1 /* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
4 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * General Public License for more details.
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
23 #include <linux/slab.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <asm/byteorder.h>
27 #include <linux/swap.h>
28 #include <linux/pipe_fs_i.h>
29 #include <linux/mpage.h>
30 #include <linux/quotaops.h>
32 #define MLOG_MASK_PREFIX ML_FILE_IO
33 #include <cluster/masklog.h>
40 #include "extent_map.h"
48 #include "buffer_head_io.h"
50 static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
51 struct buffer_head *bh_result, int create)
55 struct ocfs2_dinode *fe = NULL;
56 struct buffer_head *bh = NULL;
57 struct buffer_head *buffer_cache_bh = NULL;
58 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
61 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
62 (unsigned long long)iblock, bh_result, create);
64 BUG_ON(ocfs2_inode_is_fast_symlink(inode));
66 if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
67 mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
68 (unsigned long long)iblock);
72 status = ocfs2_read_inode_block(inode, &bh);
77 fe = (struct ocfs2_dinode *) bh->b_data;
79 if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
80 le32_to_cpu(fe->i_clusters))) {
81 mlog(ML_ERROR, "block offset is outside the allocated size: "
82 "%llu\n", (unsigned long long)iblock);
86 /* We don't use the page cache to create symlink data, so if
87 * need be, copy it over from the buffer cache. */
88 if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
89 u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
91 buffer_cache_bh = sb_getblk(osb->sb, blkno);
92 if (!buffer_cache_bh) {
93 mlog(ML_ERROR, "couldn't getblock for symlink!\n");
97 /* we haven't locked out transactions, so a commit
98 * could've happened. Since we've got a reference on
99 * the bh, even if it commits while we're doing the
100 * copy, the data is still good. */
101 if (buffer_jbd(buffer_cache_bh)
102 && ocfs2_inode_is_new(inode)) {
103 kaddr = kmap_atomic(bh_result->b_page, KM_USER0);
105 mlog(ML_ERROR, "couldn't kmap!\n");
108 memcpy(kaddr + (bh_result->b_size * iblock),
109 buffer_cache_bh->b_data,
111 kunmap_atomic(kaddr, KM_USER0);
112 set_buffer_uptodate(bh_result);
114 brelse(buffer_cache_bh);
117 map_bh(bh_result, inode->i_sb,
118 le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
129 static int ocfs2_get_block(struct inode *inode, sector_t iblock,
130 struct buffer_head *bh_result, int create)
133 unsigned int ext_flags;
134 u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
135 u64 p_blkno, count, past_eof;
136 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
138 mlog_entry("(0x%p, %llu, 0x%p, %d)\n", inode,
139 (unsigned long long)iblock, bh_result, create);
141 if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
142 mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
143 inode, inode->i_ino);
145 if (S_ISLNK(inode->i_mode)) {
146 /* this always does I/O for some reason. */
147 err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
151 err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
154 mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
155 "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
156 (unsigned long long)p_blkno);
160 if (max_blocks < count)
164 * ocfs2 never allocates in this function - the only time we
165 * need to use BH_New is when we're extending i_size on a file
166 * system which doesn't support holes, in which case BH_New
167 * allows block_prepare_write() to zero.
169 * If we see this on a sparse file system, then a truncate has
170 * raced us and removed the cluster. In this case, we clear
171 * the buffers dirty and uptodate bits and let the buffer code
172 * ignore it as a hole.
174 if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
175 clear_buffer_dirty(bh_result);
176 clear_buffer_uptodate(bh_result);
180 /* Treat the unwritten extent as a hole for zeroing purposes. */
181 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
182 map_bh(bh_result, inode->i_sb, p_blkno);
184 bh_result->b_size = count << inode->i_blkbits;
186 if (!ocfs2_sparse_alloc(osb)) {
190 "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
191 (unsigned long long)iblock,
192 (unsigned long long)p_blkno,
193 (unsigned long long)OCFS2_I(inode)->ip_blkno);
194 mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
198 past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
199 mlog(0, "Inode %lu, past_eof = %llu\n", inode->i_ino,
200 (unsigned long long)past_eof);
202 if (create && (iblock >= past_eof))
203 set_buffer_new(bh_result);
214 int ocfs2_read_inline_data(struct inode *inode, struct page *page,
215 struct buffer_head *di_bh)
219 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
221 if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
222 ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
223 (unsigned long long)OCFS2_I(inode)->ip_blkno);
227 size = i_size_read(inode);
229 if (size > PAGE_CACHE_SIZE ||
230 size > ocfs2_max_inline_data(inode->i_sb)) {
231 ocfs2_error(inode->i_sb,
232 "Inode %llu has with inline data has bad size: %Lu",
233 (unsigned long long)OCFS2_I(inode)->ip_blkno,
234 (unsigned long long)size);
238 kaddr = kmap_atomic(page, KM_USER0);
240 memcpy(kaddr, di->id2.i_data.id_data, size);
241 /* Clear the remaining part of the page */
242 memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
243 flush_dcache_page(page);
244 kunmap_atomic(kaddr, KM_USER0);
246 SetPageUptodate(page);
251 static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
254 struct buffer_head *di_bh = NULL;
256 BUG_ON(!PageLocked(page));
257 BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
259 ret = ocfs2_read_inode_block(inode, &di_bh);
265 ret = ocfs2_read_inline_data(inode, page, di_bh);
273 static int ocfs2_readpage(struct file *file, struct page *page)
275 struct inode *inode = page->mapping->host;
276 struct ocfs2_inode_info *oi = OCFS2_I(inode);
277 loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
280 mlog_entry("(0x%p, %lu)\n", file, (page ? page->index : 0));
282 ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
284 if (ret == AOP_TRUNCATED_PAGE)
290 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
291 ret = AOP_TRUNCATED_PAGE;
292 goto out_inode_unlock;
296 * i_size might have just been updated as we grabed the meta lock. We
297 * might now be discovering a truncate that hit on another node.
298 * block_read_full_page->get_block freaks out if it is asked to read
299 * beyond the end of a file, so we check here. Callers
300 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
301 * and notice that the page they just read isn't needed.
303 * XXX sys_readahead() seems to get that wrong?
305 if (start >= i_size_read(inode)) {
306 zero_user(page, 0, PAGE_SIZE);
307 SetPageUptodate(page);
312 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
313 ret = ocfs2_readpage_inline(inode, page);
315 ret = block_read_full_page(page, ocfs2_get_block);
319 up_read(&OCFS2_I(inode)->ip_alloc_sem);
321 ocfs2_inode_unlock(inode, 0);
330 * This is used only for read-ahead. Failures or difficult to handle
331 * situations are safe to ignore.
333 * Right now, we don't bother with BH_Boundary - in-inode extent lists
334 * are quite large (243 extents on 4k blocks), so most inodes don't
335 * grow out to a tree. If need be, detecting boundary extents could
336 * trivially be added in a future version of ocfs2_get_block().
338 static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
339 struct list_head *pages, unsigned nr_pages)
342 struct inode *inode = mapping->host;
343 struct ocfs2_inode_info *oi = OCFS2_I(inode);
348 * Use the nonblocking flag for the dlm code to avoid page
349 * lock inversion, but don't bother with retrying.
351 ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
355 if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
356 ocfs2_inode_unlock(inode, 0);
361 * Don't bother with inline-data. There isn't anything
362 * to read-ahead in that case anyway...
364 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
368 * Check whether a remote node truncated this file - we just
369 * drop out in that case as it's not worth handling here.
371 last = list_entry(pages->prev, struct page, lru);
372 start = (loff_t)last->index << PAGE_CACHE_SHIFT;
373 if (start >= i_size_read(inode))
376 err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
379 up_read(&oi->ip_alloc_sem);
380 ocfs2_inode_unlock(inode, 0);
385 /* Note: Because we don't support holes, our allocation has
386 * already happened (allocation writes zeros to the file data)
387 * so we don't have to worry about ordered writes in
390 * ->writepage is called during the process of invalidating the page cache
391 * during blocked lock processing. It can't block on any cluster locks
392 * to during block mapping. It's relying on the fact that the block
393 * mapping can't have disappeared under the dirty pages that it is
394 * being asked to write back.
396 static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
400 mlog_entry("(0x%p)\n", page);
402 ret = block_write_full_page(page, ocfs2_get_block, wbc);
410 * This is called from ocfs2_write_zero_page() which has handled it's
411 * own cluster locking and has ensured allocation exists for those
412 * blocks to be written.
414 int ocfs2_prepare_write_nolock(struct inode *inode, struct page *page,
415 unsigned from, unsigned to)
419 ret = block_prepare_write(page, from, to, ocfs2_get_block);
424 /* Taken from ext3. We don't necessarily need the full blown
425 * functionality yet, but IMHO it's better to cut and paste the whole
426 * thing so we can avoid introducing our own bugs (and easily pick up
427 * their fixes when they happen) --Mark */
428 int walk_page_buffers( handle_t *handle,
429 struct buffer_head *head,
433 int (*fn)( handle_t *handle,
434 struct buffer_head *bh))
436 struct buffer_head *bh;
437 unsigned block_start, block_end;
438 unsigned blocksize = head->b_size;
440 struct buffer_head *next;
442 for ( bh = head, block_start = 0;
443 ret == 0 && (bh != head || !block_start);
444 block_start = block_end, bh = next)
446 next = bh->b_this_page;
447 block_end = block_start + blocksize;
448 if (block_end <= from || block_start >= to) {
449 if (partial && !buffer_uptodate(bh))
453 err = (*fn)(handle, bh);
460 handle_t *ocfs2_start_walk_page_trans(struct inode *inode,
465 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
469 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
470 if (IS_ERR(handle)) {
476 if (ocfs2_should_order_data(inode)) {
477 ret = ocfs2_jbd2_file_inode(handle, inode);
484 ocfs2_commit_trans(osb, handle);
485 handle = ERR_PTR(ret);
490 static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
495 struct inode *inode = mapping->host;
497 mlog_entry("(block = %llu)\n", (unsigned long long)block);
499 /* We don't need to lock journal system files, since they aren't
500 * accessed concurrently from multiple nodes.
502 if (!INODE_JOURNAL(inode)) {
503 err = ocfs2_inode_lock(inode, NULL, 0);
509 down_read(&OCFS2_I(inode)->ip_alloc_sem);
512 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
513 err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
516 if (!INODE_JOURNAL(inode)) {
517 up_read(&OCFS2_I(inode)->ip_alloc_sem);
518 ocfs2_inode_unlock(inode, 0);
522 mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
523 (unsigned long long)block);
529 status = err ? 0 : p_blkno;
531 mlog_exit((int)status);
537 * TODO: Make this into a generic get_blocks function.
539 * From do_direct_io in direct-io.c:
540 * "So what we do is to permit the ->get_blocks function to populate
541 * bh.b_size with the size of IO which is permitted at this offset and
544 * This function is called directly from get_more_blocks in direct-io.c.
546 * called like this: dio->get_blocks(dio->inode, fs_startblk,
547 * fs_count, map_bh, dio->rw == WRITE);
549 static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
550 struct buffer_head *bh_result, int create)
553 u64 p_blkno, inode_blocks, contig_blocks;
554 unsigned int ext_flags;
555 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
556 unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
558 /* This function won't even be called if the request isn't all
559 * nicely aligned and of the right size, so there's no need
560 * for us to check any of that. */
562 inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
565 * Any write past EOF is not allowed because we'd be extending.
567 if (create && (iblock + max_blocks) > inode_blocks) {
572 /* This figures out the size of the next contiguous block, and
573 * our logical offset */
574 ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575 &contig_blocks, &ext_flags);
577 mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578 (unsigned long long)iblock);
583 if (!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)) && !p_blkno && create) {
584 ocfs2_error(inode->i_sb,
585 "Inode %llu has a hole at block %llu\n",
586 (unsigned long long)OCFS2_I(inode)->ip_blkno,
587 (unsigned long long)iblock);
593 * get_more_blocks() expects us to describe a hole by clearing
594 * the mapped bit on bh_result().
596 * Consider an unwritten extent as a hole.
598 if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
599 map_bh(bh_result, inode->i_sb, p_blkno);
602 * ocfs2_prepare_inode_for_write() should have caught
603 * the case where we'd be filling a hole and triggered
604 * a buffered write instead.
612 clear_buffer_mapped(bh_result);
615 /* make sure we don't map more than max_blocks blocks here as
616 that's all the kernel will handle at this point. */
617 if (max_blocks < contig_blocks)
618 contig_blocks = max_blocks;
619 bh_result->b_size = contig_blocks << blocksize_bits;
625 * ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
626 * particularly interested in the aio/dio case. Like the core uses
627 * i_alloc_sem, we use the rw_lock DLM lock to protect io on one node from
628 * truncation on another.
630 static void ocfs2_dio_end_io(struct kiocb *iocb,
635 struct inode *inode = iocb->ki_filp->f_path.dentry->d_inode;
638 /* this io's submitter should not have unlocked this before we could */
639 BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
641 ocfs2_iocb_clear_rw_locked(iocb);
643 level = ocfs2_iocb_rw_locked_level(iocb);
645 up_read(&inode->i_alloc_sem);
646 ocfs2_rw_unlock(inode, level);
650 * ocfs2_invalidatepage() and ocfs2_releasepage() are shamelessly stolen
651 * from ext3. PageChecked() bits have been removed as OCFS2 does not
652 * do journalled data.
654 static void ocfs2_invalidatepage(struct page *page, unsigned long offset)
656 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
658 jbd2_journal_invalidatepage(journal, page, offset);
661 static int ocfs2_releasepage(struct page *page, gfp_t wait)
663 journal_t *journal = OCFS2_SB(page->mapping->host->i_sb)->journal->j_journal;
665 if (!page_has_buffers(page))
667 return jbd2_journal_try_to_free_buffers(journal, page, wait);
670 static ssize_t ocfs2_direct_IO(int rw,
672 const struct iovec *iov,
674 unsigned long nr_segs)
676 struct file *file = iocb->ki_filp;
677 struct inode *inode = file->f_path.dentry->d_inode->i_mapping->host;
683 * Fallback to buffered I/O if we see an inode without
686 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
689 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
690 inode->i_sb->s_bdev, iov, offset,
692 ocfs2_direct_IO_get_blocks,
699 static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
704 unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
706 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
709 cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
711 cluster_start = cpos % cpp;
712 cluster_start = cluster_start << osb->s_clustersize_bits;
714 cluster_end = cluster_start + osb->s_clustersize;
717 BUG_ON(cluster_start > PAGE_SIZE);
718 BUG_ON(cluster_end > PAGE_SIZE);
721 *start = cluster_start;
727 * 'from' and 'to' are the region in the page to avoid zeroing.
729 * If pagesize > clustersize, this function will avoid zeroing outside
730 * of the cluster boundary.
732 * from == to == 0 is code for "zero the entire cluster region"
734 static void ocfs2_clear_page_regions(struct page *page,
735 struct ocfs2_super *osb, u32 cpos,
736 unsigned from, unsigned to)
739 unsigned int cluster_start, cluster_end;
741 ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
743 kaddr = kmap_atomic(page, KM_USER0);
746 if (from > cluster_start)
747 memset(kaddr + cluster_start, 0, from - cluster_start);
748 if (to < cluster_end)
749 memset(kaddr + to, 0, cluster_end - to);
751 memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
754 kunmap_atomic(kaddr, KM_USER0);
758 * Nonsparse file systems fully allocate before we get to the write
759 * code. This prevents ocfs2_write() from tagging the write as an
760 * allocating one, which means ocfs2_map_page_blocks() might try to
761 * read-in the blocks at the tail of our file. Avoid reading them by
762 * testing i_size against each block offset.
764 static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
765 unsigned int block_start)
767 u64 offset = page_offset(page) + block_start;
769 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
772 if (i_size_read(inode) > offset)
779 * Some of this taken from block_prepare_write(). We already have our
780 * mapping by now though, and the entire write will be allocating or
781 * it won't, so not much need to use BH_New.
783 * This will also skip zeroing, which is handled externally.
785 int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
786 struct inode *inode, unsigned int from,
787 unsigned int to, int new)
790 struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
791 unsigned int block_end, block_start;
792 unsigned int bsize = 1 << inode->i_blkbits;
794 if (!page_has_buffers(page))
795 create_empty_buffers(page, bsize, 0);
797 head = page_buffers(page);
798 for (bh = head, block_start = 0; bh != head || !block_start;
799 bh = bh->b_this_page, block_start += bsize) {
800 block_end = block_start + bsize;
802 clear_buffer_new(bh);
805 * Ignore blocks outside of our i/o range -
806 * they may belong to unallocated clusters.
808 if (block_start >= to || block_end <= from) {
809 if (PageUptodate(page))
810 set_buffer_uptodate(bh);
815 * For an allocating write with cluster size >= page
816 * size, we always write the entire page.
821 if (!buffer_mapped(bh)) {
822 map_bh(bh, inode->i_sb, *p_blkno);
823 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
826 if (PageUptodate(page)) {
827 if (!buffer_uptodate(bh))
828 set_buffer_uptodate(bh);
829 } else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
831 ocfs2_should_read_blk(inode, page, block_start) &&
832 (block_start < from || block_end > to)) {
833 ll_rw_block(READ, 1, &bh);
837 *p_blkno = *p_blkno + 1;
841 * If we issued read requests - let them complete.
843 while(wait_bh > wait) {
844 wait_on_buffer(*--wait_bh);
845 if (!buffer_uptodate(*wait_bh))
849 if (ret == 0 || !new)
853 * If we get -EIO above, zero out any newly allocated blocks
854 * to avoid exposing stale data.
859 block_end = block_start + bsize;
860 if (block_end <= from)
862 if (block_start >= to)
865 zero_user(page, block_start, bh->b_size);
866 set_buffer_uptodate(bh);
867 mark_buffer_dirty(bh);
870 block_start = block_end;
871 bh = bh->b_this_page;
872 } while (bh != head);
877 #if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
878 #define OCFS2_MAX_CTXT_PAGES 1
880 #define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
883 #define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
886 * Describe the state of a single cluster to be written to.
888 struct ocfs2_write_cluster_desc {
892 * Give this a unique field because c_phys eventually gets
896 unsigned c_unwritten;
899 static inline int ocfs2_should_zero_cluster(struct ocfs2_write_cluster_desc *d)
901 return d->c_new || d->c_unwritten;
904 struct ocfs2_write_ctxt {
905 /* Logical cluster position / len of write */
909 struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
912 * This is true if page_size > cluster_size.
914 * It triggers a set of special cases during write which might
915 * have to deal with allocating writes to partial pages.
917 unsigned int w_large_pages;
920 * Pages involved in this write.
922 * w_target_page is the page being written to by the user.
924 * w_pages is an array of pages which always contains
925 * w_target_page, and in the case of an allocating write with
926 * page_size < cluster size, it will contain zero'd and mapped
927 * pages adjacent to w_target_page which need to be written
928 * out in so that future reads from that region will get
931 struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
932 unsigned int w_num_pages;
933 struct page *w_target_page;
936 * ocfs2_write_end() uses this to know what the real range to
937 * write in the target should be.
939 unsigned int w_target_from;
940 unsigned int w_target_to;
943 * We could use journal_current_handle() but this is cleaner,
948 struct buffer_head *w_di_bh;
950 struct ocfs2_cached_dealloc_ctxt w_dealloc;
953 void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
957 for(i = 0; i < num_pages; i++) {
959 unlock_page(pages[i]);
960 mark_page_accessed(pages[i]);
961 page_cache_release(pages[i]);
966 static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
968 ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
974 static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
975 struct ocfs2_super *osb, loff_t pos,
976 unsigned len, struct buffer_head *di_bh)
979 struct ocfs2_write_ctxt *wc;
981 wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
985 wc->w_cpos = pos >> osb->s_clustersize_bits;
986 cend = (pos + len - 1) >> osb->s_clustersize_bits;
987 wc->w_clen = cend - wc->w_cpos + 1;
991 if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
992 wc->w_large_pages = 1;
994 wc->w_large_pages = 0;
996 ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1004 * If a page has any new buffers, zero them out here, and mark them uptodate
1005 * and dirty so they'll be written out (in order to prevent uninitialised
1006 * block data from leaking). And clear the new bit.
1008 static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1010 unsigned int block_start, block_end;
1011 struct buffer_head *head, *bh;
1013 BUG_ON(!PageLocked(page));
1014 if (!page_has_buffers(page))
1017 bh = head = page_buffers(page);
1020 block_end = block_start + bh->b_size;
1022 if (buffer_new(bh)) {
1023 if (block_end > from && block_start < to) {
1024 if (!PageUptodate(page)) {
1025 unsigned start, end;
1027 start = max(from, block_start);
1028 end = min(to, block_end);
1030 zero_user_segment(page, start, end);
1031 set_buffer_uptodate(bh);
1034 clear_buffer_new(bh);
1035 mark_buffer_dirty(bh);
1039 block_start = block_end;
1040 bh = bh->b_this_page;
1041 } while (bh != head);
1045 * Only called when we have a failure during allocating write to write
1046 * zero's to the newly allocated region.
1048 static void ocfs2_write_failure(struct inode *inode,
1049 struct ocfs2_write_ctxt *wc,
1050 loff_t user_pos, unsigned user_len)
1053 unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1054 to = user_pos + user_len;
1055 struct page *tmppage;
1057 ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1059 for(i = 0; i < wc->w_num_pages; i++) {
1060 tmppage = wc->w_pages[i];
1062 if (page_has_buffers(tmppage)) {
1063 if (ocfs2_should_order_data(inode))
1064 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1066 block_commit_write(tmppage, from, to);
1071 static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1072 struct ocfs2_write_ctxt *wc,
1073 struct page *page, u32 cpos,
1074 loff_t user_pos, unsigned user_len,
1078 unsigned int map_from = 0, map_to = 0;
1079 unsigned int cluster_start, cluster_end;
1080 unsigned int user_data_from = 0, user_data_to = 0;
1082 ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1083 &cluster_start, &cluster_end);
1085 if (page == wc->w_target_page) {
1086 map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1087 map_to = map_from + user_len;
1090 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1091 cluster_start, cluster_end,
1094 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1095 map_from, map_to, new);
1101 user_data_from = map_from;
1102 user_data_to = map_to;
1104 map_from = cluster_start;
1105 map_to = cluster_end;
1109 * If we haven't allocated the new page yet, we
1110 * shouldn't be writing it out without copying user
1111 * data. This is likely a math error from the caller.
1115 map_from = cluster_start;
1116 map_to = cluster_end;
1118 ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1119 cluster_start, cluster_end, new);
1127 * Parts of newly allocated pages need to be zero'd.
1129 * Above, we have also rewritten 'to' and 'from' - as far as
1130 * the rest of the function is concerned, the entire cluster
1131 * range inside of a page needs to be written.
1133 * We can skip this if the page is up to date - it's already
1134 * been zero'd from being read in as a hole.
1136 if (new && !PageUptodate(page))
1137 ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1138 cpos, user_data_from, user_data_to);
1140 flush_dcache_page(page);
1147 * This function will only grab one clusters worth of pages.
1149 static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1150 struct ocfs2_write_ctxt *wc,
1151 u32 cpos, loff_t user_pos, int new,
1152 struct page *mmap_page)
1155 unsigned long start, target_index, index;
1156 struct inode *inode = mapping->host;
1158 target_index = user_pos >> PAGE_CACHE_SHIFT;
1161 * Figure out how many pages we'll be manipulating here. For
1162 * non allocating write, we just change the one
1163 * page. Otherwise, we'll need a whole clusters worth.
1166 wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1167 start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1169 wc->w_num_pages = 1;
1170 start = target_index;
1173 for(i = 0; i < wc->w_num_pages; i++) {
1176 if (index == target_index && mmap_page) {
1178 * ocfs2_pagemkwrite() is a little different
1179 * and wants us to directly use the page
1182 lock_page(mmap_page);
1184 if (mmap_page->mapping != mapping) {
1185 unlock_page(mmap_page);
1187 * Sanity check - the locking in
1188 * ocfs2_pagemkwrite() should ensure
1189 * that this code doesn't trigger.
1196 page_cache_get(mmap_page);
1197 wc->w_pages[i] = mmap_page;
1199 wc->w_pages[i] = find_or_create_page(mapping, index,
1201 if (!wc->w_pages[i]) {
1208 if (index == target_index)
1209 wc->w_target_page = wc->w_pages[i];
1216 * Prepare a single cluster for write one cluster into the file.
1218 static int ocfs2_write_cluster(struct address_space *mapping,
1219 u32 phys, unsigned int unwritten,
1220 struct ocfs2_alloc_context *data_ac,
1221 struct ocfs2_alloc_context *meta_ac,
1222 struct ocfs2_write_ctxt *wc, u32 cpos,
1223 loff_t user_pos, unsigned user_len)
1225 int ret, i, new, should_zero = 0;
1226 u64 v_blkno, p_blkno;
1227 struct inode *inode = mapping->host;
1228 struct ocfs2_extent_tree et;
1230 new = phys == 0 ? 1 : 0;
1231 if (new || unwritten)
1238 * This is safe to call with the page locks - it won't take
1239 * any additional semaphores or cluster locks.
1242 ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1243 &tmp_pos, 1, 0, wc->w_di_bh,
1244 wc->w_handle, data_ac,
1247 * This shouldn't happen because we must have already
1248 * calculated the correct meta data allocation required. The
1249 * internal tree allocation code should know how to increase
1250 * transaction credits itself.
1252 * If need be, we could handle -EAGAIN for a
1253 * RESTART_TRANS here.
1255 mlog_bug_on_msg(ret == -EAGAIN,
1256 "Inode %llu: EAGAIN return during allocation.\n",
1257 (unsigned long long)OCFS2_I(inode)->ip_blkno);
1262 } else if (unwritten) {
1263 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1264 ret = ocfs2_mark_extent_written(inode, &et,
1265 wc->w_handle, cpos, 1, phys,
1266 meta_ac, &wc->w_dealloc);
1274 v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1276 v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1279 * The only reason this should fail is due to an inability to
1280 * find the extent added.
1282 ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1285 ocfs2_error(inode->i_sb, "Corrupting extend for inode %llu, "
1286 "at logical block %llu",
1287 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1288 (unsigned long long)v_blkno);
1292 BUG_ON(p_blkno == 0);
1294 for(i = 0; i < wc->w_num_pages; i++) {
1297 tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1298 wc->w_pages[i], cpos,
1309 * We only have cleanup to do in case of allocating write.
1312 ocfs2_write_failure(inode, wc, user_pos, user_len);
1319 static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1320 struct ocfs2_alloc_context *data_ac,
1321 struct ocfs2_alloc_context *meta_ac,
1322 struct ocfs2_write_ctxt *wc,
1323 loff_t pos, unsigned len)
1327 unsigned int local_len = len;
1328 struct ocfs2_write_cluster_desc *desc;
1329 struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1331 for (i = 0; i < wc->w_clen; i++) {
1332 desc = &wc->w_desc[i];
1335 * We have to make sure that the total write passed in
1336 * doesn't extend past a single cluster.
1339 cluster_off = pos & (osb->s_clustersize - 1);
1340 if ((cluster_off + local_len) > osb->s_clustersize)
1341 local_len = osb->s_clustersize - cluster_off;
1343 ret = ocfs2_write_cluster(mapping, desc->c_phys,
1344 desc->c_unwritten, data_ac, meta_ac,
1345 wc, desc->c_cpos, pos, local_len);
1361 * ocfs2_write_end() wants to know which parts of the target page it
1362 * should complete the write on. It's easiest to compute them ahead of
1363 * time when a more complete view of the write is available.
1365 static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1366 struct ocfs2_write_ctxt *wc,
1367 loff_t pos, unsigned len, int alloc)
1369 struct ocfs2_write_cluster_desc *desc;
1371 wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1372 wc->w_target_to = wc->w_target_from + len;
1378 * Allocating write - we may have different boundaries based
1379 * on page size and cluster size.
1381 * NOTE: We can no longer compute one value from the other as
1382 * the actual write length and user provided length may be
1386 if (wc->w_large_pages) {
1388 * We only care about the 1st and last cluster within
1389 * our range and whether they should be zero'd or not. Either
1390 * value may be extended out to the start/end of a
1391 * newly allocated cluster.
1393 desc = &wc->w_desc[0];
1394 if (ocfs2_should_zero_cluster(desc))
1395 ocfs2_figure_cluster_boundaries(osb,
1400 desc = &wc->w_desc[wc->w_clen - 1];
1401 if (ocfs2_should_zero_cluster(desc))
1402 ocfs2_figure_cluster_boundaries(osb,
1407 wc->w_target_from = 0;
1408 wc->w_target_to = PAGE_CACHE_SIZE;
1413 * Populate each single-cluster write descriptor in the write context
1414 * with information about the i/o to be done.
1416 * Returns the number of clusters that will have to be allocated, as
1417 * well as a worst case estimate of the number of extent records that
1418 * would have to be created during a write to an unwritten region.
1420 static int ocfs2_populate_write_desc(struct inode *inode,
1421 struct ocfs2_write_ctxt *wc,
1422 unsigned int *clusters_to_alloc,
1423 unsigned int *extents_to_split)
1426 struct ocfs2_write_cluster_desc *desc;
1427 unsigned int num_clusters = 0;
1428 unsigned int ext_flags = 0;
1432 *clusters_to_alloc = 0;
1433 *extents_to_split = 0;
1435 for (i = 0; i < wc->w_clen; i++) {
1436 desc = &wc->w_desc[i];
1437 desc->c_cpos = wc->w_cpos + i;
1439 if (num_clusters == 0) {
1441 * Need to look up the next extent record.
1443 ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1444 &num_clusters, &ext_flags);
1451 * Assume worst case - that we're writing in
1452 * the middle of the extent.
1454 * We can assume that the write proceeds from
1455 * left to right, in which case the extent
1456 * insert code is smart enough to coalesce the
1457 * next splits into the previous records created.
1459 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1460 *extents_to_split = *extents_to_split + 2;
1463 * Only increment phys if it doesn't describe
1469 desc->c_phys = phys;
1472 *clusters_to_alloc = *clusters_to_alloc + 1;
1474 if (ext_flags & OCFS2_EXT_UNWRITTEN)
1475 desc->c_unwritten = 1;
1485 static int ocfs2_write_begin_inline(struct address_space *mapping,
1486 struct inode *inode,
1487 struct ocfs2_write_ctxt *wc)
1490 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1493 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1495 page = find_or_create_page(mapping, 0, GFP_NOFS);
1502 * If we don't set w_num_pages then this page won't get unlocked
1503 * and freed on cleanup of the write context.
1505 wc->w_pages[0] = wc->w_target_page = page;
1506 wc->w_num_pages = 1;
1508 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1509 if (IS_ERR(handle)) {
1510 ret = PTR_ERR(handle);
1515 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1516 OCFS2_JOURNAL_ACCESS_WRITE);
1518 ocfs2_commit_trans(osb, handle);
1524 if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1525 ocfs2_set_inode_data_inline(inode, di);
1527 if (!PageUptodate(page)) {
1528 ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1530 ocfs2_commit_trans(osb, handle);
1536 wc->w_handle = handle;
1541 int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1543 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1545 if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1550 static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1551 struct inode *inode, loff_t pos,
1552 unsigned len, struct page *mmap_page,
1553 struct ocfs2_write_ctxt *wc)
1555 int ret, written = 0;
1556 loff_t end = pos + len;
1557 struct ocfs2_inode_info *oi = OCFS2_I(inode);
1559 mlog(0, "Inode %llu, write of %u bytes at off %llu. features: 0x%x\n",
1560 (unsigned long long)oi->ip_blkno, len, (unsigned long long)pos,
1561 oi->ip_dyn_features);
1564 * Handle inodes which already have inline data 1st.
1566 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1567 if (mmap_page == NULL &&
1568 ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1569 goto do_inline_write;
1572 * The write won't fit - we have to give this inode an
1573 * inline extent list now.
1575 ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1582 * Check whether the inode can accept inline data.
1584 if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1588 * Check whether the write can fit.
1590 if (mmap_page || end > ocfs2_max_inline_data(inode->i_sb))
1594 ret = ocfs2_write_begin_inline(mapping, inode, wc);
1601 * This signals to the caller that the data can be written
1606 return written ? written : ret;
1610 * This function only does anything for file systems which can't
1611 * handle sparse files.
1613 * What we want to do here is fill in any hole between the current end
1614 * of allocation and the end of our write. That way the rest of the
1615 * write path can treat it as an non-allocating write, which has no
1616 * special case code for sparse/nonsparse files.
1618 static int ocfs2_expand_nonsparse_inode(struct inode *inode, loff_t pos,
1620 struct ocfs2_write_ctxt *wc)
1623 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1624 loff_t newsize = pos + len;
1626 if (ocfs2_sparse_alloc(osb))
1629 if (newsize <= i_size_read(inode))
1632 ret = ocfs2_extend_no_holes(inode, newsize, newsize - len);
1639 int ocfs2_write_begin_nolock(struct address_space *mapping,
1640 loff_t pos, unsigned len, unsigned flags,
1641 struct page **pagep, void **fsdata,
1642 struct buffer_head *di_bh, struct page *mmap_page)
1644 int ret, credits = OCFS2_INODE_UPDATE_CREDITS;
1645 unsigned int clusters_to_alloc, extents_to_split;
1646 struct ocfs2_write_ctxt *wc;
1647 struct inode *inode = mapping->host;
1648 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1649 struct ocfs2_dinode *di;
1650 struct ocfs2_alloc_context *data_ac = NULL;
1651 struct ocfs2_alloc_context *meta_ac = NULL;
1653 struct ocfs2_extent_tree et;
1655 ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
1661 if (ocfs2_supports_inline_data(osb)) {
1662 ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
1674 ret = ocfs2_expand_nonsparse_inode(inode, pos, len, wc);
1680 ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
1687 di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1690 * We set w_target_from, w_target_to here so that
1691 * ocfs2_write_end() knows which range in the target page to
1692 * write out. An allocation requires that we write the entire
1695 if (clusters_to_alloc || extents_to_split) {
1697 * XXX: We are stretching the limits of
1698 * ocfs2_lock_allocators(). It greatly over-estimates
1699 * the work to be done.
1701 mlog(0, "extend inode %llu, i_size = %lld, di->i_clusters = %u,"
1702 " clusters_to_add = %u, extents_to_split = %u\n",
1703 (unsigned long long)OCFS2_I(inode)->ip_blkno,
1704 (long long)i_size_read(inode), le32_to_cpu(di->i_clusters),
1705 clusters_to_alloc, extents_to_split);
1707 ocfs2_init_dinode_extent_tree(&et, inode, wc->w_di_bh);
1708 ret = ocfs2_lock_allocators(inode, &et,
1709 clusters_to_alloc, extents_to_split,
1710 &data_ac, &meta_ac);
1716 credits = ocfs2_calc_extend_credits(inode->i_sb,
1722 ocfs2_set_target_boundaries(osb, wc, pos, len,
1723 clusters_to_alloc + extents_to_split);
1725 handle = ocfs2_start_trans(osb, credits);
1726 if (IS_ERR(handle)) {
1727 ret = PTR_ERR(handle);
1732 wc->w_handle = handle;
1734 if (clusters_to_alloc && vfs_dq_alloc_space_nodirty(inode,
1735 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc))) {
1740 * We don't want this to fail in ocfs2_write_end(), so do it
1743 ret = ocfs2_journal_access_di(handle, inode, wc->w_di_bh,
1744 OCFS2_JOURNAL_ACCESS_WRITE);
1751 * Fill our page array first. That way we've grabbed enough so
1752 * that we can zero and flush if we error after adding the
1755 ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos,
1756 clusters_to_alloc + extents_to_split,
1763 ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
1771 ocfs2_free_alloc_context(data_ac);
1773 ocfs2_free_alloc_context(meta_ac);
1776 *pagep = wc->w_target_page;
1780 if (clusters_to_alloc)
1781 vfs_dq_free_space(inode,
1782 ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
1784 ocfs2_commit_trans(osb, handle);
1787 ocfs2_free_write_ctxt(wc);
1790 ocfs2_free_alloc_context(data_ac);
1792 ocfs2_free_alloc_context(meta_ac);
1796 static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
1797 loff_t pos, unsigned len, unsigned flags,
1798 struct page **pagep, void **fsdata)
1801 struct buffer_head *di_bh = NULL;
1802 struct inode *inode = mapping->host;
1804 ret = ocfs2_inode_lock(inode, &di_bh, 1);
1811 * Take alloc sem here to prevent concurrent lookups. That way
1812 * the mapping, zeroing and tree manipulation within
1813 * ocfs2_write() will be safe against ->readpage(). This
1814 * should also serve to lock out allocation from a shared
1817 down_write(&OCFS2_I(inode)->ip_alloc_sem);
1819 ret = ocfs2_write_begin_nolock(mapping, pos, len, flags, pagep,
1820 fsdata, di_bh, NULL);
1831 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1834 ocfs2_inode_unlock(inode, 1);
1839 static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
1840 unsigned len, unsigned *copied,
1841 struct ocfs2_dinode *di,
1842 struct ocfs2_write_ctxt *wc)
1846 if (unlikely(*copied < len)) {
1847 if (!PageUptodate(wc->w_target_page)) {
1853 kaddr = kmap_atomic(wc->w_target_page, KM_USER0);
1854 memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
1855 kunmap_atomic(kaddr, KM_USER0);
1857 mlog(0, "Data written to inode at offset %llu. "
1858 "id_count = %u, copied = %u, i_dyn_features = 0x%x\n",
1859 (unsigned long long)pos, *copied,
1860 le16_to_cpu(di->id2.i_data.id_count),
1861 le16_to_cpu(di->i_dyn_features));
1864 int ocfs2_write_end_nolock(struct address_space *mapping,
1865 loff_t pos, unsigned len, unsigned copied,
1866 struct page *page, void *fsdata)
1869 unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
1870 struct inode *inode = mapping->host;
1871 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1872 struct ocfs2_write_ctxt *wc = fsdata;
1873 struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1874 handle_t *handle = wc->w_handle;
1875 struct page *tmppage;
1877 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1878 ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
1879 goto out_write_size;
1882 if (unlikely(copied < len)) {
1883 if (!PageUptodate(wc->w_target_page))
1886 ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
1889 flush_dcache_page(wc->w_target_page);
1891 for(i = 0; i < wc->w_num_pages; i++) {
1892 tmppage = wc->w_pages[i];
1894 if (tmppage == wc->w_target_page) {
1895 from = wc->w_target_from;
1896 to = wc->w_target_to;
1898 BUG_ON(from > PAGE_CACHE_SIZE ||
1899 to > PAGE_CACHE_SIZE ||
1903 * Pages adjacent to the target (if any) imply
1904 * a hole-filling write in which case we want
1905 * to flush their entire range.
1908 to = PAGE_CACHE_SIZE;
1911 if (page_has_buffers(tmppage)) {
1912 if (ocfs2_should_order_data(inode))
1913 ocfs2_jbd2_file_inode(wc->w_handle, inode);
1914 block_commit_write(tmppage, from, to);
1920 if (pos > inode->i_size) {
1921 i_size_write(inode, pos);
1922 mark_inode_dirty(inode);
1924 inode->i_blocks = ocfs2_inode_sector_count(inode);
1925 di->i_size = cpu_to_le64((u64)i_size_read(inode));
1926 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
1927 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
1928 di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
1929 ocfs2_journal_dirty(handle, wc->w_di_bh);
1931 ocfs2_commit_trans(osb, handle);
1933 ocfs2_run_deallocs(osb, &wc->w_dealloc);
1935 ocfs2_free_write_ctxt(wc);
1940 static int ocfs2_write_end(struct file *file, struct address_space *mapping,
1941 loff_t pos, unsigned len, unsigned copied,
1942 struct page *page, void *fsdata)
1945 struct inode *inode = mapping->host;
1947 ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
1949 up_write(&OCFS2_I(inode)->ip_alloc_sem);
1950 ocfs2_inode_unlock(inode, 1);
1955 const struct address_space_operations ocfs2_aops = {
1956 .readpage = ocfs2_readpage,
1957 .readpages = ocfs2_readpages,
1958 .writepage = ocfs2_writepage,
1959 .write_begin = ocfs2_write_begin,
1960 .write_end = ocfs2_write_end,
1962 .sync_page = block_sync_page,
1963 .direct_IO = ocfs2_direct_IO,
1964 .invalidatepage = ocfs2_invalidatepage,
1965 .releasepage = ocfs2_releasepage,
1966 .migratepage = buffer_migrate_page,