3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 * io = for the base address
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
31 * Erik Stahlman <erik@vt.edu>
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@cam.org>
39 * Russell King <rmk@arm.linux.org.uk>
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
60 static const char version[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@cam.org>\n";
69 #include <linux/init.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/sched.h>
73 #include <linux/slab.h>
74 #include <linux/delay.h>
75 #include <linux/interrupt.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/platform_device.h>
80 #include <linux/spinlock.h>
81 #include <linux/ethtool.h>
82 #include <linux/mii.h>
83 #include <linux/workqueue.h>
85 #include <linux/netdevice.h>
86 #include <linux/etherdevice.h>
87 #include <linux/skbuff.h>
95 * the LAN91C111 can be at any of the following port addresses. To change,
96 * for a slightly different card, you can add it to the array. Keep in
97 * mind that the array must end in zero.
99 static unsigned int smc_portlist[] __initdata = {
100 0x200, 0x220, 0x240, 0x260, 0x280, 0x2A0, 0x2C0, 0x2E0,
101 0x300, 0x320, 0x340, 0x360, 0x380, 0x3A0, 0x3C0, 0x3E0, 0
105 # define SMC_IOADDR -1
107 static unsigned long io = SMC_IOADDR;
108 module_param(io, ulong, 0400);
109 MODULE_PARM_DESC(io, "I/O base address");
114 static int irq = SMC_IRQ;
115 module_param(irq, int, 0400);
116 MODULE_PARM_DESC(irq, "IRQ number");
118 #endif /* CONFIG_ISA */
121 # define SMC_NOWAIT 0
123 static int nowait = SMC_NOWAIT;
124 module_param(nowait, int, 0400);
125 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
128 * Transmit timeout, default 5 seconds.
130 static int watchdog = 1000;
131 module_param(watchdog, int, 0400);
132 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
134 MODULE_LICENSE("GPL");
137 * The internal workings of the driver. If you are changing anything
138 * here with the SMC stuff, you should have the datasheet and know
139 * what you are doing.
141 #define CARDNAME "smc91x"
144 * Use power-down feature of the chip
149 * Wait time for memory to be free. This probably shouldn't be
150 * tuned that much, as waiting for this means nothing else happens
153 #define MEMORY_WAIT_TIME 16
156 * The maximum number of processing loops allowed for each call to the
159 #define MAX_IRQ_LOOPS 8
162 * This selects whether TX packets are sent one by one to the SMC91x internal
163 * memory and throttled until transmission completes. This may prevent
164 * RX overruns a litle by keeping much of the memory free for RX packets
165 * but to the expense of reduced TX throughput and increased IRQ overhead.
166 * Note this is not a cure for a too slow data bus or too high IRQ latency.
168 #define THROTTLE_TX_PKTS 0
171 * The MII clock high/low times. 2x this number gives the MII clock period
172 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
176 /* store this information for the driver.. */
179 * If I have to wait until memory is available to send a
180 * packet, I will store the skbuff here, until I get the
181 * desired memory. Then, I'll send it out and free it.
183 struct sk_buff *pending_tx_skb;
184 struct tasklet_struct tx_task;
187 * these are things that the kernel wants me to keep, so users
188 * can find out semi-useless statistics of how well the card is
191 struct net_device_stats stats;
193 /* version/revision of the SMC91x chip */
196 /* Contains the current active transmission mode */
199 /* Contains the current active receive mode */
202 /* Contains the current active receive/phy mode */
209 struct mii_if_info mii;
212 struct work_struct phy_configure;
213 struct net_device *dev;
218 #ifdef SMC_USE_PXA_DMA
219 /* DMA needs the physical address of the chip */
223 void __iomem *datacs;
227 #define DBG(n, args...) \
229 if (SMC_DEBUG >= (n)) \
233 #define PRINTK(args...) printk(args)
235 #define DBG(n, args...) do { } while(0)
236 #define PRINTK(args...) printk(KERN_DEBUG args)
240 static void PRINT_PKT(u_char *buf, int length)
247 remainder = length % 16;
249 for (i = 0; i < lines ; i ++) {
251 for (cur = 0; cur < 8; cur++) {
255 printk("%02x%02x ", a, b);
259 for (i = 0; i < remainder/2 ; i++) {
263 printk("%02x%02x ", a, b);
268 #define PRINT_PKT(x...) do { } while(0)
272 /* this enables an interrupt in the interrupt mask register */
273 #define SMC_ENABLE_INT(x) do { \
274 unsigned char mask; \
275 spin_lock_irq(&lp->lock); \
276 mask = SMC_GET_INT_MASK(); \
278 SMC_SET_INT_MASK(mask); \
279 spin_unlock_irq(&lp->lock); \
282 /* this disables an interrupt from the interrupt mask register */
283 #define SMC_DISABLE_INT(x) do { \
284 unsigned char mask; \
285 spin_lock_irq(&lp->lock); \
286 mask = SMC_GET_INT_MASK(); \
288 SMC_SET_INT_MASK(mask); \
289 spin_unlock_irq(&lp->lock); \
293 * Wait while MMU is busy. This is usually in the order of a few nanosecs
294 * if at all, but let's avoid deadlocking the system if the hardware
295 * decides to go south.
297 #define SMC_WAIT_MMU_BUSY() do { \
298 if (unlikely(SMC_GET_MMU_CMD() & MC_BUSY)) { \
299 unsigned long timeout = jiffies + 2; \
300 while (SMC_GET_MMU_CMD() & MC_BUSY) { \
301 if (time_after(jiffies, timeout)) { \
302 printk("%s: timeout %s line %d\n", \
303 dev->name, __FILE__, __LINE__); \
313 * this does a soft reset on the device
315 static void smc_reset(struct net_device *dev)
317 struct smc_local *lp = netdev_priv(dev);
318 void __iomem *ioaddr = lp->base;
319 unsigned int ctl, cfg;
320 struct sk_buff *pending_skb;
322 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
324 /* Disable all interrupts, block TX tasklet */
325 spin_lock_irq(&lp->lock);
328 pending_skb = lp->pending_tx_skb;
329 lp->pending_tx_skb = NULL;
330 spin_unlock_irq(&lp->lock);
332 /* free any pending tx skb */
334 dev_kfree_skb(pending_skb);
335 lp->stats.tx_errors++;
336 lp->stats.tx_aborted_errors++;
340 * This resets the registers mostly to defaults, but doesn't
341 * affect EEPROM. That seems unnecessary
344 SMC_SET_RCR(RCR_SOFTRST);
347 * Setup the Configuration Register
348 * This is necessary because the CONFIG_REG is not affected
353 cfg = CONFIG_DEFAULT;
356 * Setup for fast accesses if requested. If the card/system
357 * can't handle it then there will be no recovery except for
358 * a hard reset or power cycle
361 cfg |= CONFIG_NO_WAIT;
364 * Release from possible power-down state
365 * Configuration register is not affected by Soft Reset
367 cfg |= CONFIG_EPH_POWER_EN;
371 /* this should pause enough for the chip to be happy */
373 * elaborate? What does the chip _need_? --jgarzik
375 * This seems to be undocumented, but something the original
376 * driver(s) have always done. Suspect undocumented timing
377 * info/determined empirically. --rmk
381 /* Disable transmit and receive functionality */
383 SMC_SET_RCR(RCR_CLEAR);
384 SMC_SET_TCR(TCR_CLEAR);
387 ctl = SMC_GET_CTL() | CTL_LE_ENABLE;
390 * Set the control register to automatically release successfully
391 * transmitted packets, to make the best use out of our limited
394 if(!THROTTLE_TX_PKTS)
395 ctl |= CTL_AUTO_RELEASE;
397 ctl &= ~CTL_AUTO_RELEASE;
402 SMC_SET_MMU_CMD(MC_RESET);
407 * Enable Interrupts, Receive, and Transmit
409 static void smc_enable(struct net_device *dev)
411 struct smc_local *lp = netdev_priv(dev);
412 void __iomem *ioaddr = lp->base;
415 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
417 /* see the header file for options in TCR/RCR DEFAULT */
419 SMC_SET_TCR(lp->tcr_cur_mode);
420 SMC_SET_RCR(lp->rcr_cur_mode);
423 SMC_SET_MAC_ADDR(dev->dev_addr);
425 /* now, enable interrupts */
426 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
427 if (lp->version >= (CHIP_91100 << 4))
430 SMC_SET_INT_MASK(mask);
433 * From this point the register bank must _NOT_ be switched away
434 * to something else than bank 2 without proper locking against
435 * races with any tasklet or interrupt handlers until smc_shutdown()
436 * or smc_reset() is called.
441 * this puts the device in an inactive state
443 static void smc_shutdown(struct net_device *dev)
445 struct smc_local *lp = netdev_priv(dev);
446 void __iomem *ioaddr = lp->base;
447 struct sk_buff *pending_skb;
449 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
451 /* no more interrupts for me */
452 spin_lock_irq(&lp->lock);
455 pending_skb = lp->pending_tx_skb;
456 lp->pending_tx_skb = NULL;
457 spin_unlock_irq(&lp->lock);
459 dev_kfree_skb(pending_skb);
461 /* and tell the card to stay away from that nasty outside world */
463 SMC_SET_RCR(RCR_CLEAR);
464 SMC_SET_TCR(TCR_CLEAR);
467 /* finally, shut the chip down */
469 SMC_SET_CONFIG(SMC_GET_CONFIG() & ~CONFIG_EPH_POWER_EN);
474 * This is the procedure to handle the receipt of a packet.
476 static inline void smc_rcv(struct net_device *dev)
478 struct smc_local *lp = netdev_priv(dev);
479 void __iomem *ioaddr = lp->base;
480 unsigned int packet_number, status, packet_len;
482 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
484 packet_number = SMC_GET_RXFIFO();
485 if (unlikely(packet_number & RXFIFO_REMPTY)) {
486 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
490 /* read from start of packet */
491 SMC_SET_PTR(PTR_READ | PTR_RCV | PTR_AUTOINC);
493 /* First two words are status and packet length */
494 SMC_GET_PKT_HDR(status, packet_len);
495 packet_len &= 0x07ff; /* mask off top bits */
496 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
497 dev->name, packet_number, status,
498 packet_len, packet_len);
501 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
502 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
503 /* accept VLAN packets */
504 status &= ~RS_TOOLONG;
507 if (packet_len < 6) {
508 /* bloody hardware */
509 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
510 dev->name, packet_len, status);
511 status |= RS_TOOSHORT;
514 SMC_SET_MMU_CMD(MC_RELEASE);
515 lp->stats.rx_errors++;
516 if (status & RS_ALGNERR)
517 lp->stats.rx_frame_errors++;
518 if (status & (RS_TOOSHORT | RS_TOOLONG))
519 lp->stats.rx_length_errors++;
520 if (status & RS_BADCRC)
521 lp->stats.rx_crc_errors++;
525 unsigned int data_len;
527 /* set multicast stats */
528 if (status & RS_MULTICAST)
529 lp->stats.multicast++;
532 * Actual payload is packet_len - 6 (or 5 if odd byte).
533 * We want skb_reserve(2) and the final ctrl word
534 * (2 bytes, possibly containing the payload odd byte).
535 * Furthermore, we add 2 bytes to allow rounding up to
536 * multiple of 4 bytes on 32 bit buses.
537 * Hence packet_len - 6 + 2 + 2 + 2.
539 skb = dev_alloc_skb(packet_len);
540 if (unlikely(skb == NULL)) {
541 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
544 SMC_SET_MMU_CMD(MC_RELEASE);
545 lp->stats.rx_dropped++;
549 /* Align IP header to 32 bits */
552 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
553 if (lp->version == 0x90)
554 status |= RS_ODDFRAME;
557 * If odd length: packet_len - 5,
558 * otherwise packet_len - 6.
559 * With the trailing ctrl byte it's packet_len - 4.
561 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
562 data = skb_put(skb, data_len);
563 SMC_PULL_DATA(data, packet_len - 4);
566 SMC_SET_MMU_CMD(MC_RELEASE);
568 PRINT_PKT(data, packet_len - 4);
570 dev->last_rx = jiffies;
572 skb->protocol = eth_type_trans(skb, dev);
574 lp->stats.rx_packets++;
575 lp->stats.rx_bytes += data_len;
581 * On SMP we have the following problem:
583 * A = smc_hardware_send_pkt()
584 * B = smc_hard_start_xmit()
585 * C = smc_interrupt()
587 * A and B can never be executed simultaneously. However, at least on UP,
588 * it is possible (and even desirable) for C to interrupt execution of
589 * A or B in order to have better RX reliability and avoid overruns.
590 * C, just like A and B, must have exclusive access to the chip and
591 * each of them must lock against any other concurrent access.
592 * Unfortunately this is not possible to have C suspend execution of A or
593 * B taking place on another CPU. On UP this is no an issue since A and B
594 * are run from softirq context and C from hard IRQ context, and there is
595 * no other CPU where concurrent access can happen.
596 * If ever there is a way to force at least B and C to always be executed
597 * on the same CPU then we could use read/write locks to protect against
598 * any other concurrent access and C would always interrupt B. But life
599 * isn't that easy in a SMP world...
601 #define smc_special_trylock(lock) \
604 local_irq_disable(); \
605 __ret = spin_trylock(lock); \
607 local_irq_enable(); \
610 #define smc_special_lock(lock) spin_lock_irq(lock)
611 #define smc_special_unlock(lock) spin_unlock_irq(lock)
613 #define smc_special_trylock(lock) (1)
614 #define smc_special_lock(lock) do { } while (0)
615 #define smc_special_unlock(lock) do { } while (0)
619 * This is called to actually send a packet to the chip.
621 static void smc_hardware_send_pkt(unsigned long data)
623 struct net_device *dev = (struct net_device *)data;
624 struct smc_local *lp = netdev_priv(dev);
625 void __iomem *ioaddr = lp->base;
627 unsigned int packet_no, len;
630 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
632 if (!smc_special_trylock(&lp->lock)) {
633 netif_stop_queue(dev);
634 tasklet_schedule(&lp->tx_task);
638 skb = lp->pending_tx_skb;
639 if (unlikely(!skb)) {
640 smc_special_unlock(&lp->lock);
643 lp->pending_tx_skb = NULL;
645 packet_no = SMC_GET_AR();
646 if (unlikely(packet_no & AR_FAILED)) {
647 printk("%s: Memory allocation failed.\n", dev->name);
648 lp->stats.tx_errors++;
649 lp->stats.tx_fifo_errors++;
650 smc_special_unlock(&lp->lock);
654 /* point to the beginning of the packet */
655 SMC_SET_PN(packet_no);
656 SMC_SET_PTR(PTR_AUTOINC);
660 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
661 dev->name, packet_no, len, len, buf);
665 * Send the packet length (+6 for status words, length, and ctl.
666 * The card will pad to 64 bytes with zeroes if packet is too small.
668 SMC_PUT_PKT_HDR(0, len + 6);
670 /* send the actual data */
671 SMC_PUSH_DATA(buf, len & ~1);
673 /* Send final ctl word with the last byte if there is one */
674 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG);
677 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
678 * have the effect of having at most one packet queued for TX
679 * in the chip's memory at all time.
681 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
682 * when memory allocation (MC_ALLOC) does not succeed right away.
684 if (THROTTLE_TX_PKTS)
685 netif_stop_queue(dev);
687 /* queue the packet for TX */
688 SMC_SET_MMU_CMD(MC_ENQUEUE);
689 smc_special_unlock(&lp->lock);
691 dev->trans_start = jiffies;
692 lp->stats.tx_packets++;
693 lp->stats.tx_bytes += len;
695 SMC_ENABLE_INT(IM_TX_INT | IM_TX_EMPTY_INT);
697 done: if (!THROTTLE_TX_PKTS)
698 netif_wake_queue(dev);
704 * Since I am not sure if I will have enough room in the chip's ram
705 * to store the packet, I call this routine which either sends it
706 * now, or set the card to generates an interrupt when ready
709 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
711 struct smc_local *lp = netdev_priv(dev);
712 void __iomem *ioaddr = lp->base;
713 unsigned int numPages, poll_count, status;
715 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
717 BUG_ON(lp->pending_tx_skb != NULL);
720 * The MMU wants the number of pages to be the number of 256 bytes
721 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
723 * The 91C111 ignores the size bits, but earlier models don't.
725 * Pkt size for allocating is data length +6 (for additional status
726 * words, length and ctl)
728 * If odd size then last byte is included in ctl word.
730 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
731 if (unlikely(numPages > 7)) {
732 printk("%s: Far too big packet error.\n", dev->name);
733 lp->stats.tx_errors++;
734 lp->stats.tx_dropped++;
739 smc_special_lock(&lp->lock);
741 /* now, try to allocate the memory */
742 SMC_SET_MMU_CMD(MC_ALLOC | numPages);
745 * Poll the chip for a short amount of time in case the
746 * allocation succeeds quickly.
748 poll_count = MEMORY_WAIT_TIME;
750 status = SMC_GET_INT();
751 if (status & IM_ALLOC_INT) {
752 SMC_ACK_INT(IM_ALLOC_INT);
755 } while (--poll_count);
757 smc_special_unlock(&lp->lock);
759 lp->pending_tx_skb = skb;
761 /* oh well, wait until the chip finds memory later */
762 netif_stop_queue(dev);
763 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
764 SMC_ENABLE_INT(IM_ALLOC_INT);
767 * Allocation succeeded: push packet to the chip's own memory
770 smc_hardware_send_pkt((unsigned long)dev);
777 * This handles a TX interrupt, which is only called when:
778 * - a TX error occurred, or
779 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
781 static void smc_tx(struct net_device *dev)
783 struct smc_local *lp = netdev_priv(dev);
784 void __iomem *ioaddr = lp->base;
785 unsigned int saved_packet, packet_no, tx_status, pkt_len;
787 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
789 /* If the TX FIFO is empty then nothing to do */
790 packet_no = SMC_GET_TXFIFO();
791 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
792 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
796 /* select packet to read from */
797 saved_packet = SMC_GET_PN();
798 SMC_SET_PN(packet_no);
800 /* read the first word (status word) from this packet */
801 SMC_SET_PTR(PTR_AUTOINC | PTR_READ);
802 SMC_GET_PKT_HDR(tx_status, pkt_len);
803 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
804 dev->name, tx_status, packet_no);
806 if (!(tx_status & ES_TX_SUC))
807 lp->stats.tx_errors++;
809 if (tx_status & ES_LOSTCARR)
810 lp->stats.tx_carrier_errors++;
812 if (tx_status & (ES_LATCOL | ES_16COL)) {
813 PRINTK("%s: %s occurred on last xmit\n", dev->name,
814 (tx_status & ES_LATCOL) ?
815 "late collision" : "too many collisions");
816 lp->stats.tx_window_errors++;
817 if (!(lp->stats.tx_window_errors & 63) && net_ratelimit()) {
818 printk(KERN_INFO "%s: unexpectedly large number of "
819 "bad collisions. Please check duplex "
820 "setting.\n", dev->name);
824 /* kill the packet */
826 SMC_SET_MMU_CMD(MC_FREEPKT);
828 /* Don't restore Packet Number Reg until busy bit is cleared */
830 SMC_SET_PN(saved_packet);
832 /* re-enable transmit */
834 SMC_SET_TCR(lp->tcr_cur_mode);
839 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
841 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
843 struct smc_local *lp = netdev_priv(dev);
844 void __iomem *ioaddr = lp->base;
845 unsigned int mii_reg, mask;
847 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
850 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
856 SMC_SET_MII(mii_reg);
858 SMC_SET_MII(mii_reg | MII_MCLK);
863 static unsigned int smc_mii_in(struct net_device *dev, int bits)
865 struct smc_local *lp = netdev_priv(dev);
866 void __iomem *ioaddr = lp->base;
867 unsigned int mii_reg, mask, val;
869 mii_reg = SMC_GET_MII() & ~(MII_MCLK | MII_MDOE | MII_MDO);
870 SMC_SET_MII(mii_reg);
872 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
873 if (SMC_GET_MII() & MII_MDI)
876 SMC_SET_MII(mii_reg);
878 SMC_SET_MII(mii_reg | MII_MCLK);
886 * Reads a register from the MII Management serial interface
888 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
890 struct smc_local *lp = netdev_priv(dev);
891 void __iomem *ioaddr = lp->base;
892 unsigned int phydata;
897 smc_mii_out(dev, 0xffffffff, 32);
899 /* Start code (01) + read (10) + phyaddr + phyreg */
900 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
902 /* Turnaround (2bits) + phydata */
903 phydata = smc_mii_in(dev, 18);
905 /* Return to idle state */
906 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
908 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
909 __FUNCTION__, phyaddr, phyreg, phydata);
916 * Writes a register to the MII Management serial interface
918 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
921 struct smc_local *lp = netdev_priv(dev);
922 void __iomem *ioaddr = lp->base;
927 smc_mii_out(dev, 0xffffffff, 32);
929 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
930 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
932 /* Return to idle state */
933 SMC_SET_MII(SMC_GET_MII() & ~(MII_MCLK|MII_MDOE|MII_MDO));
935 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
936 __FUNCTION__, phyaddr, phyreg, phydata);
942 * Finds and reports the PHY address
944 static void smc_phy_detect(struct net_device *dev)
946 struct smc_local *lp = netdev_priv(dev);
949 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
954 * Scan all 32 PHY addresses if necessary, starting at
955 * PHY#1 to PHY#31, and then PHY#0 last.
957 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
958 unsigned int id1, id2;
960 /* Read the PHY identifiers */
961 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
962 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
964 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
965 dev->name, id1, id2);
967 /* Make sure it is a valid identifier */
968 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
969 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
970 /* Save the PHY's address */
971 lp->mii.phy_id = phyaddr & 31;
972 lp->phy_type = id1 << 16 | id2;
979 * Sets the PHY to a configuration as determined by the user
981 static int smc_phy_fixed(struct net_device *dev)
983 struct smc_local *lp = netdev_priv(dev);
984 void __iomem *ioaddr = lp->base;
985 int phyaddr = lp->mii.phy_id;
988 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
990 /* Enter Link Disable state */
991 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
992 cfg1 |= PHY_CFG1_LNKDIS;
993 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
996 * Set our fixed capabilities
997 * Disable auto-negotiation
1001 if (lp->ctl_rfduplx)
1002 bmcr |= BMCR_FULLDPLX;
1004 if (lp->ctl_rspeed == 100)
1005 bmcr |= BMCR_SPEED100;
1007 /* Write our capabilities to the phy control register */
1008 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
1010 /* Re-Configure the Receive/Phy Control register */
1012 SMC_SET_RPC(lp->rpc_cur_mode);
1019 * smc_phy_reset - reset the phy
1023 * Issue a software reset for the specified PHY and
1024 * wait up to 100ms for the reset to complete. We should
1025 * not access the PHY for 50ms after issuing the reset.
1027 * The time to wait appears to be dependent on the PHY.
1029 * Must be called with lp->lock locked.
1031 static int smc_phy_reset(struct net_device *dev, int phy)
1033 struct smc_local *lp = netdev_priv(dev);
1037 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
1039 for (timeout = 2; timeout; timeout--) {
1040 spin_unlock_irq(&lp->lock);
1042 spin_lock_irq(&lp->lock);
1044 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1045 if (!(bmcr & BMCR_RESET))
1049 return bmcr & BMCR_RESET;
1053 * smc_phy_powerdown - powerdown phy
1056 * Power down the specified PHY
1058 static void smc_phy_powerdown(struct net_device *dev)
1060 struct smc_local *lp = netdev_priv(dev);
1062 int phy = lp->mii.phy_id;
1064 if (lp->phy_type == 0)
1067 /* We need to ensure that no calls to smc_phy_configure are
1070 flush_scheduled_work() cannot be called because we are
1071 running with the netlink semaphore held (from
1072 devinet_ioctl()) and the pending work queue contains
1073 linkwatch_event() (scheduled by netif_carrier_off()
1074 above). linkwatch_event() also wants the netlink semaphore.
1076 while(lp->work_pending)
1079 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1080 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1084 * smc_phy_check_media - check the media status and adjust TCR
1086 * @init: set true for initialisation
1088 * Select duplex mode depending on negotiation state. This
1089 * also updates our carrier state.
1091 static void smc_phy_check_media(struct net_device *dev, int init)
1093 struct smc_local *lp = netdev_priv(dev);
1094 void __iomem *ioaddr = lp->base;
1096 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1097 /* duplex state has changed */
1098 if (lp->mii.full_duplex) {
1099 lp->tcr_cur_mode |= TCR_SWFDUP;
1101 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1105 SMC_SET_TCR(lp->tcr_cur_mode);
1110 * Configures the specified PHY through the MII management interface
1111 * using Autonegotiation.
1112 * Calls smc_phy_fixed() if the user has requested a certain config.
1113 * If RPC ANEG bit is set, the media selection is dependent purely on
1114 * the selection by the MII (either in the MII BMCR reg or the result
1115 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1116 * is controlled by the RPC SPEED and RPC DPLX bits.
1118 static void smc_phy_configure(struct work_struct *work)
1120 struct smc_local *lp =
1121 container_of(work, struct smc_local, phy_configure);
1122 struct net_device *dev = lp->dev;
1123 void __iomem *ioaddr = lp->base;
1124 int phyaddr = lp->mii.phy_id;
1125 int my_phy_caps; /* My PHY capabilities */
1126 int my_ad_caps; /* My Advertised capabilities */
1129 DBG(3, "%s:smc_program_phy()\n", dev->name);
1131 spin_lock_irq(&lp->lock);
1134 * We should not be called if phy_type is zero.
1136 if (lp->phy_type == 0)
1137 goto smc_phy_configure_exit;
1139 if (smc_phy_reset(dev, phyaddr)) {
1140 printk("%s: PHY reset timed out\n", dev->name);
1141 goto smc_phy_configure_exit;
1145 * Enable PHY Interrupts (for register 18)
1146 * Interrupts listed here are disabled
1148 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1149 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1150 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1151 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1153 /* Configure the Receive/Phy Control register */
1155 SMC_SET_RPC(lp->rpc_cur_mode);
1157 /* If the user requested no auto neg, then go set his request */
1158 if (lp->mii.force_media) {
1160 goto smc_phy_configure_exit;
1163 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1164 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1166 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1167 printk(KERN_INFO "Auto negotiation NOT supported\n");
1169 goto smc_phy_configure_exit;
1172 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1174 if (my_phy_caps & BMSR_100BASE4)
1175 my_ad_caps |= ADVERTISE_100BASE4;
1176 if (my_phy_caps & BMSR_100FULL)
1177 my_ad_caps |= ADVERTISE_100FULL;
1178 if (my_phy_caps & BMSR_100HALF)
1179 my_ad_caps |= ADVERTISE_100HALF;
1180 if (my_phy_caps & BMSR_10FULL)
1181 my_ad_caps |= ADVERTISE_10FULL;
1182 if (my_phy_caps & BMSR_10HALF)
1183 my_ad_caps |= ADVERTISE_10HALF;
1185 /* Disable capabilities not selected by our user */
1186 if (lp->ctl_rspeed != 100)
1187 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1189 if (!lp->ctl_rfduplx)
1190 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1192 /* Update our Auto-Neg Advertisement Register */
1193 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1194 lp->mii.advertising = my_ad_caps;
1197 * Read the register back. Without this, it appears that when
1198 * auto-negotiation is restarted, sometimes it isn't ready and
1199 * the link does not come up.
1201 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1203 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1204 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1206 /* Restart auto-negotiation process in order to advertise my caps */
1207 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1209 smc_phy_check_media(dev, 1);
1211 smc_phy_configure_exit:
1213 spin_unlock_irq(&lp->lock);
1214 lp->work_pending = 0;
1220 * Purpose: Handle interrupts relating to PHY register 18. This is
1221 * called from the "hard" interrupt handler under our private spinlock.
1223 static void smc_phy_interrupt(struct net_device *dev)
1225 struct smc_local *lp = netdev_priv(dev);
1226 int phyaddr = lp->mii.phy_id;
1229 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1231 if (lp->phy_type == 0)
1235 smc_phy_check_media(dev, 0);
1237 /* Read PHY Register 18, Status Output */
1238 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1239 if ((phy18 & PHY_INT_INT) == 0)
1244 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1246 static void smc_10bt_check_media(struct net_device *dev, int init)
1248 struct smc_local *lp = netdev_priv(dev);
1249 void __iomem *ioaddr = lp->base;
1250 unsigned int old_carrier, new_carrier;
1252 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1255 new_carrier = (SMC_GET_EPH_STATUS() & ES_LINK_OK) ? 1 : 0;
1258 if (init || (old_carrier != new_carrier)) {
1260 netif_carrier_off(dev);
1262 netif_carrier_on(dev);
1264 if (netif_msg_link(lp))
1265 printk(KERN_INFO "%s: link %s\n", dev->name,
1266 new_carrier ? "up" : "down");
1270 static void smc_eph_interrupt(struct net_device *dev)
1272 struct smc_local *lp = netdev_priv(dev);
1273 void __iomem *ioaddr = lp->base;
1276 smc_10bt_check_media(dev, 0);
1279 ctl = SMC_GET_CTL();
1280 SMC_SET_CTL(ctl & ~CTL_LE_ENABLE);
1286 * This is the main routine of the driver, to handle the device when
1287 * it needs some attention.
1289 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1291 struct net_device *dev = dev_id;
1292 struct smc_local *lp = netdev_priv(dev);
1293 void __iomem *ioaddr = lp->base;
1294 int status, mask, timeout, card_stats;
1297 DBG(3, "%s: %s\n", dev->name, __FUNCTION__);
1299 spin_lock(&lp->lock);
1301 /* A preamble may be used when there is a potential race
1302 * between the interruptible transmit functions and this
1304 SMC_INTERRUPT_PREAMBLE;
1306 saved_pointer = SMC_GET_PTR();
1307 mask = SMC_GET_INT_MASK();
1308 SMC_SET_INT_MASK(0);
1310 /* set a timeout value, so I don't stay here forever */
1311 timeout = MAX_IRQ_LOOPS;
1314 status = SMC_GET_INT();
1316 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1317 dev->name, status, mask,
1318 ({ int meminfo; SMC_SELECT_BANK(0);
1319 meminfo = SMC_GET_MIR();
1320 SMC_SELECT_BANK(2); meminfo; }),
1327 if (status & IM_TX_INT) {
1328 /* do this before RX as it will free memory quickly */
1329 DBG(3, "%s: TX int\n", dev->name);
1331 SMC_ACK_INT(IM_TX_INT);
1332 if (THROTTLE_TX_PKTS)
1333 netif_wake_queue(dev);
1334 } else if (status & IM_RCV_INT) {
1335 DBG(3, "%s: RX irq\n", dev->name);
1337 } else if (status & IM_ALLOC_INT) {
1338 DBG(3, "%s: Allocation irq\n", dev->name);
1339 tasklet_hi_schedule(&lp->tx_task);
1340 mask &= ~IM_ALLOC_INT;
1341 } else if (status & IM_TX_EMPTY_INT) {
1342 DBG(3, "%s: TX empty\n", dev->name);
1343 mask &= ~IM_TX_EMPTY_INT;
1347 card_stats = SMC_GET_COUNTER();
1350 /* single collisions */
1351 lp->stats.collisions += card_stats & 0xF;
1354 /* multiple collisions */
1355 lp->stats.collisions += card_stats & 0xF;
1356 } else if (status & IM_RX_OVRN_INT) {
1357 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1358 ({ int eph_st; SMC_SELECT_BANK(0);
1359 eph_st = SMC_GET_EPH_STATUS();
1360 SMC_SELECT_BANK(2); eph_st; }) );
1361 SMC_ACK_INT(IM_RX_OVRN_INT);
1362 lp->stats.rx_errors++;
1363 lp->stats.rx_fifo_errors++;
1364 } else if (status & IM_EPH_INT) {
1365 smc_eph_interrupt(dev);
1366 } else if (status & IM_MDINT) {
1367 SMC_ACK_INT(IM_MDINT);
1368 smc_phy_interrupt(dev);
1369 } else if (status & IM_ERCV_INT) {
1370 SMC_ACK_INT(IM_ERCV_INT);
1371 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT \n", dev->name);
1373 } while (--timeout);
1375 /* restore register states */
1376 SMC_SET_PTR(saved_pointer);
1377 SMC_SET_INT_MASK(mask);
1378 spin_unlock(&lp->lock);
1380 if (timeout == MAX_IRQ_LOOPS)
1381 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1383 DBG(3, "%s: Interrupt done (%d loops)\n",
1384 dev->name, MAX_IRQ_LOOPS - timeout);
1387 * We return IRQ_HANDLED unconditionally here even if there was
1388 * nothing to do. There is a possibility that a packet might
1389 * get enqueued into the chip right after TX_EMPTY_INT is raised
1390 * but just before the CPU acknowledges the IRQ.
1391 * Better take an unneeded IRQ in some occasions than complexifying
1392 * the code for all cases.
1397 #ifdef CONFIG_NET_POLL_CONTROLLER
1399 * Polling receive - used by netconsole and other diagnostic tools
1400 * to allow network i/o with interrupts disabled.
1402 static void smc_poll_controller(struct net_device *dev)
1404 disable_irq(dev->irq);
1405 smc_interrupt(dev->irq, dev);
1406 enable_irq(dev->irq);
1410 /* Our watchdog timed out. Called by the networking layer */
1411 static void smc_timeout(struct net_device *dev)
1413 struct smc_local *lp = netdev_priv(dev);
1414 void __iomem *ioaddr = lp->base;
1415 int status, mask, eph_st, meminfo, fifo;
1417 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1419 spin_lock_irq(&lp->lock);
1420 status = SMC_GET_INT();
1421 mask = SMC_GET_INT_MASK();
1422 fifo = SMC_GET_FIFO();
1424 eph_st = SMC_GET_EPH_STATUS();
1425 meminfo = SMC_GET_MIR();
1427 spin_unlock_irq(&lp->lock);
1428 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1429 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1430 dev->name, status, mask, meminfo, fifo, eph_st );
1436 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1437 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1438 * which calls schedule(). Hence we use a work queue.
1440 if (lp->phy_type != 0) {
1441 if (schedule_work(&lp->phy_configure)) {
1442 lp->work_pending = 1;
1446 /* We can accept TX packets again */
1447 dev->trans_start = jiffies;
1448 netif_wake_queue(dev);
1452 * This routine will, depending on the values passed to it,
1453 * either make it accept multicast packets, go into
1454 * promiscuous mode (for TCPDUMP and cousins) or accept
1455 * a select set of multicast packets
1457 static void smc_set_multicast_list(struct net_device *dev)
1459 struct smc_local *lp = netdev_priv(dev);
1460 void __iomem *ioaddr = lp->base;
1461 unsigned char multicast_table[8];
1462 int update_multicast = 0;
1464 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1466 if (dev->flags & IFF_PROMISC) {
1467 DBG(2, "%s: RCR_PRMS\n", dev->name);
1468 lp->rcr_cur_mode |= RCR_PRMS;
1471 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1472 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1473 when promiscuous mode is turned on.
1477 * Here, I am setting this to accept all multicast packets.
1478 * I don't need to zero the multicast table, because the flag is
1479 * checked before the table is
1481 else if (dev->flags & IFF_ALLMULTI || dev->mc_count > 16) {
1482 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1483 lp->rcr_cur_mode |= RCR_ALMUL;
1487 * This sets the internal hardware table to filter out unwanted
1488 * multicast packets before they take up memory.
1490 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1491 * address are the offset into the table. If that bit is 1, then the
1492 * multicast packet is accepted. Otherwise, it's dropped silently.
1494 * To use the 6 bits as an offset into the table, the high 3 bits are
1495 * the number of the 8 bit register, while the low 3 bits are the bit
1496 * within that register.
1498 else if (dev->mc_count) {
1500 struct dev_mc_list *cur_addr;
1502 /* table for flipping the order of 3 bits */
1503 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1505 /* start with a table of all zeros: reject all */
1506 memset(multicast_table, 0, sizeof(multicast_table));
1508 cur_addr = dev->mc_list;
1509 for (i = 0; i < dev->mc_count; i++, cur_addr = cur_addr->next) {
1512 /* do we have a pointer here? */
1515 /* make sure this is a multicast address -
1516 shouldn't this be a given if we have it here ? */
1517 if (!(*cur_addr->dmi_addr & 1))
1520 /* only use the low order bits */
1521 position = crc32_le(~0, cur_addr->dmi_addr, 6) & 0x3f;
1523 /* do some messy swapping to put the bit in the right spot */
1524 multicast_table[invert3[position&7]] |=
1525 (1<<invert3[(position>>3)&7]);
1528 /* be sure I get rid of flags I might have set */
1529 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1531 /* now, the table can be loaded into the chipset */
1532 update_multicast = 1;
1534 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1535 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1538 * since I'm disabling all multicast entirely, I need to
1539 * clear the multicast list
1541 memset(multicast_table, 0, sizeof(multicast_table));
1542 update_multicast = 1;
1545 spin_lock_irq(&lp->lock);
1547 SMC_SET_RCR(lp->rcr_cur_mode);
1548 if (update_multicast) {
1550 SMC_SET_MCAST(multicast_table);
1553 spin_unlock_irq(&lp->lock);
1558 * Open and Initialize the board
1560 * Set up everything, reset the card, etc..
1563 smc_open(struct net_device *dev)
1565 struct smc_local *lp = netdev_priv(dev);
1567 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1570 * Check that the address is valid. If its not, refuse
1571 * to bring the device up. The user must specify an
1572 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1574 if (!is_valid_ether_addr(dev->dev_addr)) {
1575 PRINTK("%s: no valid ethernet hw addr\n", __FUNCTION__);
1579 /* Setup the default Register Modes */
1580 lp->tcr_cur_mode = TCR_DEFAULT;
1581 lp->rcr_cur_mode = RCR_DEFAULT;
1582 lp->rpc_cur_mode = RPC_DEFAULT;
1585 * If we are not using a MII interface, we need to
1586 * monitor our own carrier signal to detect faults.
1588 if (lp->phy_type == 0)
1589 lp->tcr_cur_mode |= TCR_MON_CSN;
1591 /* reset the hardware */
1595 /* Configure the PHY, initialize the link state */
1596 if (lp->phy_type != 0)
1597 smc_phy_configure(&lp->phy_configure);
1599 spin_lock_irq(&lp->lock);
1600 smc_10bt_check_media(dev, 1);
1601 spin_unlock_irq(&lp->lock);
1604 netif_start_queue(dev);
1611 * this makes the board clean up everything that it can
1612 * and not talk to the outside world. Caused by
1613 * an 'ifconfig ethX down'
1615 static int smc_close(struct net_device *dev)
1617 struct smc_local *lp = netdev_priv(dev);
1619 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1621 netif_stop_queue(dev);
1622 netif_carrier_off(dev);
1624 /* clear everything */
1626 tasklet_kill(&lp->tx_task);
1627 smc_phy_powerdown(dev);
1632 * Get the current statistics.
1633 * This may be called with the card open or closed.
1635 static struct net_device_stats *smc_query_statistics(struct net_device *dev)
1637 struct smc_local *lp = netdev_priv(dev);
1639 DBG(2, "%s: %s\n", dev->name, __FUNCTION__);
1648 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1650 struct smc_local *lp = netdev_priv(dev);
1656 if (lp->phy_type != 0) {
1657 spin_lock_irq(&lp->lock);
1658 ret = mii_ethtool_gset(&lp->mii, cmd);
1659 spin_unlock_irq(&lp->lock);
1661 cmd->supported = SUPPORTED_10baseT_Half |
1662 SUPPORTED_10baseT_Full |
1663 SUPPORTED_TP | SUPPORTED_AUI;
1665 if (lp->ctl_rspeed == 10)
1666 cmd->speed = SPEED_10;
1667 else if (lp->ctl_rspeed == 100)
1668 cmd->speed = SPEED_100;
1670 cmd->autoneg = AUTONEG_DISABLE;
1671 cmd->transceiver = XCVR_INTERNAL;
1673 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1682 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1684 struct smc_local *lp = netdev_priv(dev);
1687 if (lp->phy_type != 0) {
1688 spin_lock_irq(&lp->lock);
1689 ret = mii_ethtool_sset(&lp->mii, cmd);
1690 spin_unlock_irq(&lp->lock);
1692 if (cmd->autoneg != AUTONEG_DISABLE ||
1693 cmd->speed != SPEED_10 ||
1694 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1695 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1698 // lp->port = cmd->port;
1699 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1701 // if (netif_running(dev))
1702 // smc_set_port(dev);
1711 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1713 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1714 strncpy(info->version, version, sizeof(info->version));
1715 strncpy(info->bus_info, dev->class_dev.dev->bus_id, sizeof(info->bus_info));
1718 static int smc_ethtool_nwayreset(struct net_device *dev)
1720 struct smc_local *lp = netdev_priv(dev);
1723 if (lp->phy_type != 0) {
1724 spin_lock_irq(&lp->lock);
1725 ret = mii_nway_restart(&lp->mii);
1726 spin_unlock_irq(&lp->lock);
1732 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1734 struct smc_local *lp = netdev_priv(dev);
1735 return lp->msg_enable;
1738 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1740 struct smc_local *lp = netdev_priv(dev);
1741 lp->msg_enable = level;
1744 static const struct ethtool_ops smc_ethtool_ops = {
1745 .get_settings = smc_ethtool_getsettings,
1746 .set_settings = smc_ethtool_setsettings,
1747 .get_drvinfo = smc_ethtool_getdrvinfo,
1749 .get_msglevel = smc_ethtool_getmsglevel,
1750 .set_msglevel = smc_ethtool_setmsglevel,
1751 .nway_reset = smc_ethtool_nwayreset,
1752 .get_link = ethtool_op_get_link,
1753 // .get_eeprom = smc_ethtool_geteeprom,
1754 // .set_eeprom = smc_ethtool_seteeprom,
1760 * This routine has a simple purpose -- make the SMC chip generate an
1761 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1764 * does this still work?
1766 * I just deleted auto_irq.c, since it was never built...
1769 static int __init smc_findirq(void __iomem *ioaddr)
1772 unsigned long cookie;
1774 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1776 cookie = probe_irq_on();
1779 * What I try to do here is trigger an ALLOC_INT. This is done
1780 * by allocating a small chunk of memory, which will give an interrupt
1783 /* enable ALLOCation interrupts ONLY */
1785 SMC_SET_INT_MASK(IM_ALLOC_INT);
1788 * Allocate 512 bytes of memory. Note that the chip was just
1789 * reset so all the memory is available
1791 SMC_SET_MMU_CMD(MC_ALLOC | 1);
1794 * Wait until positive that the interrupt has been generated
1799 int_status = SMC_GET_INT();
1800 if (int_status & IM_ALLOC_INT)
1801 break; /* got the interrupt */
1802 } while (--timeout);
1805 * there is really nothing that I can do here if timeout fails,
1806 * as autoirq_report will return a 0 anyway, which is what I
1807 * want in this case. Plus, the clean up is needed in both
1811 /* and disable all interrupts again */
1812 SMC_SET_INT_MASK(0);
1814 /* and return what I found */
1815 return probe_irq_off(cookie);
1819 * Function: smc_probe(unsigned long ioaddr)
1822 * Tests to see if a given ioaddr points to an SMC91x chip.
1823 * Returns a 0 on success
1826 * (1) see if the high byte of BANK_SELECT is 0x33
1827 * (2) compare the ioaddr with the base register's address
1828 * (3) see if I recognize the chip ID in the appropriate register
1830 * Here I do typical initialization tasks.
1832 * o Initialize the structure if needed
1833 * o print out my vanity message if not done so already
1834 * o print out what type of hardware is detected
1835 * o print out the ethernet address
1837 * o set up my private data
1838 * o configure the dev structure with my subroutines
1839 * o actually GRAB the irq.
1842 static int __init smc_probe(struct net_device *dev, void __iomem *ioaddr)
1844 struct smc_local *lp = netdev_priv(dev);
1845 static int version_printed = 0;
1847 unsigned int val, revision_register;
1848 const char *version_string;
1850 DBG(2, "%s: %s\n", CARDNAME, __FUNCTION__);
1852 /* First, see if the high byte is 0x33 */
1853 val = SMC_CURRENT_BANK();
1854 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1855 if ((val & 0xFF00) != 0x3300) {
1856 if ((val & 0xFF) == 0x33) {
1858 "%s: Detected possible byte-swapped interface"
1859 " at IOADDR %p\n", CARDNAME, ioaddr);
1866 * The above MIGHT indicate a device, but I need to write to
1867 * further test this.
1870 val = SMC_CURRENT_BANK();
1871 if ((val & 0xFF00) != 0x3300) {
1877 * well, we've already written once, so hopefully another
1878 * time won't hurt. This time, I need to switch the bank
1879 * register to bank 1, so I can access the base address
1883 val = SMC_GET_BASE();
1884 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1885 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1886 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1887 CARDNAME, ioaddr, val);
1891 * check if the revision register is something that I
1892 * recognize. These might need to be added to later,
1893 * as future revisions could be added.
1896 revision_register = SMC_GET_REV();
1897 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1898 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1899 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1900 /* I don't recognize this chip, so... */
1901 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1902 ", Contact author.\n", CARDNAME,
1903 ioaddr, revision_register);
1909 /* At this point I'll assume that the chip is an SMC91x. */
1910 if (version_printed++ == 0)
1911 printk("%s", version);
1913 /* fill in some of the fields */
1914 dev->base_addr = (unsigned long)ioaddr;
1916 lp->version = revision_register & 0xff;
1917 spin_lock_init(&lp->lock);
1919 /* Get the MAC address */
1921 SMC_GET_MAC_ADDR(dev->dev_addr);
1923 /* now, reset the chip, and put it into a known state */
1927 * If dev->irq is 0, then the device has to be banged on to see
1930 * This banging doesn't always detect the IRQ, for unknown reasons.
1931 * a workaround is to reset the chip and try again.
1933 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1934 * be what is requested on the command line. I don't do that, mostly
1935 * because the card that I have uses a non-standard method of accessing
1936 * the IRQs, and because this _should_ work in most configurations.
1938 * Specifying an IRQ is done with the assumption that the user knows
1939 * what (s)he is doing. No checking is done!!!!
1946 dev->irq = smc_findirq(ioaddr);
1949 /* kick the card and try again */
1953 if (dev->irq == 0) {
1954 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1959 dev->irq = irq_canonicalize(dev->irq);
1961 /* Fill in the fields of the device structure with ethernet values. */
1964 dev->open = smc_open;
1965 dev->stop = smc_close;
1966 dev->hard_start_xmit = smc_hard_start_xmit;
1967 dev->tx_timeout = smc_timeout;
1968 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1969 dev->get_stats = smc_query_statistics;
1970 dev->set_multicast_list = smc_set_multicast_list;
1971 dev->ethtool_ops = &smc_ethtool_ops;
1972 #ifdef CONFIG_NET_POLL_CONTROLLER
1973 dev->poll_controller = smc_poll_controller;
1976 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1977 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1979 lp->mii.phy_id_mask = 0x1f;
1980 lp->mii.reg_num_mask = 0x1f;
1981 lp->mii.force_media = 0;
1982 lp->mii.full_duplex = 0;
1984 lp->mii.mdio_read = smc_phy_read;
1985 lp->mii.mdio_write = smc_phy_write;
1988 * Locate the phy, if any.
1990 if (lp->version >= (CHIP_91100 << 4))
1991 smc_phy_detect(dev);
1993 /* then shut everything down to save power */
1995 smc_phy_powerdown(dev);
1997 /* Set default parameters */
1998 lp->msg_enable = NETIF_MSG_LINK;
1999 lp->ctl_rfduplx = 0;
2000 lp->ctl_rspeed = 10;
2002 if (lp->version >= (CHIP_91100 << 4)) {
2003 lp->ctl_rfduplx = 1;
2004 lp->ctl_rspeed = 100;
2008 retval = request_irq(dev->irq, &smc_interrupt, SMC_IRQ_FLAGS, dev->name, dev);
2012 #ifdef SMC_USE_PXA_DMA
2014 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2015 smc_pxa_dma_irq, NULL);
2021 retval = register_netdev(dev);
2023 /* now, print out the card info, in a short format.. */
2024 printk("%s: %s (rev %d) at %p IRQ %d",
2025 dev->name, version_string, revision_register & 0x0f,
2026 lp->base, dev->irq);
2028 if (dev->dma != (unsigned char)-1)
2029 printk(" DMA %d", dev->dma);
2031 printk("%s%s\n", nowait ? " [nowait]" : "",
2032 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2034 if (!is_valid_ether_addr(dev->dev_addr)) {
2035 printk("%s: Invalid ethernet MAC address. Please "
2036 "set using ifconfig\n", dev->name);
2038 /* Print the Ethernet address */
2039 printk("%s: Ethernet addr: ", dev->name);
2040 for (i = 0; i < 5; i++)
2041 printk("%2.2x:", dev->dev_addr[i]);
2042 printk("%2.2x\n", dev->dev_addr[5]);
2045 if (lp->phy_type == 0) {
2046 PRINTK("%s: No PHY found\n", dev->name);
2047 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2048 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2049 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2050 PRINTK("%s: PHY LAN83C180\n", dev->name);
2055 #ifdef SMC_USE_PXA_DMA
2056 if (retval && dev->dma != (unsigned char)-1)
2057 pxa_free_dma(dev->dma);
2062 static int smc_enable_device(struct platform_device *pdev)
2064 unsigned long flags;
2065 unsigned char ecor, ecsr;
2067 struct resource * res;
2069 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2074 * Map the attribute space. This is overkill, but clean.
2076 addr = ioremap(res->start, ATTRIB_SIZE);
2081 * Reset the device. We must disable IRQs around this
2082 * since a reset causes the IRQ line become active.
2084 local_irq_save(flags);
2085 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2086 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2087 readb(addr + (ECOR << SMC_IO_SHIFT));
2090 * Wait 100us for the chip to reset.
2095 * The device will ignore all writes to the enable bit while
2096 * reset is asserted, even if the reset bit is cleared in the
2097 * same write. Must clear reset first, then enable the device.
2099 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2100 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2103 * Set the appropriate byte/word mode.
2105 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2106 if (!SMC_CAN_USE_16BIT)
2108 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2109 local_irq_restore(flags);
2114 * Wait for the chip to wake up. We could poll the control
2115 * register in the main register space, but that isn't mapped
2116 * yet. We know this is going to take 750us.
2123 static int smc_request_attrib(struct platform_device *pdev)
2125 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2130 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2136 static void smc_release_attrib(struct platform_device *pdev)
2138 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2141 release_mem_region(res->start, ATTRIB_SIZE);
2144 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2146 if (SMC_CAN_USE_DATACS) {
2147 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2148 struct smc_local *lp = netdev_priv(ndev);
2153 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2154 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2158 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2162 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2164 if (SMC_CAN_USE_DATACS) {
2165 struct smc_local *lp = netdev_priv(ndev);
2166 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2169 iounmap(lp->datacs);
2174 release_mem_region(res->start, SMC_DATA_EXTENT);
2181 * dev->base_addr == 0, try to find all possible locations
2182 * dev->base_addr > 0x1ff, this is the address to check
2183 * dev->base_addr == <anything else>, return failure code
2186 * 0 --> there is a device
2187 * anything else, error
2189 static int smc_drv_probe(struct platform_device *pdev)
2191 struct net_device *ndev;
2192 struct resource *res;
2193 unsigned int __iomem *addr;
2196 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2198 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2205 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2210 ndev = alloc_etherdev(sizeof(struct smc_local));
2212 printk("%s: could not allocate device.\n", CARDNAME);
2214 goto out_release_io;
2216 SET_MODULE_OWNER(ndev);
2217 SET_NETDEV_DEV(ndev, &pdev->dev);
2219 ndev->dma = (unsigned char)-1;
2220 ndev->irq = platform_get_irq(pdev, 0);
2221 if (ndev->irq < 0) {
2223 goto out_free_netdev;
2226 ret = smc_request_attrib(pdev);
2228 goto out_free_netdev;
2229 #if defined(CONFIG_SA1100_ASSABET)
2230 NCR_0 |= NCR_ENET_OSC_EN;
2232 ret = smc_enable_device(pdev);
2234 goto out_release_attrib;
2236 addr = ioremap(res->start, SMC_IO_EXTENT);
2239 goto out_release_attrib;
2242 platform_set_drvdata(pdev, ndev);
2243 ret = smc_probe(ndev, addr);
2246 #ifdef SMC_USE_PXA_DMA
2248 struct smc_local *lp = netdev_priv(ndev);
2249 lp->physaddr = res->start;
2253 smc_request_datacs(pdev, ndev);
2258 platform_set_drvdata(pdev, NULL);
2261 smc_release_attrib(pdev);
2265 release_mem_region(res->start, SMC_IO_EXTENT);
2267 printk("%s: not found (%d).\n", CARDNAME, ret);
2272 static int smc_drv_remove(struct platform_device *pdev)
2274 struct net_device *ndev = platform_get_drvdata(pdev);
2275 struct smc_local *lp = netdev_priv(ndev);
2276 struct resource *res;
2278 platform_set_drvdata(pdev, NULL);
2280 unregister_netdev(ndev);
2282 free_irq(ndev->irq, ndev);
2284 #ifdef SMC_USE_PXA_DMA
2285 if (ndev->dma != (unsigned char)-1)
2286 pxa_free_dma(ndev->dma);
2290 smc_release_datacs(pdev,ndev);
2291 smc_release_attrib(pdev);
2293 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2295 platform_get_resource(pdev, IORESOURCE_MEM, 0);
2296 release_mem_region(res->start, SMC_IO_EXTENT);
2303 static int smc_drv_suspend(struct platform_device *dev, pm_message_t state)
2305 struct net_device *ndev = platform_get_drvdata(dev);
2308 if (netif_running(ndev)) {
2309 netif_device_detach(ndev);
2311 smc_phy_powerdown(ndev);
2317 static int smc_drv_resume(struct platform_device *dev)
2319 struct net_device *ndev = platform_get_drvdata(dev);
2322 struct smc_local *lp = netdev_priv(ndev);
2323 smc_enable_device(dev);
2324 if (netif_running(ndev)) {
2327 if (lp->phy_type != 0)
2328 smc_phy_configure(&lp->phy_configure);
2329 netif_device_attach(ndev);
2335 static struct platform_driver smc_driver = {
2336 .probe = smc_drv_probe,
2337 .remove = smc_drv_remove,
2338 .suspend = smc_drv_suspend,
2339 .resume = smc_drv_resume,
2345 static int __init smc_init(void)
2351 "%s: You shouldn't use auto-probing with insmod!\n",
2356 return platform_driver_register(&smc_driver);
2359 static void __exit smc_cleanup(void)
2361 platform_driver_unregister(&smc_driver);
2364 module_init(smc_init);
2365 module_exit(smc_cleanup);