Merge ../linus
[linux-2.6] / arch / ia64 / kernel / topology.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * This file contains NUMA specific variables and functions which can
7  * be split away from DISCONTIGMEM and are used on NUMA machines with
8  * contiguous memory.
9  *              2002/08/07 Erich Focht <efocht@ess.nec.de>
10  * Populate cpu entries in sysfs for non-numa systems as well
11  *      Intel Corporation - Ashok Raj
12  * 02/27/2006 Zhang, Yanmin
13  *      Populate cpu cache entries in sysfs for cpu cache info
14  */
15
16 #include <linux/cpu.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/node.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/nodemask.h>
23 #include <linux/notifier.h>
24 #include <asm/mmzone.h>
25 #include <asm/numa.h>
26 #include <asm/cpu.h>
27
28 static struct ia64_cpu *sysfs_cpus;
29
30 int arch_register_cpu(int num)
31 {
32 #if defined (CONFIG_ACPI) && defined (CONFIG_HOTPLUG_CPU)
33         /*
34          * If CPEI cannot be re-targetted, and this is
35          * CPEI target, then dont create the control file
36          */
37         if (!can_cpei_retarget() && is_cpu_cpei_target(num))
38                 sysfs_cpus[num].cpu.no_control = 1;
39 #endif
40
41         return register_cpu(&sysfs_cpus[num].cpu, num);
42 }
43
44 #ifdef CONFIG_HOTPLUG_CPU
45
46 void arch_unregister_cpu(int num)
47 {
48         return unregister_cpu(&sysfs_cpus[num].cpu);
49 }
50 EXPORT_SYMBOL(arch_register_cpu);
51 EXPORT_SYMBOL(arch_unregister_cpu);
52 #endif /*CONFIG_HOTPLUG_CPU*/
53
54
55 static int __init topology_init(void)
56 {
57         int i, err = 0;
58
59 #ifdef CONFIG_NUMA
60         /*
61          * MCD - Do we want to register all ONLINE nodes, or all POSSIBLE nodes?
62          */
63         for_each_online_node(i) {
64                 if ((err = register_one_node(i)))
65                         goto out;
66         }
67 #endif
68
69         sysfs_cpus = kzalloc(sizeof(struct ia64_cpu) * NR_CPUS, GFP_KERNEL);
70         if (!sysfs_cpus)
71                 panic("kzalloc in topology_init failed - NR_CPUS too big?");
72
73         for_each_present_cpu(i) {
74                 if((err = arch_register_cpu(i)))
75                         goto out;
76         }
77 out:
78         return err;
79 }
80
81 subsys_initcall(topology_init);
82
83
84 /*
85  * Export cpu cache information through sysfs
86  */
87
88 /*
89  *  A bunch of string array to get pretty printing
90  */
91 static const char *cache_types[] = {
92         "",                     /* not used */
93         "Instruction",
94         "Data",
95         "Unified"       /* unified */
96 };
97
98 static const char *cache_mattrib[]={
99         "WriteThrough",
100         "WriteBack",
101         "",             /* reserved */
102         ""              /* reserved */
103 };
104
105 struct cache_info {
106         pal_cache_config_info_t cci;
107         cpumask_t shared_cpu_map;
108         int level;
109         int type;
110         struct kobject kobj;
111 };
112
113 struct cpu_cache_info {
114         struct cache_info *cache_leaves;
115         int     num_cache_leaves;
116         struct kobject kobj;
117 };
118
119 static struct cpu_cache_info    all_cpu_cache_info[NR_CPUS];
120 #define LEAF_KOBJECT_PTR(x,y)    (&all_cpu_cache_info[x].cache_leaves[y])
121
122 #ifdef CONFIG_SMP
123 static void cache_shared_cpu_map_setup( unsigned int cpu,
124                 struct cache_info * this_leaf)
125 {
126         pal_cache_shared_info_t csi;
127         int num_shared, i = 0;
128         unsigned int j;
129
130         if (cpu_data(cpu)->threads_per_core <= 1 &&
131                 cpu_data(cpu)->cores_per_socket <= 1) {
132                 cpu_set(cpu, this_leaf->shared_cpu_map);
133                 return;
134         }
135
136         if (ia64_pal_cache_shared_info(this_leaf->level,
137                                         this_leaf->type,
138                                         0,
139                                         &csi) != PAL_STATUS_SUCCESS)
140                 return;
141
142         num_shared = (int) csi.num_shared;
143         do {
144                 for_each_possible_cpu(j)
145                         if (cpu_data(cpu)->socket_id == cpu_data(j)->socket_id
146                                 && cpu_data(j)->core_id == csi.log1_cid
147                                 && cpu_data(j)->thread_id == csi.log1_tid)
148                                 cpu_set(j, this_leaf->shared_cpu_map);
149
150                 i++;
151         } while (i < num_shared &&
152                 ia64_pal_cache_shared_info(this_leaf->level,
153                                 this_leaf->type,
154                                 i,
155                                 &csi) == PAL_STATUS_SUCCESS);
156 }
157 #else
158 static void cache_shared_cpu_map_setup(unsigned int cpu,
159                 struct cache_info * this_leaf)
160 {
161         cpu_set(cpu, this_leaf->shared_cpu_map);
162         return;
163 }
164 #endif
165
166 static ssize_t show_coherency_line_size(struct cache_info *this_leaf,
167                                         char *buf)
168 {
169         return sprintf(buf, "%u\n", 1 << this_leaf->cci.pcci_line_size);
170 }
171
172 static ssize_t show_ways_of_associativity(struct cache_info *this_leaf,
173                                         char *buf)
174 {
175         return sprintf(buf, "%u\n", this_leaf->cci.pcci_assoc);
176 }
177
178 static ssize_t show_attributes(struct cache_info *this_leaf, char *buf)
179 {
180         return sprintf(buf,
181                         "%s\n",
182                         cache_mattrib[this_leaf->cci.pcci_cache_attr]);
183 }
184
185 static ssize_t show_size(struct cache_info *this_leaf, char *buf)
186 {
187         return sprintf(buf, "%uK\n", this_leaf->cci.pcci_cache_size / 1024);
188 }
189
190 static ssize_t show_number_of_sets(struct cache_info *this_leaf, char *buf)
191 {
192         unsigned number_of_sets = this_leaf->cci.pcci_cache_size;
193         number_of_sets /= this_leaf->cci.pcci_assoc;
194         number_of_sets /= 1 << this_leaf->cci.pcci_line_size;
195
196         return sprintf(buf, "%u\n", number_of_sets);
197 }
198
199 static ssize_t show_shared_cpu_map(struct cache_info *this_leaf, char *buf)
200 {
201         ssize_t len;
202         cpumask_t shared_cpu_map;
203
204         cpus_and(shared_cpu_map, this_leaf->shared_cpu_map, cpu_online_map);
205         len = cpumask_scnprintf(buf, NR_CPUS+1, shared_cpu_map);
206         len += sprintf(buf+len, "\n");
207         return len;
208 }
209
210 static ssize_t show_type(struct cache_info *this_leaf, char *buf)
211 {
212         int type = this_leaf->type + this_leaf->cci.pcci_unified;
213         return sprintf(buf, "%s\n", cache_types[type]);
214 }
215
216 static ssize_t show_level(struct cache_info *this_leaf, char *buf)
217 {
218         return sprintf(buf, "%u\n", this_leaf->level);
219 }
220
221 struct cache_attr {
222         struct attribute attr;
223         ssize_t (*show)(struct cache_info *, char *);
224         ssize_t (*store)(struct cache_info *, const char *, size_t count);
225 };
226
227 #ifdef define_one_ro
228         #undef define_one_ro
229 #endif
230 #define define_one_ro(_name) \
231         static struct cache_attr _name = \
232 __ATTR(_name, 0444, show_##_name, NULL)
233
234 define_one_ro(level);
235 define_one_ro(type);
236 define_one_ro(coherency_line_size);
237 define_one_ro(ways_of_associativity);
238 define_one_ro(size);
239 define_one_ro(number_of_sets);
240 define_one_ro(shared_cpu_map);
241 define_one_ro(attributes);
242
243 static struct attribute * cache_default_attrs[] = {
244         &type.attr,
245         &level.attr,
246         &coherency_line_size.attr,
247         &ways_of_associativity.attr,
248         &attributes.attr,
249         &size.attr,
250         &number_of_sets.attr,
251         &shared_cpu_map.attr,
252         NULL
253 };
254
255 #define to_object(k) container_of(k, struct cache_info, kobj)
256 #define to_attr(a) container_of(a, struct cache_attr, attr)
257
258 static ssize_t cache_show(struct kobject * kobj, struct attribute * attr, char * buf)
259 {
260         struct cache_attr *fattr = to_attr(attr);
261         struct cache_info *this_leaf = to_object(kobj);
262         ssize_t ret;
263
264         ret = fattr->show ? fattr->show(this_leaf, buf) : 0;
265         return ret;
266 }
267
268 static struct sysfs_ops cache_sysfs_ops = {
269         .show   = cache_show
270 };
271
272 static struct kobj_type cache_ktype = {
273         .sysfs_ops      = &cache_sysfs_ops,
274         .default_attrs  = cache_default_attrs,
275 };
276
277 static struct kobj_type cache_ktype_percpu_entry = {
278         .sysfs_ops      = &cache_sysfs_ops,
279 };
280
281 static void __cpuinit cpu_cache_sysfs_exit(unsigned int cpu)
282 {
283         kfree(all_cpu_cache_info[cpu].cache_leaves);
284         all_cpu_cache_info[cpu].cache_leaves = NULL;
285         all_cpu_cache_info[cpu].num_cache_leaves = 0;
286         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
287         return;
288 }
289
290 static int __cpuinit cpu_cache_sysfs_init(unsigned int cpu)
291 {
292         u64 i, levels, unique_caches;
293         pal_cache_config_info_t cci;
294         int j;
295         s64 status;
296         struct cache_info *this_cache;
297         int num_cache_leaves = 0;
298
299         if ((status = ia64_pal_cache_summary(&levels, &unique_caches)) != 0) {
300                 printk(KERN_ERR "ia64_pal_cache_summary=%ld\n", status);
301                 return -1;
302         }
303
304         this_cache=kzalloc(sizeof(struct cache_info)*unique_caches,
305                         GFP_KERNEL);
306         if (this_cache == NULL)
307                 return -ENOMEM;
308
309         for (i=0; i < levels; i++) {
310                 for (j=2; j >0 ; j--) {
311                         if ((status=ia64_pal_cache_config_info(i,j, &cci)) !=
312                                         PAL_STATUS_SUCCESS)
313                                 continue;
314
315                         this_cache[num_cache_leaves].cci = cci;
316                         this_cache[num_cache_leaves].level = i + 1;
317                         this_cache[num_cache_leaves].type = j;
318
319                         cache_shared_cpu_map_setup(cpu,
320                                         &this_cache[num_cache_leaves]);
321                         num_cache_leaves ++;
322                 }
323         }
324
325         all_cpu_cache_info[cpu].cache_leaves = this_cache;
326         all_cpu_cache_info[cpu].num_cache_leaves = num_cache_leaves;
327
328         memset(&all_cpu_cache_info[cpu].kobj, 0, sizeof(struct kobject));
329
330         return 0;
331 }
332
333 /* Add cache interface for CPU device */
334 static int __cpuinit cache_add_dev(struct sys_device * sys_dev)
335 {
336         unsigned int cpu = sys_dev->id;
337         unsigned long i, j;
338         struct cache_info *this_object;
339         int retval = 0;
340         cpumask_t oldmask;
341
342         if (all_cpu_cache_info[cpu].kobj.parent)
343                 return 0;
344
345         oldmask = current->cpus_allowed;
346         retval = set_cpus_allowed(current, cpumask_of_cpu(cpu));
347         if (unlikely(retval))
348                 return retval;
349
350         retval = cpu_cache_sysfs_init(cpu);
351         set_cpus_allowed(current, oldmask);
352         if (unlikely(retval < 0))
353                 return retval;
354
355         all_cpu_cache_info[cpu].kobj.parent = &sys_dev->kobj;
356         kobject_set_name(&all_cpu_cache_info[cpu].kobj, "%s", "cache");
357         all_cpu_cache_info[cpu].kobj.ktype = &cache_ktype_percpu_entry;
358         retval = kobject_register(&all_cpu_cache_info[cpu].kobj);
359
360         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++) {
361                 this_object = LEAF_KOBJECT_PTR(cpu,i);
362                 this_object->kobj.parent = &all_cpu_cache_info[cpu].kobj;
363                 kobject_set_name(&(this_object->kobj), "index%1lu", i);
364                 this_object->kobj.ktype = &cache_ktype;
365                 retval = kobject_register(&(this_object->kobj));
366                 if (unlikely(retval)) {
367                         for (j = 0; j < i; j++) {
368                                 kobject_unregister(
369                                         &(LEAF_KOBJECT_PTR(cpu,j)->kobj));
370                         }
371                         kobject_unregister(&all_cpu_cache_info[cpu].kobj);
372                         cpu_cache_sysfs_exit(cpu);
373                         break;
374                 }
375         }
376         return retval;
377 }
378
379 /* Remove cache interface for CPU device */
380 static int __cpuinit cache_remove_dev(struct sys_device * sys_dev)
381 {
382         unsigned int cpu = sys_dev->id;
383         unsigned long i;
384
385         for (i = 0; i < all_cpu_cache_info[cpu].num_cache_leaves; i++)
386                 kobject_unregister(&(LEAF_KOBJECT_PTR(cpu,i)->kobj));
387
388         if (all_cpu_cache_info[cpu].kobj.parent) {
389                 kobject_unregister(&all_cpu_cache_info[cpu].kobj);
390                 memset(&all_cpu_cache_info[cpu].kobj,
391                         0,
392                         sizeof(struct kobject));
393         }
394
395         cpu_cache_sysfs_exit(cpu);
396
397         return 0;
398 }
399
400 /*
401  * When a cpu is hot-plugged, do a check and initiate
402  * cache kobject if necessary
403  */
404 static int __cpuinit cache_cpu_callback(struct notifier_block *nfb,
405                 unsigned long action, void *hcpu)
406 {
407         unsigned int cpu = (unsigned long)hcpu;
408         struct sys_device *sys_dev;
409
410         sys_dev = get_cpu_sysdev(cpu);
411         switch (action) {
412         case CPU_ONLINE:
413                 cache_add_dev(sys_dev);
414                 break;
415         case CPU_DEAD:
416                 cache_remove_dev(sys_dev);
417                 break;
418         }
419         return NOTIFY_OK;
420 }
421
422 static struct notifier_block __cpuinitdata cache_cpu_notifier =
423 {
424         .notifier_call = cache_cpu_callback
425 };
426
427 static int __cpuinit cache_sysfs_init(void)
428 {
429         int i;
430
431         for_each_online_cpu(i) {
432                 cache_cpu_callback(&cache_cpu_notifier, CPU_ONLINE,
433                                 (void *)(long)i);
434         }
435
436         register_hotcpu_notifier(&cache_cpu_notifier);
437
438         return 0;
439 }
440
441 device_initcall(cache_sysfs_init);
442