input: i8042: sh64 IRQ definitions depend on cayman board.
[linux-2.6] / drivers / rtc / rtc-sh.c
1 /*
2  * SuperH On-Chip RTC Support
3  *
4  * Copyright (C) 2006, 2007, 2008  Paul Mundt
5  * Copyright (C) 2006  Jamie Lenehan
6  * Copyright (C) 2008  Angelo Castello
7  *
8  * Based on the old arch/sh/kernel/cpu/rtc.c by:
9  *
10  *  Copyright (C) 2000  Philipp Rumpf <prumpf@tux.org>
11  *  Copyright (C) 1999  Tetsuya Okada & Niibe Yutaka
12  *
13  * This file is subject to the terms and conditions of the GNU General Public
14  * License.  See the file "COPYING" in the main directory of this archive
15  * for more details.
16  */
17 #include <linux/module.h>
18 #include <linux/kernel.h>
19 #include <linux/bcd.h>
20 #include <linux/rtc.h>
21 #include <linux/init.h>
22 #include <linux/platform_device.h>
23 #include <linux/seq_file.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/io.h>
27 #include <asm/rtc.h>
28
29 #define DRV_NAME        "sh-rtc"
30 #define DRV_VERSION     "0.2.0"
31
32 #define RTC_REG(r)      ((r) * rtc_reg_size)
33
34 #define R64CNT          RTC_REG(0)
35
36 #define RSECCNT         RTC_REG(1)      /* RTC sec */
37 #define RMINCNT         RTC_REG(2)      /* RTC min */
38 #define RHRCNT          RTC_REG(3)      /* RTC hour */
39 #define RWKCNT          RTC_REG(4)      /* RTC week */
40 #define RDAYCNT         RTC_REG(5)      /* RTC day */
41 #define RMONCNT         RTC_REG(6)      /* RTC month */
42 #define RYRCNT          RTC_REG(7)      /* RTC year */
43 #define RSECAR          RTC_REG(8)      /* ALARM sec */
44 #define RMINAR          RTC_REG(9)      /* ALARM min */
45 #define RHRAR           RTC_REG(10)     /* ALARM hour */
46 #define RWKAR           RTC_REG(11)     /* ALARM week */
47 #define RDAYAR          RTC_REG(12)     /* ALARM day */
48 #define RMONAR          RTC_REG(13)     /* ALARM month */
49 #define RCR1            RTC_REG(14)     /* Control */
50 #define RCR2            RTC_REG(15)     /* Control */
51
52 /*
53  * Note on RYRAR and RCR3: Up until this point most of the register
54  * definitions are consistent across all of the available parts. However,
55  * the placement of the optional RYRAR and RCR3 (the RYRAR control
56  * register used to control RYRCNT/RYRAR compare) varies considerably
57  * across various parts, occasionally being mapped in to a completely
58  * unrelated address space. For proper RYRAR support a separate resource
59  * would have to be handed off, but as this is purely optional in
60  * practice, we simply opt not to support it, thereby keeping the code
61  * quite a bit more simplified.
62  */
63
64 /* ALARM Bits - or with BCD encoded value */
65 #define AR_ENB          0x80    /* Enable for alarm cmp   */
66
67 /* Period Bits */
68 #define PF_HP           0x100   /* Enable Half Period to support 8,32,128Hz */
69 #define PF_COUNT        0x200   /* Half periodic counter */
70 #define PF_OXS          0x400   /* Periodic One x Second */
71 #define PF_KOU          0x800   /* Kernel or User periodic request 1=kernel */
72 #define PF_MASK         0xf00
73
74 /* RCR1 Bits */
75 #define RCR1_CF         0x80    /* Carry Flag             */
76 #define RCR1_CIE        0x10    /* Carry Interrupt Enable */
77 #define RCR1_AIE        0x08    /* Alarm Interrupt Enable */
78 #define RCR1_AF         0x01    /* Alarm Flag             */
79
80 /* RCR2 Bits */
81 #define RCR2_PEF        0x80    /* PEriodic interrupt Flag */
82 #define RCR2_PESMASK    0x70    /* Periodic interrupt Set  */
83 #define RCR2_RTCEN      0x08    /* ENable RTC              */
84 #define RCR2_ADJ        0x04    /* ADJustment (30-second)  */
85 #define RCR2_RESET      0x02    /* Reset bit               */
86 #define RCR2_START      0x01    /* Start bit               */
87
88 struct sh_rtc {
89         void __iomem *regbase;
90         unsigned long regsize;
91         struct resource *res;
92         unsigned int alarm_irq, periodic_irq, carry_irq;
93         struct rtc_device *rtc_dev;
94         spinlock_t lock;
95         unsigned long capabilities;     /* See asm-sh/rtc.h for cap bits */
96         unsigned short periodic_freq;
97 };
98
99 static irqreturn_t sh_rtc_interrupt(int irq, void *dev_id)
100 {
101         struct sh_rtc *rtc = dev_id;
102         unsigned int tmp;
103
104         spin_lock(&rtc->lock);
105
106         tmp = readb(rtc->regbase + RCR1);
107         tmp &= ~RCR1_CF;
108         writeb(tmp, rtc->regbase + RCR1);
109
110         /* Users have requested One x Second IRQ */
111         if (rtc->periodic_freq & PF_OXS)
112                 rtc_update_irq(rtc->rtc_dev, 1, RTC_UF | RTC_IRQF);
113
114         spin_unlock(&rtc->lock);
115
116         return IRQ_HANDLED;
117 }
118
119 static irqreturn_t sh_rtc_alarm(int irq, void *dev_id)
120 {
121         struct sh_rtc *rtc = dev_id;
122         unsigned int tmp;
123
124         spin_lock(&rtc->lock);
125
126         tmp = readb(rtc->regbase + RCR1);
127         tmp &= ~(RCR1_AF | RCR1_AIE);
128                 writeb(tmp, rtc->regbase + RCR1);
129
130         rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
131
132         spin_unlock(&rtc->lock);
133
134         return IRQ_HANDLED;
135 }
136
137 static irqreturn_t sh_rtc_periodic(int irq, void *dev_id)
138 {
139         struct sh_rtc *rtc = dev_id;
140         struct rtc_device *rtc_dev = rtc->rtc_dev;
141         unsigned int tmp;
142
143         spin_lock(&rtc->lock);
144
145         tmp = readb(rtc->regbase + RCR2);
146         tmp &= ~RCR2_PEF;
147         writeb(tmp, rtc->regbase + RCR2);
148
149         /* Half period enabled than one skipped and the next notified */
150         if ((rtc->periodic_freq & PF_HP) && (rtc->periodic_freq & PF_COUNT))
151                 rtc->periodic_freq &= ~PF_COUNT;
152         else {
153                 if (rtc->periodic_freq & PF_HP)
154                         rtc->periodic_freq |= PF_COUNT;
155                 if (rtc->periodic_freq & PF_KOU) {
156                         spin_lock(&rtc_dev->irq_task_lock);
157                         if (rtc_dev->irq_task)
158                                 rtc_dev->irq_task->func(rtc_dev->irq_task->private_data);
159                         spin_unlock(&rtc_dev->irq_task_lock);
160                 } else
161                         rtc_update_irq(rtc->rtc_dev, 1, RTC_PF | RTC_IRQF);
162         }
163
164         spin_unlock(&rtc->lock);
165
166         return IRQ_HANDLED;
167 }
168
169 static inline void sh_rtc_setpie(struct device *dev, unsigned int enable)
170 {
171         struct sh_rtc *rtc = dev_get_drvdata(dev);
172         unsigned int tmp;
173
174         spin_lock_irq(&rtc->lock);
175
176         tmp = readb(rtc->regbase + RCR2);
177
178         if (enable) {
179                 tmp &= ~RCR2_PEF;       /* Clear PES bit */
180                 tmp |= (rtc->periodic_freq & ~PF_HP);   /* Set PES2-0 */
181         } else
182                 tmp &= ~(RCR2_PESMASK | RCR2_PEF);
183
184         writeb(tmp, rtc->regbase + RCR2);
185
186         spin_unlock_irq(&rtc->lock);
187 }
188
189 static inline int sh_rtc_setfreq(struct device *dev, unsigned int freq)
190 {
191         struct sh_rtc *rtc = dev_get_drvdata(dev);
192         int tmp, ret = 0;
193
194         spin_lock_irq(&rtc->lock);
195         tmp = rtc->periodic_freq & PF_MASK;
196
197         switch (freq) {
198         case 0:
199                 rtc->periodic_freq = 0x00;
200                 break;
201         case 1:
202                 rtc->periodic_freq = 0x60;
203                 break;
204         case 2:
205                 rtc->periodic_freq = 0x50;
206                 break;
207         case 4:
208                 rtc->periodic_freq = 0x40;
209                 break;
210         case 8:
211                 rtc->periodic_freq = 0x30 | PF_HP;
212                 break;
213         case 16:
214                 rtc->periodic_freq = 0x30;
215                 break;
216         case 32:
217                 rtc->periodic_freq = 0x20 | PF_HP;
218                 break;
219         case 64:
220                 rtc->periodic_freq = 0x20;
221                 break;
222         case 128:
223                 rtc->periodic_freq = 0x10 | PF_HP;
224                 break;
225         case 256:
226                 rtc->periodic_freq = 0x10;
227                 break;
228         default:
229                 ret = -ENOTSUPP;
230         }
231
232         if (ret == 0) {
233                 rtc->periodic_freq |= tmp;
234                 rtc->rtc_dev->irq_freq = freq;
235         }
236
237         spin_unlock_irq(&rtc->lock);
238         return ret;
239 }
240
241 static inline void sh_rtc_setaie(struct device *dev, unsigned int enable)
242 {
243         struct sh_rtc *rtc = dev_get_drvdata(dev);
244         unsigned int tmp;
245
246         spin_lock_irq(&rtc->lock);
247
248         tmp = readb(rtc->regbase + RCR1);
249
250         if (!enable)
251                 tmp &= ~RCR1_AIE;
252         else
253                 tmp |= RCR1_AIE;
254
255         writeb(tmp, rtc->regbase + RCR1);
256
257         spin_unlock_irq(&rtc->lock);
258 }
259
260 static void sh_rtc_release(struct device *dev)
261 {
262         sh_rtc_setpie(dev, 0);
263         sh_rtc_setaie(dev, 0);
264 }
265
266 static int sh_rtc_proc(struct device *dev, struct seq_file *seq)
267 {
268         struct sh_rtc *rtc = dev_get_drvdata(dev);
269         unsigned int tmp;
270
271         tmp = readb(rtc->regbase + RCR1);
272         seq_printf(seq, "carry_IRQ\t: %s\n", (tmp & RCR1_CIE) ? "yes" : "no");
273
274         tmp = readb(rtc->regbase + RCR2);
275         seq_printf(seq, "periodic_IRQ\t: %s\n",
276                    (tmp & RCR2_PESMASK) ? "yes" : "no");
277
278         return 0;
279 }
280
281 static int sh_rtc_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
282 {
283         struct sh_rtc *rtc = dev_get_drvdata(dev);
284         unsigned int ret = 0;
285
286         switch (cmd) {
287         case RTC_PIE_OFF:
288         case RTC_PIE_ON:
289                 sh_rtc_setpie(dev, cmd == RTC_PIE_ON);
290                 break;
291         case RTC_AIE_OFF:
292         case RTC_AIE_ON:
293                 sh_rtc_setaie(dev, cmd == RTC_AIE_ON);
294                 break;
295         case RTC_UIE_OFF:
296                 rtc->periodic_freq &= ~PF_OXS;
297                 break;
298         case RTC_UIE_ON:
299                 rtc->periodic_freq |= PF_OXS;
300                 break;
301         case RTC_IRQP_READ:
302                 ret = put_user(rtc->rtc_dev->irq_freq,
303                                (unsigned long __user *)arg);
304                 break;
305         case RTC_IRQP_SET:
306                 ret = sh_rtc_setfreq(dev, arg);
307                 break;
308         default:
309                 ret = -ENOIOCTLCMD;
310         }
311
312         return ret;
313 }
314
315 static int sh_rtc_read_time(struct device *dev, struct rtc_time *tm)
316 {
317         struct platform_device *pdev = to_platform_device(dev);
318         struct sh_rtc *rtc = platform_get_drvdata(pdev);
319         unsigned int sec128, sec2, yr, yr100, cf_bit;
320
321         do {
322                 unsigned int tmp;
323
324                 spin_lock_irq(&rtc->lock);
325
326                 tmp = readb(rtc->regbase + RCR1);
327                 tmp &= ~RCR1_CF; /* Clear CF-bit */
328                 tmp |= RCR1_CIE;
329                 writeb(tmp, rtc->regbase + RCR1);
330
331                 sec128 = readb(rtc->regbase + R64CNT);
332
333                 tm->tm_sec      = BCD2BIN(readb(rtc->regbase + RSECCNT));
334                 tm->tm_min      = BCD2BIN(readb(rtc->regbase + RMINCNT));
335                 tm->tm_hour     = BCD2BIN(readb(rtc->regbase + RHRCNT));
336                 tm->tm_wday     = BCD2BIN(readb(rtc->regbase + RWKCNT));
337                 tm->tm_mday     = BCD2BIN(readb(rtc->regbase + RDAYCNT));
338                 tm->tm_mon      = BCD2BIN(readb(rtc->regbase + RMONCNT)) - 1;
339
340                 if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
341                         yr  = readw(rtc->regbase + RYRCNT);
342                         yr100 = BCD2BIN(yr >> 8);
343                         yr &= 0xff;
344                 } else {
345                         yr  = readb(rtc->regbase + RYRCNT);
346                         yr100 = BCD2BIN((yr == 0x99) ? 0x19 : 0x20);
347                 }
348
349                 tm->tm_year = (yr100 * 100 + BCD2BIN(yr)) - 1900;
350
351                 sec2 = readb(rtc->regbase + R64CNT);
352                 cf_bit = readb(rtc->regbase + RCR1) & RCR1_CF;
353
354                 spin_unlock_irq(&rtc->lock);
355         } while (cf_bit != 0 || ((sec128 ^ sec2) & RTC_BIT_INVERTED) != 0);
356
357 #if RTC_BIT_INVERTED != 0
358         if ((sec128 & RTC_BIT_INVERTED))
359                 tm->tm_sec--;
360 #endif
361
362         dev_dbg(dev, "%s: tm is secs=%d, mins=%d, hours=%d, "
363                 "mday=%d, mon=%d, year=%d, wday=%d\n",
364                 __func__,
365                 tm->tm_sec, tm->tm_min, tm->tm_hour,
366                 tm->tm_mday, tm->tm_mon + 1, tm->tm_year, tm->tm_wday);
367
368         if (rtc_valid_tm(tm) < 0) {
369                 dev_err(dev, "invalid date\n");
370                 rtc_time_to_tm(0, tm);
371         }
372
373         return 0;
374 }
375
376 static int sh_rtc_set_time(struct device *dev, struct rtc_time *tm)
377 {
378         struct platform_device *pdev = to_platform_device(dev);
379         struct sh_rtc *rtc = platform_get_drvdata(pdev);
380         unsigned int tmp;
381         int year;
382
383         spin_lock_irq(&rtc->lock);
384
385         /* Reset pre-scaler & stop RTC */
386         tmp = readb(rtc->regbase + RCR2);
387         tmp |= RCR2_RESET;
388         tmp &= ~RCR2_START;
389         writeb(tmp, rtc->regbase + RCR2);
390
391         writeb(BIN2BCD(tm->tm_sec),  rtc->regbase + RSECCNT);
392         writeb(BIN2BCD(tm->tm_min),  rtc->regbase + RMINCNT);
393         writeb(BIN2BCD(tm->tm_hour), rtc->regbase + RHRCNT);
394         writeb(BIN2BCD(tm->tm_wday), rtc->regbase + RWKCNT);
395         writeb(BIN2BCD(tm->tm_mday), rtc->regbase + RDAYCNT);
396         writeb(BIN2BCD(tm->tm_mon + 1), rtc->regbase + RMONCNT);
397
398         if (rtc->capabilities & RTC_CAP_4_DIGIT_YEAR) {
399                 year = (BIN2BCD((tm->tm_year + 1900) / 100) << 8) |
400                         BIN2BCD(tm->tm_year % 100);
401                 writew(year, rtc->regbase + RYRCNT);
402         } else {
403                 year = tm->tm_year % 100;
404                 writeb(BIN2BCD(year), rtc->regbase + RYRCNT);
405         }
406
407         /* Start RTC */
408         tmp = readb(rtc->regbase + RCR2);
409         tmp &= ~RCR2_RESET;
410         tmp |= RCR2_RTCEN | RCR2_START;
411         writeb(tmp, rtc->regbase + RCR2);
412
413         spin_unlock_irq(&rtc->lock);
414
415         return 0;
416 }
417
418 static inline int sh_rtc_read_alarm_value(struct sh_rtc *rtc, int reg_off)
419 {
420         unsigned int byte;
421         int value = 0xff;       /* return 0xff for ignored values */
422
423         byte = readb(rtc->regbase + reg_off);
424         if (byte & AR_ENB) {
425                 byte &= ~AR_ENB;        /* strip the enable bit */
426                 value = BCD2BIN(byte);
427         }
428
429         return value;
430 }
431
432 static int sh_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
433 {
434         struct platform_device *pdev = to_platform_device(dev);
435         struct sh_rtc *rtc = platform_get_drvdata(pdev);
436         struct rtc_time *tm = &wkalrm->time;
437
438         spin_lock_irq(&rtc->lock);
439
440         tm->tm_sec      = sh_rtc_read_alarm_value(rtc, RSECAR);
441         tm->tm_min      = sh_rtc_read_alarm_value(rtc, RMINAR);
442         tm->tm_hour     = sh_rtc_read_alarm_value(rtc, RHRAR);
443         tm->tm_wday     = sh_rtc_read_alarm_value(rtc, RWKAR);
444         tm->tm_mday     = sh_rtc_read_alarm_value(rtc, RDAYAR);
445         tm->tm_mon      = sh_rtc_read_alarm_value(rtc, RMONAR);
446         if (tm->tm_mon > 0)
447                 tm->tm_mon -= 1; /* RTC is 1-12, tm_mon is 0-11 */
448         tm->tm_year     = 0xffff;
449
450         wkalrm->enabled = (readb(rtc->regbase + RCR1) & RCR1_AIE) ? 1 : 0;
451
452         spin_unlock_irq(&rtc->lock);
453
454         return 0;
455 }
456
457 static inline void sh_rtc_write_alarm_value(struct sh_rtc *rtc,
458                                             int value, int reg_off)
459 {
460         /* < 0 for a value that is ignored */
461         if (value < 0)
462                 writeb(0, rtc->regbase + reg_off);
463         else
464                 writeb(BIN2BCD(value) | AR_ENB,  rtc->regbase + reg_off);
465 }
466
467 static int sh_rtc_check_alarm(struct rtc_time *tm)
468 {
469         /*
470          * The original rtc says anything > 0xc0 is "don't care" or "match
471          * all" - most users use 0xff but rtc-dev uses -1 for the same thing.
472          * The original rtc doesn't support years - some things use -1 and
473          * some 0xffff. We use -1 to make out tests easier.
474          */
475         if (tm->tm_year == 0xffff)
476                 tm->tm_year = -1;
477         if (tm->tm_mon >= 0xff)
478                 tm->tm_mon = -1;
479         if (tm->tm_mday >= 0xff)
480                 tm->tm_mday = -1;
481         if (tm->tm_wday >= 0xff)
482                 tm->tm_wday = -1;
483         if (tm->tm_hour >= 0xff)
484                 tm->tm_hour = -1;
485         if (tm->tm_min >= 0xff)
486                 tm->tm_min = -1;
487         if (tm->tm_sec >= 0xff)
488                 tm->tm_sec = -1;
489
490         if (tm->tm_year > 9999 ||
491                 tm->tm_mon >= 12 ||
492                 tm->tm_mday == 0 || tm->tm_mday >= 32 ||
493                 tm->tm_wday >= 7 ||
494                 tm->tm_hour >= 24 ||
495                 tm->tm_min >= 60 ||
496                 tm->tm_sec >= 60)
497                 return -EINVAL;
498
499         return 0;
500 }
501
502 static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
503 {
504         struct platform_device *pdev = to_platform_device(dev);
505         struct sh_rtc *rtc = platform_get_drvdata(pdev);
506         unsigned int rcr1;
507         struct rtc_time *tm = &wkalrm->time;
508         int mon, err;
509
510         err = sh_rtc_check_alarm(tm);
511         if (unlikely(err < 0))
512                 return err;
513
514         spin_lock_irq(&rtc->lock);
515
516         /* disable alarm interrupt and clear the alarm flag */
517         rcr1 = readb(rtc->regbase + RCR1);
518         rcr1 &= ~(RCR1_AF | RCR1_AIE);
519         writeb(rcr1, rtc->regbase + RCR1);
520
521         /* set alarm time */
522         sh_rtc_write_alarm_value(rtc, tm->tm_sec,  RSECAR);
523         sh_rtc_write_alarm_value(rtc, tm->tm_min,  RMINAR);
524         sh_rtc_write_alarm_value(rtc, tm->tm_hour, RHRAR);
525         sh_rtc_write_alarm_value(rtc, tm->tm_wday, RWKAR);
526         sh_rtc_write_alarm_value(rtc, tm->tm_mday, RDAYAR);
527         mon = tm->tm_mon;
528         if (mon >= 0)
529                 mon += 1;
530         sh_rtc_write_alarm_value(rtc, mon, RMONAR);
531
532         if (wkalrm->enabled) {
533                 rcr1 |= RCR1_AIE;
534                 writeb(rcr1, rtc->regbase + RCR1);
535         }
536
537         spin_unlock_irq(&rtc->lock);
538
539         return 0;
540 }
541
542 static int sh_rtc_irq_set_state(struct device *dev, int enabled)
543 {
544         struct platform_device *pdev = to_platform_device(dev);
545         struct sh_rtc *rtc = platform_get_drvdata(pdev);
546
547         if (enabled) {
548                 rtc->periodic_freq |= PF_KOU;
549                 return sh_rtc_ioctl(dev, RTC_PIE_ON, 0);
550         } else {
551                 rtc->periodic_freq &= ~PF_KOU;
552                 return sh_rtc_ioctl(dev, RTC_PIE_OFF, 0);
553         }
554 }
555
556 static int sh_rtc_irq_set_freq(struct device *dev, int freq)
557 {
558         return sh_rtc_ioctl(dev, RTC_IRQP_SET, freq);
559 }
560
561 static struct rtc_class_ops sh_rtc_ops = {
562         .release        = sh_rtc_release,
563         .ioctl          = sh_rtc_ioctl,
564         .read_time      = sh_rtc_read_time,
565         .set_time       = sh_rtc_set_time,
566         .read_alarm     = sh_rtc_read_alarm,
567         .set_alarm      = sh_rtc_set_alarm,
568         .irq_set_state  = sh_rtc_irq_set_state,
569         .irq_set_freq   = sh_rtc_irq_set_freq,
570         .proc           = sh_rtc_proc,
571 };
572
573 static int __devinit sh_rtc_probe(struct platform_device *pdev)
574 {
575         struct sh_rtc *rtc;
576         struct resource *res;
577         unsigned int tmp;
578         int ret = -ENOENT;
579
580         rtc = kzalloc(sizeof(struct sh_rtc), GFP_KERNEL);
581         if (unlikely(!rtc))
582                 return -ENOMEM;
583
584         spin_lock_init(&rtc->lock);
585
586         /* get periodic/carry/alarm irqs */
587         rtc->periodic_irq = platform_get_irq(pdev, 0);
588         if (unlikely(rtc->periodic_irq < 0)) {
589                 dev_err(&pdev->dev, "No IRQ for period\n");
590                 goto err_badres;
591         }
592
593         rtc->carry_irq = platform_get_irq(pdev, 1);
594         if (unlikely(rtc->carry_irq < 0)) {
595                 dev_err(&pdev->dev, "No IRQ for carry\n");
596                 goto err_badres;
597         }
598
599         rtc->alarm_irq = platform_get_irq(pdev, 2);
600         if (unlikely(rtc->alarm_irq < 0)) {
601                 dev_err(&pdev->dev, "No IRQ for alarm\n");
602                 goto err_badres;
603         }
604
605         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
606         if (unlikely(res == NULL)) {
607                 dev_err(&pdev->dev, "No IO resource\n");
608                 goto err_badres;
609         }
610
611         rtc->regsize = res->end - res->start + 1;
612
613         rtc->res = request_mem_region(res->start, rtc->regsize, pdev->name);
614         if (unlikely(!rtc->res)) {
615                 ret = -EBUSY;
616                 goto err_badres;
617         }
618
619         rtc->regbase = (void __iomem *)rtc->res->start;
620         if (unlikely(!rtc->regbase)) {
621                 ret = -EINVAL;
622                 goto err_badmap;
623         }
624
625         rtc->rtc_dev = rtc_device_register("sh", &pdev->dev,
626                                            &sh_rtc_ops, THIS_MODULE);
627         if (IS_ERR(rtc->rtc_dev)) {
628                 ret = PTR_ERR(rtc->rtc_dev);
629                 goto err_badmap;
630         }
631
632         rtc->capabilities = RTC_DEF_CAPABILITIES;
633         if (pdev->dev.platform_data) {
634                 struct sh_rtc_platform_info *pinfo = pdev->dev.platform_data;
635
636                 /*
637                  * Some CPUs have special capabilities in addition to the
638                  * default set. Add those in here.
639                  */
640                 rtc->capabilities |= pinfo->capabilities;
641         }
642
643         rtc->rtc_dev->max_user_freq = 256;
644         rtc->rtc_dev->irq_freq = 1;
645         rtc->periodic_freq = 0x60;
646
647         platform_set_drvdata(pdev, rtc);
648
649         /* register periodic/carry/alarm irqs */
650         ret = request_irq(rtc->periodic_irq, sh_rtc_periodic, IRQF_DISABLED,
651                           "sh-rtc period", rtc);
652         if (unlikely(ret)) {
653                 dev_err(&pdev->dev,
654                         "request period IRQ failed with %d, IRQ %d\n", ret,
655                         rtc->periodic_irq);
656                 goto err_badmap;
657         }
658
659         ret = request_irq(rtc->carry_irq, sh_rtc_interrupt, IRQF_DISABLED,
660                           "sh-rtc carry", rtc);
661         if (unlikely(ret)) {
662                 dev_err(&pdev->dev,
663                         "request carry IRQ failed with %d, IRQ %d\n", ret,
664                         rtc->carry_irq);
665                 free_irq(rtc->periodic_irq, rtc);
666                 goto err_badmap;
667         }
668
669         ret = request_irq(rtc->alarm_irq, sh_rtc_alarm, IRQF_DISABLED,
670                           "sh-rtc alarm", rtc);
671         if (unlikely(ret)) {
672                 dev_err(&pdev->dev,
673                         "request alarm IRQ failed with %d, IRQ %d\n", ret,
674                         rtc->alarm_irq);
675                 free_irq(rtc->carry_irq, rtc);
676                 free_irq(rtc->periodic_irq, rtc);
677                 goto err_badmap;
678         }
679
680         tmp = readb(rtc->regbase + RCR1);
681         tmp &= ~RCR1_CF;
682         tmp |= RCR1_CIE;
683         writeb(tmp, rtc->regbase + RCR1);
684
685         return 0;
686
687 err_badmap:
688         release_resource(rtc->res);
689 err_badres:
690         kfree(rtc);
691
692         return ret;
693 }
694
695 static int __devexit sh_rtc_remove(struct platform_device *pdev)
696 {
697         struct sh_rtc *rtc = platform_get_drvdata(pdev);
698
699         if (likely(rtc->rtc_dev))
700                 rtc_device_unregister(rtc->rtc_dev);
701
702         sh_rtc_setpie(&pdev->dev, 0);
703         sh_rtc_setaie(&pdev->dev, 0);
704
705         free_irq(rtc->carry_irq, rtc);
706         free_irq(rtc->periodic_irq, rtc);
707         free_irq(rtc->alarm_irq, rtc);
708
709         release_resource(rtc->res);
710
711         platform_set_drvdata(pdev, NULL);
712
713         kfree(rtc);
714
715         return 0;
716 }
717 static struct platform_driver sh_rtc_platform_driver = {
718         .driver         = {
719                 .name   = DRV_NAME,
720                 .owner  = THIS_MODULE,
721         },
722         .probe          = sh_rtc_probe,
723         .remove         = __devexit_p(sh_rtc_remove),
724 };
725
726 static int __init sh_rtc_init(void)
727 {
728         return platform_driver_register(&sh_rtc_platform_driver);
729 }
730
731 static void __exit sh_rtc_exit(void)
732 {
733         platform_driver_unregister(&sh_rtc_platform_driver);
734 }
735
736 module_init(sh_rtc_init);
737 module_exit(sh_rtc_exit);
738
739 MODULE_DESCRIPTION("SuperH on-chip RTC driver");
740 MODULE_VERSION(DRV_VERSION);
741 MODULE_AUTHOR("Paul Mundt <lethal@linux-sh.org>, "
742               "Jamie Lenehan <lenehan@twibble.org>, "
743               "Angelo Castello <angelo.castello@st.com>");
744 MODULE_LICENSE("GPL");
745 MODULE_ALIAS("platform:" DRV_NAME);