1 #ifndef _ASM_IA64_SYSTEM_H
2 #define _ASM_IA64_SYSTEM_H
5 * System defines. Note that this is included both from .c and .S
6 * files, so it does only defines, not any C code. This is based
7 * on information published in the Processor Abstraction Layer
8 * and the System Abstraction Layer manual.
10 * Copyright (C) 1998-2003 Hewlett-Packard Co
11 * David Mosberger-Tang <davidm@hpl.hp.com>
12 * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com>
13 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
15 #include <linux/config.h>
17 #include <asm/kregs.h>
20 #include <asm/percpu.h>
22 #define GATE_ADDR __IA64_UL_CONST(0xa000000000000000)
24 * 0xa000000000000000+2*PERCPU_PAGE_SIZE
25 * - 0xa000000000000000+3*PERCPU_PAGE_SIZE remain unmapped (guard page)
27 #define KERNEL_START __IA64_UL_CONST(0xa000000100000000)
28 #define PERCPU_ADDR (-PERCPU_PAGE_SIZE)
32 #include <linux/kernel.h>
33 #include <linux/types.h>
35 struct pci_vector_struct {
36 __u16 segment; /* PCI Segment number */
37 __u16 bus; /* PCI Bus number */
38 __u32 pci_id; /* ACPI split 16 bits device, 16 bits function (see section 6.1.1) */
39 __u8 pin; /* PCI PIN (0 = A, 1 = B, 2 = C, 3 = D) */
40 __u32 irq; /* IRQ assigned */
43 extern struct ia64_boot_param {
44 __u64 command_line; /* physical address of command line arguments */
45 __u64 efi_systab; /* physical address of EFI system table */
46 __u64 efi_memmap; /* physical address of EFI memory map */
47 __u64 efi_memmap_size; /* size of EFI memory map */
48 __u64 efi_memdesc_size; /* size of an EFI memory map descriptor */
49 __u32 efi_memdesc_version; /* memory descriptor version */
51 __u16 num_cols; /* number of columns on console output device */
52 __u16 num_rows; /* number of rows on console output device */
53 __u16 orig_x; /* cursor's x position */
54 __u16 orig_y; /* cursor's y position */
56 __u64 fpswa; /* physical address of the fpswa interface */
62 * Macros to force memory ordering. In these descriptions, "previous"
63 * and "subsequent" refer to program order; "visible" means that all
64 * architecturally visible effects of a memory access have occurred
65 * (at a minimum, this means the memory has been read or written).
67 * wmb(): Guarantees that all preceding stores to memory-
68 * like regions are visible before any subsequent
69 * stores and that all following stores will be
70 * visible only after all previous stores.
71 * rmb(): Like wmb(), but for reads.
72 * mb(): wmb()/rmb() combo, i.e., all previous memory
73 * accesses are visible before all subsequent
74 * accesses and vice versa. This is also known as
77 * Note: "mb()" and its variants cannot be used as a fence to order
78 * accesses to memory mapped I/O registers. For that, mf.a needs to
79 * be used. However, we don't want to always use mf.a because (a)
80 * it's (presumably) much slower than mf and (b) mf.a is supported for
81 * sequential memory pages only.
83 #define mb() ia64_mf()
86 #define read_barrier_depends() do { } while(0)
89 # define smp_mb() mb()
90 # define smp_rmb() rmb()
91 # define smp_wmb() wmb()
92 # define smp_read_barrier_depends() read_barrier_depends()
94 # define smp_mb() barrier()
95 # define smp_rmb() barrier()
96 # define smp_wmb() barrier()
97 # define smp_read_barrier_depends() do { } while(0)
101 * XXX check on these---I suspect what Linus really wants here is
102 * acquire vs release semantics but we can't discuss this stuff with
103 * Linus just yet. Grrr...
105 #define set_mb(var, value) do { (var) = (value); mb(); } while (0)
106 #define set_wmb(var, value) do { (var) = (value); mb(); } while (0)
108 #define safe_halt() ia64_pal_halt_light() /* PAL_HALT_LIGHT */
111 * The group barrier in front of the rsm & ssm are necessary to ensure
112 * that none of the previous instructions in the same group are
113 * affected by the rsm/ssm.
115 /* For spinlocks etc */
118 * - clearing psr.i is implicitly serialized (visible by next insn)
119 * - setting psr.i requires data serialization
120 * - we need a stop-bit before reading PSR because we sometimes
121 * write a floating-point register right before reading the PSR
122 * and that writes to PSR.mfl
124 #define __local_irq_save(x) \
127 (x) = ia64_getreg(_IA64_REG_PSR); \
129 ia64_rsm(IA64_PSR_I); \
132 #define __local_irq_disable() \
135 ia64_rsm(IA64_PSR_I); \
138 #define __local_irq_restore(x) ia64_intrin_local_irq_restore((x) & IA64_PSR_I)
140 #ifdef CONFIG_IA64_DEBUG_IRQ
142 extern unsigned long last_cli_ip;
144 # define __save_ip() last_cli_ip = ia64_getreg(_IA64_REG_IP)
146 # define local_irq_save(x) \
150 __local_irq_save(psr); \
151 if (psr & IA64_PSR_I) \
156 # define local_irq_disable() do { unsigned long x; local_irq_save(x); } while (0)
158 # define local_irq_restore(x) \
160 unsigned long old_psr, psr = (x); \
162 local_save_flags(old_psr); \
163 __local_irq_restore(psr); \
164 if ((old_psr & IA64_PSR_I) && !(psr & IA64_PSR_I)) \
168 #else /* !CONFIG_IA64_DEBUG_IRQ */
169 # define local_irq_save(x) __local_irq_save(x)
170 # define local_irq_disable() __local_irq_disable()
171 # define local_irq_restore(x) __local_irq_restore(x)
172 #endif /* !CONFIG_IA64_DEBUG_IRQ */
174 #define local_irq_enable() ({ ia64_stop(); ia64_ssm(IA64_PSR_I); ia64_srlz_d(); })
175 #define local_save_flags(flags) ({ ia64_stop(); (flags) = ia64_getreg(_IA64_REG_PSR); })
177 #define irqs_disabled() \
179 unsigned long __ia64_id_flags; \
180 local_save_flags(__ia64_id_flags); \
181 (__ia64_id_flags & IA64_PSR_I) == 0; \
186 #define prepare_to_switch() do { } while(0)
188 #ifdef CONFIG_IA32_SUPPORT
189 # define IS_IA32_PROCESS(regs) (ia64_psr(regs)->is != 0)
191 # define IS_IA32_PROCESS(regs) 0
193 static inline void ia32_save_state(struct task_struct *t __attribute__((unused))){}
194 static inline void ia32_load_state(struct task_struct *t __attribute__((unused))){}
198 * Context switch from one thread to another. If the two threads have
199 * different address spaces, schedule() has already taken care of
200 * switching to the new address space by calling switch_mm().
202 * Disabling access to the fph partition and the debug-register
203 * context switch MUST be done before calling ia64_switch_to() since a
204 * newly created thread returns directly to
205 * ia64_ret_from_syscall_clear_r8.
207 extern struct task_struct *ia64_switch_to (void *next_task);
211 extern void ia64_save_extra (struct task_struct *task);
212 extern void ia64_load_extra (struct task_struct *task);
214 #ifdef CONFIG_PERFMON
215 DECLARE_PER_CPU(unsigned long, pfm_syst_info);
216 # define PERFMON_IS_SYSWIDE() (__get_cpu_var(pfm_syst_info) & 0x1)
218 # define PERFMON_IS_SYSWIDE() (0)
221 #define IA64_HAS_EXTRA_STATE(t) \
222 ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID) \
223 || IS_IA32_PROCESS(ia64_task_regs(t)) || PERFMON_IS_SYSWIDE())
225 #define __switch_to(prev,next,last) do { \
226 if (IA64_HAS_EXTRA_STATE(prev)) \
227 ia64_save_extra(prev); \
228 if (IA64_HAS_EXTRA_STATE(next)) \
229 ia64_load_extra(next); \
230 ia64_psr(ia64_task_regs(next))->dfh = !ia64_is_local_fpu_owner(next); \
231 (last) = ia64_switch_to((next)); \
236 * In the SMP case, we save the fph state when context-switching away from a thread that
237 * modified fph. This way, when the thread gets scheduled on another CPU, the CPU can
238 * pick up the state from task->thread.fph, avoiding the complication of having to fetch
239 * the latest fph state from another CPU. In other words: eager save, lazy restore.
241 # define switch_to(prev,next,last) do { \
242 if (ia64_psr(ia64_task_regs(prev))->mfh && ia64_is_local_fpu_owner(prev)) { \
243 ia64_psr(ia64_task_regs(prev))->mfh = 0; \
244 (prev)->thread.flags |= IA64_THREAD_FPH_VALID; \
245 __ia64_save_fpu((prev)->thread.fph); \
247 __switch_to(prev, next, last); \
250 # define switch_to(prev,next,last) __switch_to(prev, next, last)
254 * On IA-64, we don't want to hold the runqueue's lock during the low-level context-switch,
255 * because that could cause a deadlock. Here is an example by Erich Focht:
260 * -> spin_lock_irq(&rq->lock)
261 * -> context_switch()
262 * -> wrap_mmu_context()
263 * -> read_lock(&tasklist_lock)
266 * sys_wait4() or release_task() or forget_original_parent()
267 * -> write_lock(&tasklist_lock)
268 * -> do_notify_parent()
269 * -> wake_up_parent()
270 * -> try_to_wake_up()
271 * -> spin_lock_irq(&parent_rq->lock)
273 * If the parent's rq happens to be on CPU#0, we'll wait for the rq->lock
274 * of that CPU which will not be released, because there we wait for the
275 * tasklist_lock to become available.
277 #define prepare_arch_switch(rq, next) \
279 spin_lock(&(next)->switch_lock); \
280 spin_unlock(&(rq)->lock); \
282 #define finish_arch_switch(rq, prev) spin_unlock_irq(&(prev)->switch_lock)
283 #define task_running(rq, p) ((rq)->curr == (p) || spin_is_locked(&(p)->switch_lock))
285 #define ia64_platform_is(x) (strcmp(x, platform_name) == 0)
287 void cpu_idle_wait(void);
289 #define arch_align_stack(x) (x)
291 #endif /* __KERNEL__ */
293 #endif /* __ASSEMBLY__ */
295 #endif /* _ASM_IA64_SYSTEM_H */