2 * MTD device concatenation layer
4 * (C) 2002 Robert Kaiser <rkaiser@sysgo.de>
6 * NAND support by Christian Gan <cgan@iders.ca>
10 * $Id: mtdconcat.c,v 1.11 2005/11/07 11:14:20 gleixner Exp $
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/slab.h>
16 #include <linux/sched.h>
17 #include <linux/types.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/concat.h>
22 #include <asm/div64.h>
25 * Our storage structure:
26 * Subdev points to an array of pointers to struct mtd_info objects
27 * which is allocated along with this structure
33 struct mtd_info **subdev;
37 * how to calculate the size required for the above structure,
38 * including the pointer array subdev points to:
40 #define SIZEOF_STRUCT_MTD_CONCAT(num_subdev) \
41 ((sizeof(struct mtd_concat) + (num_subdev) * sizeof(struct mtd_info *)))
44 * Given a pointer to the MTD object in the mtd_concat structure,
45 * we can retrieve the pointer to that structure with this macro.
47 #define CONCAT(x) ((struct mtd_concat *)(x))
50 * MTD methods which look up the relevant subdevice, translate the
51 * effective address and pass through to the subdevice.
55 concat_read(struct mtd_info *mtd, loff_t from, size_t len,
56 size_t * retlen, u_char * buf)
58 struct mtd_concat *concat = CONCAT(mtd);
64 for (i = 0; i < concat->num_subdev; i++) {
65 struct mtd_info *subdev = concat->subdev[i];
68 if (from >= subdev->size) {
69 /* Not destined for this subdev */
74 if (from + len > subdev->size)
75 /* First part goes into this subdev */
76 size = subdev->size - from;
78 /* Entire transaction goes into this subdev */
81 err = subdev->read(subdev, from, size, &retsize, buf);
83 /* Save information about bitflips! */
85 if (err == -EBADMSG) {
86 mtd->ecc_stats.failed++;
88 } else if (err == -EUCLEAN) {
89 mtd->ecc_stats.corrected++;
90 /* Do not overwrite -EBADMSG !! */
109 concat_write(struct mtd_info *mtd, loff_t to, size_t len,
110 size_t * retlen, const u_char * buf)
112 struct mtd_concat *concat = CONCAT(mtd);
116 if (!(mtd->flags & MTD_WRITEABLE))
121 for (i = 0; i < concat->num_subdev; i++) {
122 struct mtd_info *subdev = concat->subdev[i];
123 size_t size, retsize;
125 if (to >= subdev->size) {
130 if (to + len > subdev->size)
131 size = subdev->size - to;
135 if (!(subdev->flags & MTD_WRITEABLE))
138 err = subdev->write(subdev, to, size, &retsize, buf);
156 concat_writev(struct mtd_info *mtd, const struct kvec *vecs,
157 unsigned long count, loff_t to, size_t * retlen)
159 struct mtd_concat *concat = CONCAT(mtd);
160 struct kvec *vecs_copy;
161 unsigned long entry_low, entry_high;
162 size_t total_len = 0;
166 if (!(mtd->flags & MTD_WRITEABLE))
171 /* Calculate total length of data */
172 for (i = 0; i < count; i++)
173 total_len += vecs[i].iov_len;
175 /* Do not allow write past end of device */
176 if ((to + total_len) > mtd->size)
179 /* Check alignment */
180 if (mtd->writesize > 1) {
182 if (do_div(__to, mtd->writesize) || (total_len % mtd->writesize))
186 /* make a copy of vecs */
187 vecs_copy = kmalloc(sizeof(struct kvec) * count, GFP_KERNEL);
190 memcpy(vecs_copy, vecs, sizeof(struct kvec) * count);
193 for (i = 0; i < concat->num_subdev; i++) {
194 struct mtd_info *subdev = concat->subdev[i];
195 size_t size, wsize, retsize, old_iov_len;
197 if (to >= subdev->size) {
202 size = min(total_len, (size_t)(subdev->size - to));
203 wsize = size; /* store for future use */
205 entry_high = entry_low;
206 while (entry_high < count) {
207 if (size <= vecs_copy[entry_high].iov_len)
209 size -= vecs_copy[entry_high++].iov_len;
212 old_iov_len = vecs_copy[entry_high].iov_len;
213 vecs_copy[entry_high].iov_len = size;
215 if (!(subdev->flags & MTD_WRITEABLE))
218 err = subdev->writev(subdev, &vecs_copy[entry_low],
219 entry_high - entry_low + 1, to, &retsize);
221 vecs_copy[entry_high].iov_len = old_iov_len - size;
222 vecs_copy[entry_high].iov_base += size;
224 entry_low = entry_high;
244 concat_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
246 struct mtd_concat *concat = CONCAT(mtd);
247 struct mtd_oob_ops devops = *ops;
250 ops->retlen = ops->oobretlen = 0;
252 for (i = 0; i < concat->num_subdev; i++) {
253 struct mtd_info *subdev = concat->subdev[i];
255 if (from >= subdev->size) {
256 from -= subdev->size;
261 if (from + devops.len > subdev->size)
262 devops.len = subdev->size - from;
264 err = subdev->read_oob(subdev, from, &devops);
265 ops->retlen += devops.retlen;
266 ops->oobretlen += devops.oobretlen;
268 /* Save information about bitflips! */
270 if (err == -EBADMSG) {
271 mtd->ecc_stats.failed++;
273 } else if (err == -EUCLEAN) {
274 mtd->ecc_stats.corrected++;
275 /* Do not overwrite -EBADMSG !! */
283 devops.len = ops->len - ops->retlen;
286 devops.datbuf += devops.retlen;
289 devops.ooblen = ops->ooblen - ops->oobretlen;
292 devops.oobbuf += ops->oobretlen;
301 concat_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops)
303 struct mtd_concat *concat = CONCAT(mtd);
304 struct mtd_oob_ops devops = *ops;
307 if (!(mtd->flags & MTD_WRITEABLE))
312 for (i = 0; i < concat->num_subdev; i++) {
313 struct mtd_info *subdev = concat->subdev[i];
315 if (to >= subdev->size) {
320 /* partial write ? */
321 if (to + devops.len > subdev->size)
322 devops.len = subdev->size - to;
324 err = subdev->write_oob(subdev, to, &devops);
325 ops->retlen += devops.retlen;
330 devops.len = ops->len - ops->retlen;
333 devops.datbuf += devops.retlen;
336 devops.ooblen = ops->ooblen - ops->oobretlen;
339 devops.oobbuf += devops.oobretlen;
346 static void concat_erase_callback(struct erase_info *instr)
348 wake_up((wait_queue_head_t *) instr->priv);
351 static int concat_dev_erase(struct mtd_info *mtd, struct erase_info *erase)
354 wait_queue_head_t waitq;
355 DECLARE_WAITQUEUE(wait, current);
358 * This code was stol^H^H^H^Hinspired by mtdchar.c
360 init_waitqueue_head(&waitq);
363 erase->callback = concat_erase_callback;
364 erase->priv = (unsigned long) &waitq;
367 * FIXME: Allow INTERRUPTIBLE. Which means
368 * not having the wait_queue head on the stack.
370 err = mtd->erase(mtd, erase);
372 set_current_state(TASK_UNINTERRUPTIBLE);
373 add_wait_queue(&waitq, &wait);
374 if (erase->state != MTD_ERASE_DONE
375 && erase->state != MTD_ERASE_FAILED)
377 remove_wait_queue(&waitq, &wait);
378 set_current_state(TASK_RUNNING);
380 err = (erase->state == MTD_ERASE_FAILED) ? -EIO : 0;
385 static int concat_erase(struct mtd_info *mtd, struct erase_info *instr)
387 struct mtd_concat *concat = CONCAT(mtd);
388 struct mtd_info *subdev;
390 u_int32_t length, offset = 0;
391 struct erase_info *erase;
393 if (!(mtd->flags & MTD_WRITEABLE))
396 if (instr->addr > concat->mtd.size)
399 if (instr->len + instr->addr > concat->mtd.size)
403 * Check for proper erase block alignment of the to-be-erased area.
404 * It is easier to do this based on the super device's erase
405 * region info rather than looking at each particular sub-device
408 if (!concat->mtd.numeraseregions) {
409 /* the easy case: device has uniform erase block size */
410 if (instr->addr & (concat->mtd.erasesize - 1))
412 if (instr->len & (concat->mtd.erasesize - 1))
415 /* device has variable erase size */
416 struct mtd_erase_region_info *erase_regions =
417 concat->mtd.eraseregions;
420 * Find the erase region where the to-be-erased area begins:
422 for (i = 0; i < concat->mtd.numeraseregions &&
423 instr->addr >= erase_regions[i].offset; i++) ;
427 * Now erase_regions[i] is the region in which the
428 * to-be-erased area begins. Verify that the starting
429 * offset is aligned to this region's erase size:
431 if (instr->addr & (erase_regions[i].erasesize - 1))
435 * now find the erase region where the to-be-erased area ends:
437 for (; i < concat->mtd.numeraseregions &&
438 (instr->addr + instr->len) >= erase_regions[i].offset;
442 * check if the ending offset is aligned to this region's erase size
444 if ((instr->addr + instr->len) & (erase_regions[i].erasesize -
449 instr->fail_addr = 0xffffffff;
451 /* make a local copy of instr to avoid modifying the caller's struct */
452 erase = kmalloc(sizeof (struct erase_info), GFP_KERNEL);
461 * find the subdevice where the to-be-erased area begins, adjust
462 * starting offset to be relative to the subdevice start
464 for (i = 0; i < concat->num_subdev; i++) {
465 subdev = concat->subdev[i];
466 if (subdev->size <= erase->addr) {
467 erase->addr -= subdev->size;
468 offset += subdev->size;
474 /* must never happen since size limit has been verified above */
475 BUG_ON(i >= concat->num_subdev);
477 /* now do the erase: */
479 for (; length > 0; i++) {
480 /* loop for all subdevices affected by this request */
481 subdev = concat->subdev[i]; /* get current subdevice */
483 /* limit length to subdevice's size: */
484 if (erase->addr + length > subdev->size)
485 erase->len = subdev->size - erase->addr;
489 if (!(subdev->flags & MTD_WRITEABLE)) {
493 length -= erase->len;
494 if ((err = concat_dev_erase(subdev, erase))) {
495 /* sanity check: should never happen since
496 * block alignment has been checked above */
497 BUG_ON(err == -EINVAL);
498 if (erase->fail_addr != 0xffffffff)
499 instr->fail_addr = erase->fail_addr + offset;
503 * erase->addr specifies the offset of the area to be
504 * erased *within the current subdevice*. It can be
505 * non-zero only the first time through this loop, i.e.
506 * for the first subdevice where blocks need to be erased.
507 * All the following erases must begin at the start of the
508 * current subdevice, i.e. at offset zero.
511 offset += subdev->size;
513 instr->state = erase->state;
519 instr->callback(instr);
523 static int concat_lock(struct mtd_info *mtd, loff_t ofs, size_t len)
525 struct mtd_concat *concat = CONCAT(mtd);
526 int i, err = -EINVAL;
528 if ((len + ofs) > mtd->size)
531 for (i = 0; i < concat->num_subdev; i++) {
532 struct mtd_info *subdev = concat->subdev[i];
535 if (ofs >= subdev->size) {
540 if (ofs + len > subdev->size)
541 size = subdev->size - ofs;
545 err = subdev->lock(subdev, ofs, size);
561 static int concat_unlock(struct mtd_info *mtd, loff_t ofs, size_t len)
563 struct mtd_concat *concat = CONCAT(mtd);
566 if ((len + ofs) > mtd->size)
569 for (i = 0; i < concat->num_subdev; i++) {
570 struct mtd_info *subdev = concat->subdev[i];
573 if (ofs >= subdev->size) {
578 if (ofs + len > subdev->size)
579 size = subdev->size - ofs;
583 err = subdev->unlock(subdev, ofs, size);
599 static void concat_sync(struct mtd_info *mtd)
601 struct mtd_concat *concat = CONCAT(mtd);
604 for (i = 0; i < concat->num_subdev; i++) {
605 struct mtd_info *subdev = concat->subdev[i];
606 subdev->sync(subdev);
610 static int concat_suspend(struct mtd_info *mtd)
612 struct mtd_concat *concat = CONCAT(mtd);
615 for (i = 0; i < concat->num_subdev; i++) {
616 struct mtd_info *subdev = concat->subdev[i];
617 if ((rc = subdev->suspend(subdev)) < 0)
623 static void concat_resume(struct mtd_info *mtd)
625 struct mtd_concat *concat = CONCAT(mtd);
628 for (i = 0; i < concat->num_subdev; i++) {
629 struct mtd_info *subdev = concat->subdev[i];
630 subdev->resume(subdev);
634 static int concat_block_isbad(struct mtd_info *mtd, loff_t ofs)
636 struct mtd_concat *concat = CONCAT(mtd);
639 if (!concat->subdev[0]->block_isbad)
645 for (i = 0; i < concat->num_subdev; i++) {
646 struct mtd_info *subdev = concat->subdev[i];
648 if (ofs >= subdev->size) {
653 res = subdev->block_isbad(subdev, ofs);
660 static int concat_block_markbad(struct mtd_info *mtd, loff_t ofs)
662 struct mtd_concat *concat = CONCAT(mtd);
663 int i, err = -EINVAL;
665 if (!concat->subdev[0]->block_markbad)
671 for (i = 0; i < concat->num_subdev; i++) {
672 struct mtd_info *subdev = concat->subdev[i];
674 if (ofs >= subdev->size) {
679 err = subdev->block_markbad(subdev, ofs);
681 mtd->ecc_stats.badblocks++;
689 * This function constructs a virtual MTD device by concatenating
690 * num_devs MTD devices. A pointer to the new device object is
691 * stored to *new_dev upon success. This function does _not_
692 * register any devices: this is the caller's responsibility.
694 struct mtd_info *mtd_concat_create(struct mtd_info *subdev[], /* subdevices to concatenate */
695 int num_devs, /* number of subdevices */
697 { /* name for the new device */
700 struct mtd_concat *concat;
701 u_int32_t max_erasesize, curr_erasesize;
702 int num_erase_region;
704 printk(KERN_NOTICE "Concatenating MTD devices:\n");
705 for (i = 0; i < num_devs; i++)
706 printk(KERN_NOTICE "(%d): \"%s\"\n", i, subdev[i]->name);
707 printk(KERN_NOTICE "into device \"%s\"\n", name);
709 /* allocate the device structure */
710 size = SIZEOF_STRUCT_MTD_CONCAT(num_devs);
711 concat = kzalloc(size, GFP_KERNEL);
714 ("memory allocation error while creating concatenated device \"%s\"\n",
718 concat->subdev = (struct mtd_info **) (concat + 1);
721 * Set up the new "super" device's MTD object structure, check for
722 * incompatibilites between the subdevices.
724 concat->mtd.type = subdev[0]->type;
725 concat->mtd.flags = subdev[0]->flags;
726 concat->mtd.size = subdev[0]->size;
727 concat->mtd.erasesize = subdev[0]->erasesize;
728 concat->mtd.writesize = subdev[0]->writesize;
729 concat->mtd.oobsize = subdev[0]->oobsize;
730 concat->mtd.oobavail = subdev[0]->oobavail;
731 if (subdev[0]->writev)
732 concat->mtd.writev = concat_writev;
733 if (subdev[0]->read_oob)
734 concat->mtd.read_oob = concat_read_oob;
735 if (subdev[0]->write_oob)
736 concat->mtd.write_oob = concat_write_oob;
737 if (subdev[0]->block_isbad)
738 concat->mtd.block_isbad = concat_block_isbad;
739 if (subdev[0]->block_markbad)
740 concat->mtd.block_markbad = concat_block_markbad;
742 concat->mtd.ecc_stats.badblocks = subdev[0]->ecc_stats.badblocks;
744 concat->subdev[0] = subdev[0];
746 for (i = 1; i < num_devs; i++) {
747 if (concat->mtd.type != subdev[i]->type) {
749 printk("Incompatible device type on \"%s\"\n",
753 if (concat->mtd.flags != subdev[i]->flags) {
755 * Expect all flags except MTD_WRITEABLE to be
756 * equal on all subdevices.
758 if ((concat->mtd.flags ^ subdev[i]->
759 flags) & ~MTD_WRITEABLE) {
761 printk("Incompatible device flags on \"%s\"\n",
765 /* if writeable attribute differs,
766 make super device writeable */
768 subdev[i]->flags & MTD_WRITEABLE;
770 concat->mtd.size += subdev[i]->size;
771 concat->mtd.ecc_stats.badblocks +=
772 subdev[i]->ecc_stats.badblocks;
773 if (concat->mtd.writesize != subdev[i]->writesize ||
774 concat->mtd.subpage_sft != subdev[i]->subpage_sft ||
775 concat->mtd.oobsize != subdev[i]->oobsize ||
776 !concat->mtd.read_oob != !subdev[i]->read_oob ||
777 !concat->mtd.write_oob != !subdev[i]->write_oob) {
779 printk("Incompatible OOB or ECC data on \"%s\"\n",
783 concat->subdev[i] = subdev[i];
787 concat->mtd.ecclayout = subdev[0]->ecclayout;
789 concat->num_subdev = num_devs;
790 concat->mtd.name = name;
792 concat->mtd.erase = concat_erase;
793 concat->mtd.read = concat_read;
794 concat->mtd.write = concat_write;
795 concat->mtd.sync = concat_sync;
796 concat->mtd.lock = concat_lock;
797 concat->mtd.unlock = concat_unlock;
798 concat->mtd.suspend = concat_suspend;
799 concat->mtd.resume = concat_resume;
802 * Combine the erase block size info of the subdevices:
804 * first, walk the map of the new device and see how
805 * many changes in erase size we have
807 max_erasesize = curr_erasesize = subdev[0]->erasesize;
808 num_erase_region = 1;
809 for (i = 0; i < num_devs; i++) {
810 if (subdev[i]->numeraseregions == 0) {
811 /* current subdevice has uniform erase size */
812 if (subdev[i]->erasesize != curr_erasesize) {
813 /* if it differs from the last subdevice's erase size, count it */
815 curr_erasesize = subdev[i]->erasesize;
816 if (curr_erasesize > max_erasesize)
817 max_erasesize = curr_erasesize;
820 /* current subdevice has variable erase size */
822 for (j = 0; j < subdev[i]->numeraseregions; j++) {
824 /* walk the list of erase regions, count any changes */
825 if (subdev[i]->eraseregions[j].erasesize !=
829 subdev[i]->eraseregions[j].
831 if (curr_erasesize > max_erasesize)
832 max_erasesize = curr_erasesize;
838 if (num_erase_region == 1) {
840 * All subdevices have the same uniform erase size.
843 concat->mtd.erasesize = curr_erasesize;
844 concat->mtd.numeraseregions = 0;
847 * erase block size varies across the subdevices: allocate
848 * space to store the data describing the variable erase regions
850 struct mtd_erase_region_info *erase_region_p;
851 u_int32_t begin, position;
853 concat->mtd.erasesize = max_erasesize;
854 concat->mtd.numeraseregions = num_erase_region;
855 concat->mtd.eraseregions = erase_region_p =
856 kmalloc(num_erase_region *
857 sizeof (struct mtd_erase_region_info), GFP_KERNEL);
858 if (!erase_region_p) {
861 ("memory allocation error while creating erase region list"
862 " for device \"%s\"\n", name);
867 * walk the map of the new device once more and fill in
868 * in erase region info:
870 curr_erasesize = subdev[0]->erasesize;
871 begin = position = 0;
872 for (i = 0; i < num_devs; i++) {
873 if (subdev[i]->numeraseregions == 0) {
874 /* current subdevice has uniform erase size */
875 if (subdev[i]->erasesize != curr_erasesize) {
877 * fill in an mtd_erase_region_info structure for the area
878 * we have walked so far:
880 erase_region_p->offset = begin;
881 erase_region_p->erasesize =
883 erase_region_p->numblocks =
884 (position - begin) / curr_erasesize;
887 curr_erasesize = subdev[i]->erasesize;
890 position += subdev[i]->size;
892 /* current subdevice has variable erase size */
894 for (j = 0; j < subdev[i]->numeraseregions; j++) {
895 /* walk the list of erase regions, count any changes */
896 if (subdev[i]->eraseregions[j].
897 erasesize != curr_erasesize) {
898 erase_region_p->offset = begin;
899 erase_region_p->erasesize =
901 erase_region_p->numblocks =
903 begin) / curr_erasesize;
907 subdev[i]->eraseregions[j].
912 subdev[i]->eraseregions[j].
913 numblocks * curr_erasesize;
917 /* Now write the final entry */
918 erase_region_p->offset = begin;
919 erase_region_p->erasesize = curr_erasesize;
920 erase_region_p->numblocks = (position - begin) / curr_erasesize;
927 * This function destroys an MTD object obtained from concat_mtd_devs()
930 void mtd_concat_destroy(struct mtd_info *mtd)
932 struct mtd_concat *concat = CONCAT(mtd);
933 if (concat->mtd.numeraseregions)
934 kfree(concat->mtd.eraseregions);
938 EXPORT_SYMBOL(mtd_concat_create);
939 EXPORT_SYMBOL(mtd_concat_destroy);
941 MODULE_LICENSE("GPL");
942 MODULE_AUTHOR("Robert Kaiser <rkaiser@sysgo.de>");
943 MODULE_DESCRIPTION("Generic support for concatenating of MTD devices");