2 * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
23 #include "xfs_trans.h"
28 #include "xfs_alloc.h"
29 #include "xfs_dmapi.h"
30 #include "xfs_quota.h"
31 #include "xfs_mount.h"
32 #include "xfs_bmap_btree.h"
33 #include "xfs_alloc_btree.h"
34 #include "xfs_ialloc_btree.h"
35 #include "xfs_dir_sf.h"
36 #include "xfs_dir2_sf.h"
37 #include "xfs_attr_sf.h"
38 #include "xfs_dinode.h"
39 #include "xfs_inode.h"
41 #include "xfs_btree.h"
42 #include "xfs_ialloc.h"
43 #include "xfs_rtalloc.h"
44 #include "xfs_error.h"
45 #include "xfs_itable.h"
51 #include "xfs_inode_item.h"
52 #include "xfs_buf_item.h"
53 #include "xfs_utils.h"
54 #include "xfs_iomap.h"
56 #include <linux/capability.h>
57 #include <linux/writeback.h>
60 #if defined(XFS_RW_TRACE)
70 xfs_inode_t *ip = XFS_IO_INODE(io);
72 if (ip->i_rwtrace == NULL)
74 ktrace_enter(ip->i_rwtrace,
75 (void *)(unsigned long)tag,
77 (void *)((unsigned long)((ip->i_d.di_size >> 32) & 0xffffffff)),
78 (void *)((unsigned long)(ip->i_d.di_size & 0xffffffff)),
80 (void *)((unsigned long)segs),
81 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
82 (void *)((unsigned long)(offset & 0xffffffff)),
83 (void *)((unsigned long)ioflags),
84 (void *)((unsigned long)((io->io_new_size >> 32) & 0xffffffff)),
85 (void *)((unsigned long)(io->io_new_size & 0xffffffff)),
86 (void *)((unsigned long)current_pid()),
94 xfs_inval_cached_trace(
101 xfs_inode_t *ip = XFS_IO_INODE(io);
103 if (ip->i_rwtrace == NULL)
105 ktrace_enter(ip->i_rwtrace,
106 (void *)(__psint_t)XFS_INVAL_CACHED,
108 (void *)((unsigned long)((offset >> 32) & 0xffffffff)),
109 (void *)((unsigned long)(offset & 0xffffffff)),
110 (void *)((unsigned long)((len >> 32) & 0xffffffff)),
111 (void *)((unsigned long)(len & 0xffffffff)),
112 (void *)((unsigned long)((first >> 32) & 0xffffffff)),
113 (void *)((unsigned long)(first & 0xffffffff)),
114 (void *)((unsigned long)((last >> 32) & 0xffffffff)),
115 (void *)((unsigned long)(last & 0xffffffff)),
116 (void *)((unsigned long)current_pid()),
128 * xfs_iozero clears the specified range of buffer supplied,
129 * and marks all the affected blocks as valid and modified. If
130 * an affected block is not allocated, it will be allocated. If
131 * an affected block is not completely overwritten, and is not
132 * valid before the operation, it will be read from disk before
133 * being partially zeroed.
137 struct inode *ip, /* inode */
138 loff_t pos, /* offset in file */
139 size_t count, /* size of data to zero */
140 loff_t end_size) /* max file size to set */
144 struct address_space *mapping;
148 mapping = ip->i_mapping;
150 unsigned long index, offset;
152 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
153 index = pos >> PAGE_CACHE_SHIFT;
154 bytes = PAGE_CACHE_SIZE - offset;
159 page = grab_cache_page(mapping, index);
164 status = mapping->a_ops->prepare_write(NULL, page, offset,
170 memset((void *) (kaddr + offset), 0, bytes);
171 flush_dcache_page(page);
172 status = mapping->a_ops->commit_write(NULL, page, offset,
177 if (pos > i_size_read(ip))
178 i_size_write(ip, pos < end_size ? pos : end_size);
184 page_cache_release(page);
192 ssize_t /* bytes read, or (-) error */
196 const struct iovec *iovp,
202 struct file *file = iocb->ki_filp;
203 struct inode *inode = file->f_mapping->host;
212 ip = XFS_BHVTOI(bdp);
213 vp = BHV_TO_VNODE(bdp);
216 XFS_STATS_INC(xs_read_calls);
218 /* START copy & waste from filemap.c */
219 for (seg = 0; seg < segs; seg++) {
220 const struct iovec *iv = &iovp[seg];
223 * If any segment has a negative length, or the cumulative
224 * length ever wraps negative then return -EINVAL.
227 if (unlikely((ssize_t)(size|iv->iov_len) < 0))
228 return XFS_ERROR(-EINVAL);
230 /* END copy & waste from filemap.c */
232 if (unlikely(ioflags & IO_ISDIRECT)) {
233 xfs_buftarg_t *target =
234 (ip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
235 mp->m_rtdev_targp : mp->m_ddev_targp;
236 if ((*offset & target->bt_smask) ||
237 (size & target->bt_smask)) {
238 if (*offset == ip->i_d.di_size) {
241 return -XFS_ERROR(EINVAL);
245 n = XFS_MAXIOFFSET(mp) - *offset;
246 if ((n <= 0) || (size == 0))
252 if (XFS_FORCED_SHUTDOWN(mp))
255 if (unlikely(ioflags & IO_ISDIRECT))
256 mutex_lock(&inode->i_mutex);
257 xfs_ilock(ip, XFS_IOLOCK_SHARED);
259 if (DM_EVENT_ENABLED(vp->v_vfsp, ip, DM_EVENT_READ) &&
260 !(ioflags & IO_INVIS)) {
261 vrwlock_t locktype = VRWLOCK_READ;
262 int dmflags = FILP_DELAY_FLAG(file) | DM_SEM_FLAG_RD(ioflags);
264 ret = -XFS_SEND_DATA(mp, DM_EVENT_READ,
265 BHV_TO_VNODE(bdp), *offset, size,
268 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
273 if (unlikely((ioflags & IO_ISDIRECT) && VN_CACHED(vp)))
274 VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(*offset)),
275 -1, FI_REMAPF_LOCKED);
277 xfs_rw_enter_trace(XFS_READ_ENTER, &ip->i_iocore,
278 (void *)iovp, segs, *offset, ioflags);
279 ret = __generic_file_aio_read(iocb, iovp, segs, offset);
280 if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
281 ret = wait_on_sync_kiocb(iocb);
283 XFS_STATS_ADD(xs_read_bytes, ret);
285 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
288 if (unlikely(ioflags & IO_ISDIRECT))
289 mutex_unlock(&inode->i_mutex);
304 xfs_inode_t *ip = XFS_BHVTOI(bdp);
305 xfs_mount_t *mp = ip->i_mount;
308 XFS_STATS_INC(xs_read_calls);
309 if (XFS_FORCED_SHUTDOWN(mp))
312 xfs_ilock(ip, XFS_IOLOCK_SHARED);
314 if (DM_EVENT_ENABLED(BHV_TO_VNODE(bdp)->v_vfsp, ip, DM_EVENT_READ) &&
315 (!(ioflags & IO_INVIS))) {
316 vrwlock_t locktype = VRWLOCK_READ;
319 error = XFS_SEND_DATA(mp, DM_EVENT_READ, BHV_TO_VNODE(bdp),
321 FILP_DELAY_FLAG(filp), &locktype);
323 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
327 xfs_rw_enter_trace(XFS_SENDFILE_ENTER, &ip->i_iocore,
328 (void *)(unsigned long)target, count, *offset, ioflags);
329 ret = generic_file_sendfile(filp, offset, count, actor, target);
331 XFS_STATS_ADD(xs_read_bytes, ret);
333 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
341 struct pipe_inode_info *pipe,
347 xfs_inode_t *ip = XFS_BHVTOI(bdp);
348 xfs_mount_t *mp = ip->i_mount;
351 XFS_STATS_INC(xs_read_calls);
352 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
355 xfs_ilock(ip, XFS_IOLOCK_SHARED);
357 if (DM_EVENT_ENABLED(BHV_TO_VNODE(bdp)->v_vfsp, ip, DM_EVENT_READ) &&
358 (!(ioflags & IO_INVIS))) {
359 vrwlock_t locktype = VRWLOCK_READ;
362 error = XFS_SEND_DATA(mp, DM_EVENT_READ, BHV_TO_VNODE(bdp),
363 infilp->f_pos, count,
364 FILP_DELAY_FLAG(infilp), &locktype);
366 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
370 xfs_rw_enter_trace(XFS_SPLICE_READ_ENTER, &ip->i_iocore,
371 pipe, count, infilp->f_pos, ioflags);
372 ret = generic_file_splice_read(infilp, pipe, count, flags);
374 XFS_STATS_ADD(xs_read_bytes, ret);
376 xfs_iunlock(ip, XFS_IOLOCK_SHARED);
383 struct pipe_inode_info *pipe,
384 struct file *outfilp,
390 xfs_inode_t *ip = XFS_BHVTOI(bdp);
391 xfs_mount_t *mp = ip->i_mount;
394 XFS_STATS_INC(xs_write_calls);
395 if (XFS_FORCED_SHUTDOWN(ip->i_mount))
398 xfs_ilock(ip, XFS_IOLOCK_EXCL);
400 if (DM_EVENT_ENABLED(BHV_TO_VNODE(bdp)->v_vfsp, ip, DM_EVENT_WRITE) &&
401 (!(ioflags & IO_INVIS))) {
402 vrwlock_t locktype = VRWLOCK_WRITE;
405 error = XFS_SEND_DATA(mp, DM_EVENT_WRITE, BHV_TO_VNODE(bdp),
406 outfilp->f_pos, count,
407 FILP_DELAY_FLAG(outfilp), &locktype);
409 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
413 xfs_rw_enter_trace(XFS_SPLICE_WRITE_ENTER, &ip->i_iocore,
414 pipe, count, outfilp->f_pos, ioflags);
415 ret = generic_file_splice_write(pipe, outfilp, count, flags);
417 XFS_STATS_ADD(xs_write_bytes, ret);
419 xfs_iunlock(ip, XFS_IOLOCK_EXCL);
424 * This routine is called to handle zeroing any space in the last
425 * block of the file that is beyond the EOF. We do this since the
426 * size is being increased without writing anything to that block
427 * and we don't want anyone to read the garbage on the disk.
429 STATIC int /* error (positive) */
434 xfs_fsize_t end_size)
436 xfs_fileoff_t last_fsb;
437 xfs_mount_t *mp = io->io_mount;
442 xfs_bmbt_irec_t imap;
445 ASSERT(ismrlocked(io->io_lock, MR_UPDATE) != 0);
447 zero_offset = XFS_B_FSB_OFFSET(mp, isize);
448 if (zero_offset == 0) {
450 * There are no extra bytes in the last block on disk to
456 last_fsb = XFS_B_TO_FSBT(mp, isize);
458 error = XFS_BMAPI(mp, NULL, io, last_fsb, 1, 0, NULL, 0, &imap,
465 * If the block underlying isize is just a hole, then there
466 * is nothing to zero.
468 if (imap.br_startblock == HOLESTARTBLOCK) {
472 * Zero the part of the last block beyond the EOF, and write it
473 * out sync. We need to drop the ilock while we do this so we
474 * don't deadlock when the buffer cache calls back to us.
476 XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL| XFS_EXTSIZE_RD);
478 loff = XFS_FSB_TO_B(mp, last_fsb);
479 zero_len = mp->m_sb.sb_blocksize - zero_offset;
480 error = xfs_iozero(ip, loff + zero_offset, zero_len, end_size);
482 XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
488 * Zero any on disk space between the current EOF and the new,
489 * larger EOF. This handles the normal case of zeroing the remainder
490 * of the last block in the file and the unusual case of zeroing blocks
491 * out beyond the size of the file. This second case only happens
492 * with fixed size extents and when the system crashes before the inode
493 * size was updated but after blocks were allocated. If fill is set,
494 * then any holes in the range are filled and zeroed. If not, the holes
495 * are left alone as holes.
498 int /* error (positive) */
502 xfs_off_t offset, /* starting I/O offset */
503 xfs_fsize_t isize, /* current inode size */
504 xfs_fsize_t end_size) /* terminal inode size */
506 struct inode *ip = vn_to_inode(vp);
507 xfs_fileoff_t start_zero_fsb;
508 xfs_fileoff_t end_zero_fsb;
509 xfs_fileoff_t zero_count_fsb;
510 xfs_fileoff_t last_fsb;
511 xfs_extlen_t buf_len_fsb;
512 xfs_mount_t *mp = io->io_mount;
515 xfs_bmbt_irec_t imap;
517 ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
518 ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
519 ASSERT(offset > isize);
522 * First handle zeroing the block on which isize resides.
523 * We only zero a part of that block so it is handled specially.
525 error = xfs_zero_last_block(ip, io, isize, end_size);
527 ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
528 ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
533 * Calculate the range between the new size and the old
534 * where blocks needing to be zeroed may exist. To get the
535 * block where the last byte in the file currently resides,
536 * we need to subtract one from the size and truncate back
537 * to a block boundary. We subtract 1 in case the size is
538 * exactly on a block boundary.
540 last_fsb = isize ? XFS_B_TO_FSBT(mp, isize - 1) : (xfs_fileoff_t)-1;
541 start_zero_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
542 end_zero_fsb = XFS_B_TO_FSBT(mp, offset - 1);
543 ASSERT((xfs_sfiloff_t)last_fsb < (xfs_sfiloff_t)start_zero_fsb);
544 if (last_fsb == end_zero_fsb) {
546 * The size was only incremented on its last block.
547 * We took care of that above, so just return.
552 ASSERT(start_zero_fsb <= end_zero_fsb);
553 while (start_zero_fsb <= end_zero_fsb) {
555 zero_count_fsb = end_zero_fsb - start_zero_fsb + 1;
556 error = XFS_BMAPI(mp, NULL, io, start_zero_fsb, zero_count_fsb,
557 0, NULL, 0, &imap, &nimaps, NULL);
559 ASSERT(ismrlocked(io->io_lock, MR_UPDATE));
560 ASSERT(ismrlocked(io->io_iolock, MR_UPDATE));
565 if (imap.br_state == XFS_EXT_UNWRITTEN ||
566 imap.br_startblock == HOLESTARTBLOCK) {
568 * This loop handles initializing pages that were
569 * partially initialized by the code below this
570 * loop. It basically zeroes the part of the page
571 * that sits on a hole and sets the page as P_HOLE
572 * and calls remapf if it is a mapped file.
574 start_zero_fsb = imap.br_startoff + imap.br_blockcount;
575 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
580 * There are blocks in the range requested.
581 * Zero them a single write at a time. We actually
582 * don't zero the entire range returned if it is
583 * too big and simply loop around to get the rest.
584 * That is not the most efficient thing to do, but it
585 * is simple and this path should not be exercised often.
587 buf_len_fsb = XFS_FILBLKS_MIN(imap.br_blockcount,
588 mp->m_writeio_blocks << 8);
590 * Drop the inode lock while we're doing the I/O.
591 * We'll still have the iolock to protect us.
593 XFS_IUNLOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
595 error = xfs_iozero(ip,
596 XFS_FSB_TO_B(mp, start_zero_fsb),
597 XFS_FSB_TO_B(mp, buf_len_fsb),
604 start_zero_fsb = imap.br_startoff + buf_len_fsb;
605 ASSERT(start_zero_fsb <= (end_zero_fsb + 1));
607 XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
614 XFS_ILOCK(mp, io, XFS_ILOCK_EXCL|XFS_EXTSIZE_RD);
619 ssize_t /* bytes written, or (-) error */
623 const struct iovec *iovp,
629 struct file *file = iocb->ki_filp;
630 struct address_space *mapping = file->f_mapping;
631 struct inode *inode = mapping->host;
632 unsigned long segs = nsegs;
635 ssize_t ret = 0, error = 0;
636 xfs_fsize_t isize, new_size;
643 size_t ocount = 0, count;
645 int need_i_mutex = 1, need_flush = 0;
647 XFS_STATS_INC(xs_write_calls);
649 vp = BHV_TO_VNODE(bdp);
650 xip = XFS_BHVTOI(bdp);
652 for (seg = 0; seg < segs; seg++) {
653 const struct iovec *iv = &iovp[seg];
656 * If any segment has a negative length, or the cumulative
657 * length ever wraps negative then return -EINVAL.
659 ocount += iv->iov_len;
660 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
662 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
667 ocount -= iv->iov_len; /* This segment is no good */
680 if (XFS_FORCED_SHUTDOWN(mp))
683 fs_check_frozen(vp->v_vfsp, SB_FREEZE_WRITE);
685 if (ioflags & IO_ISDIRECT) {
686 xfs_buftarg_t *target =
687 (xip->i_d.di_flags & XFS_DIFLAG_REALTIME) ?
688 mp->m_rtdev_targp : mp->m_ddev_targp;
690 if ((pos & target->bt_smask) || (count & target->bt_smask))
691 return XFS_ERROR(-EINVAL);
693 if (!VN_CACHED(vp) && pos < i_size_read(inode))
702 iolock = XFS_IOLOCK_EXCL;
703 locktype = VRWLOCK_WRITE;
705 mutex_lock(&inode->i_mutex);
707 iolock = XFS_IOLOCK_SHARED;
708 locktype = VRWLOCK_WRITE_DIRECT;
711 xfs_ilock(xip, XFS_ILOCK_EXCL|iolock);
713 isize = i_size_read(inode);
715 if (file->f_flags & O_APPEND)
719 error = -generic_write_checks(file, &pos, &count,
720 S_ISBLK(inode->i_mode));
722 xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
723 goto out_unlock_mutex;
726 new_size = pos + count;
727 if (new_size > isize)
728 io->io_new_size = new_size;
730 if ((DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_WRITE) &&
731 !(ioflags & IO_INVIS) && !eventsent)) {
732 loff_t savedsize = pos;
733 int dmflags = FILP_DELAY_FLAG(file);
736 dmflags |= DM_FLAGS_IMUX;
738 xfs_iunlock(xip, XFS_ILOCK_EXCL);
739 error = XFS_SEND_DATA(xip->i_mount, DM_EVENT_WRITE, vp,
743 xfs_iunlock(xip, iolock);
744 goto out_unlock_mutex;
746 xfs_ilock(xip, XFS_ILOCK_EXCL);
750 * The iolock was dropped and reacquired in XFS_SEND_DATA
751 * so we have to recheck the size when appending.
752 * We will only "goto start;" once, since having sent the
753 * event prevents another call to XFS_SEND_DATA, which is
754 * what allows the size to change in the first place.
756 if ((file->f_flags & O_APPEND) && savedsize != isize) {
757 pos = isize = xip->i_d.di_size;
762 if (likely(!(ioflags & IO_INVIS))) {
763 file_update_time(file);
764 xfs_ichgtime_fast(xip, inode,
765 XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
769 * If the offset is beyond the size of the file, we have a couple
770 * of things to do. First, if there is already space allocated
771 * we need to either create holes or zero the disk or ...
773 * If there is a page where the previous size lands, we need
774 * to zero it out up to the new size.
778 error = xfs_zero_eof(BHV_TO_VNODE(bdp), io, pos,
781 xfs_iunlock(xip, XFS_ILOCK_EXCL|iolock);
782 goto out_unlock_mutex;
785 xfs_iunlock(xip, XFS_ILOCK_EXCL);
788 * If we're writing the file then make sure to clear the
789 * setuid and setgid bits if the process is not being run
790 * by root. This keeps people from modifying setuid and
794 if (((xip->i_d.di_mode & S_ISUID) ||
795 ((xip->i_d.di_mode & (S_ISGID | S_IXGRP)) ==
796 (S_ISGID | S_IXGRP))) &&
797 !capable(CAP_FSETID)) {
798 error = xfs_write_clear_setuid(xip);
800 error = -remove_suid(file->f_dentry);
801 if (unlikely(error)) {
802 xfs_iunlock(xip, iolock);
803 goto out_unlock_mutex;
808 /* We can write back this queue in page reclaim */
809 current->backing_dev_info = mapping->backing_dev_info;
811 if ((ioflags & IO_ISDIRECT)) {
813 xfs_inval_cached_trace(io, pos, -1,
814 ctooff(offtoct(pos)), -1);
815 VOP_FLUSHINVAL_PAGES(vp, ctooff(offtoct(pos)),
816 -1, FI_REMAPF_LOCKED);
820 /* demote the lock now the cached pages are gone */
821 XFS_ILOCK_DEMOTE(mp, io, XFS_IOLOCK_EXCL);
822 mutex_unlock(&inode->i_mutex);
824 iolock = XFS_IOLOCK_SHARED;
825 locktype = VRWLOCK_WRITE_DIRECT;
829 xfs_rw_enter_trace(XFS_DIOWR_ENTER, io, (void *)iovp, segs,
831 ret = generic_file_direct_write(iocb, iovp,
832 &segs, pos, offset, count, ocount);
835 * direct-io write to a hole: fall through to buffered I/O
836 * for completing the rest of the request.
838 if (ret >= 0 && ret != count) {
839 XFS_STATS_ADD(xs_write_bytes, ret);
845 ioflags &= ~IO_ISDIRECT;
846 xfs_iunlock(xip, iolock);
850 xfs_rw_enter_trace(XFS_WRITE_ENTER, io, (void *)iovp, segs,
852 ret = generic_file_buffered_write(iocb, iovp, segs,
853 pos, offset, count, ret);
856 current->backing_dev_info = NULL;
858 if (ret == -EIOCBQUEUED && !(ioflags & IO_ISAIO))
859 ret = wait_on_sync_kiocb(iocb);
861 if ((ret == -ENOSPC) &&
862 DM_EVENT_ENABLED(vp->v_vfsp, xip, DM_EVENT_NOSPACE) &&
863 !(ioflags & IO_INVIS)) {
865 xfs_rwunlock(bdp, locktype);
867 mutex_unlock(&inode->i_mutex);
868 error = XFS_SEND_NAMESP(xip->i_mount, DM_EVENT_NOSPACE, vp,
869 DM_RIGHT_NULL, vp, DM_RIGHT_NULL, NULL, NULL,
870 0, 0, 0); /* Delay flag intentionally unused */
874 mutex_lock(&inode->i_mutex);
875 xfs_rwlock(bdp, locktype);
876 pos = xip->i_d.di_size;
881 isize = i_size_read(inode);
882 if (unlikely(ret < 0 && ret != -EFAULT && *offset > isize))
885 if (*offset > xip->i_d.di_size) {
886 xfs_ilock(xip, XFS_ILOCK_EXCL);
887 if (*offset > xip->i_d.di_size) {
888 xip->i_d.di_size = *offset;
889 i_size_write(inode, *offset);
890 xip->i_update_core = 1;
891 xip->i_update_size = 1;
893 xfs_iunlock(xip, XFS_ILOCK_EXCL);
898 goto out_unlock_internal;
900 XFS_STATS_ADD(xs_write_bytes, ret);
902 /* Handle various SYNC-type writes */
903 if ((file->f_flags & O_SYNC) || IS_SYNC(inode)) {
905 * If we're treating this as O_DSYNC and we have not updated the
906 * size, force the log.
908 if (!(mp->m_flags & XFS_MOUNT_OSYNCISOSYNC) &&
909 !(xip->i_update_size)) {
910 xfs_inode_log_item_t *iip = xip->i_itemp;
913 * If an allocation transaction occurred
914 * without extending the size, then we have to force
915 * the log up the proper point to ensure that the
916 * allocation is permanent. We can't count on
917 * the fact that buffered writes lock out direct I/O
918 * writes - the direct I/O write could have extended
919 * the size nontransactionally, then finished before
920 * we started. xfs_write_file will think that the file
921 * didn't grow but the update isn't safe unless the
922 * size change is logged.
924 * Force the log if we've committed a transaction
925 * against the inode or if someone else has and
926 * the commit record hasn't gone to disk (e.g.
927 * the inode is pinned). This guarantees that
928 * all changes affecting the inode are permanent
931 if (iip && iip->ili_last_lsn) {
932 xfs_log_force(mp, iip->ili_last_lsn,
933 XFS_LOG_FORCE | XFS_LOG_SYNC);
934 } else if (xfs_ipincount(xip) > 0) {
935 xfs_log_force(mp, (xfs_lsn_t)0,
936 XFS_LOG_FORCE | XFS_LOG_SYNC);
943 * O_SYNC or O_DSYNC _with_ a size update are handled
946 * If the write was synchronous then we need to make
947 * sure that the inode modification time is permanent.
948 * We'll have updated the timestamp above, so here
949 * we use a synchronous transaction to log the inode.
950 * It's not fast, but it's necessary.
952 * If this a dsync write and the size got changed
953 * non-transactionally, then we need to ensure that
954 * the size change gets logged in a synchronous
958 tp = xfs_trans_alloc(mp, XFS_TRANS_WRITE_SYNC);
959 if ((error = xfs_trans_reserve(tp, 0,
960 XFS_SWRITE_LOG_RES(mp),
962 /* Transaction reserve failed */
963 xfs_trans_cancel(tp, 0);
965 /* Transaction reserve successful */
966 xfs_ilock(xip, XFS_ILOCK_EXCL);
967 xfs_trans_ijoin(tp, xip, XFS_ILOCK_EXCL);
968 xfs_trans_ihold(tp, xip);
969 xfs_trans_log_inode(tp, xip, XFS_ILOG_CORE);
970 xfs_trans_set_sync(tp);
971 error = xfs_trans_commit(tp, 0, NULL);
972 xfs_iunlock(xip, XFS_ILOCK_EXCL);
975 goto out_unlock_internal;
978 xfs_rwunlock(bdp, locktype);
980 mutex_unlock(&inode->i_mutex);
982 error = sync_page_range(inode, mapping, pos, ret);
989 xfs_rwunlock(bdp, locktype);
992 mutex_unlock(&inode->i_mutex);
998 * All xfs metadata buffers except log state machine buffers
999 * get this attached as their b_bdstrat callback function.
1000 * This is so that we can catch a buffer
1001 * after prematurely unpinning it to forcibly shutdown the filesystem.
1004 xfs_bdstrat_cb(struct xfs_buf *bp)
1008 mp = XFS_BUF_FSPRIVATE3(bp, xfs_mount_t *);
1009 if (!XFS_FORCED_SHUTDOWN(mp)) {
1010 xfs_buf_iorequest(bp);
1013 xfs_buftrace("XFS__BDSTRAT IOERROR", bp);
1015 * Metadata write that didn't get logged but
1016 * written delayed anyway. These aren't associated
1017 * with a transaction, and can be ignored.
1019 if (XFS_BUF_IODONE_FUNC(bp) == NULL &&
1020 (XFS_BUF_ISREAD(bp)) == 0)
1021 return (xfs_bioerror_relse(bp));
1023 return (xfs_bioerror(bp));
1029 xfs_bmap(bhv_desc_t *bdp,
1033 xfs_iomap_t *iomapp,
1036 xfs_inode_t *ip = XFS_BHVTOI(bdp);
1037 xfs_iocore_t *io = &ip->i_iocore;
1039 ASSERT((ip->i_d.di_mode & S_IFMT) == S_IFREG);
1040 ASSERT(((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) != 0) ==
1041 ((ip->i_iocore.io_flags & XFS_IOCORE_RT) != 0));
1043 return xfs_iomap(io, offset, count, flags, iomapp, niomaps);
1047 * Wrapper around bdstrat so that we can stop data
1048 * from going to disk in case we are shutting down the filesystem.
1049 * Typically user data goes thru this path; one of the exceptions
1050 * is the superblock.
1054 struct xfs_mount *mp,
1058 if (!XFS_FORCED_SHUTDOWN(mp)) {
1059 /* Grio redirection would go here
1060 * if (XFS_BUF_IS_GRIO(bp)) {
1063 xfs_buf_iorequest(bp);
1067 xfs_buftrace("XFSBDSTRAT IOERROR", bp);
1068 return (xfs_bioerror_relse(bp));
1072 * If the underlying (data/log/rt) device is readonly, there are some
1073 * operations that cannot proceed.
1076 xfs_dev_is_read_only(
1080 if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1081 xfs_readonly_buftarg(mp->m_logdev_targp) ||
1082 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1084 "XFS: %s required on read-only device.", message);
1086 "XFS: write access unavailable, cannot proceed.");