Merge ../linus
[linux-2.6] / fs / xfs / linux-2.6 / xfs_super.c
1 /*
2  * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_bit.h"
20 #include "xfs_log.h"
21 #include "xfs_clnt.h"
22 #include "xfs_inum.h"
23 #include "xfs_trans.h"
24 #include "xfs_sb.h"
25 #include "xfs_ag.h"
26 #include "xfs_dir2.h"
27 #include "xfs_alloc.h"
28 #include "xfs_dmapi.h"
29 #include "xfs_quota.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_dir2_sf.h"
35 #include "xfs_attr_sf.h"
36 #include "xfs_dinode.h"
37 #include "xfs_inode.h"
38 #include "xfs_btree.h"
39 #include "xfs_ialloc.h"
40 #include "xfs_bmap.h"
41 #include "xfs_rtalloc.h"
42 #include "xfs_error.h"
43 #include "xfs_itable.h"
44 #include "xfs_rw.h"
45 #include "xfs_acl.h"
46 #include "xfs_cap.h"
47 #include "xfs_mac.h"
48 #include "xfs_attr.h"
49 #include "xfs_buf_item.h"
50 #include "xfs_utils.h"
51 #include "xfs_version.h"
52
53 #include <linux/namei.h>
54 #include <linux/init.h>
55 #include <linux/mount.h>
56 #include <linux/mempool.h>
57 #include <linux/writeback.h>
58 #include <linux/kthread.h>
59
60 STATIC struct quotactl_ops xfs_quotactl_operations;
61 STATIC struct super_operations xfs_super_operations;
62 STATIC kmem_zone_t *xfs_vnode_zone;
63 STATIC kmem_zone_t *xfs_ioend_zone;
64 mempool_t *xfs_ioend_pool;
65
66 STATIC struct xfs_mount_args *
67 xfs_args_allocate(
68         struct super_block      *sb,
69         int                     silent)
70 {
71         struct xfs_mount_args   *args;
72
73         args = kmem_zalloc(sizeof(struct xfs_mount_args), KM_SLEEP);
74         args->logbufs = args->logbufsize = -1;
75         strncpy(args->fsname, sb->s_id, MAXNAMELEN);
76
77         /* Copy the already-parsed mount(2) flags we're interested in */
78         if (sb->s_flags & MS_DIRSYNC)
79                 args->flags |= XFSMNT_DIRSYNC;
80         if (sb->s_flags & MS_SYNCHRONOUS)
81                 args->flags |= XFSMNT_WSYNC;
82         if (silent)
83                 args->flags |= XFSMNT_QUIET;
84         args->flags |= XFSMNT_32BITINODES;
85
86         return args;
87 }
88
89 __uint64_t
90 xfs_max_file_offset(
91         unsigned int            blockshift)
92 {
93         unsigned int            pagefactor = 1;
94         unsigned int            bitshift = BITS_PER_LONG - 1;
95
96         /* Figure out maximum filesize, on Linux this can depend on
97          * the filesystem blocksize (on 32 bit platforms).
98          * __block_prepare_write does this in an [unsigned] long...
99          *      page->index << (PAGE_CACHE_SHIFT - bbits)
100          * So, for page sized blocks (4K on 32 bit platforms),
101          * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is
102          *      (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1)
103          * but for smaller blocksizes it is less (bbits = log2 bsize).
104          * Note1: get_block_t takes a long (implicit cast from above)
105          * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch
106          * can optionally convert the [unsigned] long from above into
107          * an [unsigned] long long.
108          */
109
110 #if BITS_PER_LONG == 32
111 # if defined(CONFIG_LBD)
112         ASSERT(sizeof(sector_t) == 8);
113         pagefactor = PAGE_CACHE_SIZE;
114         bitshift = BITS_PER_LONG;
115 # else
116         pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift);
117 # endif
118 #endif
119
120         return (((__uint64_t)pagefactor) << bitshift) - 1;
121 }
122
123 STATIC __inline__ void
124 xfs_set_inodeops(
125         struct inode            *inode)
126 {
127         switch (inode->i_mode & S_IFMT) {
128         case S_IFREG:
129                 inode->i_op = &xfs_inode_operations;
130                 inode->i_fop = &xfs_file_operations;
131                 inode->i_mapping->a_ops = &xfs_address_space_operations;
132                 break;
133         case S_IFDIR:
134                 inode->i_op = &xfs_dir_inode_operations;
135                 inode->i_fop = &xfs_dir_file_operations;
136                 break;
137         case S_IFLNK:
138                 inode->i_op = &xfs_symlink_inode_operations;
139                 if (inode->i_blocks)
140                         inode->i_mapping->a_ops = &xfs_address_space_operations;
141                 break;
142         default:
143                 inode->i_op = &xfs_inode_operations;
144                 init_special_inode(inode, inode->i_mode, inode->i_rdev);
145                 break;
146         }
147 }
148
149 STATIC __inline__ void
150 xfs_revalidate_inode(
151         xfs_mount_t             *mp,
152         bhv_vnode_t             *vp,
153         xfs_inode_t             *ip)
154 {
155         struct inode            *inode = vn_to_inode(vp);
156
157         inode->i_mode   = ip->i_d.di_mode;
158         inode->i_nlink  = ip->i_d.di_nlink;
159         inode->i_uid    = ip->i_d.di_uid;
160         inode->i_gid    = ip->i_d.di_gid;
161
162         switch (inode->i_mode & S_IFMT) {
163         case S_IFBLK:
164         case S_IFCHR:
165                 inode->i_rdev =
166                         MKDEV(sysv_major(ip->i_df.if_u2.if_rdev) & 0x1ff,
167                               sysv_minor(ip->i_df.if_u2.if_rdev));
168                 break;
169         default:
170                 inode->i_rdev = 0;
171                 break;
172         }
173
174         inode->i_blksize = xfs_preferred_iosize(mp);
175         inode->i_generation = ip->i_d.di_gen;
176         i_size_write(inode, ip->i_d.di_size);
177         inode->i_blocks =
178                 XFS_FSB_TO_BB(mp, ip->i_d.di_nblocks + ip->i_delayed_blks);
179         inode->i_atime.tv_sec   = ip->i_d.di_atime.t_sec;
180         inode->i_atime.tv_nsec  = ip->i_d.di_atime.t_nsec;
181         inode->i_mtime.tv_sec   = ip->i_d.di_mtime.t_sec;
182         inode->i_mtime.tv_nsec  = ip->i_d.di_mtime.t_nsec;
183         inode->i_ctime.tv_sec   = ip->i_d.di_ctime.t_sec;
184         inode->i_ctime.tv_nsec  = ip->i_d.di_ctime.t_nsec;
185         if (ip->i_d.di_flags & XFS_DIFLAG_IMMUTABLE)
186                 inode->i_flags |= S_IMMUTABLE;
187         else
188                 inode->i_flags &= ~S_IMMUTABLE;
189         if (ip->i_d.di_flags & XFS_DIFLAG_APPEND)
190                 inode->i_flags |= S_APPEND;
191         else
192                 inode->i_flags &= ~S_APPEND;
193         if (ip->i_d.di_flags & XFS_DIFLAG_SYNC)
194                 inode->i_flags |= S_SYNC;
195         else
196                 inode->i_flags &= ~S_SYNC;
197         if (ip->i_d.di_flags & XFS_DIFLAG_NOATIME)
198                 inode->i_flags |= S_NOATIME;
199         else
200                 inode->i_flags &= ~S_NOATIME;
201         vp->v_flag &= ~VMODIFIED;
202 }
203
204 void
205 xfs_initialize_vnode(
206         bhv_desc_t              *bdp,
207         bhv_vnode_t             *vp,
208         bhv_desc_t              *inode_bhv,
209         int                     unlock)
210 {
211         xfs_inode_t             *ip = XFS_BHVTOI(inode_bhv);
212         struct inode            *inode = vn_to_inode(vp);
213
214         if (!inode_bhv->bd_vobj) {
215                 vp->v_vfsp = bhvtovfs(bdp);
216                 bhv_desc_init(inode_bhv, ip, vp, &xfs_vnodeops);
217                 bhv_insert(VN_BHV_HEAD(vp), inode_bhv);
218         }
219
220         /*
221          * We need to set the ops vectors, and unlock the inode, but if
222          * we have been called during the new inode create process, it is
223          * too early to fill in the Linux inode.  We will get called a
224          * second time once the inode is properly set up, and then we can
225          * finish our work.
226          */
227         if (ip->i_d.di_mode != 0 && unlock && (inode->i_state & I_NEW)) {
228                 xfs_revalidate_inode(XFS_BHVTOM(bdp), vp, ip);
229                 xfs_set_inodeops(inode);
230
231                 ip->i_flags &= ~XFS_INEW;
232                 barrier();
233
234                 unlock_new_inode(inode);
235         }
236 }
237
238 int
239 xfs_blkdev_get(
240         xfs_mount_t             *mp,
241         const char              *name,
242         struct block_device     **bdevp)
243 {
244         int                     error = 0;
245
246         *bdevp = open_bdev_excl(name, 0, mp);
247         if (IS_ERR(*bdevp)) {
248                 error = PTR_ERR(*bdevp);
249                 printk("XFS: Invalid device [%s], error=%d\n", name, error);
250         }
251
252         return -error;
253 }
254
255 void
256 xfs_blkdev_put(
257         struct block_device     *bdev)
258 {
259         if (bdev)
260                 close_bdev_excl(bdev);
261 }
262
263 /*
264  * Try to write out the superblock using barriers.
265  */
266 STATIC int
267 xfs_barrier_test(
268         xfs_mount_t     *mp)
269 {
270         xfs_buf_t       *sbp = xfs_getsb(mp, 0);
271         int             error;
272
273         XFS_BUF_UNDONE(sbp);
274         XFS_BUF_UNREAD(sbp);
275         XFS_BUF_UNDELAYWRITE(sbp);
276         XFS_BUF_WRITE(sbp);
277         XFS_BUF_UNASYNC(sbp);
278         XFS_BUF_ORDERED(sbp);
279
280         xfsbdstrat(mp, sbp);
281         error = xfs_iowait(sbp);
282
283         /*
284          * Clear all the flags we set and possible error state in the
285          * buffer.  We only did the write to try out whether barriers
286          * worked and shouldn't leave any traces in the superblock
287          * buffer.
288          */
289         XFS_BUF_DONE(sbp);
290         XFS_BUF_ERROR(sbp, 0);
291         XFS_BUF_UNORDERED(sbp);
292
293         xfs_buf_relse(sbp);
294         return error;
295 }
296
297 void
298 xfs_mountfs_check_barriers(xfs_mount_t *mp)
299 {
300         int error;
301
302         if (mp->m_logdev_targp != mp->m_ddev_targp) {
303                 xfs_fs_cmn_err(CE_NOTE, mp,
304                   "Disabling barriers, not supported with external log device");
305                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
306                 return;
307         }
308
309         if (mp->m_ddev_targp->bt_bdev->bd_disk->queue->ordered ==
310                                         QUEUE_ORDERED_NONE) {
311                 xfs_fs_cmn_err(CE_NOTE, mp,
312                   "Disabling barriers, not supported by the underlying device");
313                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
314                 return;
315         }
316
317         if (xfs_readonly_buftarg(mp->m_ddev_targp)) {
318                 xfs_fs_cmn_err(CE_NOTE, mp,
319                   "Disabling barriers, underlying device is readonly");
320                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
321                 return;
322         }
323
324         error = xfs_barrier_test(mp);
325         if (error) {
326                 xfs_fs_cmn_err(CE_NOTE, mp,
327                   "Disabling barriers, trial barrier write failed");
328                 mp->m_flags &= ~XFS_MOUNT_BARRIER;
329                 return;
330         }
331 }
332
333 void
334 xfs_blkdev_issue_flush(
335         xfs_buftarg_t           *buftarg)
336 {
337         blkdev_issue_flush(buftarg->bt_bdev, NULL);
338 }
339
340 STATIC struct inode *
341 xfs_fs_alloc_inode(
342         struct super_block      *sb)
343 {
344         bhv_vnode_t             *vp;
345
346         vp = kmem_zone_alloc(xfs_vnode_zone, KM_SLEEP);
347         if (unlikely(!vp))
348                 return NULL;
349         return vn_to_inode(vp);
350 }
351
352 STATIC void
353 xfs_fs_destroy_inode(
354         struct inode            *inode)
355 {
356         kmem_zone_free(xfs_vnode_zone, vn_from_inode(inode));
357 }
358
359 STATIC void
360 xfs_fs_inode_init_once(
361         void                    *vnode,
362         kmem_zone_t             *zonep,
363         unsigned long           flags)
364 {
365         if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
366                       SLAB_CTOR_CONSTRUCTOR)
367                 inode_init_once(vn_to_inode((bhv_vnode_t *)vnode));
368 }
369
370 STATIC int
371 xfs_init_zones(void)
372 {
373         xfs_vnode_zone = kmem_zone_init_flags(sizeof(bhv_vnode_t), "xfs_vnode",
374                                         KM_ZONE_HWALIGN | KM_ZONE_RECLAIM |
375                                         KM_ZONE_SPREAD,
376                                         xfs_fs_inode_init_once);
377         if (!xfs_vnode_zone)
378                 goto out;
379
380         xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend");
381         if (!xfs_ioend_zone)
382                 goto out_destroy_vnode_zone;
383
384         xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE,
385                                                   xfs_ioend_zone);
386         if (!xfs_ioend_pool)
387                 goto out_free_ioend_zone;
388         return 0;
389
390  out_free_ioend_zone:
391         kmem_zone_destroy(xfs_ioend_zone);
392  out_destroy_vnode_zone:
393         kmem_zone_destroy(xfs_vnode_zone);
394  out:
395         return -ENOMEM;
396 }
397
398 STATIC void
399 xfs_destroy_zones(void)
400 {
401         mempool_destroy(xfs_ioend_pool);
402         kmem_zone_destroy(xfs_vnode_zone);
403         kmem_zone_destroy(xfs_ioend_zone);
404 }
405
406 /*
407  * Attempt to flush the inode, this will actually fail
408  * if the inode is pinned, but we dirty the inode again
409  * at the point when it is unpinned after a log write,
410  * since this is when the inode itself becomes flushable.
411  */
412 STATIC int
413 xfs_fs_write_inode(
414         struct inode            *inode,
415         int                     sync)
416 {
417         bhv_vnode_t             *vp = vn_from_inode(inode);
418         int                     error = 0, flags = FLUSH_INODE;
419
420         if (vp) {
421                 vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
422                 if (sync)
423                         flags |= FLUSH_SYNC;
424                 error = bhv_vop_iflush(vp, flags);
425                 if (error == EAGAIN)
426                         error = sync? bhv_vop_iflush(vp, flags | FLUSH_LOG) : 0;
427         }
428         return -error;
429 }
430
431 STATIC void
432 xfs_fs_clear_inode(
433         struct inode            *inode)
434 {
435         bhv_vnode_t             *vp = vn_from_inode(inode);
436
437         vn_trace_entry(vp, __FUNCTION__, (inst_t *)__return_address);
438
439         XFS_STATS_INC(vn_rele);
440         XFS_STATS_INC(vn_remove);
441         XFS_STATS_INC(vn_reclaim);
442         XFS_STATS_DEC(vn_active);
443
444         /*
445          * This can happen because xfs_iget_core calls xfs_idestroy if we
446          * find an inode with di_mode == 0 but without IGET_CREATE set.
447          */
448         if (VNHEAD(vp))
449                 bhv_vop_inactive(vp, NULL);
450
451         VN_LOCK(vp);
452         vp->v_flag &= ~VMODIFIED;
453         VN_UNLOCK(vp, 0);
454
455         if (VNHEAD(vp))
456                 if (bhv_vop_reclaim(vp))
457                         panic("%s: cannot reclaim 0x%p\n", __FUNCTION__, vp);
458
459         ASSERT(VNHEAD(vp) == NULL);
460
461 #ifdef XFS_VNODE_TRACE
462         ktrace_free(vp->v_trace);
463 #endif
464 }
465
466 /*
467  * Enqueue a work item to be picked up by the vfs xfssyncd thread.
468  * Doing this has two advantages:
469  * - It saves on stack space, which is tight in certain situations
470  * - It can be used (with care) as a mechanism to avoid deadlocks.
471  * Flushing while allocating in a full filesystem requires both.
472  */
473 STATIC void
474 xfs_syncd_queue_work(
475         struct bhv_vfs  *vfs,
476         void            *data,
477         void            (*syncer)(bhv_vfs_t *, void *))
478 {
479         struct bhv_vfs_sync_work *work;
480
481         work = kmem_alloc(sizeof(struct bhv_vfs_sync_work), KM_SLEEP);
482         INIT_LIST_HEAD(&work->w_list);
483         work->w_syncer = syncer;
484         work->w_data = data;
485         work->w_vfs = vfs;
486         spin_lock(&vfs->vfs_sync_lock);
487         list_add_tail(&work->w_list, &vfs->vfs_sync_list);
488         spin_unlock(&vfs->vfs_sync_lock);
489         wake_up_process(vfs->vfs_sync_task);
490 }
491
492 /*
493  * Flush delayed allocate data, attempting to free up reserved space
494  * from existing allocations.  At this point a new allocation attempt
495  * has failed with ENOSPC and we are in the process of scratching our
496  * heads, looking about for more room...
497  */
498 STATIC void
499 xfs_flush_inode_work(
500         bhv_vfs_t       *vfs,
501         void            *inode)
502 {
503         filemap_flush(((struct inode *)inode)->i_mapping);
504         iput((struct inode *)inode);
505 }
506
507 void
508 xfs_flush_inode(
509         xfs_inode_t     *ip)
510 {
511         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
512         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
513
514         igrab(inode);
515         xfs_syncd_queue_work(vfs, inode, xfs_flush_inode_work);
516         delay(msecs_to_jiffies(500));
517 }
518
519 /*
520  * This is the "bigger hammer" version of xfs_flush_inode_work...
521  * (IOW, "If at first you don't succeed, use a Bigger Hammer").
522  */
523 STATIC void
524 xfs_flush_device_work(
525         bhv_vfs_t       *vfs,
526         void            *inode)
527 {
528         sync_blockdev(vfs->vfs_super->s_bdev);
529         iput((struct inode *)inode);
530 }
531
532 void
533 xfs_flush_device(
534         xfs_inode_t     *ip)
535 {
536         struct inode    *inode = vn_to_inode(XFS_ITOV(ip));
537         struct bhv_vfs  *vfs = XFS_MTOVFS(ip->i_mount);
538
539         igrab(inode);
540         xfs_syncd_queue_work(vfs, inode, xfs_flush_device_work);
541         delay(msecs_to_jiffies(500));
542         xfs_log_force(ip->i_mount, (xfs_lsn_t)0, XFS_LOG_FORCE|XFS_LOG_SYNC);
543 }
544
545 STATIC void
546 vfs_sync_worker(
547         bhv_vfs_t       *vfsp,
548         void            *unused)
549 {
550         int             error;
551
552         if (!(vfsp->vfs_flag & VFS_RDONLY))
553                 error = bhv_vfs_sync(vfsp, SYNC_FSDATA | SYNC_BDFLUSH | \
554                                         SYNC_ATTR | SYNC_REFCACHE, NULL);
555         vfsp->vfs_sync_seq++;
556         wmb();
557         wake_up(&vfsp->vfs_wait_single_sync_task);
558 }
559
560 STATIC int
561 xfssyncd(
562         void                    *arg)
563 {
564         long                    timeleft;
565         bhv_vfs_t               *vfsp = (bhv_vfs_t *) arg;
566         bhv_vfs_sync_work_t     *work, *n;
567         LIST_HEAD               (tmp);
568
569         timeleft = xfs_syncd_centisecs * msecs_to_jiffies(10);
570         for (;;) {
571                 timeleft = schedule_timeout_interruptible(timeleft);
572                 /* swsusp */
573                 try_to_freeze();
574                 if (kthread_should_stop() && list_empty(&vfsp->vfs_sync_list))
575                         break;
576
577                 spin_lock(&vfsp->vfs_sync_lock);
578                 /*
579                  * We can get woken by laptop mode, to do a sync -
580                  * that's the (only!) case where the list would be
581                  * empty with time remaining.
582                  */
583                 if (!timeleft || list_empty(&vfsp->vfs_sync_list)) {
584                         if (!timeleft)
585                                 timeleft = xfs_syncd_centisecs *
586                                                         msecs_to_jiffies(10);
587                         INIT_LIST_HEAD(&vfsp->vfs_sync_work.w_list);
588                         list_add_tail(&vfsp->vfs_sync_work.w_list,
589                                         &vfsp->vfs_sync_list);
590                 }
591                 list_for_each_entry_safe(work, n, &vfsp->vfs_sync_list, w_list)
592                         list_move(&work->w_list, &tmp);
593                 spin_unlock(&vfsp->vfs_sync_lock);
594
595                 list_for_each_entry_safe(work, n, &tmp, w_list) {
596                         (*work->w_syncer)(vfsp, work->w_data);
597                         list_del(&work->w_list);
598                         if (work == &vfsp->vfs_sync_work)
599                                 continue;
600                         kmem_free(work, sizeof(struct bhv_vfs_sync_work));
601                 }
602         }
603
604         return 0;
605 }
606
607 STATIC int
608 xfs_fs_start_syncd(
609         bhv_vfs_t               *vfsp)
610 {
611         vfsp->vfs_sync_work.w_syncer = vfs_sync_worker;
612         vfsp->vfs_sync_work.w_vfs = vfsp;
613         vfsp->vfs_sync_task = kthread_run(xfssyncd, vfsp, "xfssyncd");
614         if (IS_ERR(vfsp->vfs_sync_task))
615                 return -PTR_ERR(vfsp->vfs_sync_task);
616         return 0;
617 }
618
619 STATIC void
620 xfs_fs_stop_syncd(
621         bhv_vfs_t               *vfsp)
622 {
623         kthread_stop(vfsp->vfs_sync_task);
624 }
625
626 STATIC void
627 xfs_fs_put_super(
628         struct super_block      *sb)
629 {
630         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
631         int                     error;
632
633         xfs_fs_stop_syncd(vfsp);
634         bhv_vfs_sync(vfsp, SYNC_ATTR | SYNC_DELWRI, NULL);
635         error = bhv_vfs_unmount(vfsp, 0, NULL);
636         if (error) {
637                 printk("XFS: unmount got error=%d\n", error);
638                 printk("%s: vfs=0x%p left dangling!\n", __FUNCTION__, vfsp);
639         } else {
640                 vfs_deallocate(vfsp);
641         }
642 }
643
644 STATIC void
645 xfs_fs_write_super(
646         struct super_block      *sb)
647 {
648         if (!(sb->s_flags & MS_RDONLY))
649                 bhv_vfs_sync(vfs_from_sb(sb), SYNC_FSDATA, NULL);
650         sb->s_dirt = 0;
651 }
652
653 STATIC int
654 xfs_fs_sync_super(
655         struct super_block      *sb,
656         int                     wait)
657 {
658         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
659         int                     error;
660         int                     flags;
661
662         if (unlikely(sb->s_frozen == SB_FREEZE_WRITE))
663                 flags = SYNC_QUIESCE;
664         else
665                 flags = SYNC_FSDATA | (wait ? SYNC_WAIT : 0);
666
667         error = bhv_vfs_sync(vfsp, flags, NULL);
668         sb->s_dirt = 0;
669
670         if (unlikely(laptop_mode)) {
671                 int     prev_sync_seq = vfsp->vfs_sync_seq;
672
673                 /*
674                  * The disk must be active because we're syncing.
675                  * We schedule xfssyncd now (now that the disk is
676                  * active) instead of later (when it might not be).
677                  */
678                 wake_up_process(vfsp->vfs_sync_task);
679                 /*
680                  * We have to wait for the sync iteration to complete.
681                  * If we don't, the disk activity caused by the sync
682                  * will come after the sync is completed, and that
683                  * triggers another sync from laptop mode.
684                  */
685                 wait_event(vfsp->vfs_wait_single_sync_task,
686                                 vfsp->vfs_sync_seq != prev_sync_seq);
687         }
688
689         return -error;
690 }
691
692 STATIC int
693 xfs_fs_statfs(
694         struct dentry           *dentry,
695         struct kstatfs          *statp)
696 {
697         return -bhv_vfs_statvfs(vfs_from_sb(dentry->d_sb), statp,
698                                 vn_from_inode(dentry->d_inode));
699 }
700
701 STATIC int
702 xfs_fs_remount(
703         struct super_block      *sb,
704         int                     *flags,
705         char                    *options)
706 {
707         bhv_vfs_t               *vfsp = vfs_from_sb(sb);
708         struct xfs_mount_args   *args = xfs_args_allocate(sb, 0);
709         int                     error;
710
711         error = bhv_vfs_parseargs(vfsp, options, args, 1);
712         if (!error)
713                 error = bhv_vfs_mntupdate(vfsp, flags, args);
714         kmem_free(args, sizeof(*args));
715         return -error;
716 }
717
718 STATIC void
719 xfs_fs_lockfs(
720         struct super_block      *sb)
721 {
722         bhv_vfs_freeze(vfs_from_sb(sb));
723 }
724
725 STATIC int
726 xfs_fs_show_options(
727         struct seq_file         *m,
728         struct vfsmount         *mnt)
729 {
730         return -bhv_vfs_showargs(vfs_from_sb(mnt->mnt_sb), m);
731 }
732
733 STATIC int
734 xfs_fs_quotasync(
735         struct super_block      *sb,
736         int                     type)
737 {
738         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XQUOTASYNC, 0, NULL);
739 }
740
741 STATIC int
742 xfs_fs_getxstate(
743         struct super_block      *sb,
744         struct fs_quota_stat    *fqs)
745 {
746         return -bhv_vfs_quotactl(vfs_from_sb(sb), Q_XGETQSTAT, 0, (caddr_t)fqs);
747 }
748
749 STATIC int
750 xfs_fs_setxstate(
751         struct super_block      *sb,
752         unsigned int            flags,
753         int                     op)
754 {
755         return -bhv_vfs_quotactl(vfs_from_sb(sb), op, 0, (caddr_t)&flags);
756 }
757
758 STATIC int
759 xfs_fs_getxquota(
760         struct super_block      *sb,
761         int                     type,
762         qid_t                   id,
763         struct fs_disk_quota    *fdq)
764 {
765         return -bhv_vfs_quotactl(vfs_from_sb(sb),
766                                  (type == USRQUOTA) ? Q_XGETQUOTA :
767                                   ((type == GRPQUOTA) ? Q_XGETGQUOTA :
768                                    Q_XGETPQUOTA), id, (caddr_t)fdq);
769 }
770
771 STATIC int
772 xfs_fs_setxquota(
773         struct super_block      *sb,
774         int                     type,
775         qid_t                   id,
776         struct fs_disk_quota    *fdq)
777 {
778         return -bhv_vfs_quotactl(vfs_from_sb(sb),
779                                  (type == USRQUOTA) ? Q_XSETQLIM :
780                                   ((type == GRPQUOTA) ? Q_XSETGQLIM :
781                                    Q_XSETPQLIM), id, (caddr_t)fdq);
782 }
783
784 STATIC int
785 xfs_fs_fill_super(
786         struct super_block      *sb,
787         void                    *data,
788         int                     silent)
789 {
790         struct bhv_vnode        *rootvp;
791         struct bhv_vfs          *vfsp = vfs_allocate(sb);
792         struct xfs_mount_args   *args = xfs_args_allocate(sb, silent);
793         struct kstatfs          statvfs;
794         int                     error;
795
796         bhv_insert_all_vfsops(vfsp);
797
798         error = bhv_vfs_parseargs(vfsp, (char *)data, args, 0);
799         if (error) {
800                 bhv_remove_all_vfsops(vfsp, 1);
801                 goto fail_vfsop;
802         }
803
804         sb_min_blocksize(sb, BBSIZE);
805         sb->s_export_op = &xfs_export_operations;
806         sb->s_qcop = &xfs_quotactl_operations;
807         sb->s_op = &xfs_super_operations;
808
809         error = bhv_vfs_mount(vfsp, args, NULL);
810         if (error) {
811                 bhv_remove_all_vfsops(vfsp, 1);
812                 goto fail_vfsop;
813         }
814
815         error = bhv_vfs_statvfs(vfsp, &statvfs, NULL);
816         if (error)
817                 goto fail_unmount;
818
819         sb->s_dirt = 1;
820         sb->s_magic = statvfs.f_type;
821         sb->s_blocksize = statvfs.f_bsize;
822         sb->s_blocksize_bits = ffs(statvfs.f_bsize) - 1;
823         sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits);
824         sb->s_time_gran = 1;
825         set_posix_acl_flag(sb);
826
827         error = bhv_vfs_root(vfsp, &rootvp);
828         if (error)
829                 goto fail_unmount;
830
831         sb->s_root = d_alloc_root(vn_to_inode(rootvp));
832         if (!sb->s_root) {
833                 error = ENOMEM;
834                 goto fail_vnrele;
835         }
836         if (is_bad_inode(sb->s_root->d_inode)) {
837                 error = EINVAL;
838                 goto fail_vnrele;
839         }
840         if ((error = xfs_fs_start_syncd(vfsp)))
841                 goto fail_vnrele;
842         vn_trace_exit(rootvp, __FUNCTION__, (inst_t *)__return_address);
843
844         kmem_free(args, sizeof(*args));
845         return 0;
846
847 fail_vnrele:
848         if (sb->s_root) {
849                 dput(sb->s_root);
850                 sb->s_root = NULL;
851         } else {
852                 VN_RELE(rootvp);
853         }
854
855 fail_unmount:
856         bhv_vfs_unmount(vfsp, 0, NULL);
857
858 fail_vfsop:
859         vfs_deallocate(vfsp);
860         kmem_free(args, sizeof(*args));
861         return -error;
862 }
863
864 STATIC int
865 xfs_fs_get_sb(
866         struct file_system_type *fs_type,
867         int                     flags,
868         const char              *dev_name,
869         void                    *data,
870         struct vfsmount         *mnt)
871 {
872         return get_sb_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super,
873                            mnt);
874 }
875
876 STATIC struct super_operations xfs_super_operations = {
877         .alloc_inode            = xfs_fs_alloc_inode,
878         .destroy_inode          = xfs_fs_destroy_inode,
879         .write_inode            = xfs_fs_write_inode,
880         .clear_inode            = xfs_fs_clear_inode,
881         .put_super              = xfs_fs_put_super,
882         .write_super            = xfs_fs_write_super,
883         .sync_fs                = xfs_fs_sync_super,
884         .write_super_lockfs     = xfs_fs_lockfs,
885         .statfs                 = xfs_fs_statfs,
886         .remount_fs             = xfs_fs_remount,
887         .show_options           = xfs_fs_show_options,
888 };
889
890 STATIC struct quotactl_ops xfs_quotactl_operations = {
891         .quota_sync             = xfs_fs_quotasync,
892         .get_xstate             = xfs_fs_getxstate,
893         .set_xstate             = xfs_fs_setxstate,
894         .get_xquota             = xfs_fs_getxquota,
895         .set_xquota             = xfs_fs_setxquota,
896 };
897
898 STATIC struct file_system_type xfs_fs_type = {
899         .owner                  = THIS_MODULE,
900         .name                   = "xfs",
901         .get_sb                 = xfs_fs_get_sb,
902         .kill_sb                = kill_block_super,
903         .fs_flags               = FS_REQUIRES_DEV,
904 };
905
906
907 STATIC int __init
908 init_xfs_fs( void )
909 {
910         int                     error;
911         struct sysinfo          si;
912         static char             message[] __initdata = KERN_INFO \
913                 XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n";
914
915         printk(message);
916
917         si_meminfo(&si);
918         xfs_physmem = si.totalram;
919
920         ktrace_init(64);
921
922         error = xfs_init_zones();
923         if (error < 0)
924                 goto undo_zones;
925
926         error = xfs_buf_init();
927         if (error < 0)
928                 goto undo_buffers;
929
930         vn_init();
931         xfs_init();
932         uuid_init();
933         vfs_initquota();
934
935         error = register_filesystem(&xfs_fs_type);
936         if (error)
937                 goto undo_register;
938         return 0;
939
940 undo_register:
941         xfs_buf_terminate();
942
943 undo_buffers:
944         xfs_destroy_zones();
945
946 undo_zones:
947         return error;
948 }
949
950 STATIC void __exit
951 exit_xfs_fs( void )
952 {
953         vfs_exitquota();
954         unregister_filesystem(&xfs_fs_type);
955         xfs_cleanup();
956         xfs_buf_terminate();
957         xfs_destroy_zones();
958         ktrace_uninit();
959 }
960
961 module_init(init_xfs_fs);
962 module_exit(exit_xfs_fs);
963
964 MODULE_AUTHOR("Silicon Graphics, Inc.");
965 MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled");
966 MODULE_LICENSE("GPL");