4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
17 #include <linux/aio.h>
18 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/pagevec.h>
28 #include <linux/blkdev.h>
29 #include <linux/security.h>
30 #include <linux/syscalls.h>
33 * FIXME: remove all knowledge of the buffer layer from the core VM
35 #include <linux/buffer_head.h> /* for generic_osync_inode */
37 #include <asm/uaccess.h>
41 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
42 loff_t offset, unsigned long nr_segs);
45 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * Shared mappings now work. 15.8.1995 Bruno.
50 * finished 'unifying' the page and buffer cache and SMP-threaded the
51 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
53 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 * ->i_mmap_lock (vmtruncate)
60 * ->private_lock (__free_pte->__set_page_dirty_buffers)
61 * ->swap_lock (exclusive_swap_page, others)
62 * ->mapping->tree_lock
65 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 * ->page_table_lock or pte_lock (various, mainly in memory.c)
70 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 * ->lock_page (access_process_vm)
79 * ->i_alloc_sem (various)
82 * ->sb_lock (fs/fs-writeback.c)
83 * ->mapping->tree_lock (__sync_single_inode)
86 * ->anon_vma.lock (vma_adjust)
89 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 * ->page_table_lock or pte_lock
92 * ->swap_lock (try_to_unmap_one)
93 * ->private_lock (try_to_unmap_one)
94 * ->tree_lock (try_to_unmap_one)
95 * ->zone.lru_lock (follow_page->mark_page_accessed)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * ->inode_lock (page_remove_rmap->set_page_dirty)
99 * ->inode_lock (zap_pte_range->set_page_dirty)
100 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
103 * ->dcache_lock (proc_pid_lookup)
107 * Remove a page from the page cache and free it. Caller has to make
108 * sure the page is locked and that nobody else uses it - or that usage
109 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
111 void __remove_from_page_cache(struct page *page)
113 struct address_space *mapping = page->mapping;
115 radix_tree_delete(&mapping->page_tree, page->index);
116 page->mapping = NULL;
121 void remove_from_page_cache(struct page *page)
123 struct address_space *mapping = page->mapping;
125 BUG_ON(!PageLocked(page));
127 write_lock_irq(&mapping->tree_lock);
128 __remove_from_page_cache(page);
129 write_unlock_irq(&mapping->tree_lock);
132 static int sync_page(void *word)
134 struct address_space *mapping;
137 page = container_of((unsigned long *)word, struct page, flags);
140 * page_mapping() is being called without PG_locked held.
141 * Some knowledge of the state and use of the page is used to
142 * reduce the requirements down to a memory barrier.
143 * The danger here is of a stale page_mapping() return value
144 * indicating a struct address_space different from the one it's
145 * associated with when it is associated with one.
146 * After smp_mb(), it's either the correct page_mapping() for
147 * the page, or an old page_mapping() and the page's own
148 * page_mapping() has gone NULL.
149 * The ->sync_page() address_space operation must tolerate
150 * page_mapping() going NULL. By an amazing coincidence,
151 * this comes about because none of the users of the page
152 * in the ->sync_page() methods make essential use of the
153 * page_mapping(), merely passing the page down to the backing
154 * device's unplug functions when it's non-NULL, which in turn
155 * ignore it for all cases but swap, where only page_private(page) is
156 * of interest. When page_mapping() does go NULL, the entire
157 * call stack gracefully ignores the page and returns.
161 mapping = page_mapping(page);
162 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
163 mapping->a_ops->sync_page(page);
169 * filemap_fdatawrite_range - start writeback against all of a mapping's
170 * dirty pages that lie within the byte offsets <start, end>
171 * @mapping: address space structure to write
172 * @start: offset in bytes where the range starts
173 * @end: offset in bytes where the range ends
174 * @sync_mode: enable synchronous operation
176 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
177 * opposed to a regular memory * cleansing writeback. The difference between
178 * these two operations is that if a dirty page/buffer is encountered, it must
179 * be waited upon, and not just skipped over.
181 static int __filemap_fdatawrite_range(struct address_space *mapping,
182 loff_t start, loff_t end, int sync_mode)
185 struct writeback_control wbc = {
186 .sync_mode = sync_mode,
187 .nr_to_write = mapping->nrpages * 2,
192 if (!mapping_cap_writeback_dirty(mapping))
195 ret = do_writepages(mapping, &wbc);
199 static inline int __filemap_fdatawrite(struct address_space *mapping,
202 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
205 int filemap_fdatawrite(struct address_space *mapping)
207 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
209 EXPORT_SYMBOL(filemap_fdatawrite);
211 static int filemap_fdatawrite_range(struct address_space *mapping,
212 loff_t start, loff_t end)
214 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
218 * This is a mostly non-blocking flush. Not suitable for data-integrity
219 * purposes - I/O may not be started against all dirty pages.
221 int filemap_flush(struct address_space *mapping)
223 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
225 EXPORT_SYMBOL(filemap_flush);
228 * Wait for writeback to complete against pages indexed by start->end
231 static int wait_on_page_writeback_range(struct address_space *mapping,
232 pgoff_t start, pgoff_t end)
242 pagevec_init(&pvec, 0);
244 while ((index <= end) &&
245 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
246 PAGECACHE_TAG_WRITEBACK,
247 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
250 for (i = 0; i < nr_pages; i++) {
251 struct page *page = pvec.pages[i];
253 /* until radix tree lookup accepts end_index */
254 if (page->index > end)
257 wait_on_page_writeback(page);
261 pagevec_release(&pvec);
265 /* Check for outstanding write errors */
266 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
268 if (test_and_clear_bit(AS_EIO, &mapping->flags))
275 * Write and wait upon all the pages in the passed range. This is a "data
276 * integrity" operation. It waits upon in-flight writeout before starting and
277 * waiting upon new writeout. If there was an IO error, return it.
279 * We need to re-take i_mutex during the generic_osync_inode list walk because
280 * it is otherwise livelockable.
282 int sync_page_range(struct inode *inode, struct address_space *mapping,
283 loff_t pos, loff_t count)
285 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
286 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
289 if (!mapping_cap_writeback_dirty(mapping) || !count)
291 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
293 mutex_lock(&inode->i_mutex);
294 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
295 mutex_unlock(&inode->i_mutex);
298 ret = wait_on_page_writeback_range(mapping, start, end);
301 EXPORT_SYMBOL(sync_page_range);
304 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
305 * as it forces O_SYNC writers to different parts of the same file
306 * to be serialised right until io completion.
308 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
309 loff_t pos, loff_t count)
311 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
312 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
315 if (!mapping_cap_writeback_dirty(mapping) || !count)
317 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
319 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
321 ret = wait_on_page_writeback_range(mapping, start, end);
324 EXPORT_SYMBOL(sync_page_range_nolock);
327 * filemap_fdatawait - walk the list of under-writeback pages of the given
328 * address space and wait for all of them.
330 * @mapping: address space structure to wait for
332 int filemap_fdatawait(struct address_space *mapping)
334 loff_t i_size = i_size_read(mapping->host);
339 return wait_on_page_writeback_range(mapping, 0,
340 (i_size - 1) >> PAGE_CACHE_SHIFT);
342 EXPORT_SYMBOL(filemap_fdatawait);
344 int filemap_write_and_wait(struct address_space *mapping)
348 if (mapping->nrpages) {
349 err = filemap_fdatawrite(mapping);
351 * Even if the above returned error, the pages may be
352 * written partially (e.g. -ENOSPC), so we wait for it.
353 * But the -EIO is special case, it may indicate the worst
354 * thing (e.g. bug) happened, so we avoid waiting for it.
357 int err2 = filemap_fdatawait(mapping);
364 EXPORT_SYMBOL(filemap_write_and_wait);
366 int filemap_write_and_wait_range(struct address_space *mapping,
367 loff_t lstart, loff_t lend)
371 if (mapping->nrpages) {
372 err = __filemap_fdatawrite_range(mapping, lstart, lend,
374 /* See comment of filemap_write_and_wait() */
376 int err2 = wait_on_page_writeback_range(mapping,
377 lstart >> PAGE_CACHE_SHIFT,
378 lend >> PAGE_CACHE_SHIFT);
387 * This function is used to add newly allocated pagecache pages:
388 * the page is new, so we can just run SetPageLocked() against it.
389 * The other page state flags were set by rmqueue().
391 * This function does not add the page to the LRU. The caller must do that.
393 int add_to_page_cache(struct page *page, struct address_space *mapping,
394 pgoff_t offset, gfp_t gfp_mask)
396 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
399 write_lock_irq(&mapping->tree_lock);
400 error = radix_tree_insert(&mapping->page_tree, offset, page);
402 page_cache_get(page);
404 page->mapping = mapping;
405 page->index = offset;
409 write_unlock_irq(&mapping->tree_lock);
410 radix_tree_preload_end();
415 EXPORT_SYMBOL(add_to_page_cache);
417 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
418 pgoff_t offset, gfp_t gfp_mask)
420 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
427 * In order to wait for pages to become available there must be
428 * waitqueues associated with pages. By using a hash table of
429 * waitqueues where the bucket discipline is to maintain all
430 * waiters on the same queue and wake all when any of the pages
431 * become available, and for the woken contexts to check to be
432 * sure the appropriate page became available, this saves space
433 * at a cost of "thundering herd" phenomena during rare hash
436 static wait_queue_head_t *page_waitqueue(struct page *page)
438 const struct zone *zone = page_zone(page);
440 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
443 static inline void wake_up_page(struct page *page, int bit)
445 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
448 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
450 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
452 if (test_bit(bit_nr, &page->flags))
453 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
454 TASK_UNINTERRUPTIBLE);
456 EXPORT_SYMBOL(wait_on_page_bit);
459 * unlock_page() - unlock a locked page
463 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
464 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
465 * mechananism between PageLocked pages and PageWriteback pages is shared.
466 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
468 * The first mb is necessary to safely close the critical section opened by the
469 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
470 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
471 * parallel wait_on_page_locked()).
473 void fastcall unlock_page(struct page *page)
475 smp_mb__before_clear_bit();
476 if (!TestClearPageLocked(page))
478 smp_mb__after_clear_bit();
479 wake_up_page(page, PG_locked);
481 EXPORT_SYMBOL(unlock_page);
484 * End writeback against a page.
486 void end_page_writeback(struct page *page)
488 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
489 if (!test_clear_page_writeback(page))
492 smp_mb__after_clear_bit();
493 wake_up_page(page, PG_writeback);
495 EXPORT_SYMBOL(end_page_writeback);
498 * Get a lock on the page, assuming we need to sleep to get it.
500 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
501 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
502 * chances are that on the second loop, the block layer's plug list is empty,
503 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
505 void fastcall __lock_page(struct page *page)
507 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
509 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
510 TASK_UNINTERRUPTIBLE);
512 EXPORT_SYMBOL(__lock_page);
515 * a rather lightweight function, finding and getting a reference to a
516 * hashed page atomically.
518 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
522 read_lock_irq(&mapping->tree_lock);
523 page = radix_tree_lookup(&mapping->page_tree, offset);
525 page_cache_get(page);
526 read_unlock_irq(&mapping->tree_lock);
530 EXPORT_SYMBOL(find_get_page);
533 * Same as above, but trylock it instead of incrementing the count.
535 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
539 read_lock_irq(&mapping->tree_lock);
540 page = radix_tree_lookup(&mapping->page_tree, offset);
541 if (page && TestSetPageLocked(page))
543 read_unlock_irq(&mapping->tree_lock);
547 EXPORT_SYMBOL(find_trylock_page);
550 * find_lock_page - locate, pin and lock a pagecache page
552 * @mapping: the address_space to search
553 * @offset: the page index
555 * Locates the desired pagecache page, locks it, increments its reference
556 * count and returns its address.
558 * Returns zero if the page was not present. find_lock_page() may sleep.
560 struct page *find_lock_page(struct address_space *mapping,
561 unsigned long offset)
565 read_lock_irq(&mapping->tree_lock);
567 page = radix_tree_lookup(&mapping->page_tree, offset);
569 page_cache_get(page);
570 if (TestSetPageLocked(page)) {
571 read_unlock_irq(&mapping->tree_lock);
573 read_lock_irq(&mapping->tree_lock);
575 /* Has the page been truncated while we slept? */
576 if (unlikely(page->mapping != mapping ||
577 page->index != offset)) {
579 page_cache_release(page);
584 read_unlock_irq(&mapping->tree_lock);
588 EXPORT_SYMBOL(find_lock_page);
591 * find_or_create_page - locate or add a pagecache page
593 * @mapping: the page's address_space
594 * @index: the page's index into the mapping
595 * @gfp_mask: page allocation mode
597 * Locates a page in the pagecache. If the page is not present, a new page
598 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
599 * LRU list. The returned page is locked and has its reference count
602 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
605 * find_or_create_page() returns the desired page's address, or zero on
608 struct page *find_or_create_page(struct address_space *mapping,
609 unsigned long index, gfp_t gfp_mask)
611 struct page *page, *cached_page = NULL;
614 page = find_lock_page(mapping, index);
617 cached_page = alloc_page(gfp_mask);
621 err = add_to_page_cache_lru(cached_page, mapping,
626 } else if (err == -EEXIST)
630 page_cache_release(cached_page);
634 EXPORT_SYMBOL(find_or_create_page);
637 * find_get_pages - gang pagecache lookup
638 * @mapping: The address_space to search
639 * @start: The starting page index
640 * @nr_pages: The maximum number of pages
641 * @pages: Where the resulting pages are placed
643 * find_get_pages() will search for and return a group of up to
644 * @nr_pages pages in the mapping. The pages are placed at @pages.
645 * find_get_pages() takes a reference against the returned pages.
647 * The search returns a group of mapping-contiguous pages with ascending
648 * indexes. There may be holes in the indices due to not-present pages.
650 * find_get_pages() returns the number of pages which were found.
652 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
653 unsigned int nr_pages, struct page **pages)
658 read_lock_irq(&mapping->tree_lock);
659 ret = radix_tree_gang_lookup(&mapping->page_tree,
660 (void **)pages, start, nr_pages);
661 for (i = 0; i < ret; i++)
662 page_cache_get(pages[i]);
663 read_unlock_irq(&mapping->tree_lock);
668 * Like find_get_pages, except we only return pages which are tagged with
669 * `tag'. We update *index to index the next page for the traversal.
671 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
672 int tag, unsigned int nr_pages, struct page **pages)
677 read_lock_irq(&mapping->tree_lock);
678 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
679 (void **)pages, *index, nr_pages, tag);
680 for (i = 0; i < ret; i++)
681 page_cache_get(pages[i]);
683 *index = pages[ret - 1]->index + 1;
684 read_unlock_irq(&mapping->tree_lock);
689 * Same as grab_cache_page, but do not wait if the page is unavailable.
690 * This is intended for speculative data generators, where the data can
691 * be regenerated if the page couldn't be grabbed. This routine should
692 * be safe to call while holding the lock for another page.
694 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
695 * and deadlock against the caller's locked page.
698 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
700 struct page *page = find_get_page(mapping, index);
704 if (!TestSetPageLocked(page))
706 page_cache_release(page);
709 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
710 page = alloc_pages(gfp_mask, 0);
711 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
712 page_cache_release(page);
718 EXPORT_SYMBOL(grab_cache_page_nowait);
721 * This is a generic file read routine, and uses the
722 * mapping->a_ops->readpage() function for the actual low-level
725 * This is really ugly. But the goto's actually try to clarify some
726 * of the logic when it comes to error handling etc.
728 * Note the struct file* is only passed for the use of readpage. It may be
731 void do_generic_mapping_read(struct address_space *mapping,
732 struct file_ra_state *_ra,
735 read_descriptor_t *desc,
738 struct inode *inode = mapping->host;
740 unsigned long end_index;
741 unsigned long offset;
742 unsigned long last_index;
743 unsigned long next_index;
744 unsigned long prev_index;
746 struct page *cached_page;
748 struct file_ra_state ra = *_ra;
751 index = *ppos >> PAGE_CACHE_SHIFT;
753 prev_index = ra.prev_page;
754 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
755 offset = *ppos & ~PAGE_CACHE_MASK;
757 isize = i_size_read(inode);
761 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
764 unsigned long nr, ret;
766 /* nr is the maximum number of bytes to copy from this page */
767 nr = PAGE_CACHE_SIZE;
768 if (index >= end_index) {
769 if (index > end_index)
771 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
779 if (index == next_index)
780 next_index = page_cache_readahead(mapping, &ra, filp,
781 index, last_index - index);
784 page = find_get_page(mapping, index);
785 if (unlikely(page == NULL)) {
786 handle_ra_miss(mapping, &ra, index);
789 if (!PageUptodate(page))
790 goto page_not_up_to_date;
793 /* If users can be writing to this page using arbitrary
794 * virtual addresses, take care about potential aliasing
795 * before reading the page on the kernel side.
797 if (mapping_writably_mapped(mapping))
798 flush_dcache_page(page);
801 * When (part of) the same page is read multiple times
802 * in succession, only mark it as accessed the first time.
804 if (prev_index != index)
805 mark_page_accessed(page);
809 * Ok, we have the page, and it's up-to-date, so
810 * now we can copy it to user space...
812 * The actor routine returns how many bytes were actually used..
813 * NOTE! This may not be the same as how much of a user buffer
814 * we filled up (we may be padding etc), so we can only update
815 * "pos" here (the actor routine has to update the user buffer
816 * pointers and the remaining count).
818 ret = actor(desc, page, offset, nr);
820 index += offset >> PAGE_CACHE_SHIFT;
821 offset &= ~PAGE_CACHE_MASK;
823 page_cache_release(page);
824 if (ret == nr && desc->count)
829 /* Get exclusive access to the page ... */
832 /* Did it get unhashed before we got the lock? */
833 if (!page->mapping) {
835 page_cache_release(page);
839 /* Did somebody else fill it already? */
840 if (PageUptodate(page)) {
846 /* Start the actual read. The read will unlock the page. */
847 error = mapping->a_ops->readpage(filp, page);
849 if (unlikely(error)) {
850 if (error == AOP_TRUNCATED_PAGE) {
851 page_cache_release(page);
857 if (!PageUptodate(page)) {
859 if (!PageUptodate(page)) {
860 if (page->mapping == NULL) {
862 * invalidate_inode_pages got it
865 page_cache_release(page);
876 * i_size must be checked after we have done ->readpage.
878 * Checking i_size after the readpage allows us to calculate
879 * the correct value for "nr", which means the zero-filled
880 * part of the page is not copied back to userspace (unless
881 * another truncate extends the file - this is desired though).
883 isize = i_size_read(inode);
884 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
885 if (unlikely(!isize || index > end_index)) {
886 page_cache_release(page);
890 /* nr is the maximum number of bytes to copy from this page */
891 nr = PAGE_CACHE_SIZE;
892 if (index == end_index) {
893 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
895 page_cache_release(page);
903 /* UHHUH! A synchronous read error occurred. Report it */
905 page_cache_release(page);
910 * Ok, it wasn't cached, so we need to create a new
914 cached_page = page_cache_alloc_cold(mapping);
916 desc->error = -ENOMEM;
920 error = add_to_page_cache_lru(cached_page, mapping,
923 if (error == -EEXIST)
936 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
938 page_cache_release(cached_page);
943 EXPORT_SYMBOL(do_generic_mapping_read);
945 int file_read_actor(read_descriptor_t *desc, struct page *page,
946 unsigned long offset, unsigned long size)
949 unsigned long left, count = desc->count;
955 * Faults on the destination of a read are common, so do it before
958 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
959 kaddr = kmap_atomic(page, KM_USER0);
960 left = __copy_to_user_inatomic(desc->arg.buf,
961 kaddr + offset, size);
962 kunmap_atomic(kaddr, KM_USER0);
967 /* Do it the slow way */
969 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
974 desc->error = -EFAULT;
977 desc->count = count - size;
978 desc->written += size;
979 desc->arg.buf += size;
984 * This is the "read()" routine for all filesystems
985 * that can use the page cache directly.
988 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
989 unsigned long nr_segs, loff_t *ppos)
991 struct file *filp = iocb->ki_filp;
997 for (seg = 0; seg < nr_segs; seg++) {
998 const struct iovec *iv = &iov[seg];
1001 * If any segment has a negative length, or the cumulative
1002 * length ever wraps negative then return -EINVAL.
1004 count += iv->iov_len;
1005 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1007 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1012 count -= iv->iov_len; /* This segment is no good */
1016 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1017 if (filp->f_flags & O_DIRECT) {
1018 loff_t pos = *ppos, size;
1019 struct address_space *mapping;
1020 struct inode *inode;
1022 mapping = filp->f_mapping;
1023 inode = mapping->host;
1026 goto out; /* skip atime */
1027 size = i_size_read(inode);
1029 retval = generic_file_direct_IO(READ, iocb,
1031 if (retval > 0 && !is_sync_kiocb(iocb))
1032 retval = -EIOCBQUEUED;
1034 *ppos = pos + retval;
1036 file_accessed(filp);
1042 for (seg = 0; seg < nr_segs; seg++) {
1043 read_descriptor_t desc;
1046 desc.arg.buf = iov[seg].iov_base;
1047 desc.count = iov[seg].iov_len;
1048 if (desc.count == 0)
1051 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1052 retval += desc.written;
1054 retval = retval ?: desc.error;
1063 EXPORT_SYMBOL(__generic_file_aio_read);
1066 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1068 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1070 BUG_ON(iocb->ki_pos != pos);
1071 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1074 EXPORT_SYMBOL(generic_file_aio_read);
1077 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1079 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1083 init_sync_kiocb(&kiocb, filp);
1084 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1085 if (-EIOCBQUEUED == ret)
1086 ret = wait_on_sync_kiocb(&kiocb);
1090 EXPORT_SYMBOL(generic_file_read);
1092 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1095 unsigned long count = desc->count;
1096 struct file *file = desc->arg.data;
1101 written = file->f_op->sendpage(file, page, offset,
1102 size, &file->f_pos, size<count);
1104 desc->error = written;
1107 desc->count = count - written;
1108 desc->written += written;
1112 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1113 size_t count, read_actor_t actor, void *target)
1115 read_descriptor_t desc;
1122 desc.arg.data = target;
1125 do_generic_file_read(in_file, ppos, &desc, actor);
1127 return desc.written;
1131 EXPORT_SYMBOL(generic_file_sendfile);
1134 do_readahead(struct address_space *mapping, struct file *filp,
1135 unsigned long index, unsigned long nr)
1137 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1140 force_page_cache_readahead(mapping, filp, index,
1141 max_sane_readahead(nr));
1145 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1153 if (file->f_mode & FMODE_READ) {
1154 struct address_space *mapping = file->f_mapping;
1155 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1156 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1157 unsigned long len = end - start + 1;
1158 ret = do_readahead(mapping, file, start, len);
1167 * This adds the requested page to the page cache if it isn't already there,
1168 * and schedules an I/O to read in its contents from disk.
1170 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1171 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1173 struct address_space *mapping = file->f_mapping;
1178 page = page_cache_alloc_cold(mapping);
1182 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1184 ret = mapping->a_ops->readpage(file, page);
1185 else if (ret == -EEXIST)
1186 ret = 0; /* losing race to add is OK */
1188 page_cache_release(page);
1190 } while (ret == AOP_TRUNCATED_PAGE);
1195 #define MMAP_LOTSAMISS (100)
1198 * filemap_nopage() is invoked via the vma operations vector for a
1199 * mapped memory region to read in file data during a page fault.
1201 * The goto's are kind of ugly, but this streamlines the normal case of having
1202 * it in the page cache, and handles the special cases reasonably without
1203 * having a lot of duplicated code.
1205 struct page *filemap_nopage(struct vm_area_struct *area,
1206 unsigned long address, int *type)
1209 struct file *file = area->vm_file;
1210 struct address_space *mapping = file->f_mapping;
1211 struct file_ra_state *ra = &file->f_ra;
1212 struct inode *inode = mapping->host;
1214 unsigned long size, pgoff;
1215 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1217 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1220 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1222 goto outside_data_content;
1224 /* If we don't want any read-ahead, don't bother */
1225 if (VM_RandomReadHint(area))
1226 goto no_cached_page;
1229 * The readahead code wants to be told about each and every page
1230 * so it can build and shrink its windows appropriately
1232 * For sequential accesses, we use the generic readahead logic.
1234 if (VM_SequentialReadHint(area))
1235 page_cache_readahead(mapping, ra, file, pgoff, 1);
1238 * Do we have something in the page cache already?
1241 page = find_get_page(mapping, pgoff);
1243 unsigned long ra_pages;
1245 if (VM_SequentialReadHint(area)) {
1246 handle_ra_miss(mapping, ra, pgoff);
1247 goto no_cached_page;
1252 * Do we miss much more than hit in this file? If so,
1253 * stop bothering with read-ahead. It will only hurt.
1255 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1256 goto no_cached_page;
1259 * To keep the pgmajfault counter straight, we need to
1260 * check did_readaround, as this is an inner loop.
1262 if (!did_readaround) {
1263 majmin = VM_FAULT_MAJOR;
1264 inc_page_state(pgmajfault);
1267 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1271 if (pgoff > ra_pages / 2)
1272 start = pgoff - ra_pages / 2;
1273 do_page_cache_readahead(mapping, file, start, ra_pages);
1275 page = find_get_page(mapping, pgoff);
1277 goto no_cached_page;
1280 if (!did_readaround)
1284 * Ok, found a page in the page cache, now we need to check
1285 * that it's up-to-date.
1287 if (!PageUptodate(page))
1288 goto page_not_uptodate;
1292 * Found the page and have a reference on it.
1294 mark_page_accessed(page);
1299 outside_data_content:
1301 * An external ptracer can access pages that normally aren't
1304 if (area->vm_mm == current->mm)
1306 /* Fall through to the non-read-ahead case */
1309 * We're only likely to ever get here if MADV_RANDOM is in
1312 error = page_cache_read(file, pgoff);
1316 * The page we want has now been added to the page cache.
1317 * In the unlikely event that someone removed it in the
1318 * meantime, we'll just come back here and read it again.
1324 * An error return from page_cache_read can result if the
1325 * system is low on memory, or a problem occurs while trying
1328 if (error == -ENOMEM)
1333 if (!did_readaround) {
1334 majmin = VM_FAULT_MAJOR;
1335 inc_page_state(pgmajfault);
1339 /* Did it get unhashed while we waited for it? */
1340 if (!page->mapping) {
1342 page_cache_release(page);
1346 /* Did somebody else get it up-to-date? */
1347 if (PageUptodate(page)) {
1352 error = mapping->a_ops->readpage(file, page);
1354 wait_on_page_locked(page);
1355 if (PageUptodate(page))
1357 } else if (error == AOP_TRUNCATED_PAGE) {
1358 page_cache_release(page);
1363 * Umm, take care of errors if the page isn't up-to-date.
1364 * Try to re-read it _once_. We do this synchronously,
1365 * because there really aren't any performance issues here
1366 * and we need to check for errors.
1370 /* Somebody truncated the page on us? */
1371 if (!page->mapping) {
1373 page_cache_release(page);
1377 /* Somebody else successfully read it in? */
1378 if (PageUptodate(page)) {
1382 ClearPageError(page);
1383 error = mapping->a_ops->readpage(file, page);
1385 wait_on_page_locked(page);
1386 if (PageUptodate(page))
1388 } else if (error == AOP_TRUNCATED_PAGE) {
1389 page_cache_release(page);
1394 * Things didn't work out. Return zero to tell the
1395 * mm layer so, possibly freeing the page cache page first.
1397 page_cache_release(page);
1401 EXPORT_SYMBOL(filemap_nopage);
1403 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1406 struct address_space *mapping = file->f_mapping;
1411 * Do we have something in the page cache already?
1414 page = find_get_page(mapping, pgoff);
1418 goto no_cached_page;
1422 * Ok, found a page in the page cache, now we need to check
1423 * that it's up-to-date.
1425 if (!PageUptodate(page)) {
1427 page_cache_release(page);
1430 goto page_not_uptodate;
1435 * Found the page and have a reference on it.
1437 mark_page_accessed(page);
1441 error = page_cache_read(file, pgoff);
1444 * The page we want has now been added to the page cache.
1445 * In the unlikely event that someone removed it in the
1446 * meantime, we'll just come back here and read it again.
1452 * An error return from page_cache_read can result if the
1453 * system is low on memory, or a problem occurs while trying
1461 /* Did it get unhashed while we waited for it? */
1462 if (!page->mapping) {
1467 /* Did somebody else get it up-to-date? */
1468 if (PageUptodate(page)) {
1473 error = mapping->a_ops->readpage(file, page);
1475 wait_on_page_locked(page);
1476 if (PageUptodate(page))
1478 } else if (error == AOP_TRUNCATED_PAGE) {
1479 page_cache_release(page);
1484 * Umm, take care of errors if the page isn't up-to-date.
1485 * Try to re-read it _once_. We do this synchronously,
1486 * because there really aren't any performance issues here
1487 * and we need to check for errors.
1491 /* Somebody truncated the page on us? */
1492 if (!page->mapping) {
1496 /* Somebody else successfully read it in? */
1497 if (PageUptodate(page)) {
1502 ClearPageError(page);
1503 error = mapping->a_ops->readpage(file, page);
1505 wait_on_page_locked(page);
1506 if (PageUptodate(page))
1508 } else if (error == AOP_TRUNCATED_PAGE) {
1509 page_cache_release(page);
1514 * Things didn't work out. Return zero to tell the
1515 * mm layer so, possibly freeing the page cache page first.
1518 page_cache_release(page);
1523 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1524 unsigned long len, pgprot_t prot, unsigned long pgoff,
1527 struct file *file = vma->vm_file;
1528 struct address_space *mapping = file->f_mapping;
1529 struct inode *inode = mapping->host;
1531 struct mm_struct *mm = vma->vm_mm;
1536 force_page_cache_readahead(mapping, vma->vm_file,
1537 pgoff, len >> PAGE_CACHE_SHIFT);
1540 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1541 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1544 page = filemap_getpage(file, pgoff, nonblock);
1546 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1547 * done in shmem_populate calling shmem_getpage */
1548 if (!page && !nonblock)
1552 err = install_page(mm, vma, addr, page, prot);
1554 page_cache_release(page);
1557 } else if (vma->vm_flags & VM_NONLINEAR) {
1558 /* No page was found just because we can't read it in now (being
1559 * here implies nonblock != 0), but the page may exist, so set
1560 * the PTE to fault it in later. */
1561 err = install_file_pte(mm, vma, addr, pgoff, prot);
1574 EXPORT_SYMBOL(filemap_populate);
1576 struct vm_operations_struct generic_file_vm_ops = {
1577 .nopage = filemap_nopage,
1578 .populate = filemap_populate,
1581 /* This is used for a general mmap of a disk file */
1583 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1585 struct address_space *mapping = file->f_mapping;
1587 if (!mapping->a_ops->readpage)
1589 file_accessed(file);
1590 vma->vm_ops = &generic_file_vm_ops;
1595 * This is for filesystems which do not implement ->writepage.
1597 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1599 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1601 return generic_file_mmap(file, vma);
1604 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1608 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1612 #endif /* CONFIG_MMU */
1614 EXPORT_SYMBOL(generic_file_mmap);
1615 EXPORT_SYMBOL(generic_file_readonly_mmap);
1617 static inline struct page *__read_cache_page(struct address_space *mapping,
1618 unsigned long index,
1619 int (*filler)(void *,struct page*),
1622 struct page *page, *cached_page = NULL;
1625 page = find_get_page(mapping, index);
1628 cached_page = page_cache_alloc_cold(mapping);
1630 return ERR_PTR(-ENOMEM);
1632 err = add_to_page_cache_lru(cached_page, mapping,
1637 /* Presumably ENOMEM for radix tree node */
1638 page_cache_release(cached_page);
1639 return ERR_PTR(err);
1643 err = filler(data, page);
1645 page_cache_release(page);
1646 page = ERR_PTR(err);
1650 page_cache_release(cached_page);
1655 * Read into the page cache. If a page already exists,
1656 * and PageUptodate() is not set, try to fill the page.
1658 struct page *read_cache_page(struct address_space *mapping,
1659 unsigned long index,
1660 int (*filler)(void *,struct page*),
1667 page = __read_cache_page(mapping, index, filler, data);
1670 mark_page_accessed(page);
1671 if (PageUptodate(page))
1675 if (!page->mapping) {
1677 page_cache_release(page);
1680 if (PageUptodate(page)) {
1684 err = filler(data, page);
1686 page_cache_release(page);
1687 page = ERR_PTR(err);
1693 EXPORT_SYMBOL(read_cache_page);
1696 * If the page was newly created, increment its refcount and add it to the
1697 * caller's lru-buffering pagevec. This function is specifically for
1698 * generic_file_write().
1700 static inline struct page *
1701 __grab_cache_page(struct address_space *mapping, unsigned long index,
1702 struct page **cached_page, struct pagevec *lru_pvec)
1707 page = find_lock_page(mapping, index);
1709 if (!*cached_page) {
1710 *cached_page = page_cache_alloc(mapping);
1714 err = add_to_page_cache(*cached_page, mapping,
1719 page = *cached_page;
1720 page_cache_get(page);
1721 if (!pagevec_add(lru_pvec, page))
1722 __pagevec_lru_add(lru_pvec);
1723 *cached_page = NULL;
1730 * The logic we want is
1732 * if suid or (sgid and xgrp)
1735 int remove_suid(struct dentry *dentry)
1737 mode_t mode = dentry->d_inode->i_mode;
1741 /* suid always must be killed */
1742 if (unlikely(mode & S_ISUID))
1743 kill = ATTR_KILL_SUID;
1746 * sgid without any exec bits is just a mandatory locking mark; leave
1747 * it alone. If some exec bits are set, it's a real sgid; kill it.
1749 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1750 kill |= ATTR_KILL_SGID;
1752 if (unlikely(kill && !capable(CAP_FSETID))) {
1753 struct iattr newattrs;
1755 newattrs.ia_valid = ATTR_FORCE | kill;
1756 result = notify_change(dentry, &newattrs);
1760 EXPORT_SYMBOL(remove_suid);
1763 __filemap_copy_from_user_iovec(char *vaddr,
1764 const struct iovec *iov, size_t base, size_t bytes)
1766 size_t copied = 0, left = 0;
1769 char __user *buf = iov->iov_base + base;
1770 int copy = min(bytes, iov->iov_len - base);
1773 left = __copy_from_user_inatomic(vaddr, buf, copy);
1779 if (unlikely(left)) {
1780 /* zero the rest of the target like __copy_from_user */
1782 memset(vaddr, 0, bytes);
1786 return copied - left;
1790 * Performs necessary checks before doing a write
1792 * Can adjust writing position aor amount of bytes to write.
1793 * Returns appropriate error code that caller should return or
1794 * zero in case that write should be allowed.
1796 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1798 struct inode *inode = file->f_mapping->host;
1799 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1801 if (unlikely(*pos < 0))
1805 /* FIXME: this is for backwards compatibility with 2.4 */
1806 if (file->f_flags & O_APPEND)
1807 *pos = i_size_read(inode);
1809 if (limit != RLIM_INFINITY) {
1810 if (*pos >= limit) {
1811 send_sig(SIGXFSZ, current, 0);
1814 if (*count > limit - (typeof(limit))*pos) {
1815 *count = limit - (typeof(limit))*pos;
1823 if (unlikely(*pos + *count > MAX_NON_LFS &&
1824 !(file->f_flags & O_LARGEFILE))) {
1825 if (*pos >= MAX_NON_LFS) {
1826 send_sig(SIGXFSZ, current, 0);
1829 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1830 *count = MAX_NON_LFS - (unsigned long)*pos;
1835 * Are we about to exceed the fs block limit ?
1837 * If we have written data it becomes a short write. If we have
1838 * exceeded without writing data we send a signal and return EFBIG.
1839 * Linus frestrict idea will clean these up nicely..
1841 if (likely(!isblk)) {
1842 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1843 if (*count || *pos > inode->i_sb->s_maxbytes) {
1844 send_sig(SIGXFSZ, current, 0);
1847 /* zero-length writes at ->s_maxbytes are OK */
1850 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1851 *count = inode->i_sb->s_maxbytes - *pos;
1854 if (bdev_read_only(I_BDEV(inode)))
1856 isize = i_size_read(inode);
1857 if (*pos >= isize) {
1858 if (*count || *pos > isize)
1862 if (*pos + *count > isize)
1863 *count = isize - *pos;
1867 EXPORT_SYMBOL(generic_write_checks);
1870 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1871 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1872 size_t count, size_t ocount)
1874 struct file *file = iocb->ki_filp;
1875 struct address_space *mapping = file->f_mapping;
1876 struct inode *inode = mapping->host;
1879 if (count != ocount)
1880 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1882 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1884 loff_t end = pos + written;
1885 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1886 i_size_write(inode, end);
1887 mark_inode_dirty(inode);
1893 * Sync the fs metadata but not the minor inode changes and
1894 * of course not the data as we did direct DMA for the IO.
1895 * i_mutex is held, which protects generic_osync_inode() from
1898 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1899 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1903 if (written == count && !is_sync_kiocb(iocb))
1904 written = -EIOCBQUEUED;
1907 EXPORT_SYMBOL(generic_file_direct_write);
1910 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1911 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1912 size_t count, ssize_t written)
1914 struct file *file = iocb->ki_filp;
1915 struct address_space * mapping = file->f_mapping;
1916 struct address_space_operations *a_ops = mapping->a_ops;
1917 struct inode *inode = mapping->host;
1920 struct page *cached_page = NULL;
1922 struct pagevec lru_pvec;
1923 const struct iovec *cur_iov = iov; /* current iovec */
1924 size_t iov_base = 0; /* offset in the current iovec */
1927 pagevec_init(&lru_pvec, 0);
1930 * handle partial DIO write. Adjust cur_iov if needed.
1932 if (likely(nr_segs == 1))
1933 buf = iov->iov_base + written;
1935 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1936 buf = cur_iov->iov_base + iov_base;
1940 unsigned long index;
1941 unsigned long offset;
1942 unsigned long maxlen;
1945 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1946 index = pos >> PAGE_CACHE_SHIFT;
1947 bytes = PAGE_CACHE_SIZE - offset;
1952 * Bring in the user page that we will copy from _first_.
1953 * Otherwise there's a nasty deadlock on copying from the
1954 * same page as we're writing to, without it being marked
1957 maxlen = cur_iov->iov_len - iov_base;
1960 fault_in_pages_readable(buf, maxlen);
1962 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1968 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1969 if (unlikely(status)) {
1970 loff_t isize = i_size_read(inode);
1972 if (status != AOP_TRUNCATED_PAGE)
1974 page_cache_release(page);
1975 if (status == AOP_TRUNCATED_PAGE)
1978 * prepare_write() may have instantiated a few blocks
1979 * outside i_size. Trim these off again.
1981 if (pos + bytes > isize)
1982 vmtruncate(inode, isize);
1985 if (likely(nr_segs == 1))
1986 copied = filemap_copy_from_user(page, offset,
1989 copied = filemap_copy_from_user_iovec(page, offset,
1990 cur_iov, iov_base, bytes);
1991 flush_dcache_page(page);
1992 status = a_ops->commit_write(file, page, offset, offset+bytes);
1993 if (status == AOP_TRUNCATED_PAGE) {
1994 page_cache_release(page);
1997 if (likely(copied > 0)) {
2006 if (unlikely(nr_segs > 1)) {
2007 filemap_set_next_iovec(&cur_iov,
2010 buf = cur_iov->iov_base +
2017 if (unlikely(copied != bytes))
2021 mark_page_accessed(page);
2022 page_cache_release(page);
2025 balance_dirty_pages_ratelimited(mapping);
2031 page_cache_release(cached_page);
2034 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2036 if (likely(status >= 0)) {
2037 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2038 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2039 status = generic_osync_inode(inode, mapping,
2040 OSYNC_METADATA|OSYNC_DATA);
2045 * If we get here for O_DIRECT writes then we must have fallen through
2046 * to buffered writes (block instantiation inside i_size). So we sync
2047 * the file data here, to try to honour O_DIRECT expectations.
2049 if (unlikely(file->f_flags & O_DIRECT) && written)
2050 status = filemap_write_and_wait(mapping);
2052 pagevec_lru_add(&lru_pvec);
2053 return written ? written : status;
2055 EXPORT_SYMBOL(generic_file_buffered_write);
2058 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2059 unsigned long nr_segs, loff_t *ppos)
2061 struct file *file = iocb->ki_filp;
2062 struct address_space * mapping = file->f_mapping;
2063 size_t ocount; /* original count */
2064 size_t count; /* after file limit checks */
2065 struct inode *inode = mapping->host;
2072 for (seg = 0; seg < nr_segs; seg++) {
2073 const struct iovec *iv = &iov[seg];
2076 * If any segment has a negative length, or the cumulative
2077 * length ever wraps negative then return -EINVAL.
2079 ocount += iv->iov_len;
2080 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2082 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2087 ocount -= iv->iov_len; /* This segment is no good */
2094 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2096 /* We can write back this queue in page reclaim */
2097 current->backing_dev_info = mapping->backing_dev_info;
2100 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2107 err = remove_suid(file->f_dentry);
2111 file_update_time(file);
2113 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2114 if (unlikely(file->f_flags & O_DIRECT)) {
2115 written = generic_file_direct_write(iocb, iov,
2116 &nr_segs, pos, ppos, count, ocount);
2117 if (written < 0 || written == count)
2120 * direct-io write to a hole: fall through to buffered I/O
2121 * for completing the rest of the request.
2127 written = generic_file_buffered_write(iocb, iov, nr_segs,
2128 pos, ppos, count, written);
2130 current->backing_dev_info = NULL;
2131 return written ? written : err;
2133 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2136 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2137 unsigned long nr_segs, loff_t *ppos)
2139 struct file *file = iocb->ki_filp;
2140 struct address_space *mapping = file->f_mapping;
2141 struct inode *inode = mapping->host;
2145 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2147 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2150 err = sync_page_range_nolock(inode, mapping, pos, ret);
2158 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2159 unsigned long nr_segs, loff_t *ppos)
2164 init_sync_kiocb(&kiocb, file);
2165 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2166 if (ret == -EIOCBQUEUED)
2167 ret = wait_on_sync_kiocb(&kiocb);
2172 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2173 unsigned long nr_segs, loff_t *ppos)
2178 init_sync_kiocb(&kiocb, file);
2179 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2180 if (-EIOCBQUEUED == ret)
2181 ret = wait_on_sync_kiocb(&kiocb);
2184 EXPORT_SYMBOL(generic_file_write_nolock);
2186 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2187 size_t count, loff_t pos)
2189 struct file *file = iocb->ki_filp;
2190 struct address_space *mapping = file->f_mapping;
2191 struct inode *inode = mapping->host;
2193 struct iovec local_iov = { .iov_base = (void __user *)buf,
2196 BUG_ON(iocb->ki_pos != pos);
2198 mutex_lock(&inode->i_mutex);
2199 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2201 mutex_unlock(&inode->i_mutex);
2203 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2206 err = sync_page_range(inode, mapping, pos, ret);
2212 EXPORT_SYMBOL(generic_file_aio_write);
2214 ssize_t generic_file_write(struct file *file, const char __user *buf,
2215 size_t count, loff_t *ppos)
2217 struct address_space *mapping = file->f_mapping;
2218 struct inode *inode = mapping->host;
2220 struct iovec local_iov = { .iov_base = (void __user *)buf,
2223 mutex_lock(&inode->i_mutex);
2224 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2225 mutex_unlock(&inode->i_mutex);
2227 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2230 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2236 EXPORT_SYMBOL(generic_file_write);
2238 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2239 unsigned long nr_segs, loff_t *ppos)
2244 init_sync_kiocb(&kiocb, filp);
2245 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2246 if (-EIOCBQUEUED == ret)
2247 ret = wait_on_sync_kiocb(&kiocb);
2250 EXPORT_SYMBOL(generic_file_readv);
2252 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2253 unsigned long nr_segs, loff_t *ppos)
2255 struct address_space *mapping = file->f_mapping;
2256 struct inode *inode = mapping->host;
2259 mutex_lock(&inode->i_mutex);
2260 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2261 mutex_unlock(&inode->i_mutex);
2263 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2266 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2272 EXPORT_SYMBOL(generic_file_writev);
2275 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2276 * went wrong during pagecache shootdown.
2279 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2280 loff_t offset, unsigned long nr_segs)
2282 struct file *file = iocb->ki_filp;
2283 struct address_space *mapping = file->f_mapping;
2285 size_t write_len = 0;
2288 * If it's a write, unmap all mmappings of the file up-front. This
2289 * will cause any pte dirty bits to be propagated into the pageframes
2290 * for the subsequent filemap_write_and_wait().
2293 write_len = iov_length(iov, nr_segs);
2294 if (mapping_mapped(mapping))
2295 unmap_mapping_range(mapping, offset, write_len, 0);
2298 retval = filemap_write_and_wait(mapping);
2300 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2302 if (rw == WRITE && mapping->nrpages) {
2303 pgoff_t end = (offset + write_len - 1)
2304 >> PAGE_CACHE_SHIFT;
2305 int err = invalidate_inode_pages2_range(mapping,
2306 offset >> PAGE_CACHE_SHIFT, end);