2;
456
457                 if (mode == FLOW_MODE_HASH)
458                         perturb_period = f->perturb_period;
459                 if (tb[TCA_FLOW_PERTURB]) {
460                         if (mode != FLOW_MODE_HASH)
461                                 goto err2;
462                         perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
463                 }
464         } else {
465                 err = -EINVAL;
466                 if (!handle)
467                         goto err2;
468                 if (!tb[TCA_FLOW_KEYS])
469                         goto err2;
470
471                 mode = FLOW_MODE_MAP;
472                 if (tb[TCA_FLOW_MODE])
473                         mode = nla_get_u32(tb[TCA_FLOW_MODE]);
474                 if (mode != FLOW_MODE_HASH && nkeys > 1)
475                         goto err2;
476
477                 if (tb[TCA_FLOW_PERTURB]) {
478                         if (mode != FLOW_MODE_HASH)
479                                 goto err2;
480                         perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
481                 }
482
483                 if (TC_H_MAJ(baseclass) == 0)
484                         baseclass = TC_H_MAKE(tp->q->handle, baseclass);
485                 if (TC_H_MIN(baseclass) == 0)
486                         baseclass = TC_H_MAKE(baseclass, 1);
487
488                 err = -ENOBUFS;
489                 f = kzalloc(sizeof(*f), GFP_KERNEL);
490                 if (f == NULL)
491                         goto err2;
492
493                 f->handle = handle;
494                 f->mask   = ~0U;
495
496                 get_random_bytes(&f->hashrnd, 4);
497                 f->perturb_timer.function = flow_perturbation;
498                 f->perturb_timer.data = (unsigned long)f;
499                 init_timer_deferrable(&f->perturb_timer);
500         }
501
502         tcf_exts_change(tp, &f->exts, &e);
503         tcf_em_tree_change(tp, &f->ematches, &t);
504
505         tcf_tree_lock(tp);
506
507         if (tb[TCA_FLOW_KEYS]) {
508                 f->keymask = keymask;
509                 f->nkeys   = nkeys;
510         }
511
512         f->mode = mode;
513
514         if (tb[TCA_FLOW_MASK])
515                 f->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
516         if (tb[TCA_FLOW_XOR])
517                 f->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
518         if (tb[TCA_FLOW_RSHIFT])
519                 f->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
520         if (tb[TCA_FLOW_ADDEND])
521                 f->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
522
523         if (tb[TCA_FLOW_DIVISOR])
524                 f->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
525         if (baseclass)
526                 f->baseclass = baseclass;
527
528         f->perturb_period = perturb_period;
529         del_timer(&f->perturb_timer);
530         if (perturb_period)
531                 mod_timer(&f->perturb_timer, jiffies + perturb_period);
532
533         if (*arg == 0)
534                 list_add_tail(&f->list, &head->filters);
535
536         tcf_tree_unlock(tp);
537
538         *arg = (unsigned long)f;
539         return 0;
540
541 err2:
542         tcf_em_tree_destroy(tp, &t);
543 err1:
544         tcf_exts_destroy(tp, &e);
545         return err;
546 }
547
548 static void flow_destroy_filter(struct tcf_proto *tp, struct flow_filter *f)
549 {
550         del_timer_sync(&f->perturb_timer);
551         tcf_exts_destroy(tp, &f->exts);
552         tcf_em_tree_destroy(tp, &f->ematches);
553         kfree(f);
554 }
555
556 static int flow_delete(struct tcf_proto *tp, unsigned long arg)
557 {
558         struct flow_filter *f = (struct flow_filter *)arg;
559
560         tcf_tree_lock(tp);
561         list_del(&f->list);
562         tcf_tree_unlock(tp);
563         flow_destroy_filter(tp, f);
564         return 0;
565 }
566
567 static int flow_init(struct tcf_proto *tp)
568 {
569         struct flow_head *head;
570
571         head = kzalloc(sizeof(*head), GFP_KERNEL);
572         if (head == NULL)
573                 return -ENOBUFS;
574         INIT_LIST_HEAD(&head->filters);
575         tp->root = head;
576         return 0;
577 }
578
579 static void flow_destroy(struct tcf_proto *tp)
580 {
581         struct flow_head *head = tp->root;
582         struct flow_filter *f, *next;
583
584         list_for_each_entry_safe(f, next, &head->filters, list) {
585                 list_del(&f->list);
586                 flow_destroy_filter(tp, f);
587         }
588         kfree(head);
589 }
590
591 static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
592 {
593         struct flow_head *head = tp->root;
594         struct flow_filter *f;
595
596         list_for_each_entry(f, &head->filters, list)
597                 if (f->handle == handle)
598                         return (unsigned long)f;
599         return 0;
600 }
601
602 static void flow_put(struct tcf_proto *tp, unsigned long f)
603 {
604         return;
605 }
606
607 static int flow_dump(struct tcf_proto *tp, unsigned long fh,
608                      struct sk_buff *skb, struct tcmsg *t)
609 {
610         struct flow_filter *f = (struct flow_filter *)fh;
611         struct nlattr *nest;
612
613         if (f == NULL)
614                 return skb->len;
615
616         t->tcm_handle = f->handle;
617
618         nest = nla_nest_start(skb, TCA_OPTIONS);
619         if (nest == NULL)
620                 goto nla_put_failure;
621
622         NLA_PUT_U32(skb, TCA_FLOW_KEYS, f->keymask);
623         NLA_PUT_U32(skb, TCA_FLOW_MODE, f->mode);
624
625         if (f->mask != ~0 || f->xor != 0) {
626                 NLA_PUT_U32(skb, TCA_FLOW_MASK, f->mask);
627                 NLA_PUT_U32(skb, TCA_FLOW_XOR, f->xor);
628         }
629         if (f->rshift)
630                 NLA_PUT_U32(skb, TCA_FLOW_RSHIFT, f->rshift);
631         if (f->addend)
632                 NLA_PUT_U32(skb, TCA_FLOW_ADDEND, f->addend);
633
634         if (f->divisor)
635                 NLA_PUT_U32(skb, TCA_FLOW_DIVISOR, f->divisor);
636         if (f->baseclass)
637                 NLA_PUT_U32(skb, TCA_FLOW_BASECLASS, f->baseclass);
638
639         if (f->perturb_period)
640                 NLA_PUT_U32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ);
641
642         if (tcf_exts_dump(skb, &f->exts, &flow_ext_map) < 0)
643                 goto nla_put_failure;
644 #ifdef CONFIG_NET_EMATCH
645         if (f->ematches.hdr.nmatches &&
646             tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
647                 goto nla_put_failure;
648 #endif
649         nla_nest_end(skb, nest);
650
651         if (tcf_exts_dump_stats(skb, &f->exts, &flow_ext_map) < 0)
652                 goto nla_put_failure;
653
654         return skb->len;
655
656 nla_put_failure:
657         nlmsg_trim(skb, nest);
658         return -1;
659 }
660
661 static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
662 {
663         struct flow_head *head = tp->root;
664         struct flow_filter *f;
665
666         list_for_each_entry(f, &head->filters, list) {
667                 if (arg->count < arg->skip)
668                         goto skip;
669                 if (arg->fn(tp, (unsigned long)f, arg) < 0) {
670                         arg->stop = 1;
671                         break;
672                 }
673 skip:
674                 arg->count++;
675         }
676 }
677
678 static struct tcf_proto_ops cls_flow_ops __read_mostly = {
679         .kind           = "flow",
680         .classify       = flow_classify,
681         .init           = flow_init,
682         .destroy        = flow_destroy,
683         .change         = flow_change,
684         .delete         = flow_delete,
685         .get            = flow_get,
686         .put            = flow_put,
687         .dump           = flow_dump,
688         .walk           = flow_walk,
689         .owner          = THIS_MODULE,
690 };
691
692 static int __init cls_flow_init(void)
693 {
694         return register_tcf_proto_ops(&cls_flow_ops);
695 }
696
697 static void __exit cls_flow_exit(void)
698 {
699         unregister_tcf_proto_ops(&cls_flow_ops);
700 }
701
702 module_init(cls_flow_init);
703 module_exit(cls_flow_exit);
704
705 MODULE_LICENSE("GPL");
706 MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
707 MODULE_DESCRIPTION("TC flow classifier");