e100: endianness annotations
[linux-2.6] / drivers / net / s2io.c
1 /************************************************************************
2  * s2io.c: A Linux PCI-X Ethernet driver for Neterion 10GbE Server NIC
3  * Copyright(c) 2002-2007 Neterion Inc.
4
5  * This software may be used and distributed according to the terms of
6  * the GNU General Public License (GPL), incorporated herein by reference.
7  * Drivers based on or derived from this code fall under the GPL and must
8  * retain the authorship, copyright and license notice.  This file is not
9  * a complete program and may only be used when the entire operating
10  * system is licensed under the GPL.
11  * See the file COPYING in this distribution for more information.
12  *
13  * Credits:
14  * Jeff Garzik          : For pointing out the improper error condition
15  *                        check in the s2io_xmit routine and also some
16  *                        issues in the Tx watch dog function. Also for
17  *                        patiently answering all those innumerable
18  *                        questions regaring the 2.6 porting issues.
19  * Stephen Hemminger    : Providing proper 2.6 porting mechanism for some
20  *                        macros available only in 2.6 Kernel.
21  * Francois Romieu      : For pointing out all code part that were
22  *                        deprecated and also styling related comments.
23  * Grant Grundler       : For helping me get rid of some Architecture
24  *                        dependent code.
25  * Christopher Hellwig  : Some more 2.6 specific issues in the driver.
26  *
27  * The module loadable parameters that are supported by the driver and a brief
28  * explaination of all the variables.
29  *
30  * rx_ring_num : This can be used to program the number of receive rings used
31  * in the driver.
32  * rx_ring_sz: This defines the number of receive blocks each ring can have.
33  *     This is also an array of size 8.
34  * rx_ring_mode: This defines the operation mode of all 8 rings. The valid
35  *              values are 1, 2.
36  * tx_fifo_num: This defines the number of Tx FIFOs thats used int the driver.
37  * tx_fifo_len: This too is an array of 8. Each element defines the number of
38  * Tx descriptors that can be associated with each corresponding FIFO.
39  * intr_type: This defines the type of interrupt. The values can be 0(INTA),
40  *     2(MSI_X). Default value is '2(MSI_X)'
41  * lro_enable: Specifies whether to enable Large Receive Offload (LRO) or not.
42  *     Possible values '1' for enable '0' for disable. Default is '0'
43  * lro_max_pkts: This parameter defines maximum number of packets can be
44  *     aggregated as a single large packet
45  * napi: This parameter used to enable/disable NAPI (polling Rx)
46  *     Possible values '1' for enable and '0' for disable. Default is '1'
47  * ufo: This parameter used to enable/disable UDP Fragmentation Offload(UFO)
48  *      Possible values '1' for enable and '0' for disable. Default is '0'
49  * vlan_tag_strip: This can be used to enable or disable vlan stripping.
50  *                 Possible values '1' for enable , '0' for disable.
51  *                 Default is '2' - which means disable in promisc mode
52  *                 and enable in non-promiscuous mode.
53  ************************************************************************/
54
55 #include <linux/module.h>
56 #include <linux/types.h>
57 #include <linux/errno.h>
58 #include <linux/ioport.h>
59 #include <linux/pci.h>
60 #include <linux/dma-mapping.h>
61 #include <linux/kernel.h>
62 #include <linux/netdevice.h>
63 #include <linux/etherdevice.h>
64 #include <linux/skbuff.h>
65 #include <linux/init.h>
66 #include <linux/delay.h>
67 #include <linux/stddef.h>
68 #include <linux/ioctl.h>
69 #include <linux/timex.h>
70 #include <linux/ethtool.h>
71 #include <linux/workqueue.h>
72 #include <linux/if_vlan.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <net/tcp.h>
76
77 #include <asm/system.h>
78 #include <asm/uaccess.h>
79 #include <asm/io.h>
80 #include <asm/div64.h>
81 #include <asm/irq.h>
82
83 /* local include */
84 #include "s2io.h"
85 #include "s2io-regs.h"
86
87 #define DRV_VERSION "2.0.26.15-2"
88
89 /* S2io Driver name & version. */
90 static char s2io_driver_name[] = "Neterion";
91 static char s2io_driver_version[] = DRV_VERSION;
92
93 static int rxd_size[2] = {32,48};
94 static int rxd_count[2] = {127,85};
95
96 static inline int RXD_IS_UP2DT(struct RxD_t *rxdp)
97 {
98         int ret;
99
100         ret = ((!(rxdp->Control_1 & RXD_OWN_XENA)) &&
101                 (GET_RXD_MARKER(rxdp->Control_2) != THE_RXD_MARK));
102
103         return ret;
104 }
105
106 /*
107  * Cards with following subsystem_id have a link state indication
108  * problem, 600B, 600C, 600D, 640B, 640C and 640D.
109  * macro below identifies these cards given the subsystem_id.
110  */
111 #define CARDS_WITH_FAULTY_LINK_INDICATORS(dev_type, subid) \
112         (dev_type == XFRAME_I_DEVICE) ?                 \
113                 ((((subid >= 0x600B) && (subid <= 0x600D)) || \
114                  ((subid >= 0x640B) && (subid <= 0x640D))) ? 1 : 0) : 0
115
116 #define LINK_IS_UP(val64) (!(val64 & (ADAPTER_STATUS_RMAC_REMOTE_FAULT | \
117                                       ADAPTER_STATUS_RMAC_LOCAL_FAULT)))
118 #define TASKLET_IN_USE test_and_set_bit(0, (&sp->tasklet_status))
119 #define PANIC   1
120 #define LOW     2
121 static inline int rx_buffer_level(struct s2io_nic * sp, int rxb_size, int ring)
122 {
123         struct mac_info *mac_control;
124
125         mac_control = &sp->mac_control;
126         if (rxb_size <= rxd_count[sp->rxd_mode])
127                 return PANIC;
128         else if ((mac_control->rings[ring].pkt_cnt - rxb_size) > 16)
129                 return  LOW;
130         return 0;
131 }
132
133 static inline int is_s2io_card_up(const struct s2io_nic * sp)
134 {
135         return test_bit(__S2IO_STATE_CARD_UP, &sp->state);
136 }
137
138 /* Ethtool related variables and Macros. */
139 static char s2io_gstrings[][ETH_GSTRING_LEN] = {
140         "Register test\t(offline)",
141         "Eeprom test\t(offline)",
142         "Link test\t(online)",
143         "RLDRAM test\t(offline)",
144         "BIST Test\t(offline)"
145 };
146
147 static char ethtool_xena_stats_keys[][ETH_GSTRING_LEN] = {
148         {"tmac_frms"},
149         {"tmac_data_octets"},
150         {"tmac_drop_frms"},
151         {"tmac_mcst_frms"},
152         {"tmac_bcst_frms"},
153         {"tmac_pause_ctrl_frms"},
154         {"tmac_ttl_octets"},
155         {"tmac_ucst_frms"},
156         {"tmac_nucst_frms"},
157         {"tmac_any_err_frms"},
158         {"tmac_ttl_less_fb_octets"},
159         {"tmac_vld_ip_octets"},
160         {"tmac_vld_ip"},
161         {"tmac_drop_ip"},
162         {"tmac_icmp"},
163         {"tmac_rst_tcp"},
164         {"tmac_tcp"},
165         {"tmac_udp"},
166         {"rmac_vld_frms"},
167         {"rmac_data_octets"},
168         {"rmac_fcs_err_frms"},
169         {"rmac_drop_frms"},
170         {"rmac_vld_mcst_frms"},
171         {"rmac_vld_bcst_frms"},
172         {"rmac_in_rng_len_err_frms"},
173         {"rmac_out_rng_len_err_frms"},
174         {"rmac_long_frms"},
175         {"rmac_pause_ctrl_frms"},
176         {"rmac_unsup_ctrl_frms"},
177         {"rmac_ttl_octets"},
178         {"rmac_accepted_ucst_frms"},
179         {"rmac_accepted_nucst_frms"},
180         {"rmac_discarded_frms"},
181         {"rmac_drop_events"},
182         {"rmac_ttl_less_fb_octets"},
183         {"rmac_ttl_frms"},
184         {"rmac_usized_frms"},
185         {"rmac_osized_frms"},
186         {"rmac_frag_frms"},
187         {"rmac_jabber_frms"},
188         {"rmac_ttl_64_frms"},
189         {"rmac_ttl_65_127_frms"},
190         {"rmac_ttl_128_255_frms"},
191         {"rmac_ttl_256_511_frms"},
192         {"rmac_ttl_512_1023_frms"},
193         {"rmac_ttl_1024_1518_frms"},
194         {"rmac_ip"},
195         {"rmac_ip_octets"},
196         {"rmac_hdr_err_ip"},
197         {"rmac_drop_ip"},
198         {"rmac_icmp"},
199         {"rmac_tcp"},
200         {"rmac_udp"},
201         {"rmac_err_drp_udp"},
202         {"rmac_xgmii_err_sym"},
203         {"rmac_frms_q0"},
204         {"rmac_frms_q1"},
205         {"rmac_frms_q2"},
206         {"rmac_frms_q3"},
207         {"rmac_frms_q4"},
208         {"rmac_frms_q5"},
209         {"rmac_frms_q6"},
210         {"rmac_frms_q7"},
211         {"rmac_full_q0"},
212         {"rmac_full_q1"},
213         {"rmac_full_q2"},
214         {"rmac_full_q3"},
215         {"rmac_full_q4"},
216         {"rmac_full_q5"},
217         {"rmac_full_q6"},
218         {"rmac_full_q7"},
219         {"rmac_pause_cnt"},
220         {"rmac_xgmii_data_err_cnt"},
221         {"rmac_xgmii_ctrl_err_cnt"},
222         {"rmac_accepted_ip"},
223         {"rmac_err_tcp"},
224         {"rd_req_cnt"},
225         {"new_rd_req_cnt"},
226         {"new_rd_req_rtry_cnt"},
227         {"rd_rtry_cnt"},
228         {"wr_rtry_rd_ack_cnt"},
229         {"wr_req_cnt"},
230         {"new_wr_req_cnt"},
231         {"new_wr_req_rtry_cnt"},
232         {"wr_rtry_cnt"},
233         {"wr_disc_cnt"},
234         {"rd_rtry_wr_ack_cnt"},
235         {"txp_wr_cnt"},
236         {"txd_rd_cnt"},
237         {"txd_wr_cnt"},
238         {"rxd_rd_cnt"},
239         {"rxd_wr_cnt"},
240         {"txf_rd_cnt"},
241         {"rxf_wr_cnt"}
242 };
243
244 static char ethtool_enhanced_stats_keys[][ETH_GSTRING_LEN] = {
245         {"rmac_ttl_1519_4095_frms"},
246         {"rmac_ttl_4096_8191_frms"},
247         {"rmac_ttl_8192_max_frms"},
248         {"rmac_ttl_gt_max_frms"},
249         {"rmac_osized_alt_frms"},
250         {"rmac_jabber_alt_frms"},
251         {"rmac_gt_max_alt_frms"},
252         {"rmac_vlan_frms"},
253         {"rmac_len_discard"},
254         {"rmac_fcs_discard"},
255         {"rmac_pf_discard"},
256         {"rmac_da_discard"},
257         {"rmac_red_discard"},
258         {"rmac_rts_discard"},
259         {"rmac_ingm_full_discard"},
260         {"link_fault_cnt"}
261 };
262
263 static char ethtool_driver_stats_keys[][ETH_GSTRING_LEN] = {
264         {"\n DRIVER STATISTICS"},
265         {"single_bit_ecc_errs"},
266         {"double_bit_ecc_errs"},
267         {"parity_err_cnt"},
268         {"serious_err_cnt"},
269         {"soft_reset_cnt"},
270         {"fifo_full_cnt"},
271         {"ring_0_full_cnt"},
272         {"ring_1_full_cnt"},
273         {"ring_2_full_cnt"},
274         {"ring_3_full_cnt"},
275         {"ring_4_full_cnt"},
276         {"ring_5_full_cnt"},
277         {"ring_6_full_cnt"},
278         {"ring_7_full_cnt"},
279         {"alarm_transceiver_temp_high"},
280         {"alarm_transceiver_temp_low"},
281         {"alarm_laser_bias_current_high"},
282         {"alarm_laser_bias_current_low"},
283         {"alarm_laser_output_power_high"},
284         {"alarm_laser_output_power_low"},
285         {"warn_transceiver_temp_high"},
286         {"warn_transceiver_temp_low"},
287         {"warn_laser_bias_current_high"},
288         {"warn_laser_bias_current_low"},
289         {"warn_laser_output_power_high"},
290         {"warn_laser_output_power_low"},
291         {"lro_aggregated_pkts"},
292         {"lro_flush_both_count"},
293         {"lro_out_of_sequence_pkts"},
294         {"lro_flush_due_to_max_pkts"},
295         {"lro_avg_aggr_pkts"},
296         {"mem_alloc_fail_cnt"},
297         {"pci_map_fail_cnt"},
298         {"watchdog_timer_cnt"},
299         {"mem_allocated"},
300         {"mem_freed"},
301         {"link_up_cnt"},
302         {"link_down_cnt"},
303         {"link_up_time"},
304         {"link_down_time"},
305         {"tx_tcode_buf_abort_cnt"},
306         {"tx_tcode_desc_abort_cnt"},
307         {"tx_tcode_parity_err_cnt"},
308         {"tx_tcode_link_loss_cnt"},
309         {"tx_tcode_list_proc_err_cnt"},
310         {"rx_tcode_parity_err_cnt"},
311         {"rx_tcode_abort_cnt"},
312         {"rx_tcode_parity_abort_cnt"},
313         {"rx_tcode_rda_fail_cnt"},
314         {"rx_tcode_unkn_prot_cnt"},
315         {"rx_tcode_fcs_err_cnt"},
316         {"rx_tcode_buf_size_err_cnt"},
317         {"rx_tcode_rxd_corrupt_cnt"},
318         {"rx_tcode_unkn_err_cnt"},
319         {"tda_err_cnt"},
320         {"pfc_err_cnt"},
321         {"pcc_err_cnt"},
322         {"tti_err_cnt"},
323         {"tpa_err_cnt"},
324         {"sm_err_cnt"},
325         {"lso_err_cnt"},
326         {"mac_tmac_err_cnt"},
327         {"mac_rmac_err_cnt"},
328         {"xgxs_txgxs_err_cnt"},
329         {"xgxs_rxgxs_err_cnt"},
330         {"rc_err_cnt"},
331         {"prc_pcix_err_cnt"},
332         {"rpa_err_cnt"},
333         {"rda_err_cnt"},
334         {"rti_err_cnt"},
335         {"mc_err_cnt"}
336 };
337
338 #define S2IO_XENA_STAT_LEN      ARRAY_SIZE(ethtool_xena_stats_keys)
339 #define S2IO_ENHANCED_STAT_LEN  ARRAY_SIZE(ethtool_enhanced_stats_keys)
340 #define S2IO_DRIVER_STAT_LEN    ARRAY_SIZE(ethtool_driver_stats_keys)
341
342 #define XFRAME_I_STAT_LEN (S2IO_XENA_STAT_LEN + S2IO_DRIVER_STAT_LEN )
343 #define XFRAME_II_STAT_LEN (XFRAME_I_STAT_LEN + S2IO_ENHANCED_STAT_LEN )
344
345 #define XFRAME_I_STAT_STRINGS_LEN ( XFRAME_I_STAT_LEN * ETH_GSTRING_LEN )
346 #define XFRAME_II_STAT_STRINGS_LEN ( XFRAME_II_STAT_LEN * ETH_GSTRING_LEN )
347
348 #define S2IO_TEST_LEN   ARRAY_SIZE(s2io_gstrings)
349 #define S2IO_STRINGS_LEN        S2IO_TEST_LEN * ETH_GSTRING_LEN
350
351 #define S2IO_TIMER_CONF(timer, handle, arg, exp)                \
352                         init_timer(&timer);                     \
353                         timer.function = handle;                \
354                         timer.data = (unsigned long) arg;       \
355                         mod_timer(&timer, (jiffies + exp))      \
356
357 /* copy mac addr to def_mac_addr array */
358 static void do_s2io_copy_mac_addr(struct s2io_nic *sp, int offset, u64 mac_addr)
359 {
360         sp->def_mac_addr[offset].mac_addr[5] = (u8) (mac_addr);
361         sp->def_mac_addr[offset].mac_addr[4] = (u8) (mac_addr >> 8);
362         sp->def_mac_addr[offset].mac_addr[3] = (u8) (mac_addr >> 16);
363         sp->def_mac_addr[offset].mac_addr[2] = (u8) (mac_addr >> 24);
364         sp->def_mac_addr[offset].mac_addr[1] = (u8) (mac_addr >> 32);
365         sp->def_mac_addr[offset].mac_addr[0] = (u8) (mac_addr >> 40);
366 }
367 /* Add the vlan */
368 static void s2io_vlan_rx_register(struct net_device *dev,
369                                         struct vlan_group *grp)
370 {
371         int i;
372         struct s2io_nic *nic = dev->priv;
373         unsigned long flags[MAX_TX_FIFOS];
374         struct mac_info *mac_control = &nic->mac_control;
375         struct config_param *config = &nic->config;
376
377         for (i = 0; i < config->tx_fifo_num; i++)
378                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags[i]);
379
380         nic->vlgrp = grp;
381         for (i = config->tx_fifo_num - 1; i >= 0; i--)
382                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock,
383                                 flags[i]);
384 }
385
386 /* A flag indicating whether 'RX_PA_CFG_STRIP_VLAN_TAG' bit is set or not */
387 static int vlan_strip_flag;
388
389 /*
390  * Constants to be programmed into the Xena's registers, to configure
391  * the XAUI.
392  */
393
394 #define END_SIGN        0x0
395 static const u64 herc_act_dtx_cfg[] = {
396         /* Set address */
397         0x8000051536750000ULL, 0x80000515367500E0ULL,
398         /* Write data */
399         0x8000051536750004ULL, 0x80000515367500E4ULL,
400         /* Set address */
401         0x80010515003F0000ULL, 0x80010515003F00E0ULL,
402         /* Write data */
403         0x80010515003F0004ULL, 0x80010515003F00E4ULL,
404         /* Set address */
405         0x801205150D440000ULL, 0x801205150D4400E0ULL,
406         /* Write data */
407         0x801205150D440004ULL, 0x801205150D4400E4ULL,
408         /* Set address */
409         0x80020515F2100000ULL, 0x80020515F21000E0ULL,
410         /* Write data */
411         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
412         /* Done */
413         END_SIGN
414 };
415
416 static const u64 xena_dtx_cfg[] = {
417         /* Set address */
418         0x8000051500000000ULL, 0x80000515000000E0ULL,
419         /* Write data */
420         0x80000515D9350004ULL, 0x80000515D93500E4ULL,
421         /* Set address */
422         0x8001051500000000ULL, 0x80010515000000E0ULL,
423         /* Write data */
424         0x80010515001E0004ULL, 0x80010515001E00E4ULL,
425         /* Set address */
426         0x8002051500000000ULL, 0x80020515000000E0ULL,
427         /* Write data */
428         0x80020515F2100004ULL, 0x80020515F21000E4ULL,
429         END_SIGN
430 };
431
432 /*
433  * Constants for Fixing the MacAddress problem seen mostly on
434  * Alpha machines.
435  */
436 static const u64 fix_mac[] = {
437         0x0060000000000000ULL, 0x0060600000000000ULL,
438         0x0040600000000000ULL, 0x0000600000000000ULL,
439         0x0020600000000000ULL, 0x0060600000000000ULL,
440         0x0020600000000000ULL, 0x0060600000000000ULL,
441         0x0020600000000000ULL, 0x0060600000000000ULL,
442         0x0020600000000000ULL, 0x0060600000000000ULL,
443         0x0020600000000000ULL, 0x0060600000000000ULL,
444         0x0020600000000000ULL, 0x0060600000000000ULL,
445         0x0020600000000000ULL, 0x0060600000000000ULL,
446         0x0020600000000000ULL, 0x0060600000000000ULL,
447         0x0020600000000000ULL, 0x0060600000000000ULL,
448         0x0020600000000000ULL, 0x0060600000000000ULL,
449         0x0020600000000000ULL, 0x0000600000000000ULL,
450         0x0040600000000000ULL, 0x0060600000000000ULL,
451         END_SIGN
452 };
453
454 MODULE_LICENSE("GPL");
455 MODULE_VERSION(DRV_VERSION);
456
457
458 /* Module Loadable parameters. */
459 S2IO_PARM_INT(tx_fifo_num, 1);
460 S2IO_PARM_INT(rx_ring_num, 1);
461
462
463 S2IO_PARM_INT(rx_ring_mode, 1);
464 S2IO_PARM_INT(use_continuous_tx_intrs, 1);
465 S2IO_PARM_INT(rmac_pause_time, 0x100);
466 S2IO_PARM_INT(mc_pause_threshold_q0q3, 187);
467 S2IO_PARM_INT(mc_pause_threshold_q4q7, 187);
468 S2IO_PARM_INT(shared_splits, 0);
469 S2IO_PARM_INT(tmac_util_period, 5);
470 S2IO_PARM_INT(rmac_util_period, 5);
471 S2IO_PARM_INT(l3l4hdr_size, 128);
472 /* Frequency of Rx desc syncs expressed as power of 2 */
473 S2IO_PARM_INT(rxsync_frequency, 3);
474 /* Interrupt type. Values can be 0(INTA), 2(MSI_X) */
475 S2IO_PARM_INT(intr_type, 2);
476 /* Large receive offload feature */
477 static unsigned int lro_enable;
478 module_param_named(lro, lro_enable, uint, 0);
479
480 /* Max pkts to be aggregated by LRO at one time. If not specified,
481  * aggregation happens until we hit max IP pkt size(64K)
482  */
483 S2IO_PARM_INT(lro_max_pkts, 0xFFFF);
484 S2IO_PARM_INT(indicate_max_pkts, 0);
485
486 S2IO_PARM_INT(napi, 1);
487 S2IO_PARM_INT(ufo, 0);
488 S2IO_PARM_INT(vlan_tag_strip, NO_STRIP_IN_PROMISC);
489
490 static unsigned int tx_fifo_len[MAX_TX_FIFOS] =
491     {DEFAULT_FIFO_0_LEN, [1 ...(MAX_TX_FIFOS - 1)] = DEFAULT_FIFO_1_7_LEN};
492 static unsigned int rx_ring_sz[MAX_RX_RINGS] =
493     {[0 ...(MAX_RX_RINGS - 1)] = SMALL_BLK_CNT};
494 static unsigned int rts_frm_len[MAX_RX_RINGS] =
495     {[0 ...(MAX_RX_RINGS - 1)] = 0 };
496
497 module_param_array(tx_fifo_len, uint, NULL, 0);
498 module_param_array(rx_ring_sz, uint, NULL, 0);
499 module_param_array(rts_frm_len, uint, NULL, 0);
500
501 /*
502  * S2IO device table.
503  * This table lists all the devices that this driver supports.
504  */
505 static struct pci_device_id s2io_tbl[] __devinitdata = {
506         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_WIN,
507          PCI_ANY_ID, PCI_ANY_ID},
508         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_S2IO_UNI,
509          PCI_ANY_ID, PCI_ANY_ID},
510         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_WIN,
511          PCI_ANY_ID, PCI_ANY_ID},
512         {PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_HERC_UNI,
513          PCI_ANY_ID, PCI_ANY_ID},
514         {0,}
515 };
516
517 MODULE_DEVICE_TABLE(pci, s2io_tbl);
518
519 static struct pci_error_handlers s2io_err_handler = {
520         .error_detected = s2io_io_error_detected,
521         .slot_reset = s2io_io_slot_reset,
522         .resume = s2io_io_resume,
523 };
524
525 static struct pci_driver s2io_driver = {
526       .name = "S2IO",
527       .id_table = s2io_tbl,
528       .probe = s2io_init_nic,
529       .remove = __devexit_p(s2io_rem_nic),
530       .err_handler = &s2io_err_handler,
531 };
532
533 /* A simplifier macro used both by init and free shared_mem Fns(). */
534 #define TXD_MEM_PAGE_CNT(len, per_each) ((len+per_each - 1) / per_each)
535
536 /**
537  * init_shared_mem - Allocation and Initialization of Memory
538  * @nic: Device private variable.
539  * Description: The function allocates all the memory areas shared
540  * between the NIC and the driver. This includes Tx descriptors,
541  * Rx descriptors and the statistics block.
542  */
543
544 static int init_shared_mem(struct s2io_nic *nic)
545 {
546         u32 size;
547         void *tmp_v_addr, *tmp_v_addr_next;
548         dma_addr_t tmp_p_addr, tmp_p_addr_next;
549         struct RxD_block *pre_rxd_blk = NULL;
550         int i, j, blk_cnt;
551         int lst_size, lst_per_page;
552         struct net_device *dev = nic->dev;
553         unsigned long tmp;
554         struct buffAdd *ba;
555
556         struct mac_info *mac_control;
557         struct config_param *config;
558         unsigned long long mem_allocated = 0;
559
560         mac_control = &nic->mac_control;
561         config = &nic->config;
562
563
564         /* Allocation and initialization of TXDLs in FIOFs */
565         size = 0;
566         for (i = 0; i < config->tx_fifo_num; i++) {
567                 size += config->tx_cfg[i].fifo_len;
568         }
569         if (size > MAX_AVAILABLE_TXDS) {
570                 DBG_PRINT(ERR_DBG, "s2io: Requested TxDs too high, ");
571                 DBG_PRINT(ERR_DBG, "Requested: %d, max supported: 8192\n", size);
572                 return -EINVAL;
573         }
574
575         size = 0;
576         for (i = 0; i < config->tx_fifo_num; i++) {
577                 size = config->tx_cfg[i].fifo_len;
578                 /*
579                  * Legal values are from 2 to 8192
580                  */
581                 if (size < 2) {
582                         DBG_PRINT(ERR_DBG, "s2io: Invalid fifo len (%d)", size);
583                         DBG_PRINT(ERR_DBG, "for fifo %d\n", i);
584                         DBG_PRINT(ERR_DBG, "s2io: Legal values for fifo len"
585                                 "are 2 to 8192\n");
586                         return -EINVAL;
587                 }
588         }
589
590         lst_size = (sizeof(struct TxD) * config->max_txds);
591         lst_per_page = PAGE_SIZE / lst_size;
592
593         for (i = 0; i < config->tx_fifo_num; i++) {
594                 int fifo_len = config->tx_cfg[i].fifo_len;
595                 int list_holder_size = fifo_len * sizeof(struct list_info_hold);
596                 mac_control->fifos[i].list_info = kzalloc(list_holder_size,
597                                                           GFP_KERNEL);
598                 if (!mac_control->fifos[i].list_info) {
599                         DBG_PRINT(INFO_DBG,
600                                   "Malloc failed for list_info\n");
601                         return -ENOMEM;
602                 }
603                 mem_allocated += list_holder_size;
604         }
605         for (i = 0; i < config->tx_fifo_num; i++) {
606                 int page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
607                                                 lst_per_page);
608                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
609                 mac_control->fifos[i].tx_curr_put_info.fifo_len =
610                     config->tx_cfg[i].fifo_len - 1;
611                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
612                 mac_control->fifos[i].tx_curr_get_info.fifo_len =
613                     config->tx_cfg[i].fifo_len - 1;
614                 mac_control->fifos[i].fifo_no = i;
615                 mac_control->fifos[i].nic = nic;
616                 mac_control->fifos[i].max_txds = MAX_SKB_FRAGS + 2;
617
618                 for (j = 0; j < page_num; j++) {
619                         int k = 0;
620                         dma_addr_t tmp_p;
621                         void *tmp_v;
622                         tmp_v = pci_alloc_consistent(nic->pdev,
623                                                      PAGE_SIZE, &tmp_p);
624                         if (!tmp_v) {
625                                 DBG_PRINT(INFO_DBG,
626                                           "pci_alloc_consistent ");
627                                 DBG_PRINT(INFO_DBG, "failed for TxDL\n");
628                                 return -ENOMEM;
629                         }
630                         /* If we got a zero DMA address(can happen on
631                          * certain platforms like PPC), reallocate.
632                          * Store virtual address of page we don't want,
633                          * to be freed later.
634                          */
635                         if (!tmp_p) {
636                                 mac_control->zerodma_virt_addr = tmp_v;
637                                 DBG_PRINT(INIT_DBG,
638                                 "%s: Zero DMA address for TxDL. ", dev->name);
639                                 DBG_PRINT(INIT_DBG,
640                                 "Virtual address %p\n", tmp_v);
641                                 tmp_v = pci_alloc_consistent(nic->pdev,
642                                                      PAGE_SIZE, &tmp_p);
643                                 if (!tmp_v) {
644                                         DBG_PRINT(INFO_DBG,
645                                           "pci_alloc_consistent ");
646                                         DBG_PRINT(INFO_DBG, "failed for TxDL\n");
647                                         return -ENOMEM;
648                                 }
649                                 mem_allocated += PAGE_SIZE;
650                         }
651                         while (k < lst_per_page) {
652                                 int l = (j * lst_per_page) + k;
653                                 if (l == config->tx_cfg[i].fifo_len)
654                                         break;
655                                 mac_control->fifos[i].list_info[l].list_virt_addr =
656                                     tmp_v + (k * lst_size);
657                                 mac_control->fifos[i].list_info[l].list_phy_addr =
658                                     tmp_p + (k * lst_size);
659                                 k++;
660                         }
661                 }
662         }
663
664         for (i = 0; i < config->tx_fifo_num; i++) {
665                 size = config->tx_cfg[i].fifo_len;
666                 mac_control->fifos[i].ufo_in_band_v
667                         = kcalloc(size, sizeof(u64), GFP_KERNEL);
668                 if (!mac_control->fifos[i].ufo_in_band_v)
669                         return -ENOMEM;
670                 mem_allocated += (size * sizeof(u64));
671         }
672
673         /* Allocation and initialization of RXDs in Rings */
674         size = 0;
675         for (i = 0; i < config->rx_ring_num; i++) {
676                 if (config->rx_cfg[i].num_rxd %
677                     (rxd_count[nic->rxd_mode] + 1)) {
678                         DBG_PRINT(ERR_DBG, "%s: RxD count of ", dev->name);
679                         DBG_PRINT(ERR_DBG, "Ring%d is not a multiple of ",
680                                   i);
681                         DBG_PRINT(ERR_DBG, "RxDs per Block");
682                         return FAILURE;
683                 }
684                 size += config->rx_cfg[i].num_rxd;
685                 mac_control->rings[i].block_count =
686                         config->rx_cfg[i].num_rxd /
687                         (rxd_count[nic->rxd_mode] + 1 );
688                 mac_control->rings[i].pkt_cnt = config->rx_cfg[i].num_rxd -
689                         mac_control->rings[i].block_count;
690         }
691         if (nic->rxd_mode == RXD_MODE_1)
692                 size = (size * (sizeof(struct RxD1)));
693         else
694                 size = (size * (sizeof(struct RxD3)));
695
696         for (i = 0; i < config->rx_ring_num; i++) {
697                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
698                 mac_control->rings[i].rx_curr_get_info.offset = 0;
699                 mac_control->rings[i].rx_curr_get_info.ring_len =
700                     config->rx_cfg[i].num_rxd - 1;
701                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
702                 mac_control->rings[i].rx_curr_put_info.offset = 0;
703                 mac_control->rings[i].rx_curr_put_info.ring_len =
704                     config->rx_cfg[i].num_rxd - 1;
705                 mac_control->rings[i].nic = nic;
706                 mac_control->rings[i].ring_no = i;
707
708                 blk_cnt = config->rx_cfg[i].num_rxd /
709                                 (rxd_count[nic->rxd_mode] + 1);
710                 /*  Allocating all the Rx blocks */
711                 for (j = 0; j < blk_cnt; j++) {
712                         struct rx_block_info *rx_blocks;
713                         int l;
714
715                         rx_blocks = &mac_control->rings[i].rx_blocks[j];
716                         size = SIZE_OF_BLOCK; //size is always page size
717                         tmp_v_addr = pci_alloc_consistent(nic->pdev, size,
718                                                           &tmp_p_addr);
719                         if (tmp_v_addr == NULL) {
720                                 /*
721                                  * In case of failure, free_shared_mem()
722                                  * is called, which should free any
723                                  * memory that was alloced till the
724                                  * failure happened.
725                                  */
726                                 rx_blocks->block_virt_addr = tmp_v_addr;
727                                 return -ENOMEM;
728                         }
729                         mem_allocated += size;
730                         memset(tmp_v_addr, 0, size);
731                         rx_blocks->block_virt_addr = tmp_v_addr;
732                         rx_blocks->block_dma_addr = tmp_p_addr;
733                         rx_blocks->rxds = kmalloc(sizeof(struct rxd_info)*
734                                                   rxd_count[nic->rxd_mode],
735                                                   GFP_KERNEL);
736                         if (!rx_blocks->rxds)
737                                 return -ENOMEM;
738                         mem_allocated +=
739                         (sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
740                         for (l=0; l<rxd_count[nic->rxd_mode];l++) {
741                                 rx_blocks->rxds[l].virt_addr =
742                                         rx_blocks->block_virt_addr +
743                                         (rxd_size[nic->rxd_mode] * l);
744                                 rx_blocks->rxds[l].dma_addr =
745                                         rx_blocks->block_dma_addr +
746                                         (rxd_size[nic->rxd_mode] * l);
747                         }
748                 }
749                 /* Interlinking all Rx Blocks */
750                 for (j = 0; j < blk_cnt; j++) {
751                         tmp_v_addr =
752                                 mac_control->rings[i].rx_blocks[j].block_virt_addr;
753                         tmp_v_addr_next =
754                                 mac_control->rings[i].rx_blocks[(j + 1) %
755                                               blk_cnt].block_virt_addr;
756                         tmp_p_addr =
757                                 mac_control->rings[i].rx_blocks[j].block_dma_addr;
758                         tmp_p_addr_next =
759                                 mac_control->rings[i].rx_blocks[(j + 1) %
760                                               blk_cnt].block_dma_addr;
761
762                         pre_rxd_blk = (struct RxD_block *) tmp_v_addr;
763                         pre_rxd_blk->reserved_2_pNext_RxD_block =
764                             (unsigned long) tmp_v_addr_next;
765                         pre_rxd_blk->pNext_RxD_Blk_physical =
766                             (u64) tmp_p_addr_next;
767                 }
768         }
769         if (nic->rxd_mode == RXD_MODE_3B) {
770                 /*
771                  * Allocation of Storages for buffer addresses in 2BUFF mode
772                  * and the buffers as well.
773                  */
774                 for (i = 0; i < config->rx_ring_num; i++) {
775                         blk_cnt = config->rx_cfg[i].num_rxd /
776                            (rxd_count[nic->rxd_mode]+ 1);
777                         mac_control->rings[i].ba =
778                                 kmalloc((sizeof(struct buffAdd *) * blk_cnt),
779                                      GFP_KERNEL);
780                         if (!mac_control->rings[i].ba)
781                                 return -ENOMEM;
782                         mem_allocated +=(sizeof(struct buffAdd *) * blk_cnt);
783                         for (j = 0; j < blk_cnt; j++) {
784                                 int k = 0;
785                                 mac_control->rings[i].ba[j] =
786                                         kmalloc((sizeof(struct buffAdd) *
787                                                 (rxd_count[nic->rxd_mode] + 1)),
788                                                 GFP_KERNEL);
789                                 if (!mac_control->rings[i].ba[j])
790                                         return -ENOMEM;
791                                 mem_allocated += (sizeof(struct buffAdd) *  \
792                                         (rxd_count[nic->rxd_mode] + 1));
793                                 while (k != rxd_count[nic->rxd_mode]) {
794                                         ba = &mac_control->rings[i].ba[j][k];
795
796                                         ba->ba_0_org = (void *) kmalloc
797                                             (BUF0_LEN + ALIGN_SIZE, GFP_KERNEL);
798                                         if (!ba->ba_0_org)
799                                                 return -ENOMEM;
800                                         mem_allocated +=
801                                                 (BUF0_LEN + ALIGN_SIZE);
802                                         tmp = (unsigned long)ba->ba_0_org;
803                                         tmp += ALIGN_SIZE;
804                                         tmp &= ~((unsigned long) ALIGN_SIZE);
805                                         ba->ba_0 = (void *) tmp;
806
807                                         ba->ba_1_org = (void *) kmalloc
808                                             (BUF1_LEN + ALIGN_SIZE, GFP_KERNEL);
809                                         if (!ba->ba_1_org)
810                                                 return -ENOMEM;
811                                         mem_allocated
812                                                 += (BUF1_LEN + ALIGN_SIZE);
813                                         tmp = (unsigned long) ba->ba_1_org;
814                                         tmp += ALIGN_SIZE;
815                                         tmp &= ~((unsigned long) ALIGN_SIZE);
816                                         ba->ba_1 = (void *) tmp;
817                                         k++;
818                                 }
819                         }
820                 }
821         }
822
823         /* Allocation and initialization of Statistics block */
824         size = sizeof(struct stat_block);
825         mac_control->stats_mem = pci_alloc_consistent
826             (nic->pdev, size, &mac_control->stats_mem_phy);
827
828         if (!mac_control->stats_mem) {
829                 /*
830                  * In case of failure, free_shared_mem() is called, which
831                  * should free any memory that was alloced till the
832                  * failure happened.
833                  */
834                 return -ENOMEM;
835         }
836         mem_allocated += size;
837         mac_control->stats_mem_sz = size;
838
839         tmp_v_addr = mac_control->stats_mem;
840         mac_control->stats_info = (struct stat_block *) tmp_v_addr;
841         memset(tmp_v_addr, 0, size);
842         DBG_PRINT(INIT_DBG, "%s:Ring Mem PHY: 0x%llx\n", dev->name,
843                   (unsigned long long) tmp_p_addr);
844         mac_control->stats_info->sw_stat.mem_allocated += mem_allocated;
845         return SUCCESS;
846 }
847
848 /**
849  * free_shared_mem - Free the allocated Memory
850  * @nic:  Device private variable.
851  * Description: This function is to free all memory locations allocated by
852  * the init_shared_mem() function and return it to the kernel.
853  */
854
855 static void free_shared_mem(struct s2io_nic *nic)
856 {
857         int i, j, blk_cnt, size;
858         void *tmp_v_addr;
859         dma_addr_t tmp_p_addr;
860         struct mac_info *mac_control;
861         struct config_param *config;
862         int lst_size, lst_per_page;
863         struct net_device *dev;
864         int page_num = 0;
865
866         if (!nic)
867                 return;
868
869         dev = nic->dev;
870
871         mac_control = &nic->mac_control;
872         config = &nic->config;
873
874         lst_size = (sizeof(struct TxD) * config->max_txds);
875         lst_per_page = PAGE_SIZE / lst_size;
876
877         for (i = 0; i < config->tx_fifo_num; i++) {
878                 page_num = TXD_MEM_PAGE_CNT(config->tx_cfg[i].fifo_len,
879                                                         lst_per_page);
880                 for (j = 0; j < page_num; j++) {
881                         int mem_blks = (j * lst_per_page);
882                         if (!mac_control->fifos[i].list_info)
883                                 return;
884                         if (!mac_control->fifos[i].list_info[mem_blks].
885                                  list_virt_addr)
886                                 break;
887                         pci_free_consistent(nic->pdev, PAGE_SIZE,
888                                             mac_control->fifos[i].
889                                             list_info[mem_blks].
890                                             list_virt_addr,
891                                             mac_control->fifos[i].
892                                             list_info[mem_blks].
893                                             list_phy_addr);
894                         nic->mac_control.stats_info->sw_stat.mem_freed
895                                                 += PAGE_SIZE;
896                 }
897                 /* If we got a zero DMA address during allocation,
898                  * free the page now
899                  */
900                 if (mac_control->zerodma_virt_addr) {
901                         pci_free_consistent(nic->pdev, PAGE_SIZE,
902                                             mac_control->zerodma_virt_addr,
903                                             (dma_addr_t)0);
904                         DBG_PRINT(INIT_DBG,
905                                 "%s: Freeing TxDL with zero DMA addr. ",
906                                 dev->name);
907                         DBG_PRINT(INIT_DBG, "Virtual address %p\n",
908                                 mac_control->zerodma_virt_addr);
909                         nic->mac_control.stats_info->sw_stat.mem_freed
910                                                 += PAGE_SIZE;
911                 }
912                 kfree(mac_control->fifos[i].list_info);
913                 nic->mac_control.stats_info->sw_stat.mem_freed +=
914                 (nic->config.tx_cfg[i].fifo_len *sizeof(struct list_info_hold));
915         }
916
917         size = SIZE_OF_BLOCK;
918         for (i = 0; i < config->rx_ring_num; i++) {
919                 blk_cnt = mac_control->rings[i].block_count;
920                 for (j = 0; j < blk_cnt; j++) {
921                         tmp_v_addr = mac_control->rings[i].rx_blocks[j].
922                                 block_virt_addr;
923                         tmp_p_addr = mac_control->rings[i].rx_blocks[j].
924                                 block_dma_addr;
925                         if (tmp_v_addr == NULL)
926                                 break;
927                         pci_free_consistent(nic->pdev, size,
928                                             tmp_v_addr, tmp_p_addr);
929                         nic->mac_control.stats_info->sw_stat.mem_freed += size;
930                         kfree(mac_control->rings[i].rx_blocks[j].rxds);
931                         nic->mac_control.stats_info->sw_stat.mem_freed +=
932                         ( sizeof(struct rxd_info)* rxd_count[nic->rxd_mode]);
933                 }
934         }
935
936         if (nic->rxd_mode == RXD_MODE_3B) {
937                 /* Freeing buffer storage addresses in 2BUFF mode. */
938                 for (i = 0; i < config->rx_ring_num; i++) {
939                         blk_cnt = config->rx_cfg[i].num_rxd /
940                             (rxd_count[nic->rxd_mode] + 1);
941                         for (j = 0; j < blk_cnt; j++) {
942                                 int k = 0;
943                                 if (!mac_control->rings[i].ba[j])
944                                         continue;
945                                 while (k != rxd_count[nic->rxd_mode]) {
946                                         struct buffAdd *ba =
947                                                 &mac_control->rings[i].ba[j][k];
948                                         kfree(ba->ba_0_org);
949                                         nic->mac_control.stats_info->sw_stat.\
950                                         mem_freed += (BUF0_LEN + ALIGN_SIZE);
951                                         kfree(ba->ba_1_org);
952                                         nic->mac_control.stats_info->sw_stat.\
953                                         mem_freed += (BUF1_LEN + ALIGN_SIZE);
954                                         k++;
955                                 }
956                                 kfree(mac_control->rings[i].ba[j]);
957                                 nic->mac_control.stats_info->sw_stat.mem_freed +=
958                                         (sizeof(struct buffAdd) *
959                                         (rxd_count[nic->rxd_mode] + 1));
960                         }
961                         kfree(mac_control->rings[i].ba);
962                         nic->mac_control.stats_info->sw_stat.mem_freed +=
963                         (sizeof(struct buffAdd *) * blk_cnt);
964                 }
965         }
966
967         for (i = 0; i < nic->config.tx_fifo_num; i++) {
968                 if (mac_control->fifos[i].ufo_in_band_v) {
969                         nic->mac_control.stats_info->sw_stat.mem_freed
970                                 += (config->tx_cfg[i].fifo_len * sizeof(u64));
971                         kfree(mac_control->fifos[i].ufo_in_band_v);
972                 }
973         }
974
975         if (mac_control->stats_mem) {
976                 nic->mac_control.stats_info->sw_stat.mem_freed +=
977                         mac_control->stats_mem_sz;
978                 pci_free_consistent(nic->pdev,
979                                     mac_control->stats_mem_sz,
980                                     mac_control->stats_mem,
981                                     mac_control->stats_mem_phy);
982         }
983 }
984
985 /**
986  * s2io_verify_pci_mode -
987  */
988
989 static int s2io_verify_pci_mode(struct s2io_nic *nic)
990 {
991         struct XENA_dev_config __iomem *bar0 = nic->bar0;
992         register u64 val64 = 0;
993         int     mode;
994
995         val64 = readq(&bar0->pci_mode);
996         mode = (u8)GET_PCI_MODE(val64);
997
998         if ( val64 & PCI_MODE_UNKNOWN_MODE)
999                 return -1;      /* Unknown PCI mode */
1000         return mode;
1001 }
1002
1003 #define NEC_VENID   0x1033
1004 #define NEC_DEVID   0x0125
1005 static int s2io_on_nec_bridge(struct pci_dev *s2io_pdev)
1006 {
1007         struct pci_dev *tdev = NULL;
1008         while ((tdev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, tdev)) != NULL) {
1009                 if (tdev->vendor == NEC_VENID && tdev->device == NEC_DEVID) {
1010                         if (tdev->bus == s2io_pdev->bus->parent)
1011                                 pci_dev_put(tdev);
1012                                 return 1;
1013                 }
1014         }
1015         return 0;
1016 }
1017
1018 static int bus_speed[8] = {33, 133, 133, 200, 266, 133, 200, 266};
1019 /**
1020  * s2io_print_pci_mode -
1021  */
1022 static int s2io_print_pci_mode(struct s2io_nic *nic)
1023 {
1024         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1025         register u64 val64 = 0;
1026         int     mode;
1027         struct config_param *config = &nic->config;
1028
1029         val64 = readq(&bar0->pci_mode);
1030         mode = (u8)GET_PCI_MODE(val64);
1031
1032         if ( val64 & PCI_MODE_UNKNOWN_MODE)
1033                 return -1;      /* Unknown PCI mode */
1034
1035         config->bus_speed = bus_speed[mode];
1036
1037         if (s2io_on_nec_bridge(nic->pdev)) {
1038                 DBG_PRINT(ERR_DBG, "%s: Device is on PCI-E bus\n",
1039                                                         nic->dev->name);
1040                 return mode;
1041         }
1042
1043         if (val64 & PCI_MODE_32_BITS) {
1044                 DBG_PRINT(ERR_DBG, "%s: Device is on 32 bit ", nic->dev->name);
1045         } else {
1046                 DBG_PRINT(ERR_DBG, "%s: Device is on 64 bit ", nic->dev->name);
1047         }
1048
1049         switch(mode) {
1050                 case PCI_MODE_PCI_33:
1051                         DBG_PRINT(ERR_DBG, "33MHz PCI bus\n");
1052                         break;
1053                 case PCI_MODE_PCI_66:
1054                         DBG_PRINT(ERR_DBG, "66MHz PCI bus\n");
1055                         break;
1056                 case PCI_MODE_PCIX_M1_66:
1057                         DBG_PRINT(ERR_DBG, "66MHz PCIX(M1) bus\n");
1058                         break;
1059                 case PCI_MODE_PCIX_M1_100:
1060                         DBG_PRINT(ERR_DBG, "100MHz PCIX(M1) bus\n");
1061                         break;
1062                 case PCI_MODE_PCIX_M1_133:
1063                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M1) bus\n");
1064                         break;
1065                 case PCI_MODE_PCIX_M2_66:
1066                         DBG_PRINT(ERR_DBG, "133MHz PCIX(M2) bus\n");
1067                         break;
1068                 case PCI_MODE_PCIX_M2_100:
1069                         DBG_PRINT(ERR_DBG, "200MHz PCIX(M2) bus\n");
1070                         break;
1071                 case PCI_MODE_PCIX_M2_133:
1072                         DBG_PRINT(ERR_DBG, "266MHz PCIX(M2) bus\n");
1073                         break;
1074                 default:
1075                         return -1;      /* Unsupported bus speed */
1076         }
1077
1078         return mode;
1079 }
1080
1081 /**
1082  *  init_tti - Initialization transmit traffic interrupt scheme
1083  *  @nic: device private variable
1084  *  @link: link status (UP/DOWN) used to enable/disable continuous
1085  *  transmit interrupts
1086  *  Description: The function configures transmit traffic interrupts
1087  *  Return Value:  SUCCESS on success and
1088  *  '-1' on failure
1089  */
1090
1091 static int init_tti(struct s2io_nic *nic, int link)
1092 {
1093         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1094         register u64 val64 = 0;
1095         int i;
1096         struct config_param *config;
1097
1098         config = &nic->config;
1099
1100         for (i = 0; i < config->tx_fifo_num; i++) {
1101                 /*
1102                  * TTI Initialization. Default Tx timer gets us about
1103                  * 250 interrupts per sec. Continuous interrupts are enabled
1104                  * by default.
1105                  */
1106                 if (nic->device_type == XFRAME_II_DEVICE) {
1107                         int count = (nic->config.bus_speed * 125)/2;
1108                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(count);
1109                 } else
1110                         val64 = TTI_DATA1_MEM_TX_TIMER_VAL(0x2078);
1111
1112                 val64 |= TTI_DATA1_MEM_TX_URNG_A(0xA) |
1113                                 TTI_DATA1_MEM_TX_URNG_B(0x10) |
1114                                 TTI_DATA1_MEM_TX_URNG_C(0x30) |
1115                                 TTI_DATA1_MEM_TX_TIMER_AC_EN;
1116
1117                 if (use_continuous_tx_intrs && (link == LINK_UP))
1118                         val64 |= TTI_DATA1_MEM_TX_TIMER_CI_EN;
1119                 writeq(val64, &bar0->tti_data1_mem);
1120
1121                 val64 = TTI_DATA2_MEM_TX_UFC_A(0x10) |
1122                                 TTI_DATA2_MEM_TX_UFC_B(0x20) |
1123                                 TTI_DATA2_MEM_TX_UFC_C(0x40) |
1124                                 TTI_DATA2_MEM_TX_UFC_D(0x80);
1125
1126                 writeq(val64, &bar0->tti_data2_mem);
1127
1128                 val64 = TTI_CMD_MEM_WE | TTI_CMD_MEM_STROBE_NEW_CMD |
1129                                 TTI_CMD_MEM_OFFSET(i);
1130                 writeq(val64, &bar0->tti_command_mem);
1131
1132                 if (wait_for_cmd_complete(&bar0->tti_command_mem,
1133                         TTI_CMD_MEM_STROBE_NEW_CMD, S2IO_BIT_RESET) != SUCCESS)
1134                         return FAILURE;
1135         }
1136
1137         return SUCCESS;
1138 }
1139
1140 /**
1141  *  init_nic - Initialization of hardware
1142  *  @nic: device private variable
1143  *  Description: The function sequentially configures every block
1144  *  of the H/W from their reset values.
1145  *  Return Value:  SUCCESS on success and
1146  *  '-1' on failure (endian settings incorrect).
1147  */
1148
1149 static int init_nic(struct s2io_nic *nic)
1150 {
1151         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1152         struct net_device *dev = nic->dev;
1153         register u64 val64 = 0;
1154         void __iomem *add;
1155         u32 time;
1156         int i, j;
1157         struct mac_info *mac_control;
1158         struct config_param *config;
1159         int dtx_cnt = 0;
1160         unsigned long long mem_share;
1161         int mem_size;
1162
1163         mac_control = &nic->mac_control;
1164         config = &nic->config;
1165
1166         /* to set the swapper controle on the card */
1167         if(s2io_set_swapper(nic)) {
1168                 DBG_PRINT(ERR_DBG,"ERROR: Setting Swapper failed\n");
1169                 return -EIO;
1170         }
1171
1172         /*
1173          * Herc requires EOI to be removed from reset before XGXS, so..
1174          */
1175         if (nic->device_type & XFRAME_II_DEVICE) {
1176                 val64 = 0xA500000000ULL;
1177                 writeq(val64, &bar0->sw_reset);
1178                 msleep(500);
1179                 val64 = readq(&bar0->sw_reset);
1180         }
1181
1182         /* Remove XGXS from reset state */
1183         val64 = 0;
1184         writeq(val64, &bar0->sw_reset);
1185         msleep(500);
1186         val64 = readq(&bar0->sw_reset);
1187
1188         /* Ensure that it's safe to access registers by checking
1189          * RIC_RUNNING bit is reset. Check is valid only for XframeII.
1190          */
1191         if (nic->device_type == XFRAME_II_DEVICE) {
1192                 for (i = 0; i < 50; i++) {
1193                         val64 = readq(&bar0->adapter_status);
1194                         if (!(val64 & ADAPTER_STATUS_RIC_RUNNING))
1195                                 break;
1196                         msleep(10);
1197                 }
1198                 if (i == 50)
1199                         return -ENODEV;
1200         }
1201
1202         /*  Enable Receiving broadcasts */
1203         add = &bar0->mac_cfg;
1204         val64 = readq(&bar0->mac_cfg);
1205         val64 |= MAC_RMAC_BCAST_ENABLE;
1206         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1207         writel((u32) val64, add);
1208         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1209         writel((u32) (val64 >> 32), (add + 4));
1210
1211         /* Read registers in all blocks */
1212         val64 = readq(&bar0->mac_int_mask);
1213         val64 = readq(&bar0->mc_int_mask);
1214         val64 = readq(&bar0->xgxs_int_mask);
1215
1216         /*  Set MTU */
1217         val64 = dev->mtu;
1218         writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
1219
1220         if (nic->device_type & XFRAME_II_DEVICE) {
1221                 while (herc_act_dtx_cfg[dtx_cnt] != END_SIGN) {
1222                         SPECIAL_REG_WRITE(herc_act_dtx_cfg[dtx_cnt],
1223                                           &bar0->dtx_control, UF);
1224                         if (dtx_cnt & 0x1)
1225                                 msleep(1); /* Necessary!! */
1226                         dtx_cnt++;
1227                 }
1228         } else {
1229                 while (xena_dtx_cfg[dtx_cnt] != END_SIGN) {
1230                         SPECIAL_REG_WRITE(xena_dtx_cfg[dtx_cnt],
1231                                           &bar0->dtx_control, UF);
1232                         val64 = readq(&bar0->dtx_control);
1233                         dtx_cnt++;
1234                 }
1235         }
1236
1237         /*  Tx DMA Initialization */
1238         val64 = 0;
1239         writeq(val64, &bar0->tx_fifo_partition_0);
1240         writeq(val64, &bar0->tx_fifo_partition_1);
1241         writeq(val64, &bar0->tx_fifo_partition_2);
1242         writeq(val64, &bar0->tx_fifo_partition_3);
1243
1244
1245         for (i = 0, j = 0; i < config->tx_fifo_num; i++) {
1246                 val64 |=
1247                     vBIT(config->tx_cfg[i].fifo_len - 1, ((j * 32) + 19),
1248                          13) | vBIT(config->tx_cfg[i].fifo_priority,
1249                                     ((j * 32) + 5), 3);
1250
1251                 if (i == (config->tx_fifo_num - 1)) {
1252                         if (i % 2 == 0)
1253                                 i++;
1254                 }
1255
1256                 switch (i) {
1257                 case 1:
1258                         writeq(val64, &bar0->tx_fifo_partition_0);
1259                         val64 = 0;
1260                         j = 0;
1261                         break;
1262                 case 3:
1263                         writeq(val64, &bar0->tx_fifo_partition_1);
1264                         val64 = 0;
1265                         j = 0;
1266                         break;
1267                 case 5:
1268                         writeq(val64, &bar0->tx_fifo_partition_2);
1269                         val64 = 0;
1270                         j = 0;
1271                         break;
1272                 case 7:
1273                         writeq(val64, &bar0->tx_fifo_partition_3);
1274                         val64 = 0;
1275                         j = 0;
1276                         break;
1277                 default:
1278                         j++;
1279                         break;
1280                 }
1281         }
1282
1283         /*
1284          * Disable 4 PCCs for Xena1, 2 and 3 as per H/W bug
1285          * SXE-008 TRANSMIT DMA ARBITRATION ISSUE.
1286          */
1287         if ((nic->device_type == XFRAME_I_DEVICE) &&
1288                 (nic->pdev->revision < 4))
1289                 writeq(PCC_ENABLE_FOUR, &bar0->pcc_enable);
1290
1291         val64 = readq(&bar0->tx_fifo_partition_0);
1292         DBG_PRINT(INIT_DBG, "Fifo partition at: 0x%p is: 0x%llx\n",
1293                   &bar0->tx_fifo_partition_0, (unsigned long long) val64);
1294
1295         /*
1296          * Initialization of Tx_PA_CONFIG register to ignore packet
1297          * integrity checking.
1298          */
1299         val64 = readq(&bar0->tx_pa_cfg);
1300         val64 |= TX_PA_CFG_IGNORE_FRM_ERR | TX_PA_CFG_IGNORE_SNAP_OUI |
1301             TX_PA_CFG_IGNORE_LLC_CTRL | TX_PA_CFG_IGNORE_L2_ERR;
1302         writeq(val64, &bar0->tx_pa_cfg);
1303
1304         /* Rx DMA intialization. */
1305         val64 = 0;
1306         for (i = 0; i < config->rx_ring_num; i++) {
1307                 val64 |=
1308                     vBIT(config->rx_cfg[i].ring_priority, (5 + (i * 8)),
1309                          3);
1310         }
1311         writeq(val64, &bar0->rx_queue_priority);
1312
1313         /*
1314          * Allocating equal share of memory to all the
1315          * configured Rings.
1316          */
1317         val64 = 0;
1318         if (nic->device_type & XFRAME_II_DEVICE)
1319                 mem_size = 32;
1320         else
1321                 mem_size = 64;
1322
1323         for (i = 0; i < config->rx_ring_num; i++) {
1324                 switch (i) {
1325                 case 0:
1326                         mem_share = (mem_size / config->rx_ring_num +
1327                                      mem_size % config->rx_ring_num);
1328                         val64 |= RX_QUEUE_CFG_Q0_SZ(mem_share);
1329                         continue;
1330                 case 1:
1331                         mem_share = (mem_size / config->rx_ring_num);
1332                         val64 |= RX_QUEUE_CFG_Q1_SZ(mem_share);
1333                         continue;
1334                 case 2:
1335                         mem_share = (mem_size / config->rx_ring_num);
1336                         val64 |= RX_QUEUE_CFG_Q2_SZ(mem_share);
1337                         continue;
1338                 case 3:
1339                         mem_share = (mem_size / config->rx_ring_num);
1340                         val64 |= RX_QUEUE_CFG_Q3_SZ(mem_share);
1341                         continue;
1342                 case 4:
1343                         mem_share = (mem_size / config->rx_ring_num);
1344                         val64 |= RX_QUEUE_CFG_Q4_SZ(mem_share);
1345                         continue;
1346                 case 5:
1347                         mem_share = (mem_size / config->rx_ring_num);
1348                         val64 |= RX_QUEUE_CFG_Q5_SZ(mem_share);
1349                         continue;
1350                 case 6:
1351                         mem_share = (mem_size / config->rx_ring_num);
1352                         val64 |= RX_QUEUE_CFG_Q6_SZ(mem_share);
1353                         continue;
1354                 case 7:
1355                         mem_share = (mem_size / config->rx_ring_num);
1356                         val64 |= RX_QUEUE_CFG_Q7_SZ(mem_share);
1357                         continue;
1358                 }
1359         }
1360         writeq(val64, &bar0->rx_queue_cfg);
1361
1362         /*
1363          * Filling Tx round robin registers
1364          * as per the number of FIFOs for equal scheduling priority
1365          */
1366         switch (config->tx_fifo_num) {
1367         case 1:
1368                 val64 = 0x0;
1369                 writeq(val64, &bar0->tx_w_round_robin_0);
1370                 writeq(val64, &bar0->tx_w_round_robin_1);
1371                 writeq(val64, &bar0->tx_w_round_robin_2);
1372                 writeq(val64, &bar0->tx_w_round_robin_3);
1373                 writeq(val64, &bar0->tx_w_round_robin_4);
1374                 break;
1375         case 2:
1376                 val64 = 0x0001000100010001ULL;
1377                 writeq(val64, &bar0->tx_w_round_robin_0);
1378                 writeq(val64, &bar0->tx_w_round_robin_1);
1379                 writeq(val64, &bar0->tx_w_round_robin_2);
1380                 writeq(val64, &bar0->tx_w_round_robin_3);
1381                 val64 = 0x0001000100000000ULL;
1382                 writeq(val64, &bar0->tx_w_round_robin_4);
1383                 break;
1384         case 3:
1385                 val64 = 0x0001020001020001ULL;
1386                 writeq(val64, &bar0->tx_w_round_robin_0);
1387                 val64 = 0x0200010200010200ULL;
1388                 writeq(val64, &bar0->tx_w_round_robin_1);
1389                 val64 = 0x0102000102000102ULL;
1390                 writeq(val64, &bar0->tx_w_round_robin_2);
1391                 val64 = 0x0001020001020001ULL;
1392                 writeq(val64, &bar0->tx_w_round_robin_3);
1393                 val64 = 0x0200010200000000ULL;
1394                 writeq(val64, &bar0->tx_w_round_robin_4);
1395                 break;
1396         case 4:
1397                 val64 = 0x0001020300010203ULL;
1398                 writeq(val64, &bar0->tx_w_round_robin_0);
1399                 writeq(val64, &bar0->tx_w_round_robin_1);
1400                 writeq(val64, &bar0->tx_w_round_robin_2);
1401                 writeq(val64, &bar0->tx_w_round_robin_3);
1402                 val64 = 0x0001020300000000ULL;
1403                 writeq(val64, &bar0->tx_w_round_robin_4);
1404                 break;
1405         case 5:
1406                 val64 = 0x0001020304000102ULL;
1407                 writeq(val64, &bar0->tx_w_round_robin_0);
1408                 val64 = 0x0304000102030400ULL;
1409                 writeq(val64, &bar0->tx_w_round_robin_1);
1410                 val64 = 0x0102030400010203ULL;
1411                 writeq(val64, &bar0->tx_w_round_robin_2);
1412                 val64 = 0x0400010203040001ULL;
1413                 writeq(val64, &bar0->tx_w_round_robin_3);
1414                 val64 = 0x0203040000000000ULL;
1415                 writeq(val64, &bar0->tx_w_round_robin_4);
1416                 break;
1417         case 6:
1418                 val64 = 0x0001020304050001ULL;
1419                 writeq(val64, &bar0->tx_w_round_robin_0);
1420                 val64 = 0x0203040500010203ULL;
1421                 writeq(val64, &bar0->tx_w_round_robin_1);
1422                 val64 = 0x0405000102030405ULL;
1423                 writeq(val64, &bar0->tx_w_round_robin_2);
1424                 val64 = 0x0001020304050001ULL;
1425                 writeq(val64, &bar0->tx_w_round_robin_3);
1426                 val64 = 0x0203040500000000ULL;
1427                 writeq(val64, &bar0->tx_w_round_robin_4);
1428                 break;
1429         case 7:
1430                 val64 = 0x0001020304050600ULL;
1431                 writeq(val64, &bar0->tx_w_round_robin_0);
1432                 val64 = 0x0102030405060001ULL;
1433                 writeq(val64, &bar0->tx_w_round_robin_1);
1434                 val64 = 0x0203040506000102ULL;
1435                 writeq(val64, &bar0->tx_w_round_robin_2);
1436                 val64 = 0x0304050600010203ULL;
1437                 writeq(val64, &bar0->tx_w_round_robin_3);
1438                 val64 = 0x0405060000000000ULL;
1439                 writeq(val64, &bar0->tx_w_round_robin_4);
1440                 break;
1441         case 8:
1442                 val64 = 0x0001020304050607ULL;
1443                 writeq(val64, &bar0->tx_w_round_robin_0);
1444                 writeq(val64, &bar0->tx_w_round_robin_1);
1445                 writeq(val64, &bar0->tx_w_round_robin_2);
1446                 writeq(val64, &bar0->tx_w_round_robin_3);
1447                 val64 = 0x0001020300000000ULL;
1448                 writeq(val64, &bar0->tx_w_round_robin_4);
1449                 break;
1450         }
1451
1452         /* Enable all configured Tx FIFO partitions */
1453         val64 = readq(&bar0->tx_fifo_partition_0);
1454         val64 |= (TX_FIFO_PARTITION_EN);
1455         writeq(val64, &bar0->tx_fifo_partition_0);
1456
1457         /* Filling the Rx round robin registers as per the
1458          * number of Rings and steering based on QoS.
1459          */
1460         switch (config->rx_ring_num) {
1461         case 1:
1462                 val64 = 0x8080808080808080ULL;
1463                 writeq(val64, &bar0->rts_qos_steering);
1464                 break;
1465         case 2:
1466                 val64 = 0x0000010000010000ULL;
1467                 writeq(val64, &bar0->rx_w_round_robin_0);
1468                 val64 = 0x0100000100000100ULL;
1469                 writeq(val64, &bar0->rx_w_round_robin_1);
1470                 val64 = 0x0001000001000001ULL;
1471                 writeq(val64, &bar0->rx_w_round_robin_2);
1472                 val64 = 0x0000010000010000ULL;
1473                 writeq(val64, &bar0->rx_w_round_robin_3);
1474                 val64 = 0x0100000000000000ULL;
1475                 writeq(val64, &bar0->rx_w_round_robin_4);
1476
1477                 val64 = 0x8080808040404040ULL;
1478                 writeq(val64, &bar0->rts_qos_steering);
1479                 break;
1480         case 3:
1481                 val64 = 0x0001000102000001ULL;
1482                 writeq(val64, &bar0->rx_w_round_robin_0);
1483                 val64 = 0x0001020000010001ULL;
1484                 writeq(val64, &bar0->rx_w_round_robin_1);
1485                 val64 = 0x0200000100010200ULL;
1486                 writeq(val64, &bar0->rx_w_round_robin_2);
1487                 val64 = 0x0001000102000001ULL;
1488                 writeq(val64, &bar0->rx_w_round_robin_3);
1489                 val64 = 0x0001020000000000ULL;
1490                 writeq(val64, &bar0->rx_w_round_robin_4);
1491
1492                 val64 = 0x8080804040402020ULL;
1493                 writeq(val64, &bar0->rts_qos_steering);
1494                 break;
1495         case 4:
1496                 val64 = 0x0001020300010200ULL;
1497                 writeq(val64, &bar0->rx_w_round_robin_0);
1498                 val64 = 0x0100000102030001ULL;
1499                 writeq(val64, &bar0->rx_w_round_robin_1);
1500                 val64 = 0x0200010000010203ULL;
1501                 writeq(val64, &bar0->rx_w_round_robin_2);
1502                 val64 = 0x0001020001000001ULL;
1503                 writeq(val64, &bar0->rx_w_round_robin_3);
1504                 val64 = 0x0203000100000000ULL;
1505                 writeq(val64, &bar0->rx_w_round_robin_4);
1506
1507                 val64 = 0x8080404020201010ULL;
1508                 writeq(val64, &bar0->rts_qos_steering);
1509                 break;
1510         case 5:
1511                 val64 = 0x0001000203000102ULL;
1512                 writeq(val64, &bar0->rx_w_round_robin_0);
1513                 val64 = 0x0001020001030004ULL;
1514                 writeq(val64, &bar0->rx_w_round_robin_1);
1515                 val64 = 0x0001000203000102ULL;
1516                 writeq(val64, &bar0->rx_w_round_robin_2);
1517                 val64 = 0x0001020001030004ULL;
1518                 writeq(val64, &bar0->rx_w_round_robin_3);
1519                 val64 = 0x0001000000000000ULL;
1520                 writeq(val64, &bar0->rx_w_round_robin_4);
1521
1522                 val64 = 0x8080404020201008ULL;
1523                 writeq(val64, &bar0->rts_qos_steering);
1524                 break;
1525         case 6:
1526                 val64 = 0x0001020304000102ULL;
1527                 writeq(val64, &bar0->rx_w_round_robin_0);
1528                 val64 = 0x0304050001020001ULL;
1529                 writeq(val64, &bar0->rx_w_round_robin_1);
1530                 val64 = 0x0203000100000102ULL;
1531                 writeq(val64, &bar0->rx_w_round_robin_2);
1532                 val64 = 0x0304000102030405ULL;
1533                 writeq(val64, &bar0->rx_w_round_robin_3);
1534                 val64 = 0x0001000200000000ULL;
1535                 writeq(val64, &bar0->rx_w_round_robin_4);
1536
1537                 val64 = 0x8080404020100804ULL;
1538                 writeq(val64, &bar0->rts_qos_steering);
1539                 break;
1540         case 7:
1541                 val64 = 0x0001020001020300ULL;
1542                 writeq(val64, &bar0->rx_w_round_robin_0);
1543                 val64 = 0x0102030400010203ULL;
1544                 writeq(val64, &bar0->rx_w_round_robin_1);
1545                 val64 = 0x0405060001020001ULL;
1546                 writeq(val64, &bar0->rx_w_round_robin_2);
1547                 val64 = 0x0304050000010200ULL;
1548                 writeq(val64, &bar0->rx_w_round_robin_3);
1549                 val64 = 0x0102030000000000ULL;
1550                 writeq(val64, &bar0->rx_w_round_robin_4);
1551
1552                 val64 = 0x8080402010080402ULL;
1553                 writeq(val64, &bar0->rts_qos_steering);
1554                 break;
1555         case 8:
1556                 val64 = 0x0001020300040105ULL;
1557                 writeq(val64, &bar0->rx_w_round_robin_0);
1558                 val64 = 0x0200030106000204ULL;
1559                 writeq(val64, &bar0->rx_w_round_robin_1);
1560                 val64 = 0x0103000502010007ULL;
1561                 writeq(val64, &bar0->rx_w_round_robin_2);
1562                 val64 = 0x0304010002060500ULL;
1563                 writeq(val64, &bar0->rx_w_round_robin_3);
1564                 val64 = 0x0103020400000000ULL;
1565                 writeq(val64, &bar0->rx_w_round_robin_4);
1566
1567                 val64 = 0x8040201008040201ULL;
1568                 writeq(val64, &bar0->rts_qos_steering);
1569                 break;
1570         }
1571
1572         /* UDP Fix */
1573         val64 = 0;
1574         for (i = 0; i < 8; i++)
1575                 writeq(val64, &bar0->rts_frm_len_n[i]);
1576
1577         /* Set the default rts frame length for the rings configured */
1578         val64 = MAC_RTS_FRM_LEN_SET(dev->mtu+22);
1579         for (i = 0 ; i < config->rx_ring_num ; i++)
1580                 writeq(val64, &bar0->rts_frm_len_n[i]);
1581
1582         /* Set the frame length for the configured rings
1583          * desired by the user
1584          */
1585         for (i = 0; i < config->rx_ring_num; i++) {
1586                 /* If rts_frm_len[i] == 0 then it is assumed that user not
1587                  * specified frame length steering.
1588                  * If the user provides the frame length then program
1589                  * the rts_frm_len register for those values or else
1590                  * leave it as it is.
1591                  */
1592                 if (rts_frm_len[i] != 0) {
1593                         writeq(MAC_RTS_FRM_LEN_SET(rts_frm_len[i]),
1594                                 &bar0->rts_frm_len_n[i]);
1595                 }
1596         }
1597
1598         /* Disable differentiated services steering logic */
1599         for (i = 0; i < 64; i++) {
1600                 if (rts_ds_steer(nic, i, 0) == FAILURE) {
1601                         DBG_PRINT(ERR_DBG, "%s: failed rts ds steering",
1602                                 dev->name);
1603                         DBG_PRINT(ERR_DBG, "set on codepoint %d\n", i);
1604                         return -ENODEV;
1605                 }
1606         }
1607
1608         /* Program statistics memory */
1609         writeq(mac_control->stats_mem_phy, &bar0->stat_addr);
1610
1611         if (nic->device_type == XFRAME_II_DEVICE) {
1612                 val64 = STAT_BC(0x320);
1613                 writeq(val64, &bar0->stat_byte_cnt);
1614         }
1615
1616         /*
1617          * Initializing the sampling rate for the device to calculate the
1618          * bandwidth utilization.
1619          */
1620         val64 = MAC_TX_LINK_UTIL_VAL(tmac_util_period) |
1621             MAC_RX_LINK_UTIL_VAL(rmac_util_period);
1622         writeq(val64, &bar0->mac_link_util);
1623
1624         /*
1625          * Initializing the Transmit and Receive Traffic Interrupt
1626          * Scheme.
1627          */
1628
1629         /* Initialize TTI */
1630         if (SUCCESS != init_tti(nic, nic->last_link_state))
1631                 return -ENODEV;
1632
1633         /* RTI Initialization */
1634         if (nic->device_type == XFRAME_II_DEVICE) {
1635                 /*
1636                  * Programmed to generate Apprx 500 Intrs per
1637                  * second
1638                  */
1639                 int count = (nic->config.bus_speed * 125)/4;
1640                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(count);
1641         } else
1642                 val64 = RTI_DATA1_MEM_RX_TIMER_VAL(0xFFF);
1643         val64 |= RTI_DATA1_MEM_RX_URNG_A(0xA) |
1644                  RTI_DATA1_MEM_RX_URNG_B(0x10) |
1645                  RTI_DATA1_MEM_RX_URNG_C(0x30) | RTI_DATA1_MEM_RX_TIMER_AC_EN;
1646
1647         writeq(val64, &bar0->rti_data1_mem);
1648
1649         val64 = RTI_DATA2_MEM_RX_UFC_A(0x1) |
1650                 RTI_DATA2_MEM_RX_UFC_B(0x2) ;
1651         if (nic->config.intr_type == MSI_X)
1652             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x20) | \
1653                         RTI_DATA2_MEM_RX_UFC_D(0x40));
1654         else
1655             val64 |= (RTI_DATA2_MEM_RX_UFC_C(0x40) | \
1656                         RTI_DATA2_MEM_RX_UFC_D(0x80));
1657         writeq(val64, &bar0->rti_data2_mem);
1658
1659         for (i = 0; i < config->rx_ring_num; i++) {
1660                 val64 = RTI_CMD_MEM_WE | RTI_CMD_MEM_STROBE_NEW_CMD
1661                                 | RTI_CMD_MEM_OFFSET(i);
1662                 writeq(val64, &bar0->rti_command_mem);
1663
1664                 /*
1665                  * Once the operation completes, the Strobe bit of the
1666                  * command register will be reset. We poll for this
1667                  * particular condition. We wait for a maximum of 500ms
1668                  * for the operation to complete, if it's not complete
1669                  * by then we return error.
1670                  */
1671                 time = 0;
1672                 while (TRUE) {
1673                         val64 = readq(&bar0->rti_command_mem);
1674                         if (!(val64 & RTI_CMD_MEM_STROBE_NEW_CMD))
1675                                 break;
1676
1677                         if (time > 10) {
1678                                 DBG_PRINT(ERR_DBG, "%s: RTI init Failed\n",
1679                                           dev->name);
1680                                 return -ENODEV;
1681                         }
1682                         time++;
1683                         msleep(50);
1684                 }
1685         }
1686
1687         /*
1688          * Initializing proper values as Pause threshold into all
1689          * the 8 Queues on Rx side.
1690          */
1691         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q0q3);
1692         writeq(0xffbbffbbffbbffbbULL, &bar0->mc_pause_thresh_q4q7);
1693
1694         /* Disable RMAC PAD STRIPPING */
1695         add = &bar0->mac_cfg;
1696         val64 = readq(&bar0->mac_cfg);
1697         val64 &= ~(MAC_CFG_RMAC_STRIP_PAD);
1698         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1699         writel((u32) (val64), add);
1700         writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1701         writel((u32) (val64 >> 32), (add + 4));
1702         val64 = readq(&bar0->mac_cfg);
1703
1704         /* Enable FCS stripping by adapter */
1705         add = &bar0->mac_cfg;
1706         val64 = readq(&bar0->mac_cfg);
1707         val64 |= MAC_CFG_RMAC_STRIP_FCS;
1708         if (nic->device_type == XFRAME_II_DEVICE)
1709                 writeq(val64, &bar0->mac_cfg);
1710         else {
1711                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1712                 writel((u32) (val64), add);
1713                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
1714                 writel((u32) (val64 >> 32), (add + 4));
1715         }
1716
1717         /*
1718          * Set the time value to be inserted in the pause frame
1719          * generated by xena.
1720          */
1721         val64 = readq(&bar0->rmac_pause_cfg);
1722         val64 &= ~(RMAC_PAUSE_HG_PTIME(0xffff));
1723         val64 |= RMAC_PAUSE_HG_PTIME(nic->mac_control.rmac_pause_time);
1724         writeq(val64, &bar0->rmac_pause_cfg);
1725
1726         /*
1727          * Set the Threshold Limit for Generating the pause frame
1728          * If the amount of data in any Queue exceeds ratio of
1729          * (mac_control.mc_pause_threshold_q0q3 or q4q7)/256
1730          * pause frame is generated
1731          */
1732         val64 = 0;
1733         for (i = 0; i < 4; i++) {
1734                 val64 |=
1735                     (((u64) 0xFF00 | nic->mac_control.
1736                       mc_pause_threshold_q0q3)
1737                      << (i * 2 * 8));
1738         }
1739         writeq(val64, &bar0->mc_pause_thresh_q0q3);
1740
1741         val64 = 0;
1742         for (i = 0; i < 4; i++) {
1743                 val64 |=
1744                     (((u64) 0xFF00 | nic->mac_control.
1745                       mc_pause_threshold_q4q7)
1746                      << (i * 2 * 8));
1747         }
1748         writeq(val64, &bar0->mc_pause_thresh_q4q7);
1749
1750         /*
1751          * TxDMA will stop Read request if the number of read split has
1752          * exceeded the limit pointed by shared_splits
1753          */
1754         val64 = readq(&bar0->pic_control);
1755         val64 |= PIC_CNTL_SHARED_SPLITS(shared_splits);
1756         writeq(val64, &bar0->pic_control);
1757
1758         if (nic->config.bus_speed == 266) {
1759                 writeq(TXREQTO_VAL(0x7f) | TXREQTO_EN, &bar0->txreqtimeout);
1760                 writeq(0x0, &bar0->read_retry_delay);
1761                 writeq(0x0, &bar0->write_retry_delay);
1762         }
1763
1764         /*
1765          * Programming the Herc to split every write transaction
1766          * that does not start on an ADB to reduce disconnects.
1767          */
1768         if (nic->device_type == XFRAME_II_DEVICE) {
1769                 val64 = FAULT_BEHAVIOUR | EXT_REQ_EN |
1770                         MISC_LINK_STABILITY_PRD(3);
1771                 writeq(val64, &bar0->misc_control);
1772                 val64 = readq(&bar0->pic_control2);
1773                 val64 &= ~(s2BIT(13)|s2BIT(14)|s2BIT(15));
1774                 writeq(val64, &bar0->pic_control2);
1775         }
1776         if (strstr(nic->product_name, "CX4")) {
1777                 val64 = TMAC_AVG_IPG(0x17);
1778                 writeq(val64, &bar0->tmac_avg_ipg);
1779         }
1780
1781         return SUCCESS;
1782 }
1783 #define LINK_UP_DOWN_INTERRUPT          1
1784 #define MAC_RMAC_ERR_TIMER              2
1785
1786 static int s2io_link_fault_indication(struct s2io_nic *nic)
1787 {
1788         if (nic->config.intr_type != INTA)
1789                 return MAC_RMAC_ERR_TIMER;
1790         if (nic->device_type == XFRAME_II_DEVICE)
1791                 return LINK_UP_DOWN_INTERRUPT;
1792         else
1793                 return MAC_RMAC_ERR_TIMER;
1794 }
1795
1796 /**
1797  *  do_s2io_write_bits -  update alarm bits in alarm register
1798  *  @value: alarm bits
1799  *  @flag: interrupt status
1800  *  @addr: address value
1801  *  Description: update alarm bits in alarm register
1802  *  Return Value:
1803  *  NONE.
1804  */
1805 static void do_s2io_write_bits(u64 value, int flag, void __iomem *addr)
1806 {
1807         u64 temp64;
1808
1809         temp64 = readq(addr);
1810
1811         if(flag == ENABLE_INTRS)
1812                 temp64 &= ~((u64) value);
1813         else
1814                 temp64 |= ((u64) value);
1815         writeq(temp64, addr);
1816 }
1817
1818 static void en_dis_err_alarms(struct s2io_nic *nic, u16 mask, int flag)
1819 {
1820         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1821         register u64 gen_int_mask = 0;
1822
1823         if (mask & TX_DMA_INTR) {
1824
1825                 gen_int_mask |= TXDMA_INT_M;
1826
1827                 do_s2io_write_bits(TXDMA_TDA_INT | TXDMA_PFC_INT |
1828                                 TXDMA_PCC_INT | TXDMA_TTI_INT |
1829                                 TXDMA_LSO_INT | TXDMA_TPA_INT |
1830                                 TXDMA_SM_INT, flag, &bar0->txdma_int_mask);
1831
1832                 do_s2io_write_bits(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM |
1833                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR |
1834                                 PFC_PCIX_ERR | PFC_ECC_SG_ERR, flag,
1835                                 &bar0->pfc_err_mask);
1836
1837                 do_s2io_write_bits(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
1838                                 TDA_SM1_ERR_ALARM | TDA_Fn_ECC_SG_ERR |
1839                                 TDA_PCIX_ERR, flag, &bar0->tda_err_mask);
1840
1841                 do_s2io_write_bits(PCC_FB_ECC_DB_ERR | PCC_TXB_ECC_DB_ERR |
1842                                 PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM |
1843                                 PCC_N_SERR | PCC_6_COF_OV_ERR |
1844                                 PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR |
1845                                 PCC_7_LSO_OV_ERR | PCC_FB_ECC_SG_ERR |
1846                                 PCC_TXB_ECC_SG_ERR, flag, &bar0->pcc_err_mask);
1847
1848                 do_s2io_write_bits(TTI_SM_ERR_ALARM | TTI_ECC_SG_ERR |
1849                                 TTI_ECC_DB_ERR, flag, &bar0->tti_err_mask);
1850
1851                 do_s2io_write_bits(LSO6_ABORT | LSO7_ABORT |
1852                                 LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM |
1853                                 LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
1854                                 flag, &bar0->lso_err_mask);
1855
1856                 do_s2io_write_bits(TPA_SM_ERR_ALARM | TPA_TX_FRM_DROP,
1857                                 flag, &bar0->tpa_err_mask);
1858
1859                 do_s2io_write_bits(SM_SM_ERR_ALARM, flag, &bar0->sm_err_mask);
1860
1861         }
1862
1863         if (mask & TX_MAC_INTR) {
1864                 gen_int_mask |= TXMAC_INT_M;
1865                 do_s2io_write_bits(MAC_INT_STATUS_TMAC_INT, flag,
1866                                 &bar0->mac_int_mask);
1867                 do_s2io_write_bits(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR |
1868                                 TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR |
1869                                 TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
1870                                 flag, &bar0->mac_tmac_err_mask);
1871         }
1872
1873         if (mask & TX_XGXS_INTR) {
1874                 gen_int_mask |= TXXGXS_INT_M;
1875                 do_s2io_write_bits(XGXS_INT_STATUS_TXGXS, flag,
1876                                 &bar0->xgxs_int_mask);
1877                 do_s2io_write_bits(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR |
1878                                 TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
1879                                 flag, &bar0->xgxs_txgxs_err_mask);
1880         }
1881
1882         if (mask & RX_DMA_INTR) {
1883                 gen_int_mask |= RXDMA_INT_M;
1884                 do_s2io_write_bits(RXDMA_INT_RC_INT_M | RXDMA_INT_RPA_INT_M |
1885                                 RXDMA_INT_RDA_INT_M | RXDMA_INT_RTI_INT_M,
1886                                 flag, &bar0->rxdma_int_mask);
1887                 do_s2io_write_bits(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR |
1888                                 RC_PRCn_SM_ERR_ALARM | RC_FTC_SM_ERR_ALARM |
1889                                 RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR |
1890                                 RC_RDA_FAIL_WR_Rn, flag, &bar0->rc_err_mask);
1891                 do_s2io_write_bits(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn |
1892                                 PRC_PCI_AB_F_WR_Rn | PRC_PCI_DP_RD_Rn |
1893                                 PRC_PCI_DP_WR_Rn | PRC_PCI_DP_F_WR_Rn, flag,
1894                                 &bar0->prc_pcix_err_mask);
1895                 do_s2io_write_bits(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR |
1896                                 RPA_ECC_SG_ERR | RPA_ECC_DB_ERR, flag,
1897                                 &bar0->rpa_err_mask);
1898                 do_s2io_write_bits(RDA_RXDn_ECC_DB_ERR | RDA_FRM_ECC_DB_N_AERR |
1899                                 RDA_SM1_ERR_ALARM | RDA_SM0_ERR_ALARM |
1900                                 RDA_RXD_ECC_DB_SERR | RDA_RXDn_ECC_SG_ERR |
1901                                 RDA_FRM_ECC_SG_ERR | RDA_MISC_ERR|RDA_PCIX_ERR,
1902                                 flag, &bar0->rda_err_mask);
1903                 do_s2io_write_bits(RTI_SM_ERR_ALARM |
1904                                 RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
1905                                 flag, &bar0->rti_err_mask);
1906         }
1907
1908         if (mask & RX_MAC_INTR) {
1909                 gen_int_mask |= RXMAC_INT_M;
1910                 do_s2io_write_bits(MAC_INT_STATUS_RMAC_INT, flag,
1911                                 &bar0->mac_int_mask);
1912                 do_s2io_write_bits(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR |
1913                                 RMAC_UNUSED_INT | RMAC_SINGLE_ECC_ERR |
1914                                 RMAC_DOUBLE_ECC_ERR |
1915                                 RMAC_LINK_STATE_CHANGE_INT,
1916                                 flag, &bar0->mac_rmac_err_mask);
1917         }
1918
1919         if (mask & RX_XGXS_INTR)
1920         {
1921                 gen_int_mask |= RXXGXS_INT_M;
1922                 do_s2io_write_bits(XGXS_INT_STATUS_RXGXS, flag,
1923                                 &bar0->xgxs_int_mask);
1924                 do_s2io_write_bits(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR, flag,
1925                                 &bar0->xgxs_rxgxs_err_mask);
1926         }
1927
1928         if (mask & MC_INTR) {
1929                 gen_int_mask |= MC_INT_M;
1930                 do_s2io_write_bits(MC_INT_MASK_MC_INT, flag, &bar0->mc_int_mask);
1931                 do_s2io_write_bits(MC_ERR_REG_SM_ERR | MC_ERR_REG_ECC_ALL_SNG |
1932                                 MC_ERR_REG_ECC_ALL_DBL | PLL_LOCK_N, flag,
1933                                 &bar0->mc_err_mask);
1934         }
1935         nic->general_int_mask = gen_int_mask;
1936
1937         /* Remove this line when alarm interrupts are enabled */
1938         nic->general_int_mask = 0;
1939 }
1940 /**
1941  *  en_dis_able_nic_intrs - Enable or Disable the interrupts
1942  *  @nic: device private variable,
1943  *  @mask: A mask indicating which Intr block must be modified and,
1944  *  @flag: A flag indicating whether to enable or disable the Intrs.
1945  *  Description: This function will either disable or enable the interrupts
1946  *  depending on the flag argument. The mask argument can be used to
1947  *  enable/disable any Intr block.
1948  *  Return Value: NONE.
1949  */
1950
1951 static void en_dis_able_nic_intrs(struct s2io_nic *nic, u16 mask, int flag)
1952 {
1953         struct XENA_dev_config __iomem *bar0 = nic->bar0;
1954         register u64 temp64 = 0, intr_mask = 0;
1955
1956         intr_mask = nic->general_int_mask;
1957
1958         /*  Top level interrupt classification */
1959         /*  PIC Interrupts */
1960         if (mask & TX_PIC_INTR) {
1961                 /*  Enable PIC Intrs in the general intr mask register */
1962                 intr_mask |= TXPIC_INT_M;
1963                 if (flag == ENABLE_INTRS) {
1964                         /*
1965                          * If Hercules adapter enable GPIO otherwise
1966                          * disable all PCIX, Flash, MDIO, IIC and GPIO
1967                          * interrupts for now.
1968                          * TODO
1969                          */
1970                         if (s2io_link_fault_indication(nic) ==
1971                                         LINK_UP_DOWN_INTERRUPT ) {
1972                                 do_s2io_write_bits(PIC_INT_GPIO, flag,
1973                                                 &bar0->pic_int_mask);
1974                                 do_s2io_write_bits(GPIO_INT_MASK_LINK_UP, flag,
1975                                                 &bar0->gpio_int_mask);
1976                         } else
1977                                 writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1978                 } else if (flag == DISABLE_INTRS) {
1979                         /*
1980                          * Disable PIC Intrs in the general
1981                          * intr mask register
1982                          */
1983                         writeq(DISABLE_ALL_INTRS, &bar0->pic_int_mask);
1984                 }
1985         }
1986
1987         /*  Tx traffic interrupts */
1988         if (mask & TX_TRAFFIC_INTR) {
1989                 intr_mask |= TXTRAFFIC_INT_M;
1990                 if (flag == ENABLE_INTRS) {
1991                         /*
1992                          * Enable all the Tx side interrupts
1993                          * writing 0 Enables all 64 TX interrupt levels
1994                          */
1995                         writeq(0x0, &bar0->tx_traffic_mask);
1996                 } else if (flag == DISABLE_INTRS) {
1997                         /*
1998                          * Disable Tx Traffic Intrs in the general intr mask
1999                          * register.
2000                          */
2001                         writeq(DISABLE_ALL_INTRS, &bar0->tx_traffic_mask);
2002                 }
2003         }
2004
2005         /*  Rx traffic interrupts */
2006         if (mask & RX_TRAFFIC_INTR) {
2007                 intr_mask |= RXTRAFFIC_INT_M;
2008                 if (flag == ENABLE_INTRS) {
2009                         /* writing 0 Enables all 8 RX interrupt levels */
2010                         writeq(0x0, &bar0->rx_traffic_mask);
2011                 } else if (flag == DISABLE_INTRS) {
2012                         /*
2013                          * Disable Rx Traffic Intrs in the general intr mask
2014                          * register.
2015                          */
2016                         writeq(DISABLE_ALL_INTRS, &bar0->rx_traffic_mask);
2017                 }
2018         }
2019
2020         temp64 = readq(&bar0->general_int_mask);
2021         if (flag == ENABLE_INTRS)
2022                 temp64 &= ~((u64) intr_mask);
2023         else
2024                 temp64 = DISABLE_ALL_INTRS;
2025         writeq(temp64, &bar0->general_int_mask);
2026
2027         nic->general_int_mask = readq(&bar0->general_int_mask);
2028 }
2029
2030 /**
2031  *  verify_pcc_quiescent- Checks for PCC quiescent state
2032  *  Return: 1 If PCC is quiescence
2033  *          0 If PCC is not quiescence
2034  */
2035 static int verify_pcc_quiescent(struct s2io_nic *sp, int flag)
2036 {
2037         int ret = 0, herc;
2038         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2039         u64 val64 = readq(&bar0->adapter_status);
2040
2041         herc = (sp->device_type == XFRAME_II_DEVICE);
2042
2043         if (flag == FALSE) {
2044                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2045                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_IDLE))
2046                                 ret = 1;
2047                 } else {
2048                         if (!(val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2049                                 ret = 1;
2050                 }
2051         } else {
2052                 if ((!herc && (sp->pdev->revision >= 4)) || herc) {
2053                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_IDLE) ==
2054                              ADAPTER_STATUS_RMAC_PCC_IDLE))
2055                                 ret = 1;
2056                 } else {
2057                         if (((val64 & ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE) ==
2058                              ADAPTER_STATUS_RMAC_PCC_FOUR_IDLE))
2059                                 ret = 1;
2060                 }
2061         }
2062
2063         return ret;
2064 }
2065 /**
2066  *  verify_xena_quiescence - Checks whether the H/W is ready
2067  *  Description: Returns whether the H/W is ready to go or not. Depending
2068  *  on whether adapter enable bit was written or not the comparison
2069  *  differs and the calling function passes the input argument flag to
2070  *  indicate this.
2071  *  Return: 1 If xena is quiescence
2072  *          0 If Xena is not quiescence
2073  */
2074
2075 static int verify_xena_quiescence(struct s2io_nic *sp)
2076 {
2077         int  mode;
2078         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2079         u64 val64 = readq(&bar0->adapter_status);
2080         mode = s2io_verify_pci_mode(sp);
2081
2082         if (!(val64 & ADAPTER_STATUS_TDMA_READY)) {
2083                 DBG_PRINT(ERR_DBG, "%s", "TDMA is not ready!");
2084                 return 0;
2085         }
2086         if (!(val64 & ADAPTER_STATUS_RDMA_READY)) {
2087         DBG_PRINT(ERR_DBG, "%s", "RDMA is not ready!");
2088                 return 0;
2089         }
2090         if (!(val64 & ADAPTER_STATUS_PFC_READY)) {
2091                 DBG_PRINT(ERR_DBG, "%s", "PFC is not ready!");
2092                 return 0;
2093         }
2094         if (!(val64 & ADAPTER_STATUS_TMAC_BUF_EMPTY)) {
2095                 DBG_PRINT(ERR_DBG, "%s", "TMAC BUF is not empty!");
2096                 return 0;
2097         }
2098         if (!(val64 & ADAPTER_STATUS_PIC_QUIESCENT)) {
2099                 DBG_PRINT(ERR_DBG, "%s", "PIC is not QUIESCENT!");
2100                 return 0;
2101         }
2102         if (!(val64 & ADAPTER_STATUS_MC_DRAM_READY)) {
2103                 DBG_PRINT(ERR_DBG, "%s", "MC_DRAM is not ready!");
2104                 return 0;
2105         }
2106         if (!(val64 & ADAPTER_STATUS_MC_QUEUES_READY)) {
2107                 DBG_PRINT(ERR_DBG, "%s", "MC_QUEUES is not ready!");
2108                 return 0;
2109         }
2110         if (!(val64 & ADAPTER_STATUS_M_PLL_LOCK)) {
2111                 DBG_PRINT(ERR_DBG, "%s", "M_PLL is not locked!");
2112                 return 0;
2113         }
2114
2115         /*
2116          * In PCI 33 mode, the P_PLL is not used, and therefore,
2117          * the the P_PLL_LOCK bit in the adapter_status register will
2118          * not be asserted.
2119          */
2120         if (!(val64 & ADAPTER_STATUS_P_PLL_LOCK) &&
2121                 sp->device_type == XFRAME_II_DEVICE && mode !=
2122                 PCI_MODE_PCI_33) {
2123                 DBG_PRINT(ERR_DBG, "%s", "P_PLL is not locked!");
2124                 return 0;
2125         }
2126         if (!((val64 & ADAPTER_STATUS_RC_PRC_QUIESCENT) ==
2127                         ADAPTER_STATUS_RC_PRC_QUIESCENT)) {
2128                 DBG_PRINT(ERR_DBG, "%s", "RC_PRC is not QUIESCENT!");
2129                 return 0;
2130         }
2131         return 1;
2132 }
2133
2134 /**
2135  * fix_mac_address -  Fix for Mac addr problem on Alpha platforms
2136  * @sp: Pointer to device specifc structure
2137  * Description :
2138  * New procedure to clear mac address reading  problems on Alpha platforms
2139  *
2140  */
2141
2142 static void fix_mac_address(struct s2io_nic * sp)
2143 {
2144         struct XENA_dev_config __iomem *bar0 = sp->bar0;
2145         u64 val64;
2146         int i = 0;
2147
2148         while (fix_mac[i] != END_SIGN) {
2149                 writeq(fix_mac[i++], &bar0->gpio_control);
2150                 udelay(10);
2151                 val64 = readq(&bar0->gpio_control);
2152         }
2153 }
2154
2155 /**
2156  *  start_nic - Turns the device on
2157  *  @nic : device private variable.
2158  *  Description:
2159  *  This function actually turns the device on. Before this  function is
2160  *  called,all Registers are configured from their reset states
2161  *  and shared memory is allocated but the NIC is still quiescent. On
2162  *  calling this function, the device interrupts are cleared and the NIC is
2163  *  literally switched on by writing into the adapter control register.
2164  *  Return Value:
2165  *  SUCCESS on success and -1 on failure.
2166  */
2167
2168 static int start_nic(struct s2io_nic *nic)
2169 {
2170         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2171         struct net_device *dev = nic->dev;
2172         register u64 val64 = 0;
2173         u16 subid, i;
2174         struct mac_info *mac_control;
2175         struct config_param *config;
2176
2177         mac_control = &nic->mac_control;
2178         config = &nic->config;
2179
2180         /*  PRC Initialization and configuration */
2181         for (i = 0; i < config->rx_ring_num; i++) {
2182                 writeq((u64) mac_control->rings[i].rx_blocks[0].block_dma_addr,
2183                        &bar0->prc_rxd0_n[i]);
2184
2185                 val64 = readq(&bar0->prc_ctrl_n[i]);
2186                 if (nic->rxd_mode == RXD_MODE_1)
2187                         val64 |= PRC_CTRL_RC_ENABLED;
2188                 else
2189                         val64 |= PRC_CTRL_RC_ENABLED | PRC_CTRL_RING_MODE_3;
2190                 if (nic->device_type == XFRAME_II_DEVICE)
2191                         val64 |= PRC_CTRL_GROUP_READS;
2192                 val64 &= ~PRC_CTRL_RXD_BACKOFF_INTERVAL(0xFFFFFF);
2193                 val64 |= PRC_CTRL_RXD_BACKOFF_INTERVAL(0x1000);
2194                 writeq(val64, &bar0->prc_ctrl_n[i]);
2195         }
2196
2197         if (nic->rxd_mode == RXD_MODE_3B) {
2198                 /* Enabling 2 buffer mode by writing into Rx_pa_cfg reg. */
2199                 val64 = readq(&bar0->rx_pa_cfg);
2200                 val64 |= RX_PA_CFG_IGNORE_L2_ERR;
2201                 writeq(val64, &bar0->rx_pa_cfg);
2202         }
2203
2204         if (vlan_tag_strip == 0) {
2205                 val64 = readq(&bar0->rx_pa_cfg);
2206                 val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
2207                 writeq(val64, &bar0->rx_pa_cfg);
2208                 vlan_strip_flag = 0;
2209         }
2210
2211         /*
2212          * Enabling MC-RLDRAM. After enabling the device, we timeout
2213          * for around 100ms, which is approximately the time required
2214          * for the device to be ready for operation.
2215          */
2216         val64 = readq(&bar0->mc_rldram_mrs);
2217         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE | MC_RLDRAM_MRS_ENABLE;
2218         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
2219         val64 = readq(&bar0->mc_rldram_mrs);
2220
2221         msleep(100);    /* Delay by around 100 ms. */
2222
2223         /* Enabling ECC Protection. */
2224         val64 = readq(&bar0->adapter_control);
2225         val64 &= ~ADAPTER_ECC_EN;
2226         writeq(val64, &bar0->adapter_control);
2227
2228         /*
2229          * Verify if the device is ready to be enabled, if so enable
2230          * it.
2231          */
2232         val64 = readq(&bar0->adapter_status);
2233         if (!verify_xena_quiescence(nic)) {
2234                 DBG_PRINT(ERR_DBG, "%s: device is not ready, ", dev->name);
2235                 DBG_PRINT(ERR_DBG, "Adapter status reads: 0x%llx\n",
2236                           (unsigned long long) val64);
2237                 return FAILURE;
2238         }
2239
2240         /*
2241          * With some switches, link might be already up at this point.
2242          * Because of this weird behavior, when we enable laser,
2243          * we may not get link. We need to handle this. We cannot
2244          * figure out which switch is misbehaving. So we are forced to
2245          * make a global change.
2246          */
2247
2248         /* Enabling Laser. */
2249         val64 = readq(&bar0->adapter_control);
2250         val64 |= ADAPTER_EOI_TX_ON;
2251         writeq(val64, &bar0->adapter_control);
2252
2253         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
2254                 /*
2255                  * Dont see link state interrupts initally on some switches,
2256                  * so directly scheduling the link state task here.
2257                  */
2258                 schedule_work(&nic->set_link_task);
2259         }
2260         /* SXE-002: Initialize link and activity LED */
2261         subid = nic->pdev->subsystem_device;
2262         if (((subid & 0xFF) >= 0x07) &&
2263             (nic->device_type == XFRAME_I_DEVICE)) {
2264                 val64 = readq(&bar0->gpio_control);
2265                 val64 |= 0x0000800000000000ULL;
2266                 writeq(val64, &bar0->gpio_control);
2267                 val64 = 0x0411040400000000ULL;
2268                 writeq(val64, (void __iomem *)bar0 + 0x2700);
2269         }
2270
2271         return SUCCESS;
2272 }
2273 /**
2274  * s2io_txdl_getskb - Get the skb from txdl, unmap and return skb
2275  */
2276 static struct sk_buff *s2io_txdl_getskb(struct fifo_info *fifo_data, struct \
2277                                         TxD *txdlp, int get_off)
2278 {
2279         struct s2io_nic *nic = fifo_data->nic;
2280         struct sk_buff *skb;
2281         struct TxD *txds;
2282         u16 j, frg_cnt;
2283
2284         txds = txdlp;
2285         if (txds->Host_Control == (u64)(long)fifo_data->ufo_in_band_v) {
2286                 pci_unmap_single(nic->pdev, (dma_addr_t)
2287                         txds->Buffer_Pointer, sizeof(u64),
2288                         PCI_DMA_TODEVICE);
2289                 txds++;
2290         }
2291
2292         skb = (struct sk_buff *) ((unsigned long)
2293                         txds->Host_Control);
2294         if (!skb) {
2295                 memset(txdlp, 0, (sizeof(struct TxD) * fifo_data->max_txds));
2296                 return NULL;
2297         }
2298         pci_unmap_single(nic->pdev, (dma_addr_t)
2299                          txds->Buffer_Pointer,
2300                          skb->len - skb->data_len,
2301                          PCI_DMA_TODEVICE);
2302         frg_cnt = skb_shinfo(skb)->nr_frags;
2303         if (frg_cnt) {
2304                 txds++;
2305                 for (j = 0; j < frg_cnt; j++, txds++) {
2306                         skb_frag_t *frag = &skb_shinfo(skb)->frags[j];
2307                         if (!txds->Buffer_Pointer)
2308                                 break;
2309                         pci_unmap_page(nic->pdev, (dma_addr_t)
2310                                         txds->Buffer_Pointer,
2311                                        frag->size, PCI_DMA_TODEVICE);
2312                 }
2313         }
2314         memset(txdlp,0, (sizeof(struct TxD) * fifo_data->max_txds));
2315         return(skb);
2316 }
2317
2318 /**
2319  *  free_tx_buffers - Free all queued Tx buffers
2320  *  @nic : device private variable.
2321  *  Description:
2322  *  Free all queued Tx buffers.
2323  *  Return Value: void
2324 */
2325
2326 static void free_tx_buffers(struct s2io_nic *nic)
2327 {
2328         struct net_device *dev = nic->dev;
2329         struct sk_buff *skb;
2330         struct TxD *txdp;
2331         int i, j;
2332         struct mac_info *mac_control;
2333         struct config_param *config;
2334         int cnt = 0;
2335
2336         mac_control = &nic->mac_control;
2337         config = &nic->config;
2338
2339         for (i = 0; i < config->tx_fifo_num; i++) {
2340                 unsigned long flags;
2341                 spin_lock_irqsave(&mac_control->fifos[i].tx_lock, flags);
2342                 for (j = 0; j < config->tx_cfg[i].fifo_len - 1; j++) {
2343                         txdp = (struct TxD *) \
2344                         mac_control->fifos[i].list_info[j].list_virt_addr;
2345                         skb = s2io_txdl_getskb(&mac_control->fifos[i], txdp, j);
2346                         if (skb) {
2347                                 nic->mac_control.stats_info->sw_stat.mem_freed
2348                                         += skb->truesize;
2349                                 dev_kfree_skb(skb);
2350                                 cnt++;
2351                         }
2352                 }
2353                 DBG_PRINT(INTR_DBG,
2354                           "%s:forcibly freeing %d skbs on FIFO%d\n",
2355                           dev->name, cnt, i);
2356                 mac_control->fifos[i].tx_curr_get_info.offset = 0;
2357                 mac_control->fifos[i].tx_curr_put_info.offset = 0;
2358                 spin_unlock_irqrestore(&mac_control->fifos[i].tx_lock, flags);
2359         }
2360 }
2361
2362 /**
2363  *   stop_nic -  To stop the nic
2364  *   @nic ; device private variable.
2365  *   Description:
2366  *   This function does exactly the opposite of what the start_nic()
2367  *   function does. This function is called to stop the device.
2368  *   Return Value:
2369  *   void.
2370  */
2371
2372 static void stop_nic(struct s2io_nic *nic)
2373 {
2374         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2375         register u64 val64 = 0;
2376         u16 interruptible;
2377         struct mac_info *mac_control;
2378         struct config_param *config;
2379
2380         mac_control = &nic->mac_control;
2381         config = &nic->config;
2382
2383         /*  Disable all interrupts */
2384         en_dis_err_alarms(nic, ENA_ALL_INTRS, DISABLE_INTRS);
2385         interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
2386         interruptible |= TX_PIC_INTR;
2387         en_dis_able_nic_intrs(nic, interruptible, DISABLE_INTRS);
2388
2389         /* Clearing Adapter_En bit of ADAPTER_CONTROL Register */
2390         val64 = readq(&bar0->adapter_control);
2391         val64 &= ~(ADAPTER_CNTL_EN);
2392         writeq(val64, &bar0->adapter_control);
2393 }
2394
2395 /**
2396  *  fill_rx_buffers - Allocates the Rx side skbs
2397  *  @nic:  device private variable
2398  *  @ring_no: ring number
2399  *  Description:
2400  *  The function allocates Rx side skbs and puts the physical
2401  *  address of these buffers into the RxD buffer pointers, so that the NIC
2402  *  can DMA the received frame into these locations.
2403  *  The NIC supports 3 receive modes, viz
2404  *  1. single buffer,
2405  *  2. three buffer and
2406  *  3. Five buffer modes.
2407  *  Each mode defines how many fragments the received frame will be split
2408  *  up into by the NIC. The frame is split into L3 header, L4 Header,
2409  *  L4 payload in three buffer mode and in 5 buffer mode, L4 payload itself
2410  *  is split into 3 fragments. As of now only single buffer mode is
2411  *  supported.
2412  *   Return Value:
2413  *  SUCCESS on success or an appropriate -ve value on failure.
2414  */
2415
2416 static int fill_rx_buffers(struct s2io_nic *nic, int ring_no)
2417 {
2418         struct net_device *dev = nic->dev;
2419         struct sk_buff *skb;
2420         struct RxD_t *rxdp;
2421         int off, off1, size, block_no, block_no1;
2422         u32 alloc_tab = 0;
2423         u32 alloc_cnt;
2424         struct mac_info *mac_control;
2425         struct config_param *config;
2426         u64 tmp;
2427         struct buffAdd *ba;
2428         unsigned long flags;
2429         struct RxD_t *first_rxdp = NULL;
2430         u64 Buffer0_ptr = 0, Buffer1_ptr = 0;
2431         struct RxD1 *rxdp1;
2432         struct RxD3 *rxdp3;
2433         struct swStat *stats = &nic->mac_control.stats_info->sw_stat;
2434
2435         mac_control = &nic->mac_control;
2436         config = &nic->config;
2437         alloc_cnt = mac_control->rings[ring_no].pkt_cnt -
2438             atomic_read(&nic->rx_bufs_left[ring_no]);
2439
2440         block_no1 = mac_control->rings[ring_no].rx_curr_get_info.block_index;
2441         off1 = mac_control->rings[ring_no].rx_curr_get_info.offset;
2442         while (alloc_tab < alloc_cnt) {
2443                 block_no = mac_control->rings[ring_no].rx_curr_put_info.
2444                     block_index;
2445                 off = mac_control->rings[ring_no].rx_curr_put_info.offset;
2446
2447                 rxdp = mac_control->rings[ring_no].
2448                                 rx_blocks[block_no].rxds[off].virt_addr;
2449
2450                 if ((block_no == block_no1) && (off == off1) &&
2451                                         (rxdp->Host_Control)) {
2452                         DBG_PRINT(INTR_DBG, "%s: Get and Put",
2453                                   dev->name);
2454                         DBG_PRINT(INTR_DBG, " info equated\n");
2455                         goto end;
2456                 }
2457                 if (off && (off == rxd_count[nic->rxd_mode])) {
2458                         mac_control->rings[ring_no].rx_curr_put_info.
2459                             block_index++;
2460                         if (mac_control->rings[ring_no].rx_curr_put_info.
2461                             block_index == mac_control->rings[ring_no].
2462                                         block_count)
2463                                 mac_control->rings[ring_no].rx_curr_put_info.
2464                                         block_index = 0;
2465                         block_no = mac_control->rings[ring_no].
2466                                         rx_curr_put_info.block_index;
2467                         if (off == rxd_count[nic->rxd_mode])
2468                                 off = 0;
2469                         mac_control->rings[ring_no].rx_curr_put_info.
2470                                 offset = off;
2471                         rxdp = mac_control->rings[ring_no].
2472                                 rx_blocks[block_no].block_virt_addr;
2473                         DBG_PRINT(INTR_DBG, "%s: Next block at: %p\n",
2474                                   dev->name, rxdp);
2475                 }
2476                 if(!napi) {
2477                         spin_lock_irqsave(&nic->put_lock, flags);
2478                         mac_control->rings[ring_no].put_pos =
2479                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2480                         spin_unlock_irqrestore(&nic->put_lock, flags);
2481                 } else {
2482                         mac_control->rings[ring_no].put_pos =
2483                         (block_no * (rxd_count[nic->rxd_mode] + 1)) + off;
2484                 }
2485                 if ((rxdp->Control_1 & RXD_OWN_XENA) &&
2486                         ((nic->rxd_mode == RXD_MODE_3B) &&
2487                                 (rxdp->Control_2 & s2BIT(0)))) {
2488                         mac_control->rings[ring_no].rx_curr_put_info.
2489                                         offset = off;
2490                         goto end;
2491                 }
2492                 /* calculate size of skb based on ring mode */
2493                 size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
2494                                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
2495                 if (nic->rxd_mode == RXD_MODE_1)
2496                         size += NET_IP_ALIGN;
2497                 else
2498                         size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
2499
2500                 /* allocate skb */
2501                 skb = dev_alloc_skb(size);
2502                 if(!skb) {
2503                         DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
2504                         DBG_PRINT(INFO_DBG, "memory to allocate SKBs\n");
2505                         if (first_rxdp) {
2506                                 wmb();
2507                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2508                         }
2509                         nic->mac_control.stats_info->sw_stat. \
2510                                 mem_alloc_fail_cnt++;
2511                         return -ENOMEM ;
2512                 }
2513                 nic->mac_control.stats_info->sw_stat.mem_allocated
2514                         += skb->truesize;
2515                 if (nic->rxd_mode == RXD_MODE_1) {
2516                         /* 1 buffer mode - normal operation mode */
2517                         rxdp1 = (struct RxD1*)rxdp;
2518                         memset(rxdp, 0, sizeof(struct RxD1));
2519                         skb_reserve(skb, NET_IP_ALIGN);
2520                         rxdp1->Buffer0_ptr = pci_map_single
2521                             (nic->pdev, skb->data, size - NET_IP_ALIGN,
2522                                 PCI_DMA_FROMDEVICE);
2523                         if( (rxdp1->Buffer0_ptr == 0) ||
2524                                 (rxdp1->Buffer0_ptr ==
2525                                 DMA_ERROR_CODE))
2526                                 goto pci_map_failed;
2527
2528                         rxdp->Control_2 =
2529                                 SET_BUFFER0_SIZE_1(size - NET_IP_ALIGN);
2530
2531                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2532                         /*
2533                          * 2 buffer mode -
2534                          * 2 buffer mode provides 128
2535                          * byte aligned receive buffers.
2536                          */
2537
2538                         rxdp3 = (struct RxD3*)rxdp;
2539                         /* save buffer pointers to avoid frequent dma mapping */
2540                         Buffer0_ptr = rxdp3->Buffer0_ptr;
2541                         Buffer1_ptr = rxdp3->Buffer1_ptr;
2542                         memset(rxdp, 0, sizeof(struct RxD3));
2543                         /* restore the buffer pointers for dma sync*/
2544                         rxdp3->Buffer0_ptr = Buffer0_ptr;
2545                         rxdp3->Buffer1_ptr = Buffer1_ptr;
2546
2547                         ba = &mac_control->rings[ring_no].ba[block_no][off];
2548                         skb_reserve(skb, BUF0_LEN);
2549                         tmp = (u64)(unsigned long) skb->data;
2550                         tmp += ALIGN_SIZE;
2551                         tmp &= ~ALIGN_SIZE;
2552                         skb->data = (void *) (unsigned long)tmp;
2553                         skb_reset_tail_pointer(skb);
2554
2555                         if (!(rxdp3->Buffer0_ptr))
2556                                 rxdp3->Buffer0_ptr =
2557                                    pci_map_single(nic->pdev, ba->ba_0, BUF0_LEN,
2558                                            PCI_DMA_FROMDEVICE);
2559                         else
2560                                 pci_dma_sync_single_for_device(nic->pdev,
2561                                 (dma_addr_t) rxdp3->Buffer0_ptr,
2562                                     BUF0_LEN, PCI_DMA_FROMDEVICE);
2563                         if( (rxdp3->Buffer0_ptr == 0) ||
2564                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE))
2565                                 goto pci_map_failed;
2566
2567                         rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
2568                         if (nic->rxd_mode == RXD_MODE_3B) {
2569                                 /* Two buffer mode */
2570
2571                                 /*
2572                                  * Buffer2 will have L3/L4 header plus
2573                                  * L4 payload
2574                                  */
2575                                 rxdp3->Buffer2_ptr = pci_map_single
2576                                 (nic->pdev, skb->data, dev->mtu + 4,
2577                                                 PCI_DMA_FROMDEVICE);
2578
2579                                 if( (rxdp3->Buffer2_ptr == 0) ||
2580                                         (rxdp3->Buffer2_ptr == DMA_ERROR_CODE))
2581                                         goto pci_map_failed;
2582
2583                                 rxdp3->Buffer1_ptr =
2584                                                 pci_map_single(nic->pdev,
2585                                                 ba->ba_1, BUF1_LEN,
2586                                                 PCI_DMA_FROMDEVICE);
2587                                 if( (rxdp3->Buffer1_ptr == 0) ||
2588                                         (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
2589                                         pci_unmap_single
2590                                                 (nic->pdev,
2591                                                 (dma_addr_t)rxdp3->Buffer2_ptr,
2592                                                 dev->mtu + 4,
2593                                                 PCI_DMA_FROMDEVICE);
2594                                         goto pci_map_failed;
2595                                 }
2596                                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
2597                                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3
2598                                                                 (dev->mtu + 4);
2599                         }
2600                         rxdp->Control_2 |= s2BIT(0);
2601                 }
2602                 rxdp->Host_Control = (unsigned long) (skb);
2603                 if (alloc_tab & ((1 << rxsync_frequency) - 1))
2604                         rxdp->Control_1 |= RXD_OWN_XENA;
2605                 off++;
2606                 if (off == (rxd_count[nic->rxd_mode] + 1))
2607                         off = 0;
2608                 mac_control->rings[ring_no].rx_curr_put_info.offset = off;
2609
2610                 rxdp->Control_2 |= SET_RXD_MARKER;
2611                 if (!(alloc_tab & ((1 << rxsync_frequency) - 1))) {
2612                         if (first_rxdp) {
2613                                 wmb();
2614                                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2615                         }
2616                         first_rxdp = rxdp;
2617                 }
2618                 atomic_inc(&nic->rx_bufs_left[ring_no]);
2619                 alloc_tab++;
2620         }
2621
2622       end:
2623         /* Transfer ownership of first descriptor to adapter just before
2624          * exiting. Before that, use memory barrier so that ownership
2625          * and other fields are seen by adapter correctly.
2626          */
2627         if (first_rxdp) {
2628                 wmb();
2629                 first_rxdp->Control_1 |= RXD_OWN_XENA;
2630         }
2631
2632         return SUCCESS;
2633 pci_map_failed:
2634         stats->pci_map_fail_cnt++;
2635         stats->mem_freed += skb->truesize;
2636         dev_kfree_skb_irq(skb);
2637         return -ENOMEM;
2638 }
2639
2640 static void free_rxd_blk(struct s2io_nic *sp, int ring_no, int blk)
2641 {
2642         struct net_device *dev = sp->dev;
2643         int j;
2644         struct sk_buff *skb;
2645         struct RxD_t *rxdp;
2646         struct mac_info *mac_control;
2647         struct buffAdd *ba;
2648         struct RxD1 *rxdp1;
2649         struct RxD3 *rxdp3;
2650
2651         mac_control = &sp->mac_control;
2652         for (j = 0 ; j < rxd_count[sp->rxd_mode]; j++) {
2653                 rxdp = mac_control->rings[ring_no].
2654                                 rx_blocks[blk].rxds[j].virt_addr;
2655                 skb = (struct sk_buff *)
2656                         ((unsigned long) rxdp->Host_Control);
2657                 if (!skb) {
2658                         continue;
2659                 }
2660                 if (sp->rxd_mode == RXD_MODE_1) {
2661                         rxdp1 = (struct RxD1*)rxdp;
2662                         pci_unmap_single(sp->pdev, (dma_addr_t)
2663                                 rxdp1->Buffer0_ptr,
2664                                 dev->mtu +
2665                                 HEADER_ETHERNET_II_802_3_SIZE
2666                                 + HEADER_802_2_SIZE +
2667                                 HEADER_SNAP_SIZE,
2668                                 PCI_DMA_FROMDEVICE);
2669                         memset(rxdp, 0, sizeof(struct RxD1));
2670                 } else if(sp->rxd_mode == RXD_MODE_3B) {
2671                         rxdp3 = (struct RxD3*)rxdp;
2672                         ba = &mac_control->rings[ring_no].
2673                                 ba[blk][j];
2674                         pci_unmap_single(sp->pdev, (dma_addr_t)
2675                                 rxdp3->Buffer0_ptr,
2676                                 BUF0_LEN,
2677                                 PCI_DMA_FROMDEVICE);
2678                         pci_unmap_single(sp->pdev, (dma_addr_t)
2679                                 rxdp3->Buffer1_ptr,
2680                                 BUF1_LEN,
2681                                 PCI_DMA_FROMDEVICE);
2682                         pci_unmap_single(sp->pdev, (dma_addr_t)
2683                                 rxdp3->Buffer2_ptr,
2684                                 dev->mtu + 4,
2685                                 PCI_DMA_FROMDEVICE);
2686                         memset(rxdp, 0, sizeof(struct RxD3));
2687                 }
2688                 sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
2689                 dev_kfree_skb(skb);
2690                 atomic_dec(&sp->rx_bufs_left[ring_no]);
2691         }
2692 }
2693
2694 /**
2695  *  free_rx_buffers - Frees all Rx buffers
2696  *  @sp: device private variable.
2697  *  Description:
2698  *  This function will free all Rx buffers allocated by host.
2699  *  Return Value:
2700  *  NONE.
2701  */
2702
2703 static void free_rx_buffers(struct s2io_nic *sp)
2704 {
2705         struct net_device *dev = sp->dev;
2706         int i, blk = 0, buf_cnt = 0;
2707         struct mac_info *mac_control;
2708         struct config_param *config;
2709
2710         mac_control = &sp->mac_control;
2711         config = &sp->config;
2712
2713         for (i = 0; i < config->rx_ring_num; i++) {
2714                 for (blk = 0; blk < rx_ring_sz[i]; blk++)
2715                         free_rxd_blk(sp,i,blk);
2716
2717                 mac_control->rings[i].rx_curr_put_info.block_index = 0;
2718                 mac_control->rings[i].rx_curr_get_info.block_index = 0;
2719                 mac_control->rings[i].rx_curr_put_info.offset = 0;
2720                 mac_control->rings[i].rx_curr_get_info.offset = 0;
2721                 atomic_set(&sp->rx_bufs_left[i], 0);
2722                 DBG_PRINT(INIT_DBG, "%s:Freed 0x%x Rx Buffers on ring%d\n",
2723                           dev->name, buf_cnt, i);
2724         }
2725 }
2726
2727 /**
2728  * s2io_poll - Rx interrupt handler for NAPI support
2729  * @napi : pointer to the napi structure.
2730  * @budget : The number of packets that were budgeted to be processed
2731  * during  one pass through the 'Poll" function.
2732  * Description:
2733  * Comes into picture only if NAPI support has been incorporated. It does
2734  * the same thing that rx_intr_handler does, but not in a interrupt context
2735  * also It will process only a given number of packets.
2736  * Return value:
2737  * 0 on success and 1 if there are No Rx packets to be processed.
2738  */
2739
2740 static int s2io_poll(struct napi_struct *napi, int budget)
2741 {
2742         struct s2io_nic *nic = container_of(napi, struct s2io_nic, napi);
2743         struct net_device *dev = nic->dev;
2744         int pkt_cnt = 0, org_pkts_to_process;
2745         struct mac_info *mac_control;
2746         struct config_param *config;
2747         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2748         int i;
2749
2750         mac_control = &nic->mac_control;
2751         config = &nic->config;
2752
2753         nic->pkts_to_process = budget;
2754         org_pkts_to_process = nic->pkts_to_process;
2755
2756         writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
2757         readl(&bar0->rx_traffic_int);
2758
2759         for (i = 0; i < config->rx_ring_num; i++) {
2760                 rx_intr_handler(&mac_control->rings[i]);
2761                 pkt_cnt = org_pkts_to_process - nic->pkts_to_process;
2762                 if (!nic->pkts_to_process) {
2763                         /* Quota for the current iteration has been met */
2764                         goto no_rx;
2765                 }
2766         }
2767
2768         netif_rx_complete(dev, napi);
2769
2770         for (i = 0; i < config->rx_ring_num; i++) {
2771                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2772                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2773                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2774                         break;
2775                 }
2776         }
2777         /* Re enable the Rx interrupts. */
2778         writeq(0x0, &bar0->rx_traffic_mask);
2779         readl(&bar0->rx_traffic_mask);
2780         return pkt_cnt;
2781
2782 no_rx:
2783         for (i = 0; i < config->rx_ring_num; i++) {
2784                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2785                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2786                         DBG_PRINT(INFO_DBG, " in Rx Poll!!\n");
2787                         break;
2788                 }
2789         }
2790         return pkt_cnt;
2791 }
2792
2793 #ifdef CONFIG_NET_POLL_CONTROLLER
2794 /**
2795  * s2io_netpoll - netpoll event handler entry point
2796  * @dev : pointer to the device structure.
2797  * Description:
2798  *      This function will be called by upper layer to check for events on the
2799  * interface in situations where interrupts are disabled. It is used for
2800  * specific in-kernel networking tasks, such as remote consoles and kernel
2801  * debugging over the network (example netdump in RedHat).
2802  */
2803 static void s2io_netpoll(struct net_device *dev)
2804 {
2805         struct s2io_nic *nic = dev->priv;
2806         struct mac_info *mac_control;
2807         struct config_param *config;
2808         struct XENA_dev_config __iomem *bar0 = nic->bar0;
2809         u64 val64 = 0xFFFFFFFFFFFFFFFFULL;
2810         int i;
2811
2812         if (pci_channel_offline(nic->pdev))
2813                 return;
2814
2815         disable_irq(dev->irq);
2816
2817         mac_control = &nic->mac_control;
2818         config = &nic->config;
2819
2820         writeq(val64, &bar0->rx_traffic_int);
2821         writeq(val64, &bar0->tx_traffic_int);
2822
2823         /* we need to free up the transmitted skbufs or else netpoll will
2824          * run out of skbs and will fail and eventually netpoll application such
2825          * as netdump will fail.
2826          */
2827         for (i = 0; i < config->tx_fifo_num; i++)
2828                 tx_intr_handler(&mac_control->fifos[i]);
2829
2830         /* check for received packet and indicate up to network */
2831         for (i = 0; i < config->rx_ring_num; i++)
2832                 rx_intr_handler(&mac_control->rings[i]);
2833
2834         for (i = 0; i < config->rx_ring_num; i++) {
2835                 if (fill_rx_buffers(nic, i) == -ENOMEM) {
2836                         DBG_PRINT(INFO_DBG, "%s:Out of memory", dev->name);
2837                         DBG_PRINT(INFO_DBG, " in Rx Netpoll!!\n");
2838                         break;
2839                 }
2840         }
2841         enable_irq(dev->irq);
2842         return;
2843 }
2844 #endif
2845
2846 /**
2847  *  rx_intr_handler - Rx interrupt handler
2848  *  @nic: device private variable.
2849  *  Description:
2850  *  If the interrupt is because of a received frame or if the
2851  *  receive ring contains fresh as yet un-processed frames,this function is
2852  *  called. It picks out the RxD at which place the last Rx processing had
2853  *  stopped and sends the skb to the OSM's Rx handler and then increments
2854  *  the offset.
2855  *  Return Value:
2856  *  NONE.
2857  */
2858 static void rx_intr_handler(struct ring_info *ring_data)
2859 {
2860         struct s2io_nic *nic = ring_data->nic;
2861         struct net_device *dev = (struct net_device *) nic->dev;
2862         int get_block, put_block, put_offset;
2863         struct rx_curr_get_info get_info, put_info;
2864         struct RxD_t *rxdp;
2865         struct sk_buff *skb;
2866         int pkt_cnt = 0;
2867         int i;
2868         struct RxD1* rxdp1;
2869         struct RxD3* rxdp3;
2870
2871         spin_lock(&nic->rx_lock);
2872
2873         get_info = ring_data->rx_curr_get_info;
2874         get_block = get_info.block_index;
2875         memcpy(&put_info, &ring_data->rx_curr_put_info, sizeof(put_info));
2876         put_block = put_info.block_index;
2877         rxdp = ring_data->rx_blocks[get_block].rxds[get_info.offset].virt_addr;
2878         if (!napi) {
2879                 spin_lock(&nic->put_lock);
2880                 put_offset = ring_data->put_pos;
2881                 spin_unlock(&nic->put_lock);
2882         } else
2883                 put_offset = ring_data->put_pos;
2884
2885         while (RXD_IS_UP2DT(rxdp)) {
2886                 /*
2887                  * If your are next to put index then it's
2888                  * FIFO full condition
2889                  */
2890                 if ((get_block == put_block) &&
2891                     (get_info.offset + 1) == put_info.offset) {
2892                         DBG_PRINT(INTR_DBG, "%s: Ring Full\n",dev->name);
2893                         break;
2894                 }
2895                 skb = (struct sk_buff *) ((unsigned long)rxdp->Host_Control);
2896                 if (skb == NULL) {
2897                         DBG_PRINT(ERR_DBG, "%s: The skb is ",
2898                                   dev->name);
2899                         DBG_PRINT(ERR_DBG, "Null in Rx Intr\n");
2900                         spin_unlock(&nic->rx_lock);
2901                         return;
2902                 }
2903                 if (nic->rxd_mode == RXD_MODE_1) {
2904                         rxdp1 = (struct RxD1*)rxdp;
2905                         pci_unmap_single(nic->pdev, (dma_addr_t)
2906                                 rxdp1->Buffer0_ptr,
2907                                 dev->mtu +
2908                                 HEADER_ETHERNET_II_802_3_SIZE +
2909                                 HEADER_802_2_SIZE +
2910                                 HEADER_SNAP_SIZE,
2911                                 PCI_DMA_FROMDEVICE);
2912                 } else if (nic->rxd_mode == RXD_MODE_3B) {
2913                         rxdp3 = (struct RxD3*)rxdp;
2914                         pci_dma_sync_single_for_cpu(nic->pdev, (dma_addr_t)
2915                                 rxdp3->Buffer0_ptr,
2916                                 BUF0_LEN, PCI_DMA_FROMDEVICE);
2917                         pci_unmap_single(nic->pdev, (dma_addr_t)
2918                                 rxdp3->Buffer2_ptr,
2919                                 dev->mtu + 4,
2920                                 PCI_DMA_FROMDEVICE);
2921                 }
2922                 prefetch(skb->data);
2923                 rx_osm_handler(ring_data, rxdp);
2924                 get_info.offset++;
2925                 ring_data->rx_curr_get_info.offset = get_info.offset;
2926                 rxdp = ring_data->rx_blocks[get_block].
2927                                 rxds[get_info.offset].virt_addr;
2928                 if (get_info.offset == rxd_count[nic->rxd_mode]) {
2929                         get_info.offset = 0;
2930                         ring_data->rx_curr_get_info.offset = get_info.offset;
2931                         get_block++;
2932                         if (get_block == ring_data->block_count)
2933                                 get_block = 0;
2934                         ring_data->rx_curr_get_info.block_index = get_block;
2935                         rxdp = ring_data->rx_blocks[get_block].block_virt_addr;
2936                 }
2937
2938                 nic->pkts_to_process -= 1;
2939                 if ((napi) && (!nic->pkts_to_process))
2940                         break;
2941                 pkt_cnt++;
2942                 if ((indicate_max_pkts) && (pkt_cnt > indicate_max_pkts))
2943                         break;
2944         }
2945         if (nic->lro) {
2946                 /* Clear all LRO sessions before exiting */
2947                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
2948                         struct lro *lro = &nic->lro0_n[i];
2949                         if (lro->in_use) {
2950                                 update_L3L4_header(nic, lro);
2951                                 queue_rx_frame(lro->parent);
2952                                 clear_lro_session(lro);
2953                         }
2954                 }
2955         }
2956
2957         spin_unlock(&nic->rx_lock);
2958 }
2959
2960 /**
2961  *  tx_intr_handler - Transmit interrupt handler
2962  *  @nic : device private variable
2963  *  Description:
2964  *  If an interrupt was raised to indicate DMA complete of the
2965  *  Tx packet, this function is called. It identifies the last TxD
2966  *  whose buffer was freed and frees all skbs whose data have already
2967  *  DMA'ed into the NICs internal memory.
2968  *  Return Value:
2969  *  NONE
2970  */
2971
2972 static void tx_intr_handler(struct fifo_info *fifo_data)
2973 {
2974         struct s2io_nic *nic = fifo_data->nic;
2975         struct net_device *dev = (struct net_device *) nic->dev;
2976         struct tx_curr_get_info get_info, put_info;
2977         struct sk_buff *skb;
2978         struct TxD *txdlp;
2979         unsigned long flags = 0;
2980         u8 err_mask;
2981
2982         if (!spin_trylock_irqsave(&fifo_data->tx_lock, flags))
2983                         return;
2984
2985         get_info = fifo_data->tx_curr_get_info;
2986         memcpy(&put_info, &fifo_data->tx_curr_put_info, sizeof(put_info));
2987         txdlp = (struct TxD *) fifo_data->list_info[get_info.offset].
2988             list_virt_addr;
2989         while ((!(txdlp->Control_1 & TXD_LIST_OWN_XENA)) &&
2990                (get_info.offset != put_info.offset) &&
2991                (txdlp->Host_Control)) {
2992                 /* Check for TxD errors */
2993                 if (txdlp->Control_1 & TXD_T_CODE) {
2994                         unsigned long long err;
2995                         err = txdlp->Control_1 & TXD_T_CODE;
2996                         if (err & 0x1) {
2997                                 nic->mac_control.stats_info->sw_stat.
2998                                                 parity_err_cnt++;
2999                         }
3000
3001                         /* update t_code statistics */
3002                         err_mask = err >> 48;
3003                         switch(err_mask) {
3004                                 case 2:
3005                                         nic->mac_control.stats_info->sw_stat.
3006                                                         tx_buf_abort_cnt++;
3007                                 break;
3008
3009                                 case 3:
3010                                         nic->mac_control.stats_info->sw_stat.
3011                                                         tx_desc_abort_cnt++;
3012                                 break;
3013
3014                                 case 7:
3015                                         nic->mac_control.stats_info->sw_stat.
3016                                                         tx_parity_err_cnt++;
3017                                 break;
3018
3019                                 case 10:
3020                                         nic->mac_control.stats_info->sw_stat.
3021                                                         tx_link_loss_cnt++;
3022                                 break;
3023
3024                                 case 15:
3025                                         nic->mac_control.stats_info->sw_stat.
3026                                                         tx_list_proc_err_cnt++;
3027                                 break;
3028                         }
3029                 }
3030
3031                 skb = s2io_txdl_getskb(fifo_data, txdlp, get_info.offset);
3032                 if (skb == NULL) {
3033                         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3034                         DBG_PRINT(ERR_DBG, "%s: Null skb ",
3035                         __FUNCTION__);
3036                         DBG_PRINT(ERR_DBG, "in Tx Free Intr\n");
3037                         return;
3038                 }
3039
3040                 /* Updating the statistics block */
3041                 nic->stats.tx_bytes += skb->len;
3042                 nic->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
3043                 dev_kfree_skb_irq(skb);
3044
3045                 get_info.offset++;
3046                 if (get_info.offset == get_info.fifo_len + 1)
3047                         get_info.offset = 0;
3048                 txdlp = (struct TxD *) fifo_data->list_info
3049                     [get_info.offset].list_virt_addr;
3050                 fifo_data->tx_curr_get_info.offset =
3051                     get_info.offset;
3052         }
3053
3054         if (netif_queue_stopped(dev))
3055                 netif_wake_queue(dev);
3056
3057         spin_unlock_irqrestore(&fifo_data->tx_lock, flags);
3058 }
3059
3060 /**
3061  *  s2io_mdio_write - Function to write in to MDIO registers
3062  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3063  *  @addr     : address value
3064  *  @value    : data value
3065  *  @dev      : pointer to net_device structure
3066  *  Description:
3067  *  This function is used to write values to the MDIO registers
3068  *  NONE
3069  */
3070 static void s2io_mdio_write(u32 mmd_type, u64 addr, u16 value, struct net_device *dev)
3071 {
3072         u64 val64 = 0x0;
3073         struct s2io_nic *sp = dev->priv;
3074         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3075
3076         //address transaction
3077         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3078                         | MDIO_MMD_DEV_ADDR(mmd_type)
3079                         | MDIO_MMS_PRT_ADDR(0x0);
3080         writeq(val64, &bar0->mdio_control);
3081         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3082         writeq(val64, &bar0->mdio_control);
3083         udelay(100);
3084
3085         //Data transaction
3086         val64 = 0x0;
3087         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3088                         | MDIO_MMD_DEV_ADDR(mmd_type)
3089                         | MDIO_MMS_PRT_ADDR(0x0)
3090                         | MDIO_MDIO_DATA(value)
3091                         | MDIO_OP(MDIO_OP_WRITE_TRANS);
3092         writeq(val64, &bar0->mdio_control);
3093         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3094         writeq(val64, &bar0->mdio_control);
3095         udelay(100);
3096
3097         val64 = 0x0;
3098         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3099         | MDIO_MMD_DEV_ADDR(mmd_type)
3100         | MDIO_MMS_PRT_ADDR(0x0)
3101         | MDIO_OP(MDIO_OP_READ_TRANS);
3102         writeq(val64, &bar0->mdio_control);
3103         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3104         writeq(val64, &bar0->mdio_control);
3105         udelay(100);
3106
3107 }
3108
3109 /**
3110  *  s2io_mdio_read - Function to write in to MDIO registers
3111  *  @mmd_type : MMD type value (PMA/PMD/WIS/PCS/PHYXS)
3112  *  @addr     : address value
3113  *  @dev      : pointer to net_device structure
3114  *  Description:
3115  *  This function is used to read values to the MDIO registers
3116  *  NONE
3117  */
3118 static u64 s2io_mdio_read(u32 mmd_type, u64 addr, struct net_device *dev)
3119 {
3120         u64 val64 = 0x0;
3121         u64 rval64 = 0x0;
3122         struct s2io_nic *sp = dev->priv;
3123         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3124
3125         /* address transaction */
3126         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3127                         | MDIO_MMD_DEV_ADDR(mmd_type)
3128                         | MDIO_MMS_PRT_ADDR(0x0);
3129         writeq(val64, &bar0->mdio_control);
3130         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3131         writeq(val64, &bar0->mdio_control);
3132         udelay(100);
3133
3134         /* Data transaction */
3135         val64 = 0x0;
3136         val64 = val64 | MDIO_MMD_INDX_ADDR(addr)
3137                         | MDIO_MMD_DEV_ADDR(mmd_type)
3138                         | MDIO_MMS_PRT_ADDR(0x0)
3139                         | MDIO_OP(MDIO_OP_READ_TRANS);
3140         writeq(val64, &bar0->mdio_control);
3141         val64 = val64 | MDIO_CTRL_START_TRANS(0xE);
3142         writeq(val64, &bar0->mdio_control);
3143         udelay(100);
3144
3145         /* Read the value from regs */
3146         rval64 = readq(&bar0->mdio_control);
3147         rval64 = rval64 & 0xFFFF0000;
3148         rval64 = rval64 >> 16;
3149         return rval64;
3150 }
3151 /**
3152  *  s2io_chk_xpak_counter - Function to check the status of the xpak counters
3153  *  @counter      : couter value to be updated
3154  *  @flag         : flag to indicate the status
3155  *  @type         : counter type
3156  *  Description:
3157  *  This function is to check the status of the xpak counters value
3158  *  NONE
3159  */
3160
3161 static void s2io_chk_xpak_counter(u64 *counter, u64 * regs_stat, u32 index, u16 flag, u16 type)
3162 {
3163         u64 mask = 0x3;
3164         u64 val64;
3165         int i;
3166         for(i = 0; i <index; i++)
3167                 mask = mask << 0x2;
3168
3169         if(flag > 0)
3170         {
3171                 *counter = *counter + 1;
3172                 val64 = *regs_stat & mask;
3173                 val64 = val64 >> (index * 0x2);
3174                 val64 = val64 + 1;
3175                 if(val64 == 3)
3176                 {
3177                         switch(type)
3178                         {
3179                         case 1:
3180                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3181                                           "service. Excessive temperatures may "
3182                                           "result in premature transceiver "
3183                                           "failure \n");
3184                         break;
3185                         case 2:
3186                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3187                                           "service Excessive bias currents may "
3188                                           "indicate imminent laser diode "
3189                                           "failure \n");
3190                         break;
3191                         case 3:
3192                                 DBG_PRINT(ERR_DBG, "Take Xframe NIC out of "
3193                                           "service Excessive laser output "
3194                                           "power may saturate far-end "
3195                                           "receiver\n");
3196                         break;
3197                         default:
3198                                 DBG_PRINT(ERR_DBG, "Incorrect XPAK Alarm "
3199                                           "type \n");
3200                         }
3201                         val64 = 0x0;
3202                 }
3203                 val64 = val64 << (index * 0x2);
3204                 *regs_stat = (*regs_stat & (~mask)) | (val64);
3205
3206         } else {
3207                 *regs_stat = *regs_stat & (~mask);
3208         }
3209 }
3210
3211 /**
3212  *  s2io_updt_xpak_counter - Function to update the xpak counters
3213  *  @dev         : pointer to net_device struct
3214  *  Description:
3215  *  This function is to upate the status of the xpak counters value
3216  *  NONE
3217  */
3218 static void s2io_updt_xpak_counter(struct net_device *dev)
3219 {
3220         u16 flag  = 0x0;
3221         u16 type  = 0x0;
3222         u16 val16 = 0x0;
3223         u64 val64 = 0x0;
3224         u64 addr  = 0x0;
3225
3226         struct s2io_nic *sp = dev->priv;
3227         struct stat_block *stat_info = sp->mac_control.stats_info;
3228
3229         /* Check the communication with the MDIO slave */
3230         addr = 0x0000;
3231         val64 = 0x0;
3232         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3233         if((val64 == 0xFFFF) || (val64 == 0x0000))
3234         {
3235                 DBG_PRINT(ERR_DBG, "ERR: MDIO slave access failed - "
3236                           "Returned %llx\n", (unsigned long long)val64);
3237                 return;
3238         }
3239
3240         /* Check for the expecte value of 2040 at PMA address 0x0000 */
3241         if(val64 != 0x2040)
3242         {
3243                 DBG_PRINT(ERR_DBG, "Incorrect value at PMA address 0x0000 - ");
3244                 DBG_PRINT(ERR_DBG, "Returned: %llx- Expected: 0x2040\n",
3245                           (unsigned long long)val64);
3246                 return;
3247         }
3248
3249         /* Loading the DOM register to MDIO register */
3250         addr = 0xA100;
3251         s2io_mdio_write(MDIO_MMD_PMA_DEV_ADDR, addr, val16, dev);
3252         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3253
3254         /* Reading the Alarm flags */
3255         addr = 0xA070;
3256         val64 = 0x0;
3257         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3258
3259         flag = CHECKBIT(val64, 0x7);
3260         type = 1;
3261         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_transceiver_temp_high,
3262                                 &stat_info->xpak_stat.xpak_regs_stat,
3263                                 0x0, flag, type);
3264
3265         if(CHECKBIT(val64, 0x6))
3266                 stat_info->xpak_stat.alarm_transceiver_temp_low++;
3267
3268         flag = CHECKBIT(val64, 0x3);
3269         type = 2;
3270         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_bias_current_high,
3271                                 &stat_info->xpak_stat.xpak_regs_stat,
3272                                 0x2, flag, type);
3273
3274         if(CHECKBIT(val64, 0x2))
3275                 stat_info->xpak_stat.alarm_laser_bias_current_low++;
3276
3277         flag = CHECKBIT(val64, 0x1);
3278         type = 3;
3279         s2io_chk_xpak_counter(&stat_info->xpak_stat.alarm_laser_output_power_high,
3280                                 &stat_info->xpak_stat.xpak_regs_stat,
3281                                 0x4, flag, type);
3282
3283         if(CHECKBIT(val64, 0x0))
3284                 stat_info->xpak_stat.alarm_laser_output_power_low++;
3285
3286         /* Reading the Warning flags */
3287         addr = 0xA074;
3288         val64 = 0x0;
3289         val64 = s2io_mdio_read(MDIO_MMD_PMA_DEV_ADDR, addr, dev);
3290
3291         if(CHECKBIT(val64, 0x7))
3292                 stat_info->xpak_stat.warn_transceiver_temp_high++;
3293
3294         if(CHECKBIT(val64, 0x6))
3295                 stat_info->xpak_stat.warn_transceiver_temp_low++;
3296
3297         if(CHECKBIT(val64, 0x3))
3298                 stat_info->xpak_stat.warn_laser_bias_current_high++;
3299
3300         if(CHECKBIT(val64, 0x2))
3301                 stat_info->xpak_stat.warn_laser_bias_current_low++;
3302
3303         if(CHECKBIT(val64, 0x1))
3304                 stat_info->xpak_stat.warn_laser_output_power_high++;
3305
3306         if(CHECKBIT(val64, 0x0))
3307                 stat_info->xpak_stat.warn_laser_output_power_low++;
3308 }
3309
3310 /**
3311  *  wait_for_cmd_complete - waits for a command to complete.
3312  *  @sp : private member of the device structure, which is a pointer to the
3313  *  s2io_nic structure.
3314  *  Description: Function that waits for a command to Write into RMAC
3315  *  ADDR DATA registers to be completed and returns either success or
3316  *  error depending on whether the command was complete or not.
3317  *  Return value:
3318  *   SUCCESS on success and FAILURE on failure.
3319  */
3320
3321 static int wait_for_cmd_complete(void __iomem *addr, u64 busy_bit,
3322                                 int bit_state)
3323 {
3324         int ret = FAILURE, cnt = 0, delay = 1;
3325         u64 val64;
3326
3327         if ((bit_state != S2IO_BIT_RESET) && (bit_state != S2IO_BIT_SET))
3328                 return FAILURE;
3329
3330         do {
3331                 val64 = readq(addr);
3332                 if (bit_state == S2IO_BIT_RESET) {
3333                         if (!(val64 & busy_bit)) {
3334                                 ret = SUCCESS;
3335                                 break;
3336                         }
3337                 } else {
3338                         if (!(val64 & busy_bit)) {
3339                                 ret = SUCCESS;
3340                                 break;
3341                         }
3342                 }
3343
3344                 if(in_interrupt())
3345                         mdelay(delay);
3346                 else
3347                         msleep(delay);
3348
3349                 if (++cnt >= 10)
3350                         delay = 50;
3351         } while (cnt < 20);
3352         return ret;
3353 }
3354 /*
3355  * check_pci_device_id - Checks if the device id is supported
3356  * @id : device id
3357  * Description: Function to check if the pci device id is supported by driver.
3358  * Return value: Actual device id if supported else PCI_ANY_ID
3359  */
3360 static u16 check_pci_device_id(u16 id)
3361 {
3362         switch (id) {
3363         case PCI_DEVICE_ID_HERC_WIN:
3364         case PCI_DEVICE_ID_HERC_UNI:
3365                 return XFRAME_II_DEVICE;
3366         case PCI_DEVICE_ID_S2IO_UNI:
3367         case PCI_DEVICE_ID_S2IO_WIN:
3368                 return XFRAME_I_DEVICE;
3369         default:
3370                 return PCI_ANY_ID;
3371         }
3372 }
3373
3374 /**
3375  *  s2io_reset - Resets the card.
3376  *  @sp : private member of the device structure.
3377  *  Description: Function to Reset the card. This function then also
3378  *  restores the previously saved PCI configuration space registers as
3379  *  the card reset also resets the configuration space.
3380  *  Return value:
3381  *  void.
3382  */
3383
3384 static void s2io_reset(struct s2io_nic * sp)
3385 {
3386         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3387         u64 val64;
3388         u16 subid, pci_cmd;
3389         int i;
3390         u16 val16;
3391         unsigned long long up_cnt, down_cnt, up_time, down_time, reset_cnt;
3392         unsigned long long mem_alloc_cnt, mem_free_cnt, watchdog_cnt;
3393
3394         DBG_PRINT(INIT_DBG,"%s - Resetting XFrame card %s\n",
3395                         __FUNCTION__, sp->dev->name);
3396
3397         /* Back up  the PCI-X CMD reg, dont want to lose MMRBC, OST settings */
3398         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER, &(pci_cmd));
3399
3400         val64 = SW_RESET_ALL;
3401         writeq(val64, &bar0->sw_reset);
3402         if (strstr(sp->product_name, "CX4")) {
3403                 msleep(750);
3404         }
3405         msleep(250);
3406         for (i = 0; i < S2IO_MAX_PCI_CONFIG_SPACE_REINIT; i++) {
3407
3408                 /* Restore the PCI state saved during initialization. */
3409                 pci_restore_state(sp->pdev);
3410                 pci_read_config_word(sp->pdev, 0x2, &val16);
3411                 if (check_pci_device_id(val16) != (u16)PCI_ANY_ID)
3412                         break;
3413                 msleep(200);
3414         }
3415
3416         if (check_pci_device_id(val16) == (u16)PCI_ANY_ID) {
3417                 DBG_PRINT(ERR_DBG,"%s SW_Reset failed!\n", __FUNCTION__);
3418         }
3419
3420         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER, pci_cmd);
3421
3422         s2io_init_pci(sp);
3423
3424         /* Set swapper to enable I/O register access */
3425         s2io_set_swapper(sp);
3426
3427         /* restore mac_addr entries */
3428         do_s2io_restore_unicast_mc(sp);
3429
3430         /* Restore the MSIX table entries from local variables */
3431         restore_xmsi_data(sp);
3432
3433         /* Clear certain PCI/PCI-X fields after reset */
3434         if (sp->device_type == XFRAME_II_DEVICE) {
3435                 /* Clear "detected parity error" bit */
3436                 pci_write_config_word(sp->pdev, PCI_STATUS, 0x8000);
3437
3438                 /* Clearing PCIX Ecc status register */
3439                 pci_write_config_dword(sp->pdev, 0x68, 0x7C);
3440
3441                 /* Clearing PCI_STATUS error reflected here */
3442                 writeq(s2BIT(62), &bar0->txpic_int_reg);
3443         }
3444
3445         /* Reset device statistics maintained by OS */
3446         memset(&sp->stats, 0, sizeof (struct net_device_stats));
3447
3448         up_cnt = sp->mac_control.stats_info->sw_stat.link_up_cnt;
3449         down_cnt = sp->mac_control.stats_info->sw_stat.link_down_cnt;
3450         up_time = sp->mac_control.stats_info->sw_stat.link_up_time;
3451         down_time = sp->mac_control.stats_info->sw_stat.link_down_time;
3452         reset_cnt = sp->mac_control.stats_info->sw_stat.soft_reset_cnt;
3453         mem_alloc_cnt = sp->mac_control.stats_info->sw_stat.mem_allocated;
3454         mem_free_cnt = sp->mac_control.stats_info->sw_stat.mem_freed;
3455         watchdog_cnt = sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt;
3456         /* save link up/down time/cnt, reset/memory/watchdog cnt */
3457         memset(sp->mac_control.stats_info, 0, sizeof(struct stat_block));
3458         /* restore link up/down time/cnt, reset/memory/watchdog cnt */
3459         sp->mac_control.stats_info->sw_stat.link_up_cnt = up_cnt;
3460         sp->mac_control.stats_info->sw_stat.link_down_cnt = down_cnt;
3461         sp->mac_control.stats_info->sw_stat.link_up_time = up_time;
3462         sp->mac_control.stats_info->sw_stat.link_down_time = down_time;
3463         sp->mac_control.stats_info->sw_stat.soft_reset_cnt = reset_cnt;
3464         sp->mac_control.stats_info->sw_stat.mem_allocated = mem_alloc_cnt;
3465         sp->mac_control.stats_info->sw_stat.mem_freed = mem_free_cnt;
3466         sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt = watchdog_cnt;
3467
3468         /* SXE-002: Configure link and activity LED to turn it off */
3469         subid = sp->pdev->subsystem_device;
3470         if (((subid & 0xFF) >= 0x07) &&
3471             (sp->device_type == XFRAME_I_DEVICE)) {
3472                 val64 = readq(&bar0->gpio_control);
3473                 val64 |= 0x0000800000000000ULL;
3474                 writeq(val64, &bar0->gpio_control);
3475                 val64 = 0x0411040400000000ULL;
3476                 writeq(val64, (void __iomem *)bar0 + 0x2700);
3477         }
3478
3479         /*
3480          * Clear spurious ECC interrupts that would have occured on
3481          * XFRAME II cards after reset.
3482          */
3483         if (sp->device_type == XFRAME_II_DEVICE) {
3484                 val64 = readq(&bar0->pcc_err_reg);
3485                 writeq(val64, &bar0->pcc_err_reg);
3486         }
3487
3488         sp->device_enabled_once = FALSE;
3489 }
3490
3491 /**
3492  *  s2io_set_swapper - to set the swapper controle on the card
3493  *  @sp : private member of the device structure,
3494  *  pointer to the s2io_nic structure.
3495  *  Description: Function to set the swapper control on the card
3496  *  correctly depending on the 'endianness' of the system.
3497  *  Return value:
3498  *  SUCCESS on success and FAILURE on failure.
3499  */
3500
3501 static int s2io_set_swapper(struct s2io_nic * sp)
3502 {
3503         struct net_device *dev = sp->dev;
3504         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3505         u64 val64, valt, valr;
3506
3507         /*
3508          * Set proper endian settings and verify the same by reading
3509          * the PIF Feed-back register.
3510          */
3511
3512         val64 = readq(&bar0->pif_rd_swapper_fb);
3513         if (val64 != 0x0123456789ABCDEFULL) {
3514                 int i = 0;
3515                 u64 value[] = { 0xC30000C3C30000C3ULL,   /* FE=1, SE=1 */
3516                                 0x8100008181000081ULL,  /* FE=1, SE=0 */
3517                                 0x4200004242000042ULL,  /* FE=0, SE=1 */
3518                                 0};                     /* FE=0, SE=0 */
3519
3520                 while(i<4) {
3521                         writeq(value[i], &bar0->swapper_ctrl);
3522                         val64 = readq(&bar0->pif_rd_swapper_fb);
3523                         if (val64 == 0x0123456789ABCDEFULL)
3524                                 break;
3525                         i++;
3526                 }
3527                 if (i == 4) {
3528                         DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3529                                 dev->name);
3530                         DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3531                                 (unsigned long long) val64);
3532                         return FAILURE;
3533                 }
3534                 valr = value[i];
3535         } else {
3536                 valr = readq(&bar0->swapper_ctrl);
3537         }
3538
3539         valt = 0x0123456789ABCDEFULL;
3540         writeq(valt, &bar0->xmsi_address);
3541         val64 = readq(&bar0->xmsi_address);
3542
3543         if(val64 != valt) {
3544                 int i = 0;
3545                 u64 value[] = { 0x00C3C30000C3C300ULL,  /* FE=1, SE=1 */
3546                                 0x0081810000818100ULL,  /* FE=1, SE=0 */
3547                                 0x0042420000424200ULL,  /* FE=0, SE=1 */
3548                                 0};                     /* FE=0, SE=0 */
3549
3550                 while(i<4) {
3551                         writeq((value[i] | valr), &bar0->swapper_ctrl);
3552                         writeq(valt, &bar0->xmsi_address);
3553                         val64 = readq(&bar0->xmsi_address);
3554                         if(val64 == valt)
3555                                 break;
3556                         i++;
3557                 }
3558                 if(i == 4) {
3559                         unsigned long long x = val64;
3560                         DBG_PRINT(ERR_DBG, "Write failed, Xmsi_addr ");
3561                         DBG_PRINT(ERR_DBG, "reads:0x%llx\n", x);
3562                         return FAILURE;
3563                 }
3564         }
3565         val64 = readq(&bar0->swapper_ctrl);
3566         val64 &= 0xFFFF000000000000ULL;
3567
3568 #ifdef  __BIG_ENDIAN
3569         /*
3570          * The device by default set to a big endian format, so a
3571          * big endian driver need not set anything.
3572          */
3573         val64 |= (SWAPPER_CTRL_TXP_FE |
3574                  SWAPPER_CTRL_TXP_SE |
3575                  SWAPPER_CTRL_TXD_R_FE |
3576                  SWAPPER_CTRL_TXD_W_FE |
3577                  SWAPPER_CTRL_TXF_R_FE |
3578                  SWAPPER_CTRL_RXD_R_FE |
3579                  SWAPPER_CTRL_RXD_W_FE |
3580                  SWAPPER_CTRL_RXF_W_FE |
3581                  SWAPPER_CTRL_XMSI_FE |
3582                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3583         if (sp->config.intr_type == INTA)
3584                 val64 |= SWAPPER_CTRL_XMSI_SE;
3585         writeq(val64, &bar0->swapper_ctrl);
3586 #else
3587         /*
3588          * Initially we enable all bits to make it accessible by the
3589          * driver, then we selectively enable only those bits that
3590          * we want to set.
3591          */
3592         val64 |= (SWAPPER_CTRL_TXP_FE |
3593                  SWAPPER_CTRL_TXP_SE |
3594                  SWAPPER_CTRL_TXD_R_FE |
3595                  SWAPPER_CTRL_TXD_R_SE |
3596                  SWAPPER_CTRL_TXD_W_FE |
3597                  SWAPPER_CTRL_TXD_W_SE |
3598                  SWAPPER_CTRL_TXF_R_FE |
3599                  SWAPPER_CTRL_RXD_R_FE |
3600                  SWAPPER_CTRL_RXD_R_SE |
3601                  SWAPPER_CTRL_RXD_W_FE |
3602                  SWAPPER_CTRL_RXD_W_SE |
3603                  SWAPPER_CTRL_RXF_W_FE |
3604                  SWAPPER_CTRL_XMSI_FE |
3605                  SWAPPER_CTRL_STATS_FE | SWAPPER_CTRL_STATS_SE);
3606         if (sp->config.intr_type == INTA)
3607                 val64 |= SWAPPER_CTRL_XMSI_SE;
3608         writeq(val64, &bar0->swapper_ctrl);
3609 #endif
3610         val64 = readq(&bar0->swapper_ctrl);
3611
3612         /*
3613          * Verifying if endian settings are accurate by reading a
3614          * feedback register.
3615          */
3616         val64 = readq(&bar0->pif_rd_swapper_fb);
3617         if (val64 != 0x0123456789ABCDEFULL) {
3618                 /* Endian settings are incorrect, calls for another dekko. */
3619                 DBG_PRINT(ERR_DBG, "%s: Endian settings are wrong, ",
3620                           dev->name);
3621                 DBG_PRINT(ERR_DBG, "feedback read %llx\n",
3622                           (unsigned long long) val64);
3623                 return FAILURE;
3624         }
3625
3626         return SUCCESS;
3627 }
3628
3629 static int wait_for_msix_trans(struct s2io_nic *nic, int i)
3630 {
3631         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3632         u64 val64;
3633         int ret = 0, cnt = 0;
3634
3635         do {
3636                 val64 = readq(&bar0->xmsi_access);
3637                 if (!(val64 & s2BIT(15)))
3638                         break;
3639                 mdelay(1);
3640                 cnt++;
3641         } while(cnt < 5);
3642         if (cnt == 5) {
3643                 DBG_PRINT(ERR_DBG, "XMSI # %d Access failed\n", i);
3644                 ret = 1;
3645         }
3646
3647         return ret;
3648 }
3649
3650 static void restore_xmsi_data(struct s2io_nic *nic)
3651 {
3652         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3653         u64 val64;
3654         int i;
3655
3656         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3657                 writeq(nic->msix_info[i].addr, &bar0->xmsi_address);
3658                 writeq(nic->msix_info[i].data, &bar0->xmsi_data);
3659                 val64 = (s2BIT(7) | s2BIT(15) | vBIT(i, 26, 6));
3660                 writeq(val64, &bar0->xmsi_access);
3661                 if (wait_for_msix_trans(nic, i)) {
3662                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3663                         continue;
3664                 }
3665         }
3666 }
3667
3668 static void store_xmsi_data(struct s2io_nic *nic)
3669 {
3670         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3671         u64 val64, addr, data;
3672         int i;
3673
3674         /* Store and display */
3675         for (i=0; i < MAX_REQUESTED_MSI_X; i++) {
3676                 val64 = (s2BIT(15) | vBIT(i, 26, 6));
3677                 writeq(val64, &bar0->xmsi_access);
3678                 if (wait_for_msix_trans(nic, i)) {
3679                         DBG_PRINT(ERR_DBG, "failed in %s\n", __FUNCTION__);
3680                         continue;
3681                 }
3682                 addr = readq(&bar0->xmsi_address);
3683                 data = readq(&bar0->xmsi_data);
3684                 if (addr && data) {
3685                         nic->msix_info[i].addr = addr;
3686                         nic->msix_info[i].data = data;
3687                 }
3688         }
3689 }
3690
3691 static int s2io_enable_msi_x(struct s2io_nic *nic)
3692 {
3693         struct XENA_dev_config __iomem *bar0 = nic->bar0;
3694         u64 tx_mat, rx_mat;
3695         u16 msi_control; /* Temp variable */
3696         int ret, i, j, msix_indx = 1;
3697
3698         nic->entries = kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct msix_entry),
3699                                GFP_KERNEL);
3700         if (!nic->entries) {
3701                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n", \
3702                         __FUNCTION__);
3703                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3704                 return -ENOMEM;
3705         }
3706         nic->mac_control.stats_info->sw_stat.mem_allocated
3707                 += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3708
3709         nic->s2io_entries =
3710                 kcalloc(MAX_REQUESTED_MSI_X, sizeof(struct s2io_msix_entry),
3711                                    GFP_KERNEL);
3712         if (!nic->s2io_entries) {
3713                 DBG_PRINT(INFO_DBG, "%s: Memory allocation failed\n",
3714                         __FUNCTION__);
3715                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
3716                 kfree(nic->entries);
3717                 nic->mac_control.stats_info->sw_stat.mem_freed
3718                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3719                 return -ENOMEM;
3720         }
3721          nic->mac_control.stats_info->sw_stat.mem_allocated
3722                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3723
3724         for (i=0; i< MAX_REQUESTED_MSI_X; i++) {
3725                 nic->entries[i].entry = i;
3726                 nic->s2io_entries[i].entry = i;
3727                 nic->s2io_entries[i].arg = NULL;
3728                 nic->s2io_entries[i].in_use = 0;
3729         }
3730
3731         tx_mat = readq(&bar0->tx_mat0_n[0]);
3732         for (i=0; i<nic->config.tx_fifo_num; i++, msix_indx++) {
3733                 tx_mat |= TX_MAT_SET(i, msix_indx);
3734                 nic->s2io_entries[msix_indx].arg = &nic->mac_control.fifos[i];
3735                 nic->s2io_entries[msix_indx].type = MSIX_FIFO_TYPE;
3736                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3737         }
3738         writeq(tx_mat, &bar0->tx_mat0_n[0]);
3739
3740         rx_mat = readq(&bar0->rx_mat);
3741         for (j = 0; j < nic->config.rx_ring_num; j++, msix_indx++) {
3742                 rx_mat |= RX_MAT_SET(j, msix_indx);
3743                 nic->s2io_entries[msix_indx].arg
3744                         = &nic->mac_control.rings[j];
3745                 nic->s2io_entries[msix_indx].type = MSIX_RING_TYPE;
3746                 nic->s2io_entries[msix_indx].in_use = MSIX_FLG;
3747         }
3748         writeq(rx_mat, &bar0->rx_mat);
3749
3750         nic->avail_msix_vectors = 0;
3751         ret = pci_enable_msix(nic->pdev, nic->entries, MAX_REQUESTED_MSI_X);
3752         /* We fail init if error or we get less vectors than min required */
3753         if (ret >= (nic->config.tx_fifo_num + nic->config.rx_ring_num + 1)) {
3754                 nic->avail_msix_vectors = ret;
3755                 ret = pci_enable_msix(nic->pdev, nic->entries, ret);
3756         }
3757         if (ret) {
3758                 DBG_PRINT(ERR_DBG, "%s: Enabling MSIX failed\n", nic->dev->name);
3759                 kfree(nic->entries);
3760                 nic->mac_control.stats_info->sw_stat.mem_freed
3761                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3762                 kfree(nic->s2io_entries);
3763                 nic->mac_control.stats_info->sw_stat.mem_freed
3764                 += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3765                 nic->entries = NULL;
3766                 nic->s2io_entries = NULL;
3767                 nic->avail_msix_vectors = 0;
3768                 return -ENOMEM;
3769         }
3770         if (!nic->avail_msix_vectors)
3771                 nic->avail_msix_vectors = MAX_REQUESTED_MSI_X;
3772
3773         /*
3774          * To enable MSI-X, MSI also needs to be enabled, due to a bug
3775          * in the herc NIC. (Temp change, needs to be removed later)
3776          */
3777         pci_read_config_word(nic->pdev, 0x42, &msi_control);
3778         msi_control |= 0x1; /* Enable MSI */
3779         pci_write_config_word(nic->pdev, 0x42, msi_control);
3780
3781         return 0;
3782 }
3783
3784 /* Handle software interrupt used during MSI(X) test */
3785 static irqreturn_t s2io_test_intr(int irq, void *dev_id)
3786 {
3787         struct s2io_nic *sp = dev_id;
3788
3789         sp->msi_detected = 1;
3790         wake_up(&sp->msi_wait);
3791
3792         return IRQ_HANDLED;
3793 }
3794
3795 /* Test interrupt path by forcing a a software IRQ */
3796 static int s2io_test_msi(struct s2io_nic *sp)
3797 {
3798         struct pci_dev *pdev = sp->pdev;
3799         struct XENA_dev_config __iomem *bar0 = sp->bar0;
3800         int err;
3801         u64 val64, saved64;
3802
3803         err = request_irq(sp->entries[1].vector, s2io_test_intr, 0,
3804                         sp->name, sp);
3805         if (err) {
3806                 DBG_PRINT(ERR_DBG, "%s: PCI %s: cannot assign irq %d\n",
3807                        sp->dev->name, pci_name(pdev), pdev->irq);
3808                 return err;
3809         }
3810
3811         init_waitqueue_head (&sp->msi_wait);
3812         sp->msi_detected = 0;
3813
3814         saved64 = val64 = readq(&bar0->scheduled_int_ctrl);
3815         val64 |= SCHED_INT_CTRL_ONE_SHOT;
3816         val64 |= SCHED_INT_CTRL_TIMER_EN;
3817         val64 |= SCHED_INT_CTRL_INT2MSI(1);
3818         writeq(val64, &bar0->scheduled_int_ctrl);
3819
3820         wait_event_timeout(sp->msi_wait, sp->msi_detected, HZ/10);
3821
3822         if (!sp->msi_detected) {
3823                 /* MSI(X) test failed, go back to INTx mode */
3824                 DBG_PRINT(ERR_DBG, "%s: PCI %s: No interrupt was generated "
3825                         "using MSI(X) during test\n", sp->dev->name,
3826                         pci_name(pdev));
3827
3828                 err = -EOPNOTSUPP;
3829         }
3830
3831         free_irq(sp->entries[1].vector, sp);
3832
3833         writeq(saved64, &bar0->scheduled_int_ctrl);
3834
3835         return err;
3836 }
3837
3838 static void remove_msix_isr(struct s2io_nic *sp)
3839 {
3840         int i;
3841         u16 msi_control;
3842
3843         for (i = 0; i < MAX_REQUESTED_MSI_X; i++) {
3844                 if (sp->s2io_entries[i].in_use ==
3845                         MSIX_REGISTERED_SUCCESS) {
3846                         int vector = sp->entries[i].vector;
3847                         void *arg = sp->s2io_entries[i].arg;
3848                         free_irq(vector, arg);
3849                 }
3850         }
3851
3852         kfree(sp->entries);
3853         kfree(sp->s2io_entries);
3854         sp->entries = NULL;
3855         sp->s2io_entries = NULL;
3856
3857         pci_read_config_word(sp->pdev, 0x42, &msi_control);
3858         msi_control &= 0xFFFE; /* Disable MSI */
3859         pci_write_config_word(sp->pdev, 0x42, msi_control);
3860
3861         pci_disable_msix(sp->pdev);
3862 }
3863
3864 static void remove_inta_isr(struct s2io_nic *sp)
3865 {
3866         struct net_device *dev = sp->dev;
3867
3868         free_irq(sp->pdev->irq, dev);
3869 }
3870
3871 /* ********************************************************* *
3872  * Functions defined below concern the OS part of the driver *
3873  * ********************************************************* */
3874
3875 /**
3876  *  s2io_open - open entry point of the driver
3877  *  @dev : pointer to the device structure.
3878  *  Description:
3879  *  This function is the open entry point of the driver. It mainly calls a
3880  *  function to allocate Rx buffers and inserts them into the buffer
3881  *  descriptors and then enables the Rx part of the NIC.
3882  *  Return value:
3883  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3884  *   file on failure.
3885  */
3886
3887 static int s2io_open(struct net_device *dev)
3888 {
3889         struct s2io_nic *sp = dev->priv;
3890         int err = 0;
3891
3892         /*
3893          * Make sure you have link off by default every time
3894          * Nic is initialized
3895          */
3896         netif_carrier_off(dev);
3897         sp->last_link_state = 0;
3898
3899         if (sp->config.intr_type == MSI_X) {
3900                 int ret = s2io_enable_msi_x(sp);
3901
3902                 if (!ret) {
3903                         ret = s2io_test_msi(sp);
3904                         /* rollback MSI-X, will re-enable during add_isr() */
3905                         remove_msix_isr(sp);
3906                 }
3907                 if (ret) {
3908
3909                         DBG_PRINT(ERR_DBG,
3910                           "%s: MSI-X requested but failed to enable\n",
3911                           dev->name);
3912                         sp->config.intr_type = INTA;
3913                 }
3914         }
3915
3916         /* NAPI doesn't work well with MSI(X) */
3917          if (sp->config.intr_type != INTA) {
3918                 if(sp->config.napi)
3919                         sp->config.napi = 0;
3920         }
3921
3922         /* Initialize H/W and enable interrupts */
3923         err = s2io_card_up(sp);
3924         if (err) {
3925                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
3926                           dev->name);
3927                 goto hw_init_failed;
3928         }
3929
3930         if (do_s2io_prog_unicast(dev, dev->dev_addr) == FAILURE) {
3931                 DBG_PRINT(ERR_DBG, "Set Mac Address Failed\n");
3932                 s2io_card_down(sp);
3933                 err = -ENODEV;
3934                 goto hw_init_failed;
3935         }
3936
3937         netif_start_queue(dev);
3938         return 0;
3939
3940 hw_init_failed:
3941         if (sp->config.intr_type == MSI_X) {
3942                 if (sp->entries) {
3943                         kfree(sp->entries);
3944                         sp->mac_control.stats_info->sw_stat.mem_freed
3945                         += (MAX_REQUESTED_MSI_X * sizeof(struct msix_entry));
3946                 }
3947                 if (sp->s2io_entries) {
3948                         kfree(sp->s2io_entries);
3949                         sp->mac_control.stats_info->sw_stat.mem_freed
3950                         += (MAX_REQUESTED_MSI_X * sizeof(struct s2io_msix_entry));
3951                 }
3952         }
3953         return err;
3954 }
3955
3956 /**
3957  *  s2io_close -close entry point of the driver
3958  *  @dev : device pointer.
3959  *  Description:
3960  *  This is the stop entry point of the driver. It needs to undo exactly
3961  *  whatever was done by the open entry point,thus it's usually referred to
3962  *  as the close function.Among other things this function mainly stops the
3963  *  Rx side of the NIC and frees all the Rx buffers in the Rx rings.
3964  *  Return value:
3965  *  0 on success and an appropriate (-)ve integer as defined in errno.h
3966  *  file on failure.
3967  */
3968
3969 static int s2io_close(struct net_device *dev)
3970 {
3971         struct s2io_nic *sp = dev->priv;
3972         struct config_param *config = &sp->config;
3973         u64 tmp64;
3974         int offset;
3975
3976         /* Return if the device is already closed               *
3977         *  Can happen when s2io_card_up failed in change_mtu    *
3978         */
3979         if (!is_s2io_card_up(sp))
3980                 return 0;
3981
3982         netif_stop_queue(dev);
3983
3984         /* delete all populated mac entries */
3985         for (offset = 1; offset < config->max_mc_addr; offset++) {
3986                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
3987                 if (tmp64 != S2IO_DISABLE_MAC_ENTRY)
3988                         do_s2io_delete_unicast_mc(sp, tmp64);
3989         }
3990
3991         /* Reset card, kill tasklet and free Tx and Rx buffers. */
3992         s2io_card_down(sp);
3993
3994         return 0;
3995 }
3996
3997 /**
3998  *  s2io_xmit - Tx entry point of te driver
3999  *  @skb : the socket buffer containing the Tx data.
4000  *  @dev : device pointer.
4001  *  Description :
4002  *  This function is the Tx entry point of the driver. S2IO NIC supports
4003  *  certain protocol assist features on Tx side, namely  CSO, S/G, LSO.
4004  *  NOTE: when device cant queue the pkt,just the trans_start variable will
4005  *  not be upadted.
4006  *  Return value:
4007  *  0 on success & 1 on failure.
4008  */
4009
4010 static int s2io_xmit(struct sk_buff *skb, struct net_device *dev)
4011 {
4012         struct s2io_nic *sp = dev->priv;
4013         u16 frg_cnt, frg_len, i, queue, queue_len, put_off, get_off;
4014         register u64 val64;
4015         struct TxD *txdp;
4016         struct TxFIFO_element __iomem *tx_fifo;
4017         unsigned long flags = 0;
4018         u16 vlan_tag = 0;
4019         int vlan_priority = 0;
4020         struct fifo_info *fifo = NULL;
4021         struct mac_info *mac_control;
4022         struct config_param *config;
4023         int offload_type;
4024         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
4025
4026         mac_control = &sp->mac_control;
4027         config = &sp->config;
4028
4029         DBG_PRINT(TX_DBG, "%s: In Neterion Tx routine\n", dev->name);
4030
4031         if (unlikely(skb->len <= 0)) {
4032                 DBG_PRINT(TX_DBG, "%s:Buffer has no data..\n", dev->name);
4033                 dev_kfree_skb_any(skb);
4034                 return 0;
4035         }
4036
4037         if (!is_s2io_card_up(sp)) {
4038                 DBG_PRINT(TX_DBG, "%s: Card going down for reset\n",
4039                           dev->name);
4040                 dev_kfree_skb(skb);
4041                 return 0;
4042         }
4043
4044         queue = 0;
4045         /* Get Fifo number to Transmit based on vlan priority */
4046         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4047                 vlan_tag = vlan_tx_tag_get(skb);
4048                 vlan_priority = vlan_tag >> 13;
4049                 queue = config->fifo_mapping[vlan_priority];
4050         }
4051
4052         fifo = &mac_control->fifos[queue];
4053         spin_lock_irqsave(&fifo->tx_lock, flags);
4054         put_off = (u16) fifo->tx_curr_put_info.offset;
4055         get_off = (u16) fifo->tx_curr_get_info.offset;
4056         txdp = (struct TxD *) fifo->list_info[put_off].list_virt_addr;
4057
4058         queue_len = fifo->tx_curr_put_info.fifo_len + 1;
4059         /* Avoid "put" pointer going beyond "get" pointer */
4060         if (txdp->Host_Control ||
4061                    ((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4062                 DBG_PRINT(TX_DBG, "Error in xmit, No free TXDs.\n");
4063                 netif_stop_queue(dev);
4064                 dev_kfree_skb(skb);
4065                 spin_unlock_irqrestore(&fifo->tx_lock, flags);
4066                 return 0;
4067         }
4068
4069         offload_type = s2io_offload_type(skb);
4070         if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
4071                 txdp->Control_1 |= TXD_TCP_LSO_EN;
4072                 txdp->Control_1 |= TXD_TCP_LSO_MSS(s2io_tcp_mss(skb));
4073         }
4074         if (skb->ip_summed == CHECKSUM_PARTIAL) {
4075                 txdp->Control_2 |=
4076                     (TXD_TX_CKO_IPV4_EN | TXD_TX_CKO_TCP_EN |
4077                      TXD_TX_CKO_UDP_EN);
4078         }
4079         txdp->Control_1 |= TXD_GATHER_CODE_FIRST;
4080         txdp->Control_1 |= TXD_LIST_OWN_XENA;
4081         txdp->Control_2 |= TXD_INT_NUMBER(fifo->fifo_no);
4082
4083         if (sp->vlgrp && vlan_tx_tag_present(skb)) {
4084                 txdp->Control_2 |= TXD_VLAN_ENABLE;
4085                 txdp->Control_2 |= TXD_VLAN_TAG(vlan_tag);
4086         }
4087
4088         frg_len = skb->len - skb->data_len;
4089         if (offload_type == SKB_GSO_UDP) {
4090                 int ufo_size;
4091
4092                 ufo_size = s2io_udp_mss(skb);
4093                 ufo_size &= ~7;
4094                 txdp->Control_1 |= TXD_UFO_EN;
4095                 txdp->Control_1 |= TXD_UFO_MSS(ufo_size);
4096                 txdp->Control_1 |= TXD_BUFFER0_SIZE(8);
4097 #ifdef __BIG_ENDIAN
4098                 fifo->ufo_in_band_v[put_off] =
4099                                 (u64)skb_shinfo(skb)->ip6_frag_id;
4100 #else
4101                 fifo->ufo_in_band_v[put_off] =
4102                                 (u64)skb_shinfo(skb)->ip6_frag_id << 32;
4103 #endif
4104                 txdp->Host_Control = (unsigned long)fifo->ufo_in_band_v;
4105                 txdp->Buffer_Pointer = pci_map_single(sp->pdev,
4106                                         fifo->ufo_in_band_v,
4107                                         sizeof(u64), PCI_DMA_TODEVICE);
4108                 if((txdp->Buffer_Pointer == 0) ||
4109                         (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4110                         goto pci_map_failed;
4111                 txdp++;
4112         }
4113
4114         txdp->Buffer_Pointer = pci_map_single
4115             (sp->pdev, skb->data, frg_len, PCI_DMA_TODEVICE);
4116         if((txdp->Buffer_Pointer == 0) ||
4117                 (txdp->Buffer_Pointer == DMA_ERROR_CODE))
4118                 goto pci_map_failed;
4119
4120         txdp->Host_Control = (unsigned long) skb;
4121         txdp->Control_1 |= TXD_BUFFER0_SIZE(frg_len);
4122         if (offload_type == SKB_GSO_UDP)
4123                 txdp->Control_1 |= TXD_UFO_EN;
4124
4125         frg_cnt = skb_shinfo(skb)->nr_frags;
4126         /* For fragmented SKB. */
4127         for (i = 0; i < frg_cnt; i++) {
4128                 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4129                 /* A '0' length fragment will be ignored */
4130                 if (!frag->size)
4131                         continue;
4132                 txdp++;
4133                 txdp->Buffer_Pointer = (u64) pci_map_page
4134                     (sp->pdev, frag->page, frag->page_offset,
4135                      frag->size, PCI_DMA_TODEVICE);
4136                 txdp->Control_1 = TXD_BUFFER0_SIZE(frag->size);
4137                 if (offload_type == SKB_GSO_UDP)
4138                         txdp->Control_1 |= TXD_UFO_EN;
4139         }
4140         txdp->Control_1 |= TXD_GATHER_CODE_LAST;
4141
4142         if (offload_type == SKB_GSO_UDP)
4143                 frg_cnt++; /* as Txd0 was used for inband header */
4144
4145         tx_fifo = mac_control->tx_FIFO_start[queue];
4146         val64 = fifo->list_info[put_off].list_phy_addr;
4147         writeq(val64, &tx_fifo->TxDL_Pointer);
4148
4149         val64 = (TX_FIFO_LAST_TXD_NUM(frg_cnt) | TX_FIFO_FIRST_LIST |
4150                  TX_FIFO_LAST_LIST);
4151         if (offload_type)
4152                 val64 |= TX_FIFO_SPECIAL_FUNC;
4153
4154         writeq(val64, &tx_fifo->List_Control);
4155
4156         mmiowb();
4157
4158         put_off++;
4159         if (put_off == fifo->tx_curr_put_info.fifo_len + 1)
4160                 put_off = 0;
4161         fifo->tx_curr_put_info.offset = put_off;
4162
4163         /* Avoid "put" pointer going beyond "get" pointer */
4164         if (((put_off+1) == queue_len ? 0 : (put_off+1)) == get_off) {
4165                 sp->mac_control.stats_info->sw_stat.fifo_full_cnt++;
4166                 DBG_PRINT(TX_DBG,
4167                           "No free TxDs for xmit, Put: 0x%x Get:0x%x\n",
4168                           put_off, get_off);
4169                 netif_stop_queue(dev);
4170         }
4171         mac_control->stats_info->sw_stat.mem_allocated += skb->truesize;
4172         dev->trans_start = jiffies;
4173         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4174
4175         return 0;
4176 pci_map_failed:
4177         stats->pci_map_fail_cnt++;
4178         netif_stop_queue(dev);
4179         stats->mem_freed += skb->truesize;
4180         dev_kfree_skb(skb);
4181         spin_unlock_irqrestore(&fifo->tx_lock, flags);
4182         return 0;
4183 }
4184
4185 static void
4186 s2io_alarm_handle(unsigned long data)
4187 {
4188         struct s2io_nic *sp = (struct s2io_nic *)data;
4189         struct net_device *dev = sp->dev;
4190
4191         s2io_handle_errors(dev);
4192         mod_timer(&sp->alarm_timer, jiffies + HZ / 2);
4193 }
4194
4195 static int s2io_chk_rx_buffers(struct s2io_nic *sp, int rng_n)
4196 {
4197         int rxb_size, level;
4198
4199         if (!sp->lro) {
4200                 rxb_size = atomic_read(&sp->rx_bufs_left[rng_n]);
4201                 level = rx_buffer_level(sp, rxb_size, rng_n);
4202
4203                 if ((level == PANIC) && (!TASKLET_IN_USE)) {
4204                         int ret;
4205                         DBG_PRINT(INTR_DBG, "%s: Rx BD hit ", __FUNCTION__);
4206                         DBG_PRINT(INTR_DBG, "PANIC levels\n");
4207                         if ((ret = fill_rx_buffers(sp, rng_n)) == -ENOMEM) {
4208                                 DBG_PRINT(INFO_DBG, "Out of memory in %s",
4209                                           __FUNCTION__);
4210                                 clear_bit(0, (&sp->tasklet_status));
4211                                 return -1;
4212                         }
4213                         clear_bit(0, (&sp->tasklet_status));
4214                 } else if (level == LOW)
4215                         tasklet_schedule(&sp->task);
4216
4217         } else if (fill_rx_buffers(sp, rng_n) == -ENOMEM) {
4218                         DBG_PRINT(INFO_DBG, "%s:Out of memory", sp->dev->name);
4219                         DBG_PRINT(INFO_DBG, " in Rx Intr!!\n");
4220         }
4221         return 0;
4222 }
4223
4224 static irqreturn_t s2io_msix_ring_handle(int irq, void *dev_id)
4225 {
4226         struct ring_info *ring = (struct ring_info *)dev_id;
4227         struct s2io_nic *sp = ring->nic;
4228
4229         if (!is_s2io_card_up(sp))
4230                 return IRQ_HANDLED;
4231
4232         rx_intr_handler(ring);
4233         s2io_chk_rx_buffers(sp, ring->ring_no);
4234
4235         return IRQ_HANDLED;
4236 }
4237
4238 static irqreturn_t s2io_msix_fifo_handle(int irq, void *dev_id)
4239 {
4240         struct fifo_info *fifo = (struct fifo_info *)dev_id;
4241         struct s2io_nic *sp = fifo->nic;
4242
4243         if (!is_s2io_card_up(sp))
4244                 return IRQ_HANDLED;
4245
4246         tx_intr_handler(fifo);
4247         return IRQ_HANDLED;
4248 }
4249 static void s2io_txpic_intr_handle(struct s2io_nic *sp)
4250 {
4251         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4252         u64 val64;
4253
4254         val64 = readq(&bar0->pic_int_status);
4255         if (val64 & PIC_INT_GPIO) {
4256                 val64 = readq(&bar0->gpio_int_reg);
4257                 if ((val64 & GPIO_INT_REG_LINK_DOWN) &&
4258                     (val64 & GPIO_INT_REG_LINK_UP)) {
4259                         /*
4260                          * This is unstable state so clear both up/down
4261                          * interrupt and adapter to re-evaluate the link state.
4262                          */
4263                         val64 |=  GPIO_INT_REG_LINK_DOWN;
4264                         val64 |= GPIO_INT_REG_LINK_UP;
4265                         writeq(val64, &bar0->gpio_int_reg);
4266                         val64 = readq(&bar0->gpio_int_mask);
4267                         val64 &= ~(GPIO_INT_MASK_LINK_UP |
4268                                    GPIO_INT_MASK_LINK_DOWN);
4269                         writeq(val64, &bar0->gpio_int_mask);
4270                 }
4271                 else if (val64 & GPIO_INT_REG_LINK_UP) {
4272                         val64 = readq(&bar0->adapter_status);
4273                                 /* Enable Adapter */
4274                         val64 = readq(&bar0->adapter_control);
4275                         val64 |= ADAPTER_CNTL_EN;
4276                         writeq(val64, &bar0->adapter_control);
4277                         val64 |= ADAPTER_LED_ON;
4278                         writeq(val64, &bar0->adapter_control);
4279                         if (!sp->device_enabled_once)
4280                                 sp->device_enabled_once = 1;
4281
4282                         s2io_link(sp, LINK_UP);
4283                         /*
4284                          * unmask link down interrupt and mask link-up
4285                          * intr
4286                          */
4287                         val64 = readq(&bar0->gpio_int_mask);
4288                         val64 &= ~GPIO_INT_MASK_LINK_DOWN;
4289                         val64 |= GPIO_INT_MASK_LINK_UP;
4290                         writeq(val64, &bar0->gpio_int_mask);
4291
4292                 }else if (val64 & GPIO_INT_REG_LINK_DOWN) {
4293                         val64 = readq(&bar0->adapter_status);
4294                         s2io_link(sp, LINK_DOWN);
4295                         /* Link is down so unmaks link up interrupt */
4296                         val64 = readq(&bar0->gpio_int_mask);
4297                         val64 &= ~GPIO_INT_MASK_LINK_UP;
4298                         val64 |= GPIO_INT_MASK_LINK_DOWN;
4299                         writeq(val64, &bar0->gpio_int_mask);
4300
4301                         /* turn off LED */
4302                         val64 = readq(&bar0->adapter_control);
4303                         val64 = val64 &(~ADAPTER_LED_ON);
4304                         writeq(val64, &bar0->adapter_control);
4305                 }
4306         }
4307         val64 = readq(&bar0->gpio_int_mask);
4308 }
4309
4310 /**
4311  *  do_s2io_chk_alarm_bit - Check for alarm and incrment the counter
4312  *  @value: alarm bits
4313  *  @addr: address value
4314  *  @cnt: counter variable
4315  *  Description: Check for alarm and increment the counter
4316  *  Return Value:
4317  *  1 - if alarm bit set
4318  *  0 - if alarm bit is not set
4319  */
4320 static int do_s2io_chk_alarm_bit(u64 value, void __iomem * addr,
4321                           unsigned long long *cnt)
4322 {
4323         u64 val64;
4324         val64 = readq(addr);
4325         if ( val64 & value ) {
4326                 writeq(val64, addr);
4327                 (*cnt)++;
4328                 return 1;
4329         }
4330         return 0;
4331
4332 }
4333
4334 /**
4335  *  s2io_handle_errors - Xframe error indication handler
4336  *  @nic: device private variable
4337  *  Description: Handle alarms such as loss of link, single or
4338  *  double ECC errors, critical and serious errors.
4339  *  Return Value:
4340  *  NONE
4341  */
4342 static void s2io_handle_errors(void * dev_id)
4343 {
4344         struct net_device *dev = (struct net_device *) dev_id;
4345         struct s2io_nic *sp = dev->priv;
4346         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4347         u64 temp64 = 0,val64=0;
4348         int i = 0;
4349
4350         struct swStat *sw_stat = &sp->mac_control.stats_info->sw_stat;
4351         struct xpakStat *stats = &sp->mac_control.stats_info->xpak_stat;
4352
4353         if (!is_s2io_card_up(sp))
4354                 return;
4355
4356         if (pci_channel_offline(sp->pdev))
4357                 return;
4358
4359         memset(&sw_stat->ring_full_cnt, 0,
4360                 sizeof(sw_stat->ring_full_cnt));
4361
4362         /* Handling the XPAK counters update */
4363         if(stats->xpak_timer_count < 72000) {
4364                 /* waiting for an hour */
4365                 stats->xpak_timer_count++;
4366         } else {
4367                 s2io_updt_xpak_counter(dev);
4368                 /* reset the count to zero */
4369                 stats->xpak_timer_count = 0;
4370         }
4371
4372         /* Handling link status change error Intr */
4373         if (s2io_link_fault_indication(sp) == MAC_RMAC_ERR_TIMER) {
4374                 val64 = readq(&bar0->mac_rmac_err_reg);
4375                 writeq(val64, &bar0->mac_rmac_err_reg);
4376                 if (val64 & RMAC_LINK_STATE_CHANGE_INT)
4377                         schedule_work(&sp->set_link_task);
4378         }
4379
4380         /* In case of a serious error, the device will be Reset. */
4381         if (do_s2io_chk_alarm_bit(SERR_SOURCE_ANY, &bar0->serr_source,
4382                                 &sw_stat->serious_err_cnt))
4383                 goto reset;
4384
4385         /* Check for data parity error */
4386         if (do_s2io_chk_alarm_bit(GPIO_INT_REG_DP_ERR_INT, &bar0->gpio_int_reg,
4387                                 &sw_stat->parity_err_cnt))
4388                 goto reset;
4389
4390         /* Check for ring full counter */
4391         if (sp->device_type == XFRAME_II_DEVICE) {
4392                 val64 = readq(&bar0->ring_bump_counter1);
4393                 for (i=0; i<4; i++) {
4394                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4395                         temp64 >>= 64 - ((i+1)*16);
4396                         sw_stat->ring_full_cnt[i] += temp64;
4397                 }
4398
4399                 val64 = readq(&bar0->ring_bump_counter2);
4400                 for (i=0; i<4; i++) {
4401                         temp64 = ( val64 & vBIT(0xFFFF,(i*16),16));
4402                         temp64 >>= 64 - ((i+1)*16);
4403                          sw_stat->ring_full_cnt[i+4] += temp64;
4404                 }
4405         }
4406
4407         val64 = readq(&bar0->txdma_int_status);
4408         /*check for pfc_err*/
4409         if (val64 & TXDMA_PFC_INT) {
4410                 if (do_s2io_chk_alarm_bit(PFC_ECC_DB_ERR | PFC_SM_ERR_ALARM|
4411                                 PFC_MISC_0_ERR | PFC_MISC_1_ERR|
4412                                 PFC_PCIX_ERR, &bar0->pfc_err_reg,
4413                                 &sw_stat->pfc_err_cnt))
4414                         goto reset;
4415                 do_s2io_chk_alarm_bit(PFC_ECC_SG_ERR, &bar0->pfc_err_reg,
4416                                 &sw_stat->pfc_err_cnt);
4417         }
4418
4419         /*check for tda_err*/
4420         if (val64 & TXDMA_TDA_INT) {
4421                 if(do_s2io_chk_alarm_bit(TDA_Fn_ECC_DB_ERR | TDA_SM0_ERR_ALARM |
4422                                 TDA_SM1_ERR_ALARM, &bar0->tda_err_reg,
4423                                 &sw_stat->tda_err_cnt))
4424                         goto reset;
4425                 do_s2io_chk_alarm_bit(TDA_Fn_ECC_SG_ERR | TDA_PCIX_ERR,
4426                                 &bar0->tda_err_reg, &sw_stat->tda_err_cnt);
4427         }
4428         /*check for pcc_err*/
4429         if (val64 & TXDMA_PCC_INT) {
4430                 if (do_s2io_chk_alarm_bit(PCC_SM_ERR_ALARM | PCC_WR_ERR_ALARM
4431                                 | PCC_N_SERR | PCC_6_COF_OV_ERR
4432                                 | PCC_7_COF_OV_ERR | PCC_6_LSO_OV_ERR
4433                                 | PCC_7_LSO_OV_ERR | PCC_FB_ECC_DB_ERR
4434                                 | PCC_TXB_ECC_DB_ERR, &bar0->pcc_err_reg,
4435                                 &sw_stat->pcc_err_cnt))
4436                         goto reset;
4437                 do_s2io_chk_alarm_bit(PCC_FB_ECC_SG_ERR | PCC_TXB_ECC_SG_ERR,
4438                                 &bar0->pcc_err_reg, &sw_stat->pcc_err_cnt);
4439         }
4440
4441         /*check for tti_err*/
4442         if (val64 & TXDMA_TTI_INT) {
4443                 if (do_s2io_chk_alarm_bit(TTI_SM_ERR_ALARM, &bar0->tti_err_reg,
4444                                 &sw_stat->tti_err_cnt))
4445                         goto reset;
4446                 do_s2io_chk_alarm_bit(TTI_ECC_SG_ERR | TTI_ECC_DB_ERR,
4447                                 &bar0->tti_err_reg, &sw_stat->tti_err_cnt);
4448         }
4449
4450         /*check for lso_err*/
4451         if (val64 & TXDMA_LSO_INT) {
4452                 if (do_s2io_chk_alarm_bit(LSO6_ABORT | LSO7_ABORT
4453                                 | LSO6_SM_ERR_ALARM | LSO7_SM_ERR_ALARM,
4454                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt))
4455                         goto reset;
4456                 do_s2io_chk_alarm_bit(LSO6_SEND_OFLOW | LSO7_SEND_OFLOW,
4457                                 &bar0->lso_err_reg, &sw_stat->lso_err_cnt);
4458         }
4459
4460         /*check for tpa_err*/
4461         if (val64 & TXDMA_TPA_INT) {
4462                 if (do_s2io_chk_alarm_bit(TPA_SM_ERR_ALARM, &bar0->tpa_err_reg,
4463                         &sw_stat->tpa_err_cnt))
4464                         goto reset;
4465                 do_s2io_chk_alarm_bit(TPA_TX_FRM_DROP, &bar0->tpa_err_reg,
4466                         &sw_stat->tpa_err_cnt);
4467         }
4468
4469         /*check for sm_err*/
4470         if (val64 & TXDMA_SM_INT) {
4471                 if (do_s2io_chk_alarm_bit(SM_SM_ERR_ALARM, &bar0->sm_err_reg,
4472                         &sw_stat->sm_err_cnt))
4473                         goto reset;
4474         }
4475
4476         val64 = readq(&bar0->mac_int_status);
4477         if (val64 & MAC_INT_STATUS_TMAC_INT) {
4478                 if (do_s2io_chk_alarm_bit(TMAC_TX_BUF_OVRN | TMAC_TX_SM_ERR,
4479                                 &bar0->mac_tmac_err_reg,
4480                                 &sw_stat->mac_tmac_err_cnt))
4481                         goto reset;
4482                 do_s2io_chk_alarm_bit(TMAC_ECC_SG_ERR | TMAC_ECC_DB_ERR
4483                                 | TMAC_DESC_ECC_SG_ERR | TMAC_DESC_ECC_DB_ERR,
4484                                 &bar0->mac_tmac_err_reg,
4485                                 &sw_stat->mac_tmac_err_cnt);
4486         }
4487
4488         val64 = readq(&bar0->xgxs_int_status);
4489         if (val64 & XGXS_INT_STATUS_TXGXS) {
4490                 if (do_s2io_chk_alarm_bit(TXGXS_ESTORE_UFLOW | TXGXS_TX_SM_ERR,
4491                                 &bar0->xgxs_txgxs_err_reg,
4492                                 &sw_stat->xgxs_txgxs_err_cnt))
4493                         goto reset;
4494                 do_s2io_chk_alarm_bit(TXGXS_ECC_SG_ERR | TXGXS_ECC_DB_ERR,
4495                                 &bar0->xgxs_txgxs_err_reg,
4496                                 &sw_stat->xgxs_txgxs_err_cnt);
4497         }
4498
4499         val64 = readq(&bar0->rxdma_int_status);
4500         if (val64 & RXDMA_INT_RC_INT_M) {
4501                 if (do_s2io_chk_alarm_bit(RC_PRCn_ECC_DB_ERR | RC_FTC_ECC_DB_ERR
4502                                 | RC_PRCn_SM_ERR_ALARM |RC_FTC_SM_ERR_ALARM,
4503                                 &bar0->rc_err_reg, &sw_stat->rc_err_cnt))
4504                         goto reset;
4505                 do_s2io_chk_alarm_bit(RC_PRCn_ECC_SG_ERR | RC_FTC_ECC_SG_ERR
4506                                 | RC_RDA_FAIL_WR_Rn, &bar0->rc_err_reg,
4507                                 &sw_stat->rc_err_cnt);
4508                 if (do_s2io_chk_alarm_bit(PRC_PCI_AB_RD_Rn | PRC_PCI_AB_WR_Rn
4509                                 | PRC_PCI_AB_F_WR_Rn, &bar0->prc_pcix_err_reg,
4510                                 &sw_stat->prc_pcix_err_cnt))
4511                         goto reset;
4512                 do_s2io_chk_alarm_bit(PRC_PCI_DP_RD_Rn | PRC_PCI_DP_WR_Rn
4513                                 | PRC_PCI_DP_F_WR_Rn, &bar0->prc_pcix_err_reg,
4514                                 &sw_stat->prc_pcix_err_cnt);
4515         }
4516
4517         if (val64 & RXDMA_INT_RPA_INT_M) {
4518                 if (do_s2io_chk_alarm_bit(RPA_SM_ERR_ALARM | RPA_CREDIT_ERR,
4519                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt))
4520                         goto reset;
4521                 do_s2io_chk_alarm_bit(RPA_ECC_SG_ERR | RPA_ECC_DB_ERR,
4522                                 &bar0->rpa_err_reg, &sw_stat->rpa_err_cnt);
4523         }
4524
4525         if (val64 & RXDMA_INT_RDA_INT_M) {
4526                 if (do_s2io_chk_alarm_bit(RDA_RXDn_ECC_DB_ERR
4527                                 | RDA_FRM_ECC_DB_N_AERR | RDA_SM1_ERR_ALARM
4528                                 | RDA_SM0_ERR_ALARM | RDA_RXD_ECC_DB_SERR,
4529                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt))
4530                         goto reset;
4531                 do_s2io_chk_alarm_bit(RDA_RXDn_ECC_SG_ERR | RDA_FRM_ECC_SG_ERR
4532                                 | RDA_MISC_ERR | RDA_PCIX_ERR,
4533                                 &bar0->rda_err_reg, &sw_stat->rda_err_cnt);
4534         }
4535
4536         if (val64 & RXDMA_INT_RTI_INT_M) {
4537                 if (do_s2io_chk_alarm_bit(RTI_SM_ERR_ALARM, &bar0->rti_err_reg,
4538                                 &sw_stat->rti_err_cnt))
4539                         goto reset;
4540                 do_s2io_chk_alarm_bit(RTI_ECC_SG_ERR | RTI_ECC_DB_ERR,
4541                                 &bar0->rti_err_reg, &sw_stat->rti_err_cnt);
4542         }
4543
4544         val64 = readq(&bar0->mac_int_status);
4545         if (val64 & MAC_INT_STATUS_RMAC_INT) {
4546                 if (do_s2io_chk_alarm_bit(RMAC_RX_BUFF_OVRN | RMAC_RX_SM_ERR,
4547                                 &bar0->mac_rmac_err_reg,
4548                                 &sw_stat->mac_rmac_err_cnt))
4549                         goto reset;
4550                 do_s2io_chk_alarm_bit(RMAC_UNUSED_INT|RMAC_SINGLE_ECC_ERR|
4551                                 RMAC_DOUBLE_ECC_ERR, &bar0->mac_rmac_err_reg,
4552                                 &sw_stat->mac_rmac_err_cnt);
4553         }
4554
4555         val64 = readq(&bar0->xgxs_int_status);
4556         if (val64 & XGXS_INT_STATUS_RXGXS) {
4557                 if (do_s2io_chk_alarm_bit(RXGXS_ESTORE_OFLOW | RXGXS_RX_SM_ERR,
4558                                 &bar0->xgxs_rxgxs_err_reg,
4559                                 &sw_stat->xgxs_rxgxs_err_cnt))
4560                         goto reset;
4561         }
4562
4563         val64 = readq(&bar0->mc_int_status);
4564         if(val64 & MC_INT_STATUS_MC_INT) {
4565                 if (do_s2io_chk_alarm_bit(MC_ERR_REG_SM_ERR, &bar0->mc_err_reg,
4566                                 &sw_stat->mc_err_cnt))
4567                         goto reset;
4568
4569                 /* Handling Ecc errors */
4570                 if (val64 & (MC_ERR_REG_ECC_ALL_SNG | MC_ERR_REG_ECC_ALL_DBL)) {
4571                         writeq(val64, &bar0->mc_err_reg);
4572                         if (val64 & MC_ERR_REG_ECC_ALL_DBL) {
4573                                 sw_stat->double_ecc_errs++;
4574                                 if (sp->device_type != XFRAME_II_DEVICE) {
4575                                         /*
4576                                          * Reset XframeI only if critical error
4577                                          */
4578                                         if (val64 &
4579                                                 (MC_ERR_REG_MIRI_ECC_DB_ERR_0 |
4580                                                 MC_ERR_REG_MIRI_ECC_DB_ERR_1))
4581                                                                 goto reset;
4582                                         }
4583                         } else
4584                                 sw_stat->single_ecc_errs++;
4585                 }
4586         }
4587         return;
4588
4589 reset:
4590         netif_stop_queue(dev);
4591         schedule_work(&sp->rst_timer_task);
4592         sw_stat->soft_reset_cnt++;
4593         return;
4594 }
4595
4596 /**
4597  *  s2io_isr - ISR handler of the device .
4598  *  @irq: the irq of the device.
4599  *  @dev_id: a void pointer to the dev structure of the NIC.
4600  *  Description:  This function is the ISR handler of the device. It
4601  *  identifies the reason for the interrupt and calls the relevant
4602  *  service routines. As a contongency measure, this ISR allocates the
4603  *  recv buffers, if their numbers are below the panic value which is
4604  *  presently set to 25% of the original number of rcv buffers allocated.
4605  *  Return value:
4606  *   IRQ_HANDLED: will be returned if IRQ was handled by this routine
4607  *   IRQ_NONE: will be returned if interrupt is not from our device
4608  */
4609 static irqreturn_t s2io_isr(int irq, void *dev_id)
4610 {
4611         struct net_device *dev = (struct net_device *) dev_id;
4612         struct s2io_nic *sp = dev->priv;
4613         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4614         int i;
4615         u64 reason = 0;
4616         struct mac_info *mac_control;
4617         struct config_param *config;
4618
4619         /* Pretend we handled any irq's from a disconnected card */
4620         if (pci_channel_offline(sp->pdev))
4621                 return IRQ_NONE;
4622
4623         if (!is_s2io_card_up(sp))
4624                 return IRQ_NONE;
4625
4626         mac_control = &sp->mac_control;
4627         config = &sp->config;
4628
4629         /*
4630          * Identify the cause for interrupt and call the appropriate
4631          * interrupt handler. Causes for the interrupt could be;
4632          * 1. Rx of packet.
4633          * 2. Tx complete.
4634          * 3. Link down.
4635          */
4636         reason = readq(&bar0->general_int_status);
4637
4638         if (unlikely(reason == S2IO_MINUS_ONE) ) {
4639                 /* Nothing much can be done. Get out */
4640                 return IRQ_HANDLED;
4641         }
4642
4643         if (reason & (GEN_INTR_RXTRAFFIC |
4644                 GEN_INTR_TXTRAFFIC | GEN_INTR_TXPIC))
4645         {
4646                 writeq(S2IO_MINUS_ONE, &bar0->general_int_mask);
4647
4648                 if (config->napi) {
4649                         if (reason & GEN_INTR_RXTRAFFIC) {
4650                                 if (likely(netif_rx_schedule_prep(dev,
4651                                                         &sp->napi))) {
4652                                         __netif_rx_schedule(dev, &sp->napi);
4653                                         writeq(S2IO_MINUS_ONE,
4654                                                &bar0->rx_traffic_mask);
4655                                 } else
4656                                         writeq(S2IO_MINUS_ONE,
4657                                                &bar0->rx_traffic_int);
4658                         }
4659                 } else {
4660                         /*
4661                          * rx_traffic_int reg is an R1 register, writing all 1's
4662                          * will ensure that the actual interrupt causing bit
4663                          * get's cleared and hence a read can be avoided.
4664                          */
4665                         if (reason & GEN_INTR_RXTRAFFIC)
4666                                 writeq(S2IO_MINUS_ONE, &bar0->rx_traffic_int);
4667
4668                         for (i = 0; i < config->rx_ring_num; i++)
4669                                 rx_intr_handler(&mac_control->rings[i]);
4670                 }
4671
4672                 /*
4673                  * tx_traffic_int reg is an R1 register, writing all 1's
4674                  * will ensure that the actual interrupt causing bit get's
4675                  * cleared and hence a read can be avoided.
4676                  */
4677                 if (reason & GEN_INTR_TXTRAFFIC)
4678                         writeq(S2IO_MINUS_ONE, &bar0->tx_traffic_int);
4679
4680                 for (i = 0; i < config->tx_fifo_num; i++)
4681                         tx_intr_handler(&mac_control->fifos[i]);
4682
4683                 if (reason & GEN_INTR_TXPIC)
4684                         s2io_txpic_intr_handle(sp);
4685
4686                 /*
4687                  * Reallocate the buffers from the interrupt handler itself.
4688                  */
4689                 if (!config->napi) {
4690                         for (i = 0; i < config->rx_ring_num; i++)
4691                                 s2io_chk_rx_buffers(sp, i);
4692                 }
4693                 writeq(sp->general_int_mask, &bar0->general_int_mask);
4694                 readl(&bar0->general_int_status);
4695
4696                 return IRQ_HANDLED;
4697
4698         }
4699         else if (!reason) {
4700                 /* The interrupt was not raised by us */
4701                 return IRQ_NONE;
4702         }
4703
4704         return IRQ_HANDLED;
4705 }
4706
4707 /**
4708  * s2io_updt_stats -
4709  */
4710 static void s2io_updt_stats(struct s2io_nic *sp)
4711 {
4712         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4713         u64 val64;
4714         int cnt = 0;
4715
4716         if (is_s2io_card_up(sp)) {
4717                 /* Apprx 30us on a 133 MHz bus */
4718                 val64 = SET_UPDT_CLICKS(10) |
4719                         STAT_CFG_ONE_SHOT_EN | STAT_CFG_STAT_EN;
4720                 writeq(val64, &bar0->stat_cfg);
4721                 do {
4722                         udelay(100);
4723                         val64 = readq(&bar0->stat_cfg);
4724                         if (!(val64 & s2BIT(0)))
4725                                 break;
4726                         cnt++;
4727                         if (cnt == 5)
4728                                 break; /* Updt failed */
4729                 } while(1);
4730         }
4731 }
4732
4733 /**
4734  *  s2io_get_stats - Updates the device statistics structure.
4735  *  @dev : pointer to the device structure.
4736  *  Description:
4737  *  This function updates the device statistics structure in the s2io_nic
4738  *  structure and returns a pointer to the same.
4739  *  Return value:
4740  *  pointer to the updated net_device_stats structure.
4741  */
4742
4743 static struct net_device_stats *s2io_get_stats(struct net_device *dev)
4744 {
4745         struct s2io_nic *sp = dev->priv;
4746         struct mac_info *mac_control;
4747         struct config_param *config;
4748
4749
4750         mac_control = &sp->mac_control;
4751         config = &sp->config;
4752
4753         /* Configure Stats for immediate updt */
4754         s2io_updt_stats(sp);
4755
4756         sp->stats.tx_packets =
4757                 le32_to_cpu(mac_control->stats_info->tmac_frms);
4758         sp->stats.tx_errors =
4759                 le32_to_cpu(mac_control->stats_info->tmac_any_err_frms);
4760         sp->stats.rx_errors =
4761                 le64_to_cpu(mac_control->stats_info->rmac_drop_frms);
4762         sp->stats.multicast =
4763                 le32_to_cpu(mac_control->stats_info->rmac_vld_mcst_frms);
4764         sp->stats.rx_length_errors =
4765                 le64_to_cpu(mac_control->stats_info->rmac_long_frms);
4766
4767         return (&sp->stats);
4768 }
4769
4770 /**
4771  *  s2io_set_multicast - entry point for multicast address enable/disable.
4772  *  @dev : pointer to the device structure
4773  *  Description:
4774  *  This function is a driver entry point which gets called by the kernel
4775  *  whenever multicast addresses must be enabled/disabled. This also gets
4776  *  called to set/reset promiscuous mode. Depending on the deivce flag, we
4777  *  determine, if multicast address must be enabled or if promiscuous mode
4778  *  is to be disabled etc.
4779  *  Return value:
4780  *  void.
4781  */
4782
4783 static void s2io_set_multicast(struct net_device *dev)
4784 {
4785         int i, j, prev_cnt;
4786         struct dev_mc_list *mclist;
4787         struct s2io_nic *sp = dev->priv;
4788         struct XENA_dev_config __iomem *bar0 = sp->bar0;
4789         u64 val64 = 0, multi_mac = 0x010203040506ULL, mask =
4790             0xfeffffffffffULL;
4791         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, mac_addr = 0;
4792         void __iomem *add;
4793         struct config_param *config = &sp->config;
4794
4795         if ((dev->flags & IFF_ALLMULTI) && (!sp->m_cast_flg)) {
4796                 /*  Enable all Multicast addresses */
4797                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(multi_mac),
4798                        &bar0->rmac_addr_data0_mem);
4799                 writeq(RMAC_ADDR_DATA1_MEM_MASK(mask),
4800                        &bar0->rmac_addr_data1_mem);
4801                 val64 = RMAC_ADDR_CMD_MEM_WE |
4802                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4803                     RMAC_ADDR_CMD_MEM_OFFSET(config->max_mc_addr - 1);
4804                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4805                 /* Wait till command completes */
4806                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4807                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4808                                         S2IO_BIT_RESET);
4809
4810                 sp->m_cast_flg = 1;
4811                 sp->all_multi_pos = config->max_mc_addr - 1;
4812         } else if ((dev->flags & IFF_ALLMULTI) && (sp->m_cast_flg)) {
4813                 /*  Disable all Multicast addresses */
4814                 writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4815                        &bar0->rmac_addr_data0_mem);
4816                 writeq(RMAC_ADDR_DATA1_MEM_MASK(0x0),
4817                        &bar0->rmac_addr_data1_mem);
4818                 val64 = RMAC_ADDR_CMD_MEM_WE |
4819                     RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4820                     RMAC_ADDR_CMD_MEM_OFFSET(sp->all_multi_pos);
4821                 writeq(val64, &bar0->rmac_addr_cmd_mem);
4822                 /* Wait till command completes */
4823                 wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4824                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4825                                         S2IO_BIT_RESET);
4826
4827                 sp->m_cast_flg = 0;
4828                 sp->all_multi_pos = 0;
4829         }
4830
4831         if ((dev->flags & IFF_PROMISC) && (!sp->promisc_flg)) {
4832                 /*  Put the NIC into promiscuous mode */
4833                 add = &bar0->mac_cfg;
4834                 val64 = readq(&bar0->mac_cfg);
4835                 val64 |= MAC_CFG_RMAC_PROM_ENABLE;
4836
4837                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4838                 writel((u32) val64, add);
4839                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4840                 writel((u32) (val64 >> 32), (add + 4));
4841
4842                 if (vlan_tag_strip != 1) {
4843                         val64 = readq(&bar0->rx_pa_cfg);
4844                         val64 &= ~RX_PA_CFG_STRIP_VLAN_TAG;
4845                         writeq(val64, &bar0->rx_pa_cfg);
4846                         vlan_strip_flag = 0;
4847                 }
4848
4849                 val64 = readq(&bar0->mac_cfg);
4850                 sp->promisc_flg = 1;
4851                 DBG_PRINT(INFO_DBG, "%s: entered promiscuous mode\n",
4852                           dev->name);
4853         } else if (!(dev->flags & IFF_PROMISC) && (sp->promisc_flg)) {
4854                 /*  Remove the NIC from promiscuous mode */
4855                 add = &bar0->mac_cfg;
4856                 val64 = readq(&bar0->mac_cfg);
4857                 val64 &= ~MAC_CFG_RMAC_PROM_ENABLE;
4858
4859                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4860                 writel((u32) val64, add);
4861                 writeq(RMAC_CFG_KEY(0x4C0D), &bar0->rmac_cfg_key);
4862                 writel((u32) (val64 >> 32), (add + 4));
4863
4864                 if (vlan_tag_strip != 0) {
4865                         val64 = readq(&bar0->rx_pa_cfg);
4866                         val64 |= RX_PA_CFG_STRIP_VLAN_TAG;
4867                         writeq(val64, &bar0->rx_pa_cfg);
4868                         vlan_strip_flag = 1;
4869                 }
4870
4871                 val64 = readq(&bar0->mac_cfg);
4872                 sp->promisc_flg = 0;
4873                 DBG_PRINT(INFO_DBG, "%s: left promiscuous mode\n",
4874                           dev->name);
4875         }
4876
4877         /*  Update individual M_CAST address list */
4878         if ((!sp->m_cast_flg) && dev->mc_count) {
4879                 if (dev->mc_count >
4880                     (config->max_mc_addr - config->max_mac_addr)) {
4881                         DBG_PRINT(ERR_DBG, "%s: No more Rx filters ",
4882                                   dev->name);
4883                         DBG_PRINT(ERR_DBG, "can be added, please enable ");
4884                         DBG_PRINT(ERR_DBG, "ALL_MULTI instead\n");
4885                         return;
4886                 }
4887
4888                 prev_cnt = sp->mc_addr_count;
4889                 sp->mc_addr_count = dev->mc_count;
4890
4891                 /* Clear out the previous list of Mc in the H/W. */
4892                 for (i = 0; i < prev_cnt; i++) {
4893                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(dis_addr),
4894                                &bar0->rmac_addr_data0_mem);
4895                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4896                                 &bar0->rmac_addr_data1_mem);
4897                         val64 = RMAC_ADDR_CMD_MEM_WE |
4898                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4899                             RMAC_ADDR_CMD_MEM_OFFSET
4900                             (config->mc_start_offset + i);
4901                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4902
4903                         /* Wait for command completes */
4904                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4905                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4906                                         S2IO_BIT_RESET)) {
4907                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4908                                           dev->name);
4909                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4910                                 return;
4911                         }
4912                 }
4913
4914                 /* Create the new Rx filter list and update the same in H/W. */
4915                 for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
4916                      i++, mclist = mclist->next) {
4917                         memcpy(sp->usr_addrs[i].addr, mclist->dmi_addr,
4918                                ETH_ALEN);
4919                         mac_addr = 0;
4920                         for (j = 0; j < ETH_ALEN; j++) {
4921                                 mac_addr |= mclist->dmi_addr[j];
4922                                 mac_addr <<= 8;
4923                         }
4924                         mac_addr >>= 8;
4925                         writeq(RMAC_ADDR_DATA0_MEM_ADDR(mac_addr),
4926                                &bar0->rmac_addr_data0_mem);
4927                         writeq(RMAC_ADDR_DATA1_MEM_MASK(0ULL),
4928                                 &bar0->rmac_addr_data1_mem);
4929                         val64 = RMAC_ADDR_CMD_MEM_WE |
4930                             RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
4931                             RMAC_ADDR_CMD_MEM_OFFSET
4932                             (i + config->mc_start_offset);
4933                         writeq(val64, &bar0->rmac_addr_cmd_mem);
4934
4935                         /* Wait for command completes */
4936                         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
4937                                         RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
4938                                         S2IO_BIT_RESET)) {
4939                                 DBG_PRINT(ERR_DBG, "%s: Adding ",
4940                                           dev->name);
4941                                 DBG_PRINT(ERR_DBG, "Multicasts failed\n");
4942                                 return;
4943                         }
4944                 }
4945         }
4946 }
4947
4948 /* read from CAM unicast & multicast addresses and store it in
4949  * def_mac_addr structure
4950  */
4951 void do_s2io_store_unicast_mc(struct s2io_nic *sp)
4952 {
4953         int offset;
4954         u64 mac_addr = 0x0;
4955         struct config_param *config = &sp->config;
4956
4957         /* store unicast & multicast mac addresses */
4958         for (offset = 0; offset < config->max_mc_addr; offset++) {
4959                 mac_addr = do_s2io_read_unicast_mc(sp, offset);
4960                 /* if read fails disable the entry */
4961                 if (mac_addr == FAILURE)
4962                         mac_addr = S2IO_DISABLE_MAC_ENTRY;
4963                 do_s2io_copy_mac_addr(sp, offset, mac_addr);
4964         }
4965 }
4966
4967 /* restore unicast & multicast MAC to CAM from def_mac_addr structure */
4968 static void do_s2io_restore_unicast_mc(struct s2io_nic *sp)
4969 {
4970         int offset;
4971         struct config_param *config = &sp->config;
4972         /* restore unicast mac address */
4973         for (offset = 0; offset < config->max_mac_addr; offset++)
4974                 do_s2io_prog_unicast(sp->dev,
4975                         sp->def_mac_addr[offset].mac_addr);
4976
4977         /* restore multicast mac address */
4978         for (offset = config->mc_start_offset;
4979                 offset < config->max_mc_addr; offset++)
4980                 do_s2io_add_mc(sp, sp->def_mac_addr[offset].mac_addr);
4981 }
4982
4983 /* add a multicast MAC address to CAM */
4984 static int do_s2io_add_mc(struct s2io_nic *sp, u8 *addr)
4985 {
4986         int i;
4987         u64 mac_addr = 0;
4988         struct config_param *config = &sp->config;
4989
4990         for (i = 0; i < ETH_ALEN; i++) {
4991                 mac_addr <<= 8;
4992                 mac_addr |= addr[i];
4993         }
4994         if ((0ULL == mac_addr) || (mac_addr == S2IO_DISABLE_MAC_ENTRY))
4995                 return SUCCESS;
4996
4997         /* check if the multicast mac already preset in CAM */
4998         for (i = config->mc_start_offset; i < config->max_mc_addr; i++) {
4999                 u64 tmp64;
5000                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5001                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5002                         break;
5003
5004                 if (tmp64 == mac_addr)
5005                         return SUCCESS;
5006         }
5007         if (i == config->max_mc_addr) {
5008                 DBG_PRINT(ERR_DBG,
5009                         "CAM full no space left for multicast MAC\n");
5010                 return FAILURE;
5011         }
5012         /* Update the internal structure with this new mac address */
5013         do_s2io_copy_mac_addr(sp, i, mac_addr);
5014
5015         return (do_s2io_add_mac(sp, mac_addr, i));
5016 }
5017
5018 /* add MAC address to CAM */
5019 static int do_s2io_add_mac(struct s2io_nic *sp, u64 addr, int off)
5020 {
5021         u64 val64;
5022         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5023
5024         writeq(RMAC_ADDR_DATA0_MEM_ADDR(addr),
5025                 &bar0->rmac_addr_data0_mem);
5026
5027         val64 =
5028                 RMAC_ADDR_CMD_MEM_WE | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5029                 RMAC_ADDR_CMD_MEM_OFFSET(off);
5030         writeq(val64, &bar0->rmac_addr_cmd_mem);
5031
5032         /* Wait till command completes */
5033         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5034                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5035                 S2IO_BIT_RESET)) {
5036                 DBG_PRINT(INFO_DBG, "do_s2io_add_mac failed\n");
5037                 return FAILURE;
5038         }
5039         return SUCCESS;
5040 }
5041 /* deletes a specified unicast/multicast mac entry from CAM */
5042 static int do_s2io_delete_unicast_mc(struct s2io_nic *sp, u64 addr)
5043 {
5044         int offset;
5045         u64 dis_addr = S2IO_DISABLE_MAC_ENTRY, tmp64;
5046         struct config_param *config = &sp->config;
5047
5048         for (offset = 1;
5049                 offset < config->max_mc_addr; offset++) {
5050                 tmp64 = do_s2io_read_unicast_mc(sp, offset);
5051                 if (tmp64 == addr) {
5052                         /* disable the entry by writing  0xffffffffffffULL */
5053                         if (do_s2io_add_mac(sp, dis_addr, offset) ==  FAILURE)
5054                                 return FAILURE;
5055                         /* store the new mac list from CAM */
5056                         do_s2io_store_unicast_mc(sp);
5057                         return SUCCESS;
5058                 }
5059         }
5060         DBG_PRINT(ERR_DBG, "MAC address 0x%llx not found in CAM\n",
5061                         (unsigned long long)addr);
5062         return FAILURE;
5063 }
5064
5065 /* read mac entries from CAM */
5066 static u64 do_s2io_read_unicast_mc(struct s2io_nic *sp, int offset)
5067 {
5068         u64 tmp64 = 0xffffffffffff0000ULL, val64;
5069         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5070
5071         /* read mac addr */
5072         val64 =
5073                 RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
5074                 RMAC_ADDR_CMD_MEM_OFFSET(offset);
5075         writeq(val64, &bar0->rmac_addr_cmd_mem);
5076
5077         /* Wait till command completes */
5078         if (wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
5079                 RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING,
5080                 S2IO_BIT_RESET)) {
5081                 DBG_PRINT(INFO_DBG, "do_s2io_read_unicast_mc failed\n");
5082                 return FAILURE;
5083         }
5084         tmp64 = readq(&bar0->rmac_addr_data0_mem);
5085         return (tmp64 >> 16);
5086 }
5087
5088 /**
5089  * s2io_set_mac_addr driver entry point
5090  */
5091
5092 static int s2io_set_mac_addr(struct net_device *dev, void *p)
5093 {
5094         struct sockaddr *addr = p;
5095
5096         if (!is_valid_ether_addr(addr->sa_data))
5097                 return -EINVAL;
5098
5099         memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
5100
5101         /* store the MAC address in CAM */
5102         return (do_s2io_prog_unicast(dev, dev->dev_addr));
5103 }
5104 /**
5105  *  do_s2io_prog_unicast - Programs the Xframe mac address
5106  *  @dev : pointer to the device structure.
5107  *  @addr: a uchar pointer to the new mac address which is to be set.
5108  *  Description : This procedure will program the Xframe to receive
5109  *  frames with new Mac Address
5110  *  Return value: SUCCESS on success and an appropriate (-)ve integer
5111  *  as defined in errno.h file on failure.
5112  */
5113
5114 static int do_s2io_prog_unicast(struct net_device *dev, u8 *addr)
5115 {
5116         struct s2io_nic *sp = dev->priv;
5117         register u64 mac_addr = 0, perm_addr = 0;
5118         int i;
5119         u64 tmp64;
5120         struct config_param *config = &sp->config;
5121
5122         /*
5123         * Set the new MAC address as the new unicast filter and reflect this
5124         * change on the device address registered with the OS. It will be
5125         * at offset 0.
5126         */
5127         for (i = 0; i < ETH_ALEN; i++) {
5128                 mac_addr <<= 8;
5129                 mac_addr |= addr[i];
5130                 perm_addr <<= 8;
5131                 perm_addr |= sp->def_mac_addr[0].mac_addr[i];
5132         }
5133
5134         /* check if the dev_addr is different than perm_addr */
5135         if (mac_addr == perm_addr)
5136                 return SUCCESS;
5137
5138         /* check if the mac already preset in CAM */
5139         for (i = 1; i < config->max_mac_addr; i++) {
5140                 tmp64 = do_s2io_read_unicast_mc(sp, i);
5141                 if (tmp64 == S2IO_DISABLE_MAC_ENTRY) /* CAM entry is empty */
5142                         break;
5143
5144                 if (tmp64 == mac_addr) {
5145                         DBG_PRINT(INFO_DBG,
5146                         "MAC addr:0x%llx already present in CAM\n",
5147                         (unsigned long long)mac_addr);
5148                         return SUCCESS;
5149                 }
5150         }
5151         if (i == config->max_mac_addr) {
5152                 DBG_PRINT(ERR_DBG, "CAM full no space left for Unicast MAC\n");
5153                 return FAILURE;
5154         }
5155         /* Update the internal structure with this new mac address */
5156         do_s2io_copy_mac_addr(sp, i, mac_addr);
5157         return (do_s2io_add_mac(sp, mac_addr, i));
5158 }
5159
5160 /**
5161  * s2io_ethtool_sset - Sets different link parameters.
5162  * @sp : private member of the device structure, which is a pointer to the  * s2io_nic structure.
5163  * @info: pointer to the structure with parameters given by ethtool to set
5164  * link information.
5165  * Description:
5166  * The function sets different link parameters provided by the user onto
5167  * the NIC.
5168  * Return value:
5169  * 0 on success.
5170 */
5171
5172 static int s2io_ethtool_sset(struct net_device *dev,
5173                              struct ethtool_cmd *info)
5174 {
5175         struct s2io_nic *sp = dev->priv;
5176         if ((info->autoneg == AUTONEG_ENABLE) ||
5177             (info->speed != SPEED_10000) || (info->duplex != DUPLEX_FULL))
5178                 return -EINVAL;
5179         else {
5180                 s2io_close(sp->dev);
5181                 s2io_open(sp->dev);
5182         }
5183
5184         return 0;
5185 }
5186
5187 /**
5188  * s2io_ethtol_gset - Return link specific information.
5189  * @sp : private member of the device structure, pointer to the
5190  *      s2io_nic structure.
5191  * @info : pointer to the structure with parameters given by ethtool
5192  * to return link information.
5193  * Description:
5194  * Returns link specific information like speed, duplex etc.. to ethtool.
5195  * Return value :
5196  * return 0 on success.
5197  */
5198
5199 static int s2io_ethtool_gset(struct net_device *dev, struct ethtool_cmd *info)
5200 {
5201         struct s2io_nic *sp = dev->priv;
5202         info->supported = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5203         info->advertising = (SUPPORTED_10000baseT_Full | SUPPORTED_FIBRE);
5204         info->port = PORT_FIBRE;
5205
5206         /* info->transceiver */
5207         info->transceiver = XCVR_EXTERNAL;
5208
5209         if (netif_carrier_ok(sp->dev)) {
5210                 info->speed = 10000;
5211                 info->duplex = DUPLEX_FULL;
5212         } else {
5213                 info->speed = -1;
5214                 info->duplex = -1;
5215         }
5216
5217         info->autoneg = AUTONEG_DISABLE;
5218         return 0;
5219 }
5220
5221 /**
5222  * s2io_ethtool_gdrvinfo - Returns driver specific information.
5223  * @sp : private member of the device structure, which is a pointer to the
5224  * s2io_nic structure.
5225  * @info : pointer to the structure with parameters given by ethtool to
5226  * return driver information.
5227  * Description:
5228  * Returns driver specefic information like name, version etc.. to ethtool.
5229  * Return value:
5230  *  void
5231  */
5232
5233 static void s2io_ethtool_gdrvinfo(struct net_device *dev,
5234                                   struct ethtool_drvinfo *info)
5235 {
5236         struct s2io_nic *sp = dev->priv;
5237
5238         strncpy(info->driver, s2io_driver_name, sizeof(info->driver));
5239         strncpy(info->version, s2io_driver_version, sizeof(info->version));
5240         strncpy(info->fw_version, "", sizeof(info->fw_version));
5241         strncpy(info->bus_info, pci_name(sp->pdev), sizeof(info->bus_info));
5242         info->regdump_len = XENA_REG_SPACE;
5243         info->eedump_len = XENA_EEPROM_SPACE;
5244 }
5245
5246 /**
5247  *  s2io_ethtool_gregs - dumps the entire space of Xfame into the buffer.
5248  *  @sp: private member of the device structure, which is a pointer to the
5249  *  s2io_nic structure.
5250  *  @regs : pointer to the structure with parameters given by ethtool for
5251  *  dumping the registers.
5252  *  @reg_space: The input argumnet into which all the registers are dumped.
5253  *  Description:
5254  *  Dumps the entire register space of xFrame NIC into the user given
5255  *  buffer area.
5256  * Return value :
5257  * void .
5258 */
5259
5260 static void s2io_ethtool_gregs(struct net_device *dev,
5261                                struct ethtool_regs *regs, void *space)
5262 {
5263         int i;
5264         u64 reg;
5265         u8 *reg_space = (u8 *) space;
5266         struct s2io_nic *sp = dev->priv;
5267
5268         regs->len = XENA_REG_SPACE;
5269         regs->version = sp->pdev->subsystem_device;
5270
5271         for (i = 0; i < regs->len; i += 8) {
5272                 reg = readq(sp->bar0 + i);
5273                 memcpy((reg_space + i), &reg, 8);
5274         }
5275 }
5276
5277 /**
5278  *  s2io_phy_id  - timer function that alternates adapter LED.
5279  *  @data : address of the private member of the device structure, which
5280  *  is a pointer to the s2io_nic structure, provided as an u32.
5281  * Description: This is actually the timer function that alternates the
5282  * adapter LED bit of the adapter control bit to set/reset every time on
5283  * invocation. The timer is set for 1/2 a second, hence tha NIC blinks
5284  *  once every second.
5285 */
5286 static void s2io_phy_id(unsigned long data)
5287 {
5288         struct s2io_nic *sp = (struct s2io_nic *) data;
5289         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5290         u64 val64 = 0;
5291         u16 subid;
5292
5293         subid = sp->pdev->subsystem_device;
5294         if ((sp->device_type == XFRAME_II_DEVICE) ||
5295                    ((subid & 0xFF) >= 0x07)) {
5296                 val64 = readq(&bar0->gpio_control);
5297                 val64 ^= GPIO_CTRL_GPIO_0;
5298                 writeq(val64, &bar0->gpio_control);
5299         } else {
5300                 val64 = readq(&bar0->adapter_control);
5301                 val64 ^= ADAPTER_LED_ON;
5302                 writeq(val64, &bar0->adapter_control);
5303         }
5304
5305         mod_timer(&sp->id_timer, jiffies + HZ / 2);
5306 }
5307
5308 /**
5309  * s2io_ethtool_idnic - To physically identify the nic on the system.
5310  * @sp : private member of the device structure, which is a pointer to the
5311  * s2io_nic structure.
5312  * @id : pointer to the structure with identification parameters given by
5313  * ethtool.
5314  * Description: Used to physically identify the NIC on the system.
5315  * The Link LED will blink for a time specified by the user for
5316  * identification.
5317  * NOTE: The Link has to be Up to be able to blink the LED. Hence
5318  * identification is possible only if it's link is up.
5319  * Return value:
5320  * int , returns 0 on success
5321  */
5322
5323 static int s2io_ethtool_idnic(struct net_device *dev, u32 data)
5324 {
5325         u64 val64 = 0, last_gpio_ctrl_val;
5326         struct s2io_nic *sp = dev->priv;
5327         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5328         u16 subid;
5329
5330         subid = sp->pdev->subsystem_device;
5331         last_gpio_ctrl_val = readq(&bar0->gpio_control);
5332         if ((sp->device_type == XFRAME_I_DEVICE) &&
5333                 ((subid & 0xFF) < 0x07)) {
5334                 val64 = readq(&bar0->adapter_control);
5335                 if (!(val64 & ADAPTER_CNTL_EN)) {
5336                         printk(KERN_ERR
5337                                "Adapter Link down, cannot blink LED\n");
5338                         return -EFAULT;
5339                 }
5340         }
5341         if (sp->id_timer.function == NULL) {
5342                 init_timer(&sp->id_timer);
5343                 sp->id_timer.function = s2io_phy_id;
5344                 sp->id_timer.data = (unsigned long) sp;
5345         }
5346         mod_timer(&sp->id_timer, jiffies);
5347         if (data)
5348                 msleep_interruptible(data * HZ);
5349         else
5350                 msleep_interruptible(MAX_FLICKER_TIME);
5351         del_timer_sync(&sp->id_timer);
5352
5353         if (CARDS_WITH_FAULTY_LINK_INDICATORS(sp->device_type, subid)) {
5354                 writeq(last_gpio_ctrl_val, &bar0->gpio_control);
5355                 last_gpio_ctrl_val = readq(&bar0->gpio_control);
5356         }
5357
5358         return 0;
5359 }
5360
5361 static void s2io_ethtool_gringparam(struct net_device *dev,
5362                                     struct ethtool_ringparam *ering)
5363 {
5364         struct s2io_nic *sp = dev->priv;
5365         int i,tx_desc_count=0,rx_desc_count=0;
5366
5367         if (sp->rxd_mode == RXD_MODE_1)
5368                 ering->rx_max_pending = MAX_RX_DESC_1;
5369         else if (sp->rxd_mode == RXD_MODE_3B)
5370                 ering->rx_max_pending = MAX_RX_DESC_2;
5371
5372         ering->tx_max_pending = MAX_TX_DESC;
5373         for (i = 0 ; i < sp->config.tx_fifo_num ; i++)
5374                 tx_desc_count += sp->config.tx_cfg[i].fifo_len;
5375
5376         DBG_PRINT(INFO_DBG,"\nmax txds : %d\n",sp->config.max_txds);
5377         ering->tx_pending = tx_desc_count;
5378         rx_desc_count = 0;
5379         for (i = 0 ; i < sp->config.rx_ring_num ; i++)
5380                 rx_desc_count += sp->config.rx_cfg[i].num_rxd;
5381
5382         ering->rx_pending = rx_desc_count;
5383
5384         ering->rx_mini_max_pending = 0;
5385         ering->rx_mini_pending = 0;
5386         if(sp->rxd_mode == RXD_MODE_1)
5387                 ering->rx_jumbo_max_pending = MAX_RX_DESC_1;
5388         else if (sp->rxd_mode == RXD_MODE_3B)
5389                 ering->rx_jumbo_max_pending = MAX_RX_DESC_2;
5390         ering->rx_jumbo_pending = rx_desc_count;
5391 }
5392
5393 /**
5394  * s2io_ethtool_getpause_data -Pause frame frame generation and reception.
5395  * @sp : private member of the device structure, which is a pointer to the
5396  *      s2io_nic structure.
5397  * @ep : pointer to the structure with pause parameters given by ethtool.
5398  * Description:
5399  * Returns the Pause frame generation and reception capability of the NIC.
5400  * Return value:
5401  *  void
5402  */
5403 static void s2io_ethtool_getpause_data(struct net_device *dev,
5404                                        struct ethtool_pauseparam *ep)
5405 {
5406         u64 val64;
5407         struct s2io_nic *sp = dev->priv;
5408         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5409
5410         val64 = readq(&bar0->rmac_pause_cfg);
5411         if (val64 & RMAC_PAUSE_GEN_ENABLE)
5412                 ep->tx_pause = TRUE;
5413         if (val64 & RMAC_PAUSE_RX_ENABLE)
5414                 ep->rx_pause = TRUE;
5415         ep->autoneg = FALSE;
5416 }
5417
5418 /**
5419  * s2io_ethtool_setpause_data -  set/reset pause frame generation.
5420  * @sp : private member of the device structure, which is a pointer to the
5421  *      s2io_nic structure.
5422  * @ep : pointer to the structure with pause parameters given by ethtool.
5423  * Description:
5424  * It can be used to set or reset Pause frame generation or reception
5425  * support of the NIC.
5426  * Return value:
5427  * int, returns 0 on Success
5428  */
5429
5430 static int s2io_ethtool_setpause_data(struct net_device *dev,
5431                                struct ethtool_pauseparam *ep)
5432 {
5433         u64 val64;
5434         struct s2io_nic *sp = dev->priv;
5435         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5436
5437         val64 = readq(&bar0->rmac_pause_cfg);
5438         if (ep->tx_pause)
5439                 val64 |= RMAC_PAUSE_GEN_ENABLE;
5440         else
5441                 val64 &= ~RMAC_PAUSE_GEN_ENABLE;
5442         if (ep->rx_pause)
5443                 val64 |= RMAC_PAUSE_RX_ENABLE;
5444         else
5445                 val64 &= ~RMAC_PAUSE_RX_ENABLE;
5446         writeq(val64, &bar0->rmac_pause_cfg);
5447         return 0;
5448 }
5449
5450 /**
5451  * read_eeprom - reads 4 bytes of data from user given offset.
5452  * @sp : private member of the device structure, which is a pointer to the
5453  *      s2io_nic structure.
5454  * @off : offset at which the data must be written
5455  * @data : Its an output parameter where the data read at the given
5456  *      offset is stored.
5457  * Description:
5458  * Will read 4 bytes of data from the user given offset and return the
5459  * read data.
5460  * NOTE: Will allow to read only part of the EEPROM visible through the
5461  *   I2C bus.
5462  * Return value:
5463  *  -1 on failure and 0 on success.
5464  */
5465
5466 #define S2IO_DEV_ID             5
5467 static int read_eeprom(struct s2io_nic * sp, int off, u64 * data)
5468 {
5469         int ret = -1;
5470         u32 exit_cnt = 0;
5471         u64 val64;
5472         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5473
5474         if (sp->device_type == XFRAME_I_DEVICE) {
5475                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5476                     I2C_CONTROL_BYTE_CNT(0x3) | I2C_CONTROL_READ |
5477                     I2C_CONTROL_CNTL_START;
5478                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5479
5480                 while (exit_cnt < 5) {
5481                         val64 = readq(&bar0->i2c_control);
5482                         if (I2C_CONTROL_CNTL_END(val64)) {
5483                                 *data = I2C_CONTROL_GET_DATA(val64);
5484                                 ret = 0;
5485                                 break;
5486                         }
5487                         msleep(50);
5488                         exit_cnt++;
5489                 }
5490         }
5491
5492         if (sp->device_type == XFRAME_II_DEVICE) {
5493                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5494                         SPI_CONTROL_BYTECNT(0x3) |
5495                         SPI_CONTROL_CMD(0x3) | SPI_CONTROL_ADDR(off);
5496                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5497                 val64 |= SPI_CONTROL_REQ;
5498                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5499                 while (exit_cnt < 5) {
5500                         val64 = readq(&bar0->spi_control);
5501                         if (val64 & SPI_CONTROL_NACK) {
5502                                 ret = 1;
5503                                 break;
5504                         } else if (val64 & SPI_CONTROL_DONE) {
5505                                 *data = readq(&bar0->spi_data);
5506                                 *data &= 0xffffff;
5507                                 ret = 0;
5508                                 break;
5509                         }
5510                         msleep(50);
5511                         exit_cnt++;
5512                 }
5513         }
5514         return ret;
5515 }
5516
5517 /**
5518  *  write_eeprom - actually writes the relevant part of the data value.
5519  *  @sp : private member of the device structure, which is a pointer to the
5520  *       s2io_nic structure.
5521  *  @off : offset at which the data must be written
5522  *  @data : The data that is to be written
5523  *  @cnt : Number of bytes of the data that are actually to be written into
5524  *  the Eeprom. (max of 3)
5525  * Description:
5526  *  Actually writes the relevant part of the data value into the Eeprom
5527  *  through the I2C bus.
5528  * Return value:
5529  *  0 on success, -1 on failure.
5530  */
5531
5532 static int write_eeprom(struct s2io_nic * sp, int off, u64 data, int cnt)
5533 {
5534         int exit_cnt = 0, ret = -1;
5535         u64 val64;
5536         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5537
5538         if (sp->device_type == XFRAME_I_DEVICE) {
5539                 val64 = I2C_CONTROL_DEV_ID(S2IO_DEV_ID) | I2C_CONTROL_ADDR(off) |
5540                     I2C_CONTROL_BYTE_CNT(cnt) | I2C_CONTROL_SET_DATA((u32)data) |
5541                     I2C_CONTROL_CNTL_START;
5542                 SPECIAL_REG_WRITE(val64, &bar0->i2c_control, LF);
5543
5544                 while (exit_cnt < 5) {
5545                         val64 = readq(&bar0->i2c_control);
5546                         if (I2C_CONTROL_CNTL_END(val64)) {
5547                                 if (!(val64 & I2C_CONTROL_NACK))
5548                                         ret = 0;
5549                                 break;
5550                         }
5551                         msleep(50);
5552                         exit_cnt++;
5553                 }
5554         }
5555
5556         if (sp->device_type == XFRAME_II_DEVICE) {
5557                 int write_cnt = (cnt == 8) ? 0 : cnt;
5558                 writeq(SPI_DATA_WRITE(data,(cnt<<3)), &bar0->spi_data);
5559
5560                 val64 = SPI_CONTROL_KEY(0x9) | SPI_CONTROL_SEL1 |
5561                         SPI_CONTROL_BYTECNT(write_cnt) |
5562                         SPI_CONTROL_CMD(0x2) | SPI_CONTROL_ADDR(off);
5563                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5564                 val64 |= SPI_CONTROL_REQ;
5565                 SPECIAL_REG_WRITE(val64, &bar0->spi_control, LF);
5566                 while (exit_cnt < 5) {
5567                         val64 = readq(&bar0->spi_control);
5568                         if (val64 & SPI_CONTROL_NACK) {
5569                                 ret = 1;
5570                                 break;
5571                         } else if (val64 & SPI_CONTROL_DONE) {
5572                                 ret = 0;
5573                                 break;
5574                         }
5575                         msleep(50);
5576                         exit_cnt++;
5577                 }
5578         }
5579         return ret;
5580 }
5581 static void s2io_vpd_read(struct s2io_nic *nic)
5582 {
5583         u8 *vpd_data;
5584         u8 data;
5585         int i=0, cnt, fail = 0;
5586         int vpd_addr = 0x80;
5587
5588         if (nic->device_type == XFRAME_II_DEVICE) {
5589                 strcpy(nic->product_name, "Xframe II 10GbE network adapter");
5590                 vpd_addr = 0x80;
5591         }
5592         else {
5593                 strcpy(nic->product_name, "Xframe I 10GbE network adapter");
5594                 vpd_addr = 0x50;
5595         }
5596         strcpy(nic->serial_num, "NOT AVAILABLE");
5597
5598         vpd_data = kmalloc(256, GFP_KERNEL);
5599         if (!vpd_data) {
5600                 nic->mac_control.stats_info->sw_stat.mem_alloc_fail_cnt++;
5601                 return;
5602         }
5603         nic->mac_control.stats_info->sw_stat.mem_allocated += 256;
5604
5605         for (i = 0; i < 256; i +=4 ) {
5606                 pci_write_config_byte(nic->pdev, (vpd_addr + 2), i);
5607                 pci_read_config_byte(nic->pdev,  (vpd_addr + 2), &data);
5608                 pci_write_config_byte(nic->pdev, (vpd_addr + 3), 0);
5609                 for (cnt = 0; cnt <5; cnt++) {
5610                         msleep(2);
5611                         pci_read_config_byte(nic->pdev, (vpd_addr + 3), &data);
5612                         if (data == 0x80)
5613                                 break;
5614                 }
5615                 if (cnt >= 5) {
5616                         DBG_PRINT(ERR_DBG, "Read of VPD data failed\n");
5617                         fail = 1;
5618                         break;
5619                 }
5620                 pci_read_config_dword(nic->pdev,  (vpd_addr + 4),
5621                                       (u32 *)&vpd_data[i]);
5622         }
5623
5624         if(!fail) {
5625                 /* read serial number of adapter */
5626                 for (cnt = 0; cnt < 256; cnt++) {
5627                 if ((vpd_data[cnt] == 'S') &&
5628                         (vpd_data[cnt+1] == 'N') &&
5629                         (vpd_data[cnt+2] < VPD_STRING_LEN)) {
5630                                 memset(nic->serial_num, 0, VPD_STRING_LEN);
5631                                 memcpy(nic->serial_num, &vpd_data[cnt + 3],
5632                                         vpd_data[cnt+2]);
5633                                 break;
5634                         }
5635                 }
5636         }
5637
5638         if ((!fail) && (vpd_data[1] < VPD_STRING_LEN)) {
5639                 memset(nic->product_name, 0, vpd_data[1]);
5640                 memcpy(nic->product_name, &vpd_data[3], vpd_data[1]);
5641         }
5642         kfree(vpd_data);
5643         nic->mac_control.stats_info->sw_stat.mem_freed += 256;
5644 }
5645
5646 /**
5647  *  s2io_ethtool_geeprom  - reads the value stored in the Eeprom.
5648  *  @sp : private member of the device structure, which is a pointer to the *       s2io_nic structure.
5649  *  @eeprom : pointer to the user level structure provided by ethtool,
5650  *  containing all relevant information.
5651  *  @data_buf : user defined value to be written into Eeprom.
5652  *  Description: Reads the values stored in the Eeprom at given offset
5653  *  for a given length. Stores these values int the input argument data
5654  *  buffer 'data_buf' and returns these to the caller (ethtool.)
5655  *  Return value:
5656  *  int  0 on success
5657  */
5658
5659 static int s2io_ethtool_geeprom(struct net_device *dev,
5660                          struct ethtool_eeprom *eeprom, u8 * data_buf)
5661 {
5662         u32 i, valid;
5663         u64 data;
5664         struct s2io_nic *sp = dev->priv;
5665
5666         eeprom->magic = sp->pdev->vendor | (sp->pdev->device << 16);
5667
5668         if ((eeprom->offset + eeprom->len) > (XENA_EEPROM_SPACE))
5669                 eeprom->len = XENA_EEPROM_SPACE - eeprom->offset;
5670
5671         for (i = 0; i < eeprom->len; i += 4) {
5672                 if (read_eeprom(sp, (eeprom->offset + i), &data)) {
5673                         DBG_PRINT(ERR_DBG, "Read of EEPROM failed\n");
5674                         return -EFAULT;
5675                 }
5676                 valid = INV(data);
5677                 memcpy((data_buf + i), &valid, 4);
5678         }
5679         return 0;
5680 }
5681
5682 /**
5683  *  s2io_ethtool_seeprom - tries to write the user provided value in Eeprom
5684  *  @sp : private member of the device structure, which is a pointer to the
5685  *  s2io_nic structure.
5686  *  @eeprom : pointer to the user level structure provided by ethtool,
5687  *  containing all relevant information.
5688  *  @data_buf ; user defined value to be written into Eeprom.
5689  *  Description:
5690  *  Tries to write the user provided value in the Eeprom, at the offset
5691  *  given by the user.
5692  *  Return value:
5693  *  0 on success, -EFAULT on failure.
5694  */
5695
5696 static int s2io_ethtool_seeprom(struct net_device *dev,
5697                                 struct ethtool_eeprom *eeprom,
5698                                 u8 * data_buf)
5699 {
5700         int len = eeprom->len, cnt = 0;
5701         u64 valid = 0, data;
5702         struct s2io_nic *sp = dev->priv;
5703
5704         if (eeprom->magic != (sp->pdev->vendor | (sp->pdev->device << 16))) {
5705                 DBG_PRINT(ERR_DBG,
5706                           "ETHTOOL_WRITE_EEPROM Err: Magic value ");
5707                 DBG_PRINT(ERR_DBG, "is wrong, Its not 0x%x\n",
5708                           eeprom->magic);
5709                 return -EFAULT;
5710         }
5711
5712         while (len) {
5713                 data = (u32) data_buf[cnt] & 0x000000FF;
5714                 if (data) {
5715                         valid = (u32) (data << 24);
5716                 } else
5717                         valid = data;
5718
5719                 if (write_eeprom(sp, (eeprom->offset + cnt), valid, 0)) {
5720                         DBG_PRINT(ERR_DBG,
5721                                   "ETHTOOL_WRITE_EEPROM Err: Cannot ");
5722                         DBG_PRINT(ERR_DBG,
5723                                   "write into the specified offset\n");
5724                         return -EFAULT;
5725                 }
5726                 cnt++;
5727                 len--;
5728         }
5729
5730         return 0;
5731 }
5732
5733 /**
5734  * s2io_register_test - reads and writes into all clock domains.
5735  * @sp : private member of the device structure, which is a pointer to the
5736  * s2io_nic structure.
5737  * @data : variable that returns the result of each of the test conducted b
5738  * by the driver.
5739  * Description:
5740  * Read and write into all clock domains. The NIC has 3 clock domains,
5741  * see that registers in all the three regions are accessible.
5742  * Return value:
5743  * 0 on success.
5744  */
5745
5746 static int s2io_register_test(struct s2io_nic * sp, uint64_t * data)
5747 {
5748         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5749         u64 val64 = 0, exp_val;
5750         int fail = 0;
5751
5752         val64 = readq(&bar0->pif_rd_swapper_fb);
5753         if (val64 != 0x123456789abcdefULL) {
5754                 fail = 1;
5755                 DBG_PRINT(INFO_DBG, "Read Test level 1 fails\n");
5756         }
5757
5758         val64 = readq(&bar0->rmac_pause_cfg);
5759         if (val64 != 0xc000ffff00000000ULL) {
5760                 fail = 1;
5761                 DBG_PRINT(INFO_DBG, "Read Test level 2 fails\n");
5762         }
5763
5764         val64 = readq(&bar0->rx_queue_cfg);
5765         if (sp->device_type == XFRAME_II_DEVICE)
5766                 exp_val = 0x0404040404040404ULL;
5767         else
5768                 exp_val = 0x0808080808080808ULL;
5769         if (val64 != exp_val) {
5770                 fail = 1;
5771                 DBG_PRINT(INFO_DBG, "Read Test level 3 fails\n");
5772         }
5773
5774         val64 = readq(&bar0->xgxs_efifo_cfg);
5775         if (val64 != 0x000000001923141EULL) {
5776                 fail = 1;
5777                 DBG_PRINT(INFO_DBG, "Read Test level 4 fails\n");
5778         }
5779
5780         val64 = 0x5A5A5A5A5A5A5A5AULL;
5781         writeq(val64, &bar0->xmsi_data);
5782         val64 = readq(&bar0->xmsi_data);
5783         if (val64 != 0x5A5A5A5A5A5A5A5AULL) {
5784                 fail = 1;
5785                 DBG_PRINT(ERR_DBG, "Write Test level 1 fails\n");
5786         }
5787
5788         val64 = 0xA5A5A5A5A5A5A5A5ULL;
5789         writeq(val64, &bar0->xmsi_data);
5790         val64 = readq(&bar0->xmsi_data);
5791         if (val64 != 0xA5A5A5A5A5A5A5A5ULL) {
5792                 fail = 1;
5793                 DBG_PRINT(ERR_DBG, "Write Test level 2 fails\n");
5794         }
5795
5796         *data = fail;
5797         return fail;
5798 }
5799
5800 /**
5801  * s2io_eeprom_test - to verify that EEprom in the xena can be programmed.
5802  * @sp : private member of the device structure, which is a pointer to the
5803  * s2io_nic structure.
5804  * @data:variable that returns the result of each of the test conducted by
5805  * the driver.
5806  * Description:
5807  * Verify that EEPROM in the xena can be programmed using I2C_CONTROL
5808  * register.
5809  * Return value:
5810  * 0 on success.
5811  */
5812
5813 static int s2io_eeprom_test(struct s2io_nic * sp, uint64_t * data)
5814 {
5815         int fail = 0;
5816         u64 ret_data, org_4F0, org_7F0;
5817         u8 saved_4F0 = 0, saved_7F0 = 0;
5818         struct net_device *dev = sp->dev;
5819
5820         /* Test Write Error at offset 0 */
5821         /* Note that SPI interface allows write access to all areas
5822          * of EEPROM. Hence doing all negative testing only for Xframe I.
5823          */
5824         if (sp->device_type == XFRAME_I_DEVICE)
5825                 if (!write_eeprom(sp, 0, 0, 3))
5826                         fail = 1;
5827
5828         /* Save current values at offsets 0x4F0 and 0x7F0 */
5829         if (!read_eeprom(sp, 0x4F0, &org_4F0))
5830                 saved_4F0 = 1;
5831         if (!read_eeprom(sp, 0x7F0, &org_7F0))
5832                 saved_7F0 = 1;
5833
5834         /* Test Write at offset 4f0 */
5835         if (write_eeprom(sp, 0x4F0, 0x012345, 3))
5836                 fail = 1;
5837         if (read_eeprom(sp, 0x4F0, &ret_data))
5838                 fail = 1;
5839
5840         if (ret_data != 0x012345) {
5841                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x4F0. "
5842                         "Data written %llx Data read %llx\n",
5843                         dev->name, (unsigned long long)0x12345,
5844                         (unsigned long long)ret_data);
5845                 fail = 1;
5846         }
5847
5848         /* Reset the EEPROM data go FFFF */
5849         write_eeprom(sp, 0x4F0, 0xFFFFFF, 3);
5850
5851         /* Test Write Request Error at offset 0x7c */
5852         if (sp->device_type == XFRAME_I_DEVICE)
5853                 if (!write_eeprom(sp, 0x07C, 0, 3))
5854                         fail = 1;
5855
5856         /* Test Write Request at offset 0x7f0 */
5857         if (write_eeprom(sp, 0x7F0, 0x012345, 3))
5858                 fail = 1;
5859         if (read_eeprom(sp, 0x7F0, &ret_data))
5860                 fail = 1;
5861
5862         if (ret_data != 0x012345) {
5863                 DBG_PRINT(ERR_DBG, "%s: eeprom test error at offset 0x7F0. "
5864                         "Data written %llx Data read %llx\n",
5865                         dev->name, (unsigned long long)0x12345,
5866                         (unsigned long long)ret_data);
5867                 fail = 1;
5868         }
5869
5870         /* Reset the EEPROM data go FFFF */
5871         write_eeprom(sp, 0x7F0, 0xFFFFFF, 3);
5872
5873         if (sp->device_type == XFRAME_I_DEVICE) {
5874                 /* Test Write Error at offset 0x80 */
5875                 if (!write_eeprom(sp, 0x080, 0, 3))
5876                         fail = 1;
5877
5878                 /* Test Write Error at offset 0xfc */
5879                 if (!write_eeprom(sp, 0x0FC, 0, 3))
5880                         fail = 1;
5881
5882                 /* Test Write Error at offset 0x100 */
5883                 if (!write_eeprom(sp, 0x100, 0, 3))
5884                         fail = 1;
5885
5886                 /* Test Write Error at offset 4ec */
5887                 if (!write_eeprom(sp, 0x4EC, 0, 3))
5888                         fail = 1;
5889         }
5890
5891         /* Restore values at offsets 0x4F0 and 0x7F0 */
5892         if (saved_4F0)
5893                 write_eeprom(sp, 0x4F0, org_4F0, 3);
5894         if (saved_7F0)
5895                 write_eeprom(sp, 0x7F0, org_7F0, 3);
5896
5897         *data = fail;
5898         return fail;
5899 }
5900
5901 /**
5902  * s2io_bist_test - invokes the MemBist test of the card .
5903  * @sp : private member of the device structure, which is a pointer to the
5904  * s2io_nic structure.
5905  * @data:variable that returns the result of each of the test conducted by
5906  * the driver.
5907  * Description:
5908  * This invokes the MemBist test of the card. We give around
5909  * 2 secs time for the Test to complete. If it's still not complete
5910  * within this peiod, we consider that the test failed.
5911  * Return value:
5912  * 0 on success and -1 on failure.
5913  */
5914
5915 static int s2io_bist_test(struct s2io_nic * sp, uint64_t * data)
5916 {
5917         u8 bist = 0;
5918         int cnt = 0, ret = -1;
5919
5920         pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5921         bist |= PCI_BIST_START;
5922         pci_write_config_word(sp->pdev, PCI_BIST, bist);
5923
5924         while (cnt < 20) {
5925                 pci_read_config_byte(sp->pdev, PCI_BIST, &bist);
5926                 if (!(bist & PCI_BIST_START)) {
5927                         *data = (bist & PCI_BIST_CODE_MASK);
5928                         ret = 0;
5929                         break;
5930                 }
5931                 msleep(100);
5932                 cnt++;
5933         }
5934
5935         return ret;
5936 }
5937
5938 /**
5939  * s2io-link_test - verifies the link state of the nic
5940  * @sp ; private member of the device structure, which is a pointer to the
5941  * s2io_nic structure.
5942  * @data: variable that returns the result of each of the test conducted by
5943  * the driver.
5944  * Description:
5945  * The function verifies the link state of the NIC and updates the input
5946  * argument 'data' appropriately.
5947  * Return value:
5948  * 0 on success.
5949  */
5950
5951 static int s2io_link_test(struct s2io_nic * sp, uint64_t * data)
5952 {
5953         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5954         u64 val64;
5955
5956         val64 = readq(&bar0->adapter_status);
5957         if(!(LINK_IS_UP(val64)))
5958                 *data = 1;
5959         else
5960                 *data = 0;
5961
5962         return *data;
5963 }
5964
5965 /**
5966  * s2io_rldram_test - offline test for access to the RldRam chip on the NIC
5967  * @sp - private member of the device structure, which is a pointer to the
5968  * s2io_nic structure.
5969  * @data - variable that returns the result of each of the test
5970  * conducted by the driver.
5971  * Description:
5972  *  This is one of the offline test that tests the read and write
5973  *  access to the RldRam chip on the NIC.
5974  * Return value:
5975  *  0 on success.
5976  */
5977
5978 static int s2io_rldram_test(struct s2io_nic * sp, uint64_t * data)
5979 {
5980         struct XENA_dev_config __iomem *bar0 = sp->bar0;
5981         u64 val64;
5982         int cnt, iteration = 0, test_fail = 0;
5983
5984         val64 = readq(&bar0->adapter_control);
5985         val64 &= ~ADAPTER_ECC_EN;
5986         writeq(val64, &bar0->adapter_control);
5987
5988         val64 = readq(&bar0->mc_rldram_test_ctrl);
5989         val64 |= MC_RLDRAM_TEST_MODE;
5990         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
5991
5992         val64 = readq(&bar0->mc_rldram_mrs);
5993         val64 |= MC_RLDRAM_QUEUE_SIZE_ENABLE;
5994         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5995
5996         val64 |= MC_RLDRAM_MRS_ENABLE;
5997         SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_mrs, UF);
5998
5999         while (iteration < 2) {
6000                 val64 = 0x55555555aaaa0000ULL;
6001                 if (iteration == 1) {
6002                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6003                 }
6004                 writeq(val64, &bar0->mc_rldram_test_d0);
6005
6006                 val64 = 0xaaaa5a5555550000ULL;
6007                 if (iteration == 1) {
6008                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6009                 }
6010                 writeq(val64, &bar0->mc_rldram_test_d1);
6011
6012                 val64 = 0x55aaaaaaaa5a0000ULL;
6013                 if (iteration == 1) {
6014                         val64 ^= 0xFFFFFFFFFFFF0000ULL;
6015                 }
6016                 writeq(val64, &bar0->mc_rldram_test_d2);
6017
6018                 val64 = (u64) (0x0000003ffffe0100ULL);
6019                 writeq(val64, &bar0->mc_rldram_test_add);
6020
6021                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_WRITE |
6022                         MC_RLDRAM_TEST_GO;
6023                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6024
6025                 for (cnt = 0; cnt < 5; cnt++) {
6026                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6027                         if (val64 & MC_RLDRAM_TEST_DONE)
6028                                 break;
6029                         msleep(200);
6030                 }
6031
6032                 if (cnt == 5)
6033                         break;
6034
6035                 val64 = MC_RLDRAM_TEST_MODE | MC_RLDRAM_TEST_GO;
6036                 SPECIAL_REG_WRITE(val64, &bar0->mc_rldram_test_ctrl, LF);
6037
6038                 for (cnt = 0; cnt < 5; cnt++) {
6039                         val64 = readq(&bar0->mc_rldram_test_ctrl);
6040                         if (val64 & MC_RLDRAM_TEST_DONE)
6041                                 break;
6042                         msleep(500);
6043                 }
6044
6045                 if (cnt == 5)
6046                         break;
6047
6048                 val64 = readq(&bar0->mc_rldram_test_ctrl);
6049                 if (!(val64 & MC_RLDRAM_TEST_PASS))
6050                         test_fail = 1;
6051
6052                 iteration++;
6053         }
6054
6055         *data = test_fail;
6056
6057         /* Bring the adapter out of test mode */
6058         SPECIAL_REG_WRITE(0, &bar0->mc_rldram_test_ctrl, LF);
6059
6060         return test_fail;
6061 }
6062
6063 /**
6064  *  s2io_ethtool_test - conducts 6 tsets to determine the health of card.
6065  *  @sp : private member of the device structure, which is a pointer to the
6066  *  s2io_nic structure.
6067  *  @ethtest : pointer to a ethtool command specific structure that will be
6068  *  returned to the user.
6069  *  @data : variable that returns the result of each of the test
6070  * conducted by the driver.
6071  * Description:
6072  *  This function conducts 6 tests ( 4 offline and 2 online) to determine
6073  *  the health of the card.
6074  * Return value:
6075  *  void
6076  */
6077
6078 static void s2io_ethtool_test(struct net_device *dev,
6079                               struct ethtool_test *ethtest,
6080                               uint64_t * data)
6081 {
6082         struct s2io_nic *sp = dev->priv;
6083         int orig_state = netif_running(sp->dev);
6084
6085         if (ethtest->flags == ETH_TEST_FL_OFFLINE) {
6086                 /* Offline Tests. */
6087                 if (orig_state)
6088                         s2io_close(sp->dev);
6089
6090                 if (s2io_register_test(sp, &data[0]))
6091                         ethtest->flags |= ETH_TEST_FL_FAILED;
6092
6093                 s2io_reset(sp);
6094
6095                 if (s2io_rldram_test(sp, &data[3]))
6096                         ethtest->flags |= ETH_TEST_FL_FAILED;
6097
6098                 s2io_reset(sp);
6099
6100                 if (s2io_eeprom_test(sp, &data[1]))
6101                         ethtest->flags |= ETH_TEST_FL_FAILED;
6102
6103                 if (s2io_bist_test(sp, &data[4]))
6104                         ethtest->flags |= ETH_TEST_FL_FAILED;
6105
6106                 if (orig_state)
6107                         s2io_open(sp->dev);
6108
6109                 data[2] = 0;
6110         } else {
6111                 /* Online Tests. */
6112                 if (!orig_state) {
6113                         DBG_PRINT(ERR_DBG,
6114                                   "%s: is not up, cannot run test\n",
6115                                   dev->name);
6116                         data[0] = -1;
6117                         data[1] = -1;
6118                         data[2] = -1;
6119                         data[3] = -1;
6120                         data[4] = -1;
6121                 }
6122
6123                 if (s2io_link_test(sp, &data[2]))
6124                         ethtest->flags |= ETH_TEST_FL_FAILED;
6125
6126                 data[0] = 0;
6127                 data[1] = 0;
6128                 data[3] = 0;
6129                 data[4] = 0;
6130         }
6131 }
6132
6133 static void s2io_get_ethtool_stats(struct net_device *dev,
6134                                    struct ethtool_stats *estats,
6135                                    u64 * tmp_stats)
6136 {
6137         int i = 0, k;
6138         struct s2io_nic *sp = dev->priv;
6139         struct stat_block *stat_info = sp->mac_control.stats_info;
6140
6141         s2io_updt_stats(sp);
6142         tmp_stats[i++] =
6143                 (u64)le32_to_cpu(stat_info->tmac_frms_oflow) << 32  |
6144                 le32_to_cpu(stat_info->tmac_frms);
6145         tmp_stats[i++] =
6146                 (u64)le32_to_cpu(stat_info->tmac_data_octets_oflow) << 32 |
6147                 le32_to_cpu(stat_info->tmac_data_octets);
6148         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_drop_frms);
6149         tmp_stats[i++] =
6150                 (u64)le32_to_cpu(stat_info->tmac_mcst_frms_oflow) << 32 |
6151                 le32_to_cpu(stat_info->tmac_mcst_frms);
6152         tmp_stats[i++] =
6153                 (u64)le32_to_cpu(stat_info->tmac_bcst_frms_oflow) << 32 |
6154                 le32_to_cpu(stat_info->tmac_bcst_frms);
6155         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_pause_ctrl_frms);
6156         tmp_stats[i++] =
6157                 (u64)le32_to_cpu(stat_info->tmac_ttl_octets_oflow) << 32 |
6158                 le32_to_cpu(stat_info->tmac_ttl_octets);
6159         tmp_stats[i++] =
6160                 (u64)le32_to_cpu(stat_info->tmac_ucst_frms_oflow) << 32 |
6161                 le32_to_cpu(stat_info->tmac_ucst_frms);
6162         tmp_stats[i++] =
6163                 (u64)le32_to_cpu(stat_info->tmac_nucst_frms_oflow) << 32 |
6164                 le32_to_cpu(stat_info->tmac_nucst_frms);
6165         tmp_stats[i++] =
6166                 (u64)le32_to_cpu(stat_info->tmac_any_err_frms_oflow) << 32 |
6167                 le32_to_cpu(stat_info->tmac_any_err_frms);
6168         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_ttl_less_fb_octets);
6169         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_vld_ip_octets);
6170         tmp_stats[i++] =
6171                 (u64)le32_to_cpu(stat_info->tmac_vld_ip_oflow) << 32 |
6172                 le32_to_cpu(stat_info->tmac_vld_ip);
6173         tmp_stats[i++] =
6174                 (u64)le32_to_cpu(stat_info->tmac_drop_ip_oflow) << 32 |
6175                 le32_to_cpu(stat_info->tmac_drop_ip);
6176         tmp_stats[i++] =
6177                 (u64)le32_to_cpu(stat_info->tmac_icmp_oflow) << 32 |
6178                 le32_to_cpu(stat_info->tmac_icmp);
6179         tmp_stats[i++] =
6180                 (u64)le32_to_cpu(stat_info->tmac_rst_tcp_oflow) << 32 |
6181                 le32_to_cpu(stat_info->tmac_rst_tcp);
6182         tmp_stats[i++] = le64_to_cpu(stat_info->tmac_tcp);
6183         tmp_stats[i++] = (u64)le32_to_cpu(stat_info->tmac_udp_oflow) << 32 |
6184                 le32_to_cpu(stat_info->tmac_udp);
6185         tmp_stats[i++] =
6186                 (u64)le32_to_cpu(stat_info->rmac_vld_frms_oflow) << 32 |
6187                 le32_to_cpu(stat_info->rmac_vld_frms);
6188         tmp_stats[i++] =
6189                 (u64)le32_to_cpu(stat_info->rmac_data_octets_oflow) << 32 |
6190                 le32_to_cpu(stat_info->rmac_data_octets);
6191         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_fcs_err_frms);
6192         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_drop_frms);
6193         tmp_stats[i++] =
6194                 (u64)le32_to_cpu(stat_info->rmac_vld_mcst_frms_oflow) << 32 |
6195                 le32_to_cpu(stat_info->rmac_vld_mcst_frms);
6196         tmp_stats[i++] =
6197                 (u64)le32_to_cpu(stat_info->rmac_vld_bcst_frms_oflow) << 32 |
6198                 le32_to_cpu(stat_info->rmac_vld_bcst_frms);
6199         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_in_rng_len_err_frms);
6200         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_out_rng_len_err_frms);
6201         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_long_frms);
6202         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_pause_ctrl_frms);
6203         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_unsup_ctrl_frms);
6204         tmp_stats[i++] =
6205                 (u64)le32_to_cpu(stat_info->rmac_ttl_octets_oflow) << 32 |
6206                 le32_to_cpu(stat_info->rmac_ttl_octets);
6207         tmp_stats[i++] =
6208                 (u64)le32_to_cpu(stat_info->rmac_accepted_ucst_frms_oflow)
6209                 << 32 | le32_to_cpu(stat_info->rmac_accepted_ucst_frms);
6210         tmp_stats[i++] =
6211                 (u64)le32_to_cpu(stat_info->rmac_accepted_nucst_frms_oflow)
6212                  << 32 | le32_to_cpu(stat_info->rmac_accepted_nucst_frms);
6213         tmp_stats[i++] =
6214                 (u64)le32_to_cpu(stat_info->rmac_discarded_frms_oflow) << 32 |
6215                 le32_to_cpu(stat_info->rmac_discarded_frms);
6216         tmp_stats[i++] =
6217                 (u64)le32_to_cpu(stat_info->rmac_drop_events_oflow)
6218                  << 32 | le32_to_cpu(stat_info->rmac_drop_events);
6219         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_less_fb_octets);
6220         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_frms);
6221         tmp_stats[i++] =
6222                 (u64)le32_to_cpu(stat_info->rmac_usized_frms_oflow) << 32 |
6223                 le32_to_cpu(stat_info->rmac_usized_frms);
6224         tmp_stats[i++] =
6225                 (u64)le32_to_cpu(stat_info->rmac_osized_frms_oflow) << 32 |
6226                 le32_to_cpu(stat_info->rmac_osized_frms);
6227         tmp_stats[i++] =
6228                 (u64)le32_to_cpu(stat_info->rmac_frag_frms_oflow) << 32 |
6229                 le32_to_cpu(stat_info->rmac_frag_frms);
6230         tmp_stats[i++] =
6231                 (u64)le32_to_cpu(stat_info->rmac_jabber_frms_oflow) << 32 |
6232                 le32_to_cpu(stat_info->rmac_jabber_frms);
6233         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_64_frms);
6234         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_65_127_frms);
6235         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_128_255_frms);
6236         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_256_511_frms);
6237         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_512_1023_frms);
6238         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_1024_1518_frms);
6239         tmp_stats[i++] =
6240                 (u64)le32_to_cpu(stat_info->rmac_ip_oflow) << 32 |
6241                 le32_to_cpu(stat_info->rmac_ip);
6242         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ip_octets);
6243         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_hdr_err_ip);
6244         tmp_stats[i++] =
6245                 (u64)le32_to_cpu(stat_info->rmac_drop_ip_oflow) << 32 |
6246                 le32_to_cpu(stat_info->rmac_drop_ip);
6247         tmp_stats[i++] =
6248                 (u64)le32_to_cpu(stat_info->rmac_icmp_oflow) << 32 |
6249                 le32_to_cpu(stat_info->rmac_icmp);
6250         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_tcp);
6251         tmp_stats[i++] =
6252                 (u64)le32_to_cpu(stat_info->rmac_udp_oflow) << 32 |
6253                 le32_to_cpu(stat_info->rmac_udp);
6254         tmp_stats[i++] =
6255                 (u64)le32_to_cpu(stat_info->rmac_err_drp_udp_oflow) << 32 |
6256                 le32_to_cpu(stat_info->rmac_err_drp_udp);
6257         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_err_sym);
6258         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q0);
6259         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q1);
6260         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q2);
6261         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q3);
6262         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q4);
6263         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q5);
6264         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q6);
6265         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_frms_q7);
6266         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q0);
6267         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q1);
6268         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q2);
6269         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q3);
6270         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q4);
6271         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q5);
6272         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q6);
6273         tmp_stats[i++] = le16_to_cpu(stat_info->rmac_full_q7);
6274         tmp_stats[i++] =
6275                 (u64)le32_to_cpu(stat_info->rmac_pause_cnt_oflow) << 32 |
6276                 le32_to_cpu(stat_info->rmac_pause_cnt);
6277         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_data_err_cnt);
6278         tmp_stats[i++] = le64_to_cpu(stat_info->rmac_xgmii_ctrl_err_cnt);
6279         tmp_stats[i++] =
6280                 (u64)le32_to_cpu(stat_info->rmac_accepted_ip_oflow) << 32 |
6281                 le32_to_cpu(stat_info->rmac_accepted_ip);
6282         tmp_stats[i++] = le32_to_cpu(stat_info->rmac_err_tcp);
6283         tmp_stats[i++] = le32_to_cpu(stat_info->rd_req_cnt);
6284         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_cnt);
6285         tmp_stats[i++] = le32_to_cpu(stat_info->new_rd_req_rtry_cnt);
6286         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_cnt);
6287         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_rd_ack_cnt);
6288         tmp_stats[i++] = le32_to_cpu(stat_info->wr_req_cnt);
6289         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_cnt);
6290         tmp_stats[i++] = le32_to_cpu(stat_info->new_wr_req_rtry_cnt);
6291         tmp_stats[i++] = le32_to_cpu(stat_info->wr_rtry_cnt);
6292         tmp_stats[i++] = le32_to_cpu(stat_info->wr_disc_cnt);
6293         tmp_stats[i++] = le32_to_cpu(stat_info->rd_rtry_wr_ack_cnt);
6294         tmp_stats[i++] = le32_to_cpu(stat_info->txp_wr_cnt);
6295         tmp_stats[i++] = le32_to_cpu(stat_info->txd_rd_cnt);
6296         tmp_stats[i++] = le32_to_cpu(stat_info->txd_wr_cnt);
6297         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_rd_cnt);
6298         tmp_stats[i++] = le32_to_cpu(stat_info->rxd_wr_cnt);
6299         tmp_stats[i++] = le32_to_cpu(stat_info->txf_rd_cnt);
6300         tmp_stats[i++] = le32_to_cpu(stat_info->rxf_wr_cnt);
6301
6302         /* Enhanced statistics exist only for Hercules */
6303         if(sp->device_type == XFRAME_II_DEVICE) {
6304                 tmp_stats[i++] =
6305                                 le64_to_cpu(stat_info->rmac_ttl_1519_4095_frms);
6306                 tmp_stats[i++] =
6307                                 le64_to_cpu(stat_info->rmac_ttl_4096_8191_frms);
6308                 tmp_stats[i++] =
6309                                 le64_to_cpu(stat_info->rmac_ttl_8192_max_frms);
6310                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_ttl_gt_max_frms);
6311                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_osized_alt_frms);
6312                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_jabber_alt_frms);
6313                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_gt_max_alt_frms);
6314                 tmp_stats[i++] = le64_to_cpu(stat_info->rmac_vlan_frms);
6315                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_len_discard);
6316                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_fcs_discard);
6317                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_pf_discard);
6318                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_da_discard);
6319                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_red_discard);
6320                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_rts_discard);
6321                 tmp_stats[i++] = le32_to_cpu(stat_info->rmac_ingm_full_discard);
6322                 tmp_stats[i++] = le32_to_cpu(stat_info->link_fault_cnt);
6323         }
6324
6325         tmp_stats[i++] = 0;
6326         tmp_stats[i++] = stat_info->sw_stat.single_ecc_errs;
6327         tmp_stats[i++] = stat_info->sw_stat.double_ecc_errs;
6328         tmp_stats[i++] = stat_info->sw_stat.parity_err_cnt;
6329         tmp_stats[i++] = stat_info->sw_stat.serious_err_cnt;
6330         tmp_stats[i++] = stat_info->sw_stat.soft_reset_cnt;
6331         tmp_stats[i++] = stat_info->sw_stat.fifo_full_cnt;
6332         for (k = 0; k < MAX_RX_RINGS; k++)
6333                 tmp_stats[i++] = stat_info->sw_stat.ring_full_cnt[k];
6334         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_high;
6335         tmp_stats[i++] = stat_info->xpak_stat.alarm_transceiver_temp_low;
6336         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_high;
6337         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_bias_current_low;
6338         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_high;
6339         tmp_stats[i++] = stat_info->xpak_stat.alarm_laser_output_power_low;
6340         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_high;
6341         tmp_stats[i++] = stat_info->xpak_stat.warn_transceiver_temp_low;
6342         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_high;
6343         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_bias_current_low;
6344         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_high;
6345         tmp_stats[i++] = stat_info->xpak_stat.warn_laser_output_power_low;
6346         tmp_stats[i++] = stat_info->sw_stat.clubbed_frms_cnt;
6347         tmp_stats[i++] = stat_info->sw_stat.sending_both;
6348         tmp_stats[i++] = stat_info->sw_stat.outof_sequence_pkts;
6349         tmp_stats[i++] = stat_info->sw_stat.flush_max_pkts;
6350         if (stat_info->sw_stat.num_aggregations) {
6351                 u64 tmp = stat_info->sw_stat.sum_avg_pkts_aggregated;
6352                 int count = 0;
6353                 /*
6354                  * Since 64-bit divide does not work on all platforms,
6355                  * do repeated subtraction.
6356                  */
6357                 while (tmp >= stat_info->sw_stat.num_aggregations) {
6358                         tmp -= stat_info->sw_stat.num_aggregations;
6359                         count++;
6360                 }
6361                 tmp_stats[i++] = count;
6362         }
6363         else
6364                 tmp_stats[i++] = 0;
6365         tmp_stats[i++] = stat_info->sw_stat.mem_alloc_fail_cnt;
6366         tmp_stats[i++] = stat_info->sw_stat.pci_map_fail_cnt;
6367         tmp_stats[i++] = stat_info->sw_stat.watchdog_timer_cnt;
6368         tmp_stats[i++] = stat_info->sw_stat.mem_allocated;
6369         tmp_stats[i++] = stat_info->sw_stat.mem_freed;
6370         tmp_stats[i++] = stat_info->sw_stat.link_up_cnt;
6371         tmp_stats[i++] = stat_info->sw_stat.link_down_cnt;
6372         tmp_stats[i++] = stat_info->sw_stat.link_up_time;
6373         tmp_stats[i++] = stat_info->sw_stat.link_down_time;
6374
6375         tmp_stats[i++] = stat_info->sw_stat.tx_buf_abort_cnt;
6376         tmp_stats[i++] = stat_info->sw_stat.tx_desc_abort_cnt;
6377         tmp_stats[i++] = stat_info->sw_stat.tx_parity_err_cnt;
6378         tmp_stats[i++] = stat_info->sw_stat.tx_link_loss_cnt;
6379         tmp_stats[i++] = stat_info->sw_stat.tx_list_proc_err_cnt;
6380
6381         tmp_stats[i++] = stat_info->sw_stat.rx_parity_err_cnt;
6382         tmp_stats[i++] = stat_info->sw_stat.rx_abort_cnt;
6383         tmp_stats[i++] = stat_info->sw_stat.rx_parity_abort_cnt;
6384         tmp_stats[i++] = stat_info->sw_stat.rx_rda_fail_cnt;
6385         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_prot_cnt;
6386         tmp_stats[i++] = stat_info->sw_stat.rx_fcs_err_cnt;
6387         tmp_stats[i++] = stat_info->sw_stat.rx_buf_size_err_cnt;
6388         tmp_stats[i++] = stat_info->sw_stat.rx_rxd_corrupt_cnt;
6389         tmp_stats[i++] = stat_info->sw_stat.rx_unkn_err_cnt;
6390         tmp_stats[i++] = stat_info->sw_stat.tda_err_cnt;
6391         tmp_stats[i++] = stat_info->sw_stat.pfc_err_cnt;
6392         tmp_stats[i++] = stat_info->sw_stat.pcc_err_cnt;
6393         tmp_stats[i++] = stat_info->sw_stat.tti_err_cnt;
6394         tmp_stats[i++] = stat_info->sw_stat.tpa_err_cnt;
6395         tmp_stats[i++] = stat_info->sw_stat.sm_err_cnt;
6396         tmp_stats[i++] = stat_info->sw_stat.lso_err_cnt;
6397         tmp_stats[i++] = stat_info->sw_stat.mac_tmac_err_cnt;
6398         tmp_stats[i++] = stat_info->sw_stat.mac_rmac_err_cnt;
6399         tmp_stats[i++] = stat_info->sw_stat.xgxs_txgxs_err_cnt;
6400         tmp_stats[i++] = stat_info->sw_stat.xgxs_rxgxs_err_cnt;
6401         tmp_stats[i++] = stat_info->sw_stat.rc_err_cnt;
6402         tmp_stats[i++] = stat_info->sw_stat.prc_pcix_err_cnt;
6403         tmp_stats[i++] = stat_info->sw_stat.rpa_err_cnt;
6404         tmp_stats[i++] = stat_info->sw_stat.rda_err_cnt;
6405         tmp_stats[i++] = stat_info->sw_stat.rti_err_cnt;
6406         tmp_stats[i++] = stat_info->sw_stat.mc_err_cnt;
6407 }
6408
6409 static int s2io_ethtool_get_regs_len(struct net_device *dev)
6410 {
6411         return (XENA_REG_SPACE);
6412 }
6413
6414
6415 static u32 s2io_ethtool_get_rx_csum(struct net_device * dev)
6416 {
6417         struct s2io_nic *sp = dev->priv;
6418
6419         return (sp->rx_csum);
6420 }
6421
6422 static int s2io_ethtool_set_rx_csum(struct net_device *dev, u32 data)
6423 {
6424         struct s2io_nic *sp = dev->priv;
6425
6426         if (data)
6427                 sp->rx_csum = 1;
6428         else
6429                 sp->rx_csum = 0;
6430
6431         return 0;
6432 }
6433
6434 static int s2io_get_eeprom_len(struct net_device *dev)
6435 {
6436         return (XENA_EEPROM_SPACE);
6437 }
6438
6439 static int s2io_get_sset_count(struct net_device *dev, int sset)
6440 {
6441         struct s2io_nic *sp = dev->priv;
6442
6443         switch (sset) {
6444         case ETH_SS_TEST:
6445                 return S2IO_TEST_LEN;
6446         case ETH_SS_STATS:
6447                 switch(sp->device_type) {
6448                 case XFRAME_I_DEVICE:
6449                         return XFRAME_I_STAT_LEN;
6450                 case XFRAME_II_DEVICE:
6451                         return XFRAME_II_STAT_LEN;
6452                 default:
6453                         return 0;
6454                 }
6455         default:
6456                 return -EOPNOTSUPP;
6457         }
6458 }
6459
6460 static void s2io_ethtool_get_strings(struct net_device *dev,
6461                                      u32 stringset, u8 * data)
6462 {
6463         int stat_size = 0;
6464         struct s2io_nic *sp = dev->priv;
6465
6466         switch (stringset) {
6467         case ETH_SS_TEST:
6468                 memcpy(data, s2io_gstrings, S2IO_STRINGS_LEN);
6469                 break;
6470         case ETH_SS_STATS:
6471                 stat_size = sizeof(ethtool_xena_stats_keys);
6472                 memcpy(data, &ethtool_xena_stats_keys,stat_size);
6473                 if(sp->device_type == XFRAME_II_DEVICE) {
6474                         memcpy(data + stat_size,
6475                                 &ethtool_enhanced_stats_keys,
6476                                 sizeof(ethtool_enhanced_stats_keys));
6477                         stat_size += sizeof(ethtool_enhanced_stats_keys);
6478                 }
6479
6480                 memcpy(data + stat_size, &ethtool_driver_stats_keys,
6481                         sizeof(ethtool_driver_stats_keys));
6482         }
6483 }
6484
6485 static int s2io_ethtool_op_set_tx_csum(struct net_device *dev, u32 data)
6486 {
6487         if (data)
6488                 dev->features |= NETIF_F_IP_CSUM;
6489         else
6490                 dev->features &= ~NETIF_F_IP_CSUM;
6491
6492         return 0;
6493 }
6494
6495 static u32 s2io_ethtool_op_get_tso(struct net_device *dev)
6496 {
6497         return (dev->features & NETIF_F_TSO) != 0;
6498 }
6499 static int s2io_ethtool_op_set_tso(struct net_device *dev, u32 data)
6500 {
6501         if (data)
6502                 dev->features |= (NETIF_F_TSO | NETIF_F_TSO6);
6503         else
6504                 dev->features &= ~(NETIF_F_TSO | NETIF_F_TSO6);
6505
6506         return 0;
6507 }
6508
6509 static const struct ethtool_ops netdev_ethtool_ops = {
6510         .get_settings = s2io_ethtool_gset,
6511         .set_settings = s2io_ethtool_sset,
6512         .get_drvinfo = s2io_ethtool_gdrvinfo,
6513         .get_regs_len = s2io_ethtool_get_regs_len,
6514         .get_regs = s2io_ethtool_gregs,
6515         .get_link = ethtool_op_get_link,
6516         .get_eeprom_len = s2io_get_eeprom_len,
6517         .get_eeprom = s2io_ethtool_geeprom,
6518         .set_eeprom = s2io_ethtool_seeprom,
6519         .get_ringparam = s2io_ethtool_gringparam,
6520         .get_pauseparam = s2io_ethtool_getpause_data,
6521         .set_pauseparam = s2io_ethtool_setpause_data,
6522         .get_rx_csum = s2io_ethtool_get_rx_csum,
6523         .set_rx_csum = s2io_ethtool_set_rx_csum,
6524         .set_tx_csum = s2io_ethtool_op_set_tx_csum,
6525         .set_sg = ethtool_op_set_sg,
6526         .get_tso = s2io_ethtool_op_get_tso,
6527         .set_tso = s2io_ethtool_op_set_tso,
6528         .set_ufo = ethtool_op_set_ufo,
6529         .self_test = s2io_ethtool_test,
6530         .get_strings = s2io_ethtool_get_strings,
6531         .phys_id = s2io_ethtool_idnic,
6532         .get_ethtool_stats = s2io_get_ethtool_stats,
6533         .get_sset_count = s2io_get_sset_count,
6534 };
6535
6536 /**
6537  *  s2io_ioctl - Entry point for the Ioctl
6538  *  @dev :  Device pointer.
6539  *  @ifr :  An IOCTL specefic structure, that can contain a pointer to
6540  *  a proprietary structure used to pass information to the driver.
6541  *  @cmd :  This is used to distinguish between the different commands that
6542  *  can be passed to the IOCTL functions.
6543  *  Description:
6544  *  Currently there are no special functionality supported in IOCTL, hence
6545  *  function always return EOPNOTSUPPORTED
6546  */
6547
6548 static int s2io_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
6549 {
6550         return -EOPNOTSUPP;
6551 }
6552
6553 /**
6554  *  s2io_change_mtu - entry point to change MTU size for the device.
6555  *   @dev : device pointer.
6556  *   @new_mtu : the new MTU size for the device.
6557  *   Description: A driver entry point to change MTU size for the device.
6558  *   Before changing the MTU the device must be stopped.
6559  *  Return value:
6560  *   0 on success and an appropriate (-)ve integer as defined in errno.h
6561  *   file on failure.
6562  */
6563
6564 static int s2io_change_mtu(struct net_device *dev, int new_mtu)
6565 {
6566         struct s2io_nic *sp = dev->priv;
6567         int ret = 0;
6568
6569         if ((new_mtu < MIN_MTU) || (new_mtu > S2IO_JUMBO_SIZE)) {
6570                 DBG_PRINT(ERR_DBG, "%s: MTU size is invalid.\n",
6571                           dev->name);
6572                 return -EPERM;
6573         }
6574
6575         dev->mtu = new_mtu;
6576         if (netif_running(dev)) {
6577                 s2io_card_down(sp);
6578                 netif_stop_queue(dev);
6579                 ret = s2io_card_up(sp);
6580                 if (ret) {
6581                         DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
6582                                   __FUNCTION__);
6583                         return ret;
6584                 }
6585                 if (netif_queue_stopped(dev))
6586                         netif_wake_queue(dev);
6587         } else { /* Device is down */
6588                 struct XENA_dev_config __iomem *bar0 = sp->bar0;
6589                 u64 val64 = new_mtu;
6590
6591                 writeq(vBIT(val64, 2, 14), &bar0->rmac_max_pyld_len);
6592         }
6593
6594         return ret;
6595 }
6596
6597 /**
6598  *  s2io_tasklet - Bottom half of the ISR.
6599  *  @dev_adr : address of the device structure in dma_addr_t format.
6600  *  Description:
6601  *  This is the tasklet or the bottom half of the ISR. This is
6602  *  an extension of the ISR which is scheduled by the scheduler to be run
6603  *  when the load on the CPU is low. All low priority tasks of the ISR can
6604  *  be pushed into the tasklet. For now the tasklet is used only to
6605  *  replenish the Rx buffers in the Rx buffer descriptors.
6606  *  Return value:
6607  *  void.
6608  */
6609
6610 static void s2io_tasklet(unsigned long dev_addr)
6611 {
6612         struct net_device *dev = (struct net_device *) dev_addr;
6613         struct s2io_nic *sp = dev->priv;
6614         int i, ret;
6615         struct mac_info *mac_control;
6616         struct config_param *config;
6617
6618         mac_control = &sp->mac_control;
6619         config = &sp->config;
6620
6621         if (!TASKLET_IN_USE) {
6622                 for (i = 0; i < config->rx_ring_num; i++) {
6623                         ret = fill_rx_buffers(sp, i);
6624                         if (ret == -ENOMEM) {
6625                                 DBG_PRINT(INFO_DBG, "%s: Out of ",
6626                                           dev->name);
6627                                 DBG_PRINT(INFO_DBG, "memory in tasklet\n");
6628                                 break;
6629                         } else if (ret == -EFILL) {
6630                                 DBG_PRINT(INFO_DBG,
6631                                           "%s: Rx Ring %d is full\n",
6632                                           dev->name, i);
6633                                 break;
6634                         }
6635                 }
6636                 clear_bit(0, (&sp->tasklet_status));
6637         }
6638 }
6639
6640 /**
6641  * s2io_set_link - Set the LInk status
6642  * @data: long pointer to device private structue
6643  * Description: Sets the link status for the adapter
6644  */
6645
6646 static void s2io_set_link(struct work_struct *work)
6647 {
6648         struct s2io_nic *nic = container_of(work, struct s2io_nic, set_link_task);
6649         struct net_device *dev = nic->dev;
6650         struct XENA_dev_config __iomem *bar0 = nic->bar0;
6651         register u64 val64;
6652         u16 subid;
6653
6654         rtnl_lock();
6655
6656         if (!netif_running(dev))
6657                 goto out_unlock;
6658
6659         if (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(nic->state))) {
6660                 /* The card is being reset, no point doing anything */
6661                 goto out_unlock;
6662         }
6663
6664         subid = nic->pdev->subsystem_device;
6665         if (s2io_link_fault_indication(nic) == MAC_RMAC_ERR_TIMER) {
6666                 /*
6667                  * Allow a small delay for the NICs self initiated
6668                  * cleanup to complete.
6669                  */
6670                 msleep(100);
6671         }
6672
6673         val64 = readq(&bar0->adapter_status);
6674         if (LINK_IS_UP(val64)) {
6675                 if (!(readq(&bar0->adapter_control) & ADAPTER_CNTL_EN)) {
6676                         if (verify_xena_quiescence(nic)) {
6677                                 val64 = readq(&bar0->adapter_control);
6678                                 val64 |= ADAPTER_CNTL_EN;
6679                                 writeq(val64, &bar0->adapter_control);
6680                                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(
6681                                         nic->device_type, subid)) {
6682                                         val64 = readq(&bar0->gpio_control);
6683                                         val64 |= GPIO_CTRL_GPIO_0;
6684                                         writeq(val64, &bar0->gpio_control);
6685                                         val64 = readq(&bar0->gpio_control);
6686                                 } else {
6687                                         val64 |= ADAPTER_LED_ON;
6688                                         writeq(val64, &bar0->adapter_control);
6689                                 }
6690                                 nic->device_enabled_once = TRUE;
6691                         } else {
6692                                 DBG_PRINT(ERR_DBG, "%s: Error: ", dev->name);
6693                                 DBG_PRINT(ERR_DBG, "device is not Quiescent\n");
6694                                 netif_stop_queue(dev);
6695                         }
6696                 }
6697                 val64 = readq(&bar0->adapter_control);
6698                 val64 |= ADAPTER_LED_ON;
6699                 writeq(val64, &bar0->adapter_control);
6700                 s2io_link(nic, LINK_UP);
6701         } else {
6702                 if (CARDS_WITH_FAULTY_LINK_INDICATORS(nic->device_type,
6703                                                       subid)) {
6704                         val64 = readq(&bar0->gpio_control);
6705                         val64 &= ~GPIO_CTRL_GPIO_0;
6706                         writeq(val64, &bar0->gpio_control);
6707                         val64 = readq(&bar0->gpio_control);
6708                 }
6709                 /* turn off LED */
6710                 val64 = readq(&bar0->adapter_control);
6711                 val64 = val64 &(~ADAPTER_LED_ON);
6712                 writeq(val64, &bar0->adapter_control);
6713                 s2io_link(nic, LINK_DOWN);
6714         }
6715         clear_bit(__S2IO_STATE_LINK_TASK, &(nic->state));
6716
6717 out_unlock:
6718         rtnl_unlock();
6719 }
6720
6721 static int set_rxd_buffer_pointer(struct s2io_nic *sp, struct RxD_t *rxdp,
6722                                 struct buffAdd *ba,
6723                                 struct sk_buff **skb, u64 *temp0, u64 *temp1,
6724                                 u64 *temp2, int size)
6725 {
6726         struct net_device *dev = sp->dev;
6727         struct swStat *stats = &sp->mac_control.stats_info->sw_stat;
6728
6729         if ((sp->rxd_mode == RXD_MODE_1) && (rxdp->Host_Control == 0)) {
6730                 struct RxD1 *rxdp1 = (struct RxD1 *)rxdp;
6731                 /* allocate skb */
6732                 if (*skb) {
6733                         DBG_PRINT(INFO_DBG, "SKB is not NULL\n");
6734                         /*
6735                          * As Rx frame are not going to be processed,
6736                          * using same mapped address for the Rxd
6737                          * buffer pointer
6738                          */
6739                         rxdp1->Buffer0_ptr = *temp0;
6740                 } else {
6741                         *skb = dev_alloc_skb(size);
6742                         if (!(*skb)) {
6743                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6744                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6745                                 DBG_PRINT(INFO_DBG, "1 buf mode SKBs\n");
6746                                 sp->mac_control.stats_info->sw_stat. \
6747                                         mem_alloc_fail_cnt++;
6748                                 return -ENOMEM ;
6749                         }
6750                         sp->mac_control.stats_info->sw_stat.mem_allocated
6751                                 += (*skb)->truesize;
6752                         /* storing the mapped addr in a temp variable
6753                          * such it will be used for next rxd whose
6754                          * Host Control is NULL
6755                          */
6756                         rxdp1->Buffer0_ptr = *temp0 =
6757                                 pci_map_single( sp->pdev, (*skb)->data,
6758                                         size - NET_IP_ALIGN,
6759                                         PCI_DMA_FROMDEVICE);
6760                         if( (rxdp1->Buffer0_ptr == 0) ||
6761                                 (rxdp1->Buffer0_ptr == DMA_ERROR_CODE)) {
6762                                 goto memalloc_failed;
6763                         }
6764                         rxdp->Host_Control = (unsigned long) (*skb);
6765                 }
6766         } else if ((sp->rxd_mode == RXD_MODE_3B) && (rxdp->Host_Control == 0)) {
6767                 struct RxD3 *rxdp3 = (struct RxD3 *)rxdp;
6768                 /* Two buffer Mode */
6769                 if (*skb) {
6770                         rxdp3->Buffer2_ptr = *temp2;
6771                         rxdp3->Buffer0_ptr = *temp0;
6772                         rxdp3->Buffer1_ptr = *temp1;
6773                 } else {
6774                         *skb = dev_alloc_skb(size);
6775                         if (!(*skb)) {
6776                                 DBG_PRINT(INFO_DBG, "%s: Out of ", dev->name);
6777                                 DBG_PRINT(INFO_DBG, "memory to allocate ");
6778                                 DBG_PRINT(INFO_DBG, "2 buf mode SKBs\n");
6779                                 sp->mac_control.stats_info->sw_stat. \
6780                                         mem_alloc_fail_cnt++;
6781                                 return -ENOMEM;
6782                         }
6783                         sp->mac_control.stats_info->sw_stat.mem_allocated
6784                                 += (*skb)->truesize;
6785                         rxdp3->Buffer2_ptr = *temp2 =
6786                                 pci_map_single(sp->pdev, (*skb)->data,
6787                                                dev->mtu + 4,
6788                                                PCI_DMA_FROMDEVICE);
6789                         if( (rxdp3->Buffer2_ptr == 0) ||
6790                                 (rxdp3->Buffer2_ptr == DMA_ERROR_CODE)) {
6791                                 goto memalloc_failed;
6792                         }
6793                         rxdp3->Buffer0_ptr = *temp0 =
6794                                 pci_map_single( sp->pdev, ba->ba_0, BUF0_LEN,
6795                                                 PCI_DMA_FROMDEVICE);
6796                         if( (rxdp3->Buffer0_ptr == 0) ||
6797                                 (rxdp3->Buffer0_ptr == DMA_ERROR_CODE)) {
6798                                 pci_unmap_single (sp->pdev,
6799                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6800                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6801                                 goto memalloc_failed;
6802                         }
6803                         rxdp->Host_Control = (unsigned long) (*skb);
6804
6805                         /* Buffer-1 will be dummy buffer not used */
6806                         rxdp3->Buffer1_ptr = *temp1 =
6807                                 pci_map_single(sp->pdev, ba->ba_1, BUF1_LEN,
6808                                                 PCI_DMA_FROMDEVICE);
6809                         if( (rxdp3->Buffer1_ptr == 0) ||
6810                                 (rxdp3->Buffer1_ptr == DMA_ERROR_CODE)) {
6811                                 pci_unmap_single (sp->pdev,
6812                                         (dma_addr_t)rxdp3->Buffer0_ptr,
6813                                         BUF0_LEN, PCI_DMA_FROMDEVICE);
6814                                 pci_unmap_single (sp->pdev,
6815                                         (dma_addr_t)rxdp3->Buffer2_ptr,
6816                                         dev->mtu + 4, PCI_DMA_FROMDEVICE);
6817                                 goto memalloc_failed;
6818                         }
6819                 }
6820         }
6821         return 0;
6822         memalloc_failed:
6823                 stats->pci_map_fail_cnt++;
6824                 stats->mem_freed += (*skb)->truesize;
6825                 dev_kfree_skb(*skb);
6826                 return -ENOMEM;
6827 }
6828
6829 static void set_rxd_buffer_size(struct s2io_nic *sp, struct RxD_t *rxdp,
6830                                 int size)
6831 {
6832         struct net_device *dev = sp->dev;
6833         if (sp->rxd_mode == RXD_MODE_1) {
6834                 rxdp->Control_2 = SET_BUFFER0_SIZE_1( size - NET_IP_ALIGN);
6835         } else if (sp->rxd_mode == RXD_MODE_3B) {
6836                 rxdp->Control_2 = SET_BUFFER0_SIZE_3(BUF0_LEN);
6837                 rxdp->Control_2 |= SET_BUFFER1_SIZE_3(1);
6838                 rxdp->Control_2 |= SET_BUFFER2_SIZE_3( dev->mtu + 4);
6839         }
6840 }
6841
6842 static  int rxd_owner_bit_reset(struct s2io_nic *sp)
6843 {
6844         int i, j, k, blk_cnt = 0, size;
6845         struct mac_info * mac_control = &sp->mac_control;
6846         struct config_param *config = &sp->config;
6847         struct net_device *dev = sp->dev;
6848         struct RxD_t *rxdp = NULL;
6849         struct sk_buff *skb = NULL;
6850         struct buffAdd *ba = NULL;
6851         u64 temp0_64 = 0, temp1_64 = 0, temp2_64 = 0;
6852
6853         /* Calculate the size based on ring mode */
6854         size = dev->mtu + HEADER_ETHERNET_II_802_3_SIZE +
6855                 HEADER_802_2_SIZE + HEADER_SNAP_SIZE;
6856         if (sp->rxd_mode == RXD_MODE_1)
6857                 size += NET_IP_ALIGN;
6858         else if (sp->rxd_mode == RXD_MODE_3B)
6859                 size = dev->mtu + ALIGN_SIZE + BUF0_LEN + 4;
6860
6861         for (i = 0; i < config->rx_ring_num; i++) {
6862                 blk_cnt = config->rx_cfg[i].num_rxd /
6863                         (rxd_count[sp->rxd_mode] +1);
6864
6865                 for (j = 0; j < blk_cnt; j++) {
6866                         for (k = 0; k < rxd_count[sp->rxd_mode]; k++) {
6867                                 rxdp = mac_control->rings[i].
6868                                         rx_blocks[j].rxds[k].virt_addr;
6869                                 if(sp->rxd_mode == RXD_MODE_3B)
6870                                         ba = &mac_control->rings[i].ba[j][k];
6871                                 if (set_rxd_buffer_pointer(sp, rxdp, ba,
6872                                                        &skb,(u64 *)&temp0_64,
6873                                                        (u64 *)&temp1_64,
6874                                                        (u64 *)&temp2_64,
6875                                                         size) == ENOMEM) {
6876                                         return 0;
6877                                 }
6878
6879                                 set_rxd_buffer_size(sp, rxdp, size);
6880                                 wmb();
6881                                 /* flip the Ownership bit to Hardware */
6882                                 rxdp->Control_1 |= RXD_OWN_XENA;
6883                         }
6884                 }
6885         }
6886         return 0;
6887
6888 }
6889
6890 static int s2io_add_isr(struct s2io_nic * sp)
6891 {
6892         int ret = 0;
6893         struct net_device *dev = sp->dev;
6894         int err = 0;
6895
6896         if (sp->config.intr_type == MSI_X)
6897                 ret = s2io_enable_msi_x(sp);
6898         if (ret) {
6899                 DBG_PRINT(ERR_DBG, "%s: Defaulting to INTA\n", dev->name);
6900                 sp->config.intr_type = INTA;
6901         }
6902
6903         /* Store the values of the MSIX table in the struct s2io_nic structure */
6904         store_xmsi_data(sp);
6905
6906         /* After proper initialization of H/W, register ISR */
6907         if (sp->config.intr_type == MSI_X) {
6908                 int i, msix_tx_cnt=0,msix_rx_cnt=0;
6909
6910                 for (i=1; (sp->s2io_entries[i].in_use == MSIX_FLG); i++) {
6911                         if (sp->s2io_entries[i].type == MSIX_FIFO_TYPE) {
6912                                 sprintf(sp->desc[i], "%s:MSI-X-%d-TX",
6913                                         dev->name, i);
6914                                 err = request_irq(sp->entries[i].vector,
6915                                           s2io_msix_fifo_handle, 0, sp->desc[i],
6916                                                   sp->s2io_entries[i].arg);
6917                                 /* If either data or addr is zero print it */
6918                                 if(!(sp->msix_info[i].addr &&
6919                                         sp->msix_info[i].data)) {
6920                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6921                                                 "Data:0x%lx\n",sp->desc[i],
6922                                                 (unsigned long long)
6923                                                 sp->msix_info[i].addr,
6924                                                 (unsigned long)
6925                                                 ntohl(sp->msix_info[i].data));
6926                                 } else {
6927                                         msix_tx_cnt++;
6928                                 }
6929                         } else {
6930                                 sprintf(sp->desc[i], "%s:MSI-X-%d-RX",
6931                                         dev->name, i);
6932                                 err = request_irq(sp->entries[i].vector,
6933                                           s2io_msix_ring_handle, 0, sp->desc[i],
6934                                                   sp->s2io_entries[i].arg);
6935                                 /* If either data or addr is zero print it */
6936                                 if(!(sp->msix_info[i].addr &&
6937                                         sp->msix_info[i].data)) {
6938                                         DBG_PRINT(ERR_DBG, "%s @ Addr:0x%llx "
6939                                                 "Data:0x%lx\n",sp->desc[i],
6940                                                 (unsigned long long)
6941                                                 sp->msix_info[i].addr,
6942                                                 (unsigned long)
6943                                                 ntohl(sp->msix_info[i].data));
6944                                 } else {
6945                                         msix_rx_cnt++;
6946                                 }
6947                         }
6948                         if (err) {
6949                                 remove_msix_isr(sp);
6950                                 DBG_PRINT(ERR_DBG,"%s:MSI-X-%d registration "
6951                                           "failed\n", dev->name, i);
6952                                 DBG_PRINT(ERR_DBG, "%s: defaulting to INTA\n",
6953                                                  dev->name);
6954                                 sp->config.intr_type = INTA;
6955                                 break;
6956                         }
6957                         sp->s2io_entries[i].in_use = MSIX_REGISTERED_SUCCESS;
6958                 }
6959                 if (!err) {
6960                         printk(KERN_INFO "MSI-X-TX %d entries enabled\n",
6961                                 msix_tx_cnt);
6962                         printk(KERN_INFO "MSI-X-RX %d entries enabled\n",
6963                                 msix_rx_cnt);
6964                 }
6965         }
6966         if (sp->config.intr_type == INTA) {
6967                 err = request_irq((int) sp->pdev->irq, s2io_isr, IRQF_SHARED,
6968                                 sp->name, dev);
6969                 if (err) {
6970                         DBG_PRINT(ERR_DBG, "%s: ISR registration failed\n",
6971                                   dev->name);
6972                         return -1;
6973                 }
6974         }
6975         return 0;
6976 }
6977 static void s2io_rem_isr(struct s2io_nic * sp)
6978 {
6979         if (sp->config.intr_type == MSI_X)
6980                 remove_msix_isr(sp);
6981         else
6982                 remove_inta_isr(sp);
6983 }
6984
6985 static void do_s2io_card_down(struct s2io_nic * sp, int do_io)
6986 {
6987         int cnt = 0;
6988         struct XENA_dev_config __iomem *bar0 = sp->bar0;
6989         unsigned long flags;
6990         register u64 val64 = 0;
6991         struct config_param *config;
6992         config = &sp->config;
6993
6994         if (!is_s2io_card_up(sp))
6995                 return;
6996
6997         del_timer_sync(&sp->alarm_timer);
6998         /* If s2io_set_link task is executing, wait till it completes. */
6999         while (test_and_set_bit(__S2IO_STATE_LINK_TASK, &(sp->state))) {
7000                 msleep(50);
7001         }
7002         clear_bit(__S2IO_STATE_CARD_UP, &sp->state);
7003
7004         /* Disable napi */
7005         if (config->napi)
7006                 napi_disable(&sp->napi);
7007
7008         /* disable Tx and Rx traffic on the NIC */
7009         if (do_io)
7010                 stop_nic(sp);
7011
7012         s2io_rem_isr(sp);
7013
7014         /* Kill tasklet. */
7015         tasklet_kill(&sp->task);
7016
7017         /* Check if the device is Quiescent and then Reset the NIC */
7018         while(do_io) {
7019                 /* As per the HW requirement we need to replenish the
7020                  * receive buffer to avoid the ring bump. Since there is
7021                  * no intention of processing the Rx frame at this pointwe are
7022                  * just settting the ownership bit of rxd in Each Rx
7023                  * ring to HW and set the appropriate buffer size
7024                  * based on the ring mode
7025                  */
7026                 rxd_owner_bit_reset(sp);
7027
7028                 val64 = readq(&bar0->adapter_status);
7029                 if (verify_xena_quiescence(sp)) {
7030                         if(verify_pcc_quiescent(sp, sp->device_enabled_once))
7031                         break;
7032                 }
7033
7034                 msleep(50);
7035                 cnt++;
7036                 if (cnt == 10) {
7037                         DBG_PRINT(ERR_DBG,
7038                                   "s2io_close:Device not Quiescent ");
7039                         DBG_PRINT(ERR_DBG, "adaper status reads 0x%llx\n",
7040                                   (unsigned long long) val64);
7041                         break;
7042                 }
7043         }
7044         if (do_io)
7045                 s2io_reset(sp);
7046
7047         /* Free all Tx buffers */
7048         free_tx_buffers(sp);
7049
7050         /* Free all Rx buffers */
7051         spin_lock_irqsave(&sp->rx_lock, flags);
7052         free_rx_buffers(sp);
7053         spin_unlock_irqrestore(&sp->rx_lock, flags);
7054
7055         clear_bit(__S2IO_STATE_LINK_TASK, &(sp->state));
7056 }
7057
7058 static void s2io_card_down(struct s2io_nic * sp)
7059 {
7060         do_s2io_card_down(sp, 1);
7061 }
7062
7063 static int s2io_card_up(struct s2io_nic * sp)
7064 {
7065         int i, ret = 0;
7066         struct mac_info *mac_control;
7067         struct config_param *config;
7068         struct net_device *dev = (struct net_device *) sp->dev;
7069         u16 interruptible;
7070
7071         /* Initialize the H/W I/O registers */
7072         ret = init_nic(sp);
7073         if (ret != 0) {
7074                 DBG_PRINT(ERR_DBG, "%s: H/W initialization failed\n",
7075                           dev->name);
7076                 if (ret != -EIO)
7077                         s2io_reset(sp);
7078                 return ret;
7079         }
7080
7081         /*
7082          * Initializing the Rx buffers. For now we are considering only 1
7083          * Rx ring and initializing buffers into 30 Rx blocks
7084          */
7085         mac_control = &sp->mac_control;
7086         config = &sp->config;
7087
7088         for (i = 0; i < config->rx_ring_num; i++) {
7089                 if ((ret = fill_rx_buffers(sp, i))) {
7090                         DBG_PRINT(ERR_DBG, "%s: Out of memory in Open\n",
7091                                   dev->name);
7092                         s2io_reset(sp);
7093                         free_rx_buffers(sp);
7094                         return -ENOMEM;
7095                 }
7096                 DBG_PRINT(INFO_DBG, "Buf in ring:%d is %d:\n", i,
7097                           atomic_read(&sp->rx_bufs_left[i]));
7098         }
7099
7100         /* Initialise napi */
7101         if (config->napi)
7102                 napi_enable(&sp->napi);
7103
7104         /* Maintain the state prior to the open */
7105         if (sp->promisc_flg)
7106                 sp->promisc_flg = 0;
7107         if (sp->m_cast_flg) {
7108                 sp->m_cast_flg = 0;
7109                 sp->all_multi_pos= 0;
7110         }
7111
7112         /* Setting its receive mode */
7113         s2io_set_multicast(dev);
7114
7115         if (sp->lro) {
7116                 /* Initialize max aggregatable pkts per session based on MTU */
7117                 sp->lro_max_aggr_per_sess = ((1<<16) - 1) / dev->mtu;
7118                 /* Check if we can use(if specified) user provided value */
7119                 if (lro_max_pkts < sp->lro_max_aggr_per_sess)
7120                         sp->lro_max_aggr_per_sess = lro_max_pkts;
7121         }
7122
7123         /* Enable Rx Traffic and interrupts on the NIC */
7124         if (start_nic(sp)) {
7125                 DBG_PRINT(ERR_DBG, "%s: Starting NIC failed\n", dev->name);
7126                 s2io_reset(sp);
7127                 free_rx_buffers(sp);
7128                 return -ENODEV;
7129         }
7130
7131         /* Add interrupt service routine */
7132         if (s2io_add_isr(sp) != 0) {
7133                 if (sp->config.intr_type == MSI_X)
7134                         s2io_rem_isr(sp);
7135                 s2io_reset(sp);
7136                 free_rx_buffers(sp);
7137                 return -ENODEV;
7138         }
7139
7140         S2IO_TIMER_CONF(sp->alarm_timer, s2io_alarm_handle, sp, (HZ/2));
7141
7142         /* Enable tasklet for the device */
7143         tasklet_init(&sp->task, s2io_tasklet, (unsigned long) dev);
7144
7145         /*  Enable select interrupts */
7146         en_dis_err_alarms(sp, ENA_ALL_INTRS, ENABLE_INTRS);
7147         if (sp->config.intr_type != INTA)
7148                 en_dis_able_nic_intrs(sp, ENA_ALL_INTRS, DISABLE_INTRS);
7149         else {
7150                 interruptible = TX_TRAFFIC_INTR | RX_TRAFFIC_INTR;
7151                 interruptible |= TX_PIC_INTR;
7152                 en_dis_able_nic_intrs(sp, interruptible, ENABLE_INTRS);
7153         }
7154
7155         set_bit(__S2IO_STATE_CARD_UP, &sp->state);
7156         return 0;
7157 }
7158
7159 /**
7160  * s2io_restart_nic - Resets the NIC.
7161  * @data : long pointer to the device private structure
7162  * Description:
7163  * This function is scheduled to be run by the s2io_tx_watchdog
7164  * function after 0.5 secs to reset the NIC. The idea is to reduce
7165  * the run time of the watch dog routine which is run holding a
7166  * spin lock.
7167  */
7168
7169 static void s2io_restart_nic(struct work_struct *work)
7170 {
7171         struct s2io_nic *sp = container_of(work, struct s2io_nic, rst_timer_task);
7172         struct net_device *dev = sp->dev;
7173
7174         rtnl_lock();
7175
7176         if (!netif_running(dev))
7177                 goto out_unlock;
7178
7179         s2io_card_down(sp);
7180         if (s2io_card_up(sp)) {
7181                 DBG_PRINT(ERR_DBG, "%s: Device bring up failed\n",
7182                           dev->name);
7183         }
7184         netif_wake_queue(dev);
7185         DBG_PRINT(ERR_DBG, "%s: was reset by Tx watchdog timer\n",
7186                   dev->name);
7187 out_unlock:
7188         rtnl_unlock();
7189 }
7190
7191 /**
7192  *  s2io_tx_watchdog - Watchdog for transmit side.
7193  *  @dev : Pointer to net device structure
7194  *  Description:
7195  *  This function is triggered if the Tx Queue is stopped
7196  *  for a pre-defined amount of time when the Interface is still up.
7197  *  If the Interface is jammed in such a situation, the hardware is
7198  *  reset (by s2io_close) and restarted again (by s2io_open) to
7199  *  overcome any problem that might have been caused in the hardware.
7200  *  Return value:
7201  *  void
7202  */
7203
7204 static void s2io_tx_watchdog(struct net_device *dev)
7205 {
7206         struct s2io_nic *sp = dev->priv;
7207
7208         if (netif_carrier_ok(dev)) {
7209                 sp->mac_control.stats_info->sw_stat.watchdog_timer_cnt++;
7210                 schedule_work(&sp->rst_timer_task);
7211                 sp->mac_control.stats_info->sw_stat.soft_reset_cnt++;
7212         }
7213 }
7214
7215 /**
7216  *   rx_osm_handler - To perform some OS related operations on SKB.
7217  *   @sp: private member of the device structure,pointer to s2io_nic structure.
7218  *   @skb : the socket buffer pointer.
7219  *   @len : length of the packet
7220  *   @cksum : FCS checksum of the frame.
7221  *   @ring_no : the ring from which this RxD was extracted.
7222  *   Description:
7223  *   This function is called by the Rx interrupt serivce routine to perform
7224  *   some OS related operations on the SKB before passing it to the upper
7225  *   layers. It mainly checks if the checksum is OK, if so adds it to the
7226  *   SKBs cksum variable, increments the Rx packet count and passes the SKB
7227  *   to the upper layer. If the checksum is wrong, it increments the Rx
7228  *   packet error count, frees the SKB and returns error.
7229  *   Return value:
7230  *   SUCCESS on success and -1 on failure.
7231  */
7232 static int rx_osm_handler(struct ring_info *ring_data, struct RxD_t * rxdp)
7233 {
7234         struct s2io_nic *sp = ring_data->nic;
7235         struct net_device *dev = (struct net_device *) sp->dev;
7236         struct sk_buff *skb = (struct sk_buff *)
7237                 ((unsigned long) rxdp->Host_Control);
7238         int ring_no = ring_data->ring_no;
7239         u16 l3_csum, l4_csum;
7240         unsigned long long err = rxdp->Control_1 & RXD_T_CODE;
7241         struct lro *lro;
7242         u8 err_mask;
7243
7244         skb->dev = dev;
7245
7246         if (err) {
7247                 /* Check for parity error */
7248                 if (err & 0x1) {
7249                         sp->mac_control.stats_info->sw_stat.parity_err_cnt++;
7250                 }
7251                 err_mask = err >> 48;
7252                 switch(err_mask) {
7253                         case 1:
7254                                 sp->mac_control.stats_info->sw_stat.
7255                                 rx_parity_err_cnt++;
7256                         break;
7257
7258                         case 2:
7259                                 sp->mac_control.stats_info->sw_stat.
7260                                 rx_abort_cnt++;
7261                         break;
7262
7263                         case 3:
7264                                 sp->mac_control.stats_info->sw_stat.
7265                                 rx_parity_abort_cnt++;
7266                         break;
7267
7268                         case 4:
7269                                 sp->mac_control.stats_info->sw_stat.
7270                                 rx_rda_fail_cnt++;
7271                         break;
7272
7273                         case 5:
7274                                 sp->mac_control.stats_info->sw_stat.
7275                                 rx_unkn_prot_cnt++;
7276                         break;
7277
7278                         case 6:
7279                                 sp->mac_control.stats_info->sw_stat.
7280                                 rx_fcs_err_cnt++;
7281                         break;
7282
7283                         case 7:
7284                                 sp->mac_control.stats_info->sw_stat.
7285                                 rx_buf_size_err_cnt++;
7286                         break;
7287
7288                         case 8:
7289                                 sp->mac_control.stats_info->sw_stat.
7290                                 rx_rxd_corrupt_cnt++;
7291                         break;
7292
7293                         case 15:
7294                                 sp->mac_control.stats_info->sw_stat.
7295                                 rx_unkn_err_cnt++;
7296                         break;
7297                 }
7298                 /*
7299                 * Drop the packet if bad transfer code. Exception being
7300                 * 0x5, which could be due to unsupported IPv6 extension header.
7301                 * In this case, we let stack handle the packet.
7302                 * Note that in this case, since checksum will be incorrect,
7303                 * stack will validate the same.
7304                 */
7305                 if (err_mask != 0x5) {
7306                         DBG_PRINT(ERR_DBG, "%s: Rx error Value: 0x%x\n",
7307                                 dev->name, err_mask);
7308                         sp->stats.rx_crc_errors++;
7309                         sp->mac_control.stats_info->sw_stat.mem_freed
7310                                 += skb->truesize;
7311                         dev_kfree_skb(skb);
7312                         atomic_dec(&sp->rx_bufs_left[ring_no]);
7313                         rxdp->Host_Control = 0;
7314                         return 0;
7315                 }
7316         }
7317
7318         /* Updating statistics */
7319         sp->stats.rx_packets++;
7320         rxdp->Host_Control = 0;
7321         if (sp->rxd_mode == RXD_MODE_1) {
7322                 int len = RXD_GET_BUFFER0_SIZE_1(rxdp->Control_2);
7323
7324                 sp->stats.rx_bytes += len;
7325                 skb_put(skb, len);
7326
7327         } else if (sp->rxd_mode == RXD_MODE_3B) {
7328                 int get_block = ring_data->rx_curr_get_info.block_index;
7329                 int get_off = ring_data->rx_curr_get_info.offset;
7330                 int buf0_len = RXD_GET_BUFFER0_SIZE_3(rxdp->Control_2);
7331                 int buf2_len = RXD_GET_BUFFER2_SIZE_3(rxdp->Control_2);
7332                 unsigned char *buff = skb_push(skb, buf0_len);
7333
7334                 struct buffAdd *ba = &ring_data->ba[get_block][get_off];
7335                 sp->stats.rx_bytes += buf0_len + buf2_len;
7336                 memcpy(buff, ba->ba_0, buf0_len);
7337                 skb_put(skb, buf2_len);
7338         }
7339
7340         if ((rxdp->Control_1 & TCP_OR_UDP_FRAME) && ((!sp->lro) ||
7341             (sp->lro && (!(rxdp->Control_1 & RXD_FRAME_IP_FRAG)))) &&
7342             (sp->rx_csum)) {
7343                 l3_csum = RXD_GET_L3_CKSUM(rxdp->Control_1);
7344                 l4_csum = RXD_GET_L4_CKSUM(rxdp->Control_1);
7345                 if ((l3_csum == L3_CKSUM_OK) && (l4_csum == L4_CKSUM_OK)) {
7346                         /*
7347                          * NIC verifies if the Checksum of the received
7348                          * frame is Ok or not and accordingly returns
7349                          * a flag in the RxD.
7350                          */
7351                         skb->ip_summed = CHECKSUM_UNNECESSARY;
7352                         if (sp->lro) {
7353                                 u32 tcp_len;
7354                                 u8 *tcp;
7355                                 int ret = 0;
7356
7357                                 ret = s2io_club_tcp_session(skb->data, &tcp,
7358                                                             &tcp_len, &lro,
7359                                                             rxdp, sp);
7360                                 switch (ret) {
7361                                         case 3: /* Begin anew */
7362                                                 lro->parent = skb;
7363                                                 goto aggregate;
7364                                         case 1: /* Aggregate */
7365                                         {
7366                                                 lro_append_pkt(sp, lro,
7367                                                         skb, tcp_len);
7368                                                 goto aggregate;
7369                                         }
7370                                         case 4: /* Flush session */
7371                                         {
7372                                                 lro_append_pkt(sp, lro,
7373                                                         skb, tcp_len);
7374                                                 queue_rx_frame(lro->parent);
7375                                                 clear_lro_session(lro);
7376                                                 sp->mac_control.stats_info->
7377                                                     sw_stat.flush_max_pkts++;
7378                                                 goto aggregate;
7379                                         }
7380                                         case 2: /* Flush both */
7381                                                 lro->parent->data_len =
7382                                                         lro->frags_len;
7383                                                 sp->mac_control.stats_info->
7384                                                      sw_stat.sending_both++;
7385                                                 queue_rx_frame(lro->parent);
7386                                                 clear_lro_session(lro);
7387                                                 goto send_up;
7388                                         case 0: /* sessions exceeded */
7389                                         case -1: /* non-TCP or not
7390                                                   * L2 aggregatable
7391                                                   */
7392                                         case 5: /*
7393                                                  * First pkt in session not
7394                                                  * L3/L4 aggregatable
7395                                                  */
7396                                                 break;
7397                                         default:
7398                                                 DBG_PRINT(ERR_DBG,
7399                                                         "%s: Samadhana!!\n",
7400                                                          __FUNCTION__);
7401                                                 BUG();
7402                                 }
7403                         }
7404                 } else {
7405                         /*
7406                          * Packet with erroneous checksum, let the
7407                          * upper layers deal with it.
7408                          */
7409                         skb->ip_summed = CHECKSUM_NONE;
7410                 }
7411         } else {
7412                 skb->ip_summed = CHECKSUM_NONE;
7413         }
7414         sp->mac_control.stats_info->sw_stat.mem_freed += skb->truesize;
7415         if (!sp->lro) {
7416                 skb->protocol = eth_type_trans(skb, dev);
7417                 if ((sp->vlgrp && RXD_GET_VLAN_TAG(rxdp->Control_2) &&
7418                         vlan_strip_flag)) {
7419                         /* Queueing the vlan frame to the upper layer */
7420                         if (napi)
7421                                 vlan_hwaccel_receive_skb(skb, sp->vlgrp,
7422                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7423                         else
7424                                 vlan_hwaccel_rx(skb, sp->vlgrp,
7425                                         RXD_GET_VLAN_TAG(rxdp->Control_2));
7426                 } else {
7427                         if (napi)
7428                                 netif_receive_skb(skb);
7429                         else
7430                                 netif_rx(skb);
7431                 }
7432         } else {
7433 send_up:
7434                 queue_rx_frame(skb);
7435         }
7436         dev->last_rx = jiffies;
7437 aggregate:
7438         atomic_dec(&sp->rx_bufs_left[ring_no]);
7439         return SUCCESS;
7440 }
7441
7442 /**
7443  *  s2io_link - stops/starts the Tx queue.
7444  *  @sp : private member of the device structure, which is a pointer to the
7445  *  s2io_nic structure.
7446  *  @link : inidicates whether link is UP/DOWN.
7447  *  Description:
7448  *  This function stops/starts the Tx queue depending on whether the link
7449  *  status of the NIC is is down or up. This is called by the Alarm
7450  *  interrupt handler whenever a link change interrupt comes up.
7451  *  Return value:
7452  *  void.
7453  */
7454
7455 static void s2io_link(struct s2io_nic * sp, int link)
7456 {
7457         struct net_device *dev = (struct net_device *) sp->dev;
7458
7459         if (link != sp->last_link_state) {
7460                 init_tti(sp, link);
7461                 if (link == LINK_DOWN) {
7462                         DBG_PRINT(ERR_DBG, "%s: Link down\n", dev->name);
7463                         netif_carrier_off(dev);
7464                         if(sp->mac_control.stats_info->sw_stat.link_up_cnt)
7465                         sp->mac_control.stats_info->sw_stat.link_up_time =
7466                                 jiffies - sp->start_time;
7467                         sp->mac_control.stats_info->sw_stat.link_down_cnt++;
7468                 } else {
7469                         DBG_PRINT(ERR_DBG, "%s: Link Up\n", dev->name);
7470                         if (sp->mac_control.stats_info->sw_stat.link_down_cnt)
7471                         sp->mac_control.stats_info->sw_stat.link_down_time =
7472                                 jiffies - sp->start_time;
7473                         sp->mac_control.stats_info->sw_stat.link_up_cnt++;
7474                         netif_carrier_on(dev);
7475                 }
7476         }
7477         sp->last_link_state = link;
7478         sp->start_time = jiffies;
7479 }
7480
7481 /**
7482  *  s2io_init_pci -Initialization of PCI and PCI-X configuration registers .
7483  *  @sp : private member of the device structure, which is a pointer to the
7484  *  s2io_nic structure.
7485  *  Description:
7486  *  This function initializes a few of the PCI and PCI-X configuration registers
7487  *  with recommended values.
7488  *  Return value:
7489  *  void
7490  */
7491
7492 static void s2io_init_pci(struct s2io_nic * sp)
7493 {
7494         u16 pci_cmd = 0, pcix_cmd = 0;
7495
7496         /* Enable Data Parity Error Recovery in PCI-X command register. */
7497         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7498                              &(pcix_cmd));
7499         pci_write_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7500                               (pcix_cmd | 1));
7501         pci_read_config_word(sp->pdev, PCIX_COMMAND_REGISTER,
7502                              &(pcix_cmd));
7503
7504         /* Set the PErr Response bit in PCI command register. */
7505         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7506         pci_write_config_word(sp->pdev, PCI_COMMAND,
7507                               (pci_cmd | PCI_COMMAND_PARITY));
7508         pci_read_config_word(sp->pdev, PCI_COMMAND, &pci_cmd);
7509 }
7510
7511 static int s2io_verify_parm(struct pci_dev *pdev, u8 *dev_intr_type)
7512 {
7513         if ((tx_fifo_num > MAX_TX_FIFOS) ||
7514                 (tx_fifo_num < FIFO_DEFAULT_NUM)) {
7515                 DBG_PRINT(ERR_DBG, "s2io: Requested number of tx fifos "
7516                         "(%d) not supported\n", tx_fifo_num);
7517                 tx_fifo_num =
7518                         ((tx_fifo_num > MAX_TX_FIFOS)? MAX_TX_FIFOS :
7519                         ((tx_fifo_num < FIFO_DEFAULT_NUM) ? FIFO_DEFAULT_NUM :
7520                         tx_fifo_num));
7521                 DBG_PRINT(ERR_DBG, "s2io: Default to %d ", tx_fifo_num);
7522                 DBG_PRINT(ERR_DBG, "tx fifos\n");
7523         }
7524
7525         if ( rx_ring_num > 8) {
7526                 DBG_PRINT(ERR_DBG, "s2io: Requested number of Rx rings not "
7527                          "supported\n");
7528                 DBG_PRINT(ERR_DBG, "s2io: Default to 8 Rx rings\n");
7529                 rx_ring_num = 8;
7530         }
7531         if (*dev_intr_type != INTA)
7532                 napi = 0;
7533
7534         if ((*dev_intr_type != INTA) && (*dev_intr_type != MSI_X)) {
7535                 DBG_PRINT(ERR_DBG, "s2io: Wrong intr_type requested. "
7536                           "Defaulting to INTA\n");
7537                 *dev_intr_type = INTA;
7538         }
7539
7540         if ((*dev_intr_type == MSI_X) &&
7541                         ((pdev->device != PCI_DEVICE_ID_HERC_WIN) &&
7542                         (pdev->device != PCI_DEVICE_ID_HERC_UNI))) {
7543                 DBG_PRINT(ERR_DBG, "s2io: Xframe I does not support MSI_X. "
7544                                         "Defaulting to INTA\n");
7545                 *dev_intr_type = INTA;
7546         }
7547
7548         if ((rx_ring_mode != 1) && (rx_ring_mode != 2)) {
7549                 DBG_PRINT(ERR_DBG, "s2io: Requested ring mode not supported\n");
7550                 DBG_PRINT(ERR_DBG, "s2io: Defaulting to 1-buffer mode\n");
7551                 rx_ring_mode = 1;
7552         }
7553         return SUCCESS;
7554 }
7555
7556 /**
7557  * rts_ds_steer - Receive traffic steering based on IPv4 or IPv6 TOS
7558  * or Traffic class respectively.
7559  * @nic: device private variable
7560  * Description: The function configures the receive steering to
7561  * desired receive ring.
7562  * Return Value:  SUCCESS on success and
7563  * '-1' on failure (endian settings incorrect).
7564  */
7565 static int rts_ds_steer(struct s2io_nic *nic, u8 ds_codepoint, u8 ring)
7566 {
7567         struct XENA_dev_config __iomem *bar0 = nic->bar0;
7568         register u64 val64 = 0;
7569
7570         if (ds_codepoint > 63)
7571                 return FAILURE;
7572
7573         val64 = RTS_DS_MEM_DATA(ring);
7574         writeq(val64, &bar0->rts_ds_mem_data);
7575
7576         val64 = RTS_DS_MEM_CTRL_WE |
7577                 RTS_DS_MEM_CTRL_STROBE_NEW_CMD |
7578                 RTS_DS_MEM_CTRL_OFFSET(ds_codepoint);
7579
7580         writeq(val64, &bar0->rts_ds_mem_ctrl);
7581
7582         return wait_for_cmd_complete(&bar0->rts_ds_mem_ctrl,
7583                                 RTS_DS_MEM_CTRL_STROBE_CMD_BEING_EXECUTED,
7584                                 S2IO_BIT_RESET);
7585 }
7586
7587 /**
7588  *  s2io_init_nic - Initialization of the adapter .
7589  *  @pdev : structure containing the PCI related information of the device.
7590  *  @pre: List of PCI devices supported by the driver listed in s2io_tbl.
7591  *  Description:
7592  *  The function initializes an adapter identified by the pci_dec structure.
7593  *  All OS related initialization including memory and device structure and
7594  *  initlaization of the device private variable is done. Also the swapper
7595  *  control register is initialized to enable read and write into the I/O
7596  *  registers of the device.
7597  *  Return value:
7598  *  returns 0 on success and negative on failure.
7599  */
7600
7601 static int __devinit
7602 s2io_init_nic(struct pci_dev *pdev, const struct pci_device_id *pre)
7603 {
7604         struct s2io_nic *sp;
7605         struct net_device *dev;
7606         int i, j, ret;
7607         int dma_flag = FALSE;
7608         u32 mac_up, mac_down;
7609         u64 val64 = 0, tmp64 = 0;
7610         struct XENA_dev_config __iomem *bar0 = NULL;
7611         u16 subid;
7612         struct mac_info *mac_control;
7613         struct config_param *config;
7614         int mode;
7615         u8 dev_intr_type = intr_type;
7616         DECLARE_MAC_BUF(mac);
7617
7618         if ((ret = s2io_verify_parm(pdev, &dev_intr_type)))
7619                 return ret;
7620
7621         if ((ret = pci_enable_device(pdev))) {
7622                 DBG_PRINT(ERR_DBG,
7623                           "s2io_init_nic: pci_enable_device failed\n");
7624                 return ret;
7625         }
7626
7627         if (!pci_set_dma_mask(pdev, DMA_64BIT_MASK)) {
7628                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 64bit DMA\n");
7629                 dma_flag = TRUE;
7630                 if (pci_set_consistent_dma_mask
7631                     (pdev, DMA_64BIT_MASK)) {
7632                         DBG_PRINT(ERR_DBG,
7633                                   "Unable to obtain 64bit DMA for \
7634                                         consistent allocations\n");
7635                         pci_disable_device(pdev);
7636                         return -ENOMEM;
7637                 }
7638         } else if (!pci_set_dma_mask(pdev, DMA_32BIT_MASK)) {
7639                 DBG_PRINT(INIT_DBG, "s2io_init_nic: Using 32bit DMA\n");
7640         } else {
7641                 pci_disable_device(pdev);
7642                 return -ENOMEM;
7643         }
7644         if ((ret = pci_request_regions(pdev, s2io_driver_name))) {
7645                 DBG_PRINT(ERR_DBG, "%s: Request Regions failed - %x \n", __FUNCTION__, ret);
7646                 pci_disable_device(pdev);
7647                 return -ENODEV;
7648         }
7649
7650         dev = alloc_etherdev(sizeof(struct s2io_nic));
7651         if (dev == NULL) {
7652                 DBG_PRINT(ERR_DBG, "Device allocation failed\n");
7653                 pci_disable_device(pdev);
7654                 pci_release_regions(pdev);
7655                 return -ENODEV;
7656         }
7657
7658         pci_set_master(pdev);
7659         pci_set_drvdata(pdev, dev);
7660         SET_NETDEV_DEV(dev, &pdev->dev);
7661
7662         /*  Private member variable initialized to s2io NIC structure */
7663         sp = dev->priv;
7664         memset(sp, 0, sizeof(struct s2io_nic));
7665         sp->dev = dev;
7666         sp->pdev = pdev;
7667         sp->high_dma_flag = dma_flag;
7668         sp->device_enabled_once = FALSE;
7669         if (rx_ring_mode == 1)
7670                 sp->rxd_mode = RXD_MODE_1;
7671         if (rx_ring_mode == 2)
7672                 sp->rxd_mode = RXD_MODE_3B;
7673
7674         sp->config.intr_type = dev_intr_type;
7675
7676         if ((pdev->device == PCI_DEVICE_ID_HERC_WIN) ||
7677                 (pdev->device == PCI_DEVICE_ID_HERC_UNI))
7678                 sp->device_type = XFRAME_II_DEVICE;
7679         else
7680                 sp->device_type = XFRAME_I_DEVICE;
7681
7682         sp->lro = lro_enable;
7683
7684         /* Initialize some PCI/PCI-X fields of the NIC. */
7685         s2io_init_pci(sp);
7686
7687         /*
7688          * Setting the device configuration parameters.
7689          * Most of these parameters can be specified by the user during
7690          * module insertion as they are module loadable parameters. If
7691          * these parameters are not not specified during load time, they
7692          * are initialized with default values.
7693          */
7694         mac_control = &sp->mac_control;
7695         config = &sp->config;
7696
7697         config->napi = napi;
7698
7699         /* Tx side parameters. */
7700         config->tx_fifo_num = tx_fifo_num;
7701         for (i = 0; i < MAX_TX_FIFOS; i++) {
7702                 config->tx_cfg[i].fifo_len = tx_fifo_len[i];
7703                 config->tx_cfg[i].fifo_priority = i;
7704         }
7705
7706         /* mapping the QoS priority to the configured fifos */
7707         for (i = 0; i < MAX_TX_FIFOS; i++)
7708                 config->fifo_mapping[i] = fifo_map[config->tx_fifo_num][i];
7709
7710         config->tx_intr_type = TXD_INT_TYPE_UTILZ;
7711         for (i = 0; i < config->tx_fifo_num; i++) {
7712                 config->tx_cfg[i].f_no_snoop =
7713                     (NO_SNOOP_TXD | NO_SNOOP_TXD_BUFFER);
7714                 if (config->tx_cfg[i].fifo_len < 65) {
7715                         config->tx_intr_type = TXD_INT_TYPE_PER_LIST;
7716                         break;
7717                 }
7718         }
7719         /* + 2 because one Txd for skb->data and one Txd for UFO */
7720         config->max_txds = MAX_SKB_FRAGS + 2;
7721
7722         /* Rx side parameters. */
7723         config->rx_ring_num = rx_ring_num;
7724         for (i = 0; i < MAX_RX_RINGS; i++) {
7725                 config->rx_cfg[i].num_rxd = rx_ring_sz[i] *
7726                     (rxd_count[sp->rxd_mode] + 1);
7727                 config->rx_cfg[i].ring_priority = i;
7728         }
7729
7730         for (i = 0; i < rx_ring_num; i++) {
7731                 config->rx_cfg[i].ring_org = RING_ORG_BUFF1;
7732                 config->rx_cfg[i].f_no_snoop =
7733                     (NO_SNOOP_RXD | NO_SNOOP_RXD_BUFFER);
7734         }
7735
7736         /*  Setting Mac Control parameters */
7737         mac_control->rmac_pause_time = rmac_pause_time;
7738         mac_control->mc_pause_threshold_q0q3 = mc_pause_threshold_q0q3;
7739         mac_control->mc_pause_threshold_q4q7 = mc_pause_threshold_q4q7;
7740
7741
7742         /* Initialize Ring buffer parameters. */
7743         for (i = 0; i < config->rx_ring_num; i++)
7744                 atomic_set(&sp->rx_bufs_left[i], 0);
7745
7746         /*  initialize the shared memory used by the NIC and the host */
7747         if (init_shared_mem(sp)) {
7748                 DBG_PRINT(ERR_DBG, "%s: Memory allocation failed\n",
7749                           dev->name);
7750                 ret = -ENOMEM;
7751                 goto mem_alloc_failed;
7752         }
7753
7754         sp->bar0 = ioremap(pci_resource_start(pdev, 0),
7755                                      pci_resource_len(pdev, 0));
7756         if (!sp->bar0) {
7757                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem1\n",
7758                           dev->name);
7759                 ret = -ENOMEM;
7760                 goto bar0_remap_failed;
7761         }
7762
7763         sp->bar1 = ioremap(pci_resource_start(pdev, 2),
7764                                      pci_resource_len(pdev, 2));
7765         if (!sp->bar1) {
7766                 DBG_PRINT(ERR_DBG, "%s: Neterion: cannot remap io mem2\n",
7767                           dev->name);
7768                 ret = -ENOMEM;
7769                 goto bar1_remap_failed;
7770         }
7771
7772         dev->irq = pdev->irq;
7773         dev->base_addr = (unsigned long) sp->bar0;
7774
7775         /* Initializing the BAR1 address as the start of the FIFO pointer. */
7776         for (j = 0; j < MAX_TX_FIFOS; j++) {
7777                 mac_control->tx_FIFO_start[j] = (struct TxFIFO_element __iomem *)
7778                     (sp->bar1 + (j * 0x00020000));
7779         }
7780
7781         /*  Driver entry points */
7782         dev->open = &s2io_open;
7783         dev->stop = &s2io_close;
7784         dev->hard_start_xmit = &s2io_xmit;
7785         dev->get_stats = &s2io_get_stats;
7786         dev->set_multicast_list = &s2io_set_multicast;
7787         dev->do_ioctl = &s2io_ioctl;
7788         dev->set_mac_address = &s2io_set_mac_addr;
7789         dev->change_mtu = &s2io_change_mtu;
7790         SET_ETHTOOL_OPS(dev, &netdev_ethtool_ops);
7791         dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
7792         dev->vlan_rx_register = s2io_vlan_rx_register;
7793
7794         /*
7795          * will use eth_mac_addr() for  dev->set_mac_address
7796          * mac address will be set every time dev->open() is called
7797          */
7798         netif_napi_add(dev, &sp->napi, s2io_poll, 32);
7799
7800 #ifdef CONFIG_NET_POLL_CONTROLLER
7801         dev->poll_controller = s2io_netpoll;
7802 #endif
7803
7804         dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
7805         if (sp->high_dma_flag == TRUE)
7806                 dev->features |= NETIF_F_HIGHDMA;
7807         dev->features |= NETIF_F_TSO;
7808         dev->features |= NETIF_F_TSO6;
7809         if ((sp->device_type & XFRAME_II_DEVICE) && (ufo))  {
7810                 dev->features |= NETIF_F_UFO;
7811                 dev->features |= NETIF_F_HW_CSUM;
7812         }
7813
7814         dev->tx_timeout = &s2io_tx_watchdog;
7815         dev->watchdog_timeo = WATCH_DOG_TIMEOUT;
7816         INIT_WORK(&sp->rst_timer_task, s2io_restart_nic);
7817         INIT_WORK(&sp->set_link_task, s2io_set_link);
7818
7819         pci_save_state(sp->pdev);
7820
7821         /* Setting swapper control on the NIC, for proper reset operation */
7822         if (s2io_set_swapper(sp)) {
7823                 DBG_PRINT(ERR_DBG, "%s:swapper settings are wrong\n",
7824                           dev->name);
7825                 ret = -EAGAIN;
7826                 goto set_swap_failed;
7827         }
7828
7829         /* Verify if the Herc works on the slot its placed into */
7830         if (sp->device_type & XFRAME_II_DEVICE) {
7831                 mode = s2io_verify_pci_mode(sp);
7832                 if (mode < 0) {
7833                         DBG_PRINT(ERR_DBG, "%s: ", __FUNCTION__);
7834                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7835                         ret = -EBADSLT;
7836                         goto set_swap_failed;
7837                 }
7838         }
7839
7840         /* Not needed for Herc */
7841         if (sp->device_type & XFRAME_I_DEVICE) {
7842                 /*
7843                  * Fix for all "FFs" MAC address problems observed on
7844                  * Alpha platforms
7845                  */
7846                 fix_mac_address(sp);
7847                 s2io_reset(sp);
7848         }
7849
7850         /*
7851          * MAC address initialization.
7852          * For now only one mac address will be read and used.
7853          */
7854         bar0 = sp->bar0;
7855         val64 = RMAC_ADDR_CMD_MEM_RD | RMAC_ADDR_CMD_MEM_STROBE_NEW_CMD |
7856             RMAC_ADDR_CMD_MEM_OFFSET(0 + S2IO_MAC_ADDR_START_OFFSET);
7857         writeq(val64, &bar0->rmac_addr_cmd_mem);
7858         wait_for_cmd_complete(&bar0->rmac_addr_cmd_mem,
7859                       RMAC_ADDR_CMD_MEM_STROBE_CMD_EXECUTING, S2IO_BIT_RESET);
7860         tmp64 = readq(&bar0->rmac_addr_data0_mem);
7861         mac_down = (u32) tmp64;
7862         mac_up = (u32) (tmp64 >> 32);
7863
7864         sp->def_mac_addr[0].mac_addr[3] = (u8) (mac_up);
7865         sp->def_mac_addr[0].mac_addr[2] = (u8) (mac_up >> 8);
7866         sp->def_mac_addr[0].mac_addr[1] = (u8) (mac_up >> 16);
7867         sp->def_mac_addr[0].mac_addr[0] = (u8) (mac_up >> 24);
7868         sp->def_mac_addr[0].mac_addr[5] = (u8) (mac_down >> 16);
7869         sp->def_mac_addr[0].mac_addr[4] = (u8) (mac_down >> 24);
7870
7871         /*  Set the factory defined MAC address initially   */
7872         dev->addr_len = ETH_ALEN;
7873         memcpy(dev->dev_addr, sp->def_mac_addr, ETH_ALEN);
7874         memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
7875
7876         /* initialize number of multicast & unicast MAC entries variables */
7877         if (sp->device_type == XFRAME_I_DEVICE) {
7878                 config->max_mc_addr = S2IO_XENA_MAX_MC_ADDRESSES;
7879                 config->max_mac_addr = S2IO_XENA_MAX_MAC_ADDRESSES;
7880                 config->mc_start_offset = S2IO_XENA_MC_ADDR_START_OFFSET;
7881         } else if (sp->device_type == XFRAME_II_DEVICE) {
7882                 config->max_mc_addr = S2IO_HERC_MAX_MC_ADDRESSES;
7883                 config->max_mac_addr = S2IO_HERC_MAX_MAC_ADDRESSES;
7884                 config->mc_start_offset = S2IO_HERC_MC_ADDR_START_OFFSET;
7885         }
7886
7887         /* store mac addresses from CAM to s2io_nic structure */
7888         do_s2io_store_unicast_mc(sp);
7889
7890          /* Store the values of the MSIX table in the s2io_nic structure */
7891         store_xmsi_data(sp);
7892         /* reset Nic and bring it to known state */
7893         s2io_reset(sp);
7894
7895         /*
7896          * Initialize the tasklet status and link state flags
7897          * and the card state parameter
7898          */
7899         sp->tasklet_status = 0;
7900         sp->state = 0;
7901
7902         /* Initialize spinlocks */
7903         for (i = 0; i < sp->config.tx_fifo_num; i++)
7904                 spin_lock_init(&mac_control->fifos[i].tx_lock);
7905
7906         if (!napi)
7907                 spin_lock_init(&sp->put_lock);
7908         spin_lock_init(&sp->rx_lock);
7909
7910         /*
7911          * SXE-002: Configure link and activity LED to init state
7912          * on driver load.
7913          */
7914         subid = sp->pdev->subsystem_device;
7915         if ((subid & 0xFF) >= 0x07) {
7916                 val64 = readq(&bar0->gpio_control);
7917                 val64 |= 0x0000800000000000ULL;
7918                 writeq(val64, &bar0->gpio_control);
7919                 val64 = 0x0411040400000000ULL;
7920                 writeq(val64, (void __iomem *) bar0 + 0x2700);
7921                 val64 = readq(&bar0->gpio_control);
7922         }
7923
7924         sp->rx_csum = 1;        /* Rx chksum verify enabled by default */
7925
7926         if (register_netdev(dev)) {
7927                 DBG_PRINT(ERR_DBG, "Device registration failed\n");
7928                 ret = -ENODEV;
7929                 goto register_failed;
7930         }
7931         s2io_vpd_read(sp);
7932         DBG_PRINT(ERR_DBG, "Copyright(c) 2002-2007 Neterion Inc.\n");
7933         DBG_PRINT(ERR_DBG, "%s: Neterion %s (rev %d)\n",dev->name,
7934                   sp->product_name, pdev->revision);
7935         DBG_PRINT(ERR_DBG, "%s: Driver version %s\n", dev->name,
7936                   s2io_driver_version);
7937         DBG_PRINT(ERR_DBG, "%s: MAC ADDR: %s\n",
7938                   dev->name, print_mac(mac, dev->dev_addr));
7939         DBG_PRINT(ERR_DBG, "SERIAL NUMBER: %s\n", sp->serial_num);
7940         if (sp->device_type & XFRAME_II_DEVICE) {
7941                 mode = s2io_print_pci_mode(sp);
7942                 if (mode < 0) {
7943                         DBG_PRINT(ERR_DBG, " Unsupported PCI bus mode\n");
7944                         ret = -EBADSLT;
7945                         unregister_netdev(dev);
7946                         goto set_swap_failed;
7947                 }
7948         }
7949         switch(sp->rxd_mode) {
7950                 case RXD_MODE_1:
7951                     DBG_PRINT(ERR_DBG, "%s: 1-Buffer receive mode enabled\n",
7952                                                 dev->name);
7953                     break;
7954                 case RXD_MODE_3B:
7955                     DBG_PRINT(ERR_DBG, "%s: 2-Buffer receive mode enabled\n",
7956                                                 dev->name);
7957                     break;
7958         }
7959
7960         if (napi)
7961                 DBG_PRINT(ERR_DBG, "%s: NAPI enabled\n", dev->name);
7962         switch(sp->config.intr_type) {
7963                 case INTA:
7964                     DBG_PRINT(ERR_DBG, "%s: Interrupt type INTA\n", dev->name);
7965                     break;
7966                 case MSI_X:
7967                     DBG_PRINT(ERR_DBG, "%s: Interrupt type MSI-X\n", dev->name);
7968                     break;
7969         }
7970         if (sp->lro)
7971                 DBG_PRINT(ERR_DBG, "%s: Large receive offload enabled\n",
7972                           dev->name);
7973         if (ufo)
7974                 DBG_PRINT(ERR_DBG, "%s: UDP Fragmentation Offload(UFO)"
7975                                         " enabled\n", dev->name);
7976         /* Initialize device name */
7977         sprintf(sp->name, "%s Neterion %s", dev->name, sp->product_name);
7978
7979         /*
7980          * Make Link state as off at this point, when the Link change
7981          * interrupt comes the state will be automatically changed to
7982          * the right state.
7983          */
7984         netif_carrier_off(dev);
7985
7986         return 0;
7987
7988       register_failed:
7989       set_swap_failed:
7990         iounmap(sp->bar1);
7991       bar1_remap_failed:
7992         iounmap(sp->bar0);
7993       bar0_remap_failed:
7994       mem_alloc_failed:
7995         free_shared_mem(sp);
7996         pci_disable_device(pdev);
7997         pci_release_regions(pdev);
7998         pci_set_drvdata(pdev, NULL);
7999         free_netdev(dev);
8000
8001         return ret;
8002 }
8003
8004 /**
8005  * s2io_rem_nic - Free the PCI device
8006  * @pdev: structure containing the PCI related information of the device.
8007  * Description: This function is called by the Pci subsystem to release a
8008  * PCI device and free up all resource held up by the device. This could
8009  * be in response to a Hot plug event or when the driver is to be removed
8010  * from memory.
8011  */
8012
8013 static void __devexit s2io_rem_nic(struct pci_dev *pdev)
8014 {
8015         struct net_device *dev =
8016             (struct net_device *) pci_get_drvdata(pdev);
8017         struct s2io_nic *sp;
8018
8019         if (dev == NULL) {
8020                 DBG_PRINT(ERR_DBG, "Driver Data is NULL!!\n");
8021                 return;
8022         }
8023
8024         flush_scheduled_work();
8025
8026         sp = dev->priv;
8027         unregister_netdev(dev);
8028
8029         free_shared_mem(sp);
8030         iounmap(sp->bar0);
8031         iounmap(sp->bar1);
8032         pci_release_regions(pdev);
8033         pci_set_drvdata(pdev, NULL);
8034         free_netdev(dev);
8035         pci_disable_device(pdev);
8036 }
8037
8038 /**
8039  * s2io_starter - Entry point for the driver
8040  * Description: This function is the entry point for the driver. It verifies
8041  * the module loadable parameters and initializes PCI configuration space.
8042  */
8043
8044 static int __init s2io_starter(void)
8045 {
8046         return pci_register_driver(&s2io_driver);
8047 }
8048
8049 /**
8050  * s2io_closer - Cleanup routine for the driver
8051  * Description: This function is the cleanup routine for the driver. It unregist * ers the driver.
8052  */
8053
8054 static __exit void s2io_closer(void)
8055 {
8056         pci_unregister_driver(&s2io_driver);
8057         DBG_PRINT(INIT_DBG, "cleanup done\n");
8058 }
8059
8060 module_init(s2io_starter);
8061 module_exit(s2io_closer);
8062
8063 static int check_L2_lro_capable(u8 *buffer, struct iphdr **ip,
8064                 struct tcphdr **tcp, struct RxD_t *rxdp)
8065 {
8066         int ip_off;
8067         u8 l2_type = (u8)((rxdp->Control_1 >> 37) & 0x7), ip_len;
8068
8069         if (!(rxdp->Control_1 & RXD_FRAME_PROTO_TCP)) {
8070                 DBG_PRINT(INIT_DBG,"%s: Non-TCP frames not supported for LRO\n",
8071                           __FUNCTION__);
8072                 return -1;
8073         }
8074
8075         /* TODO:
8076          * By default the VLAN field in the MAC is stripped by the card, if this
8077          * feature is turned off in rx_pa_cfg register, then the ip_off field
8078          * has to be shifted by a further 2 bytes
8079          */
8080         switch (l2_type) {
8081                 case 0: /* DIX type */
8082                 case 4: /* DIX type with VLAN */
8083                         ip_off = HEADER_ETHERNET_II_802_3_SIZE;
8084                         break;
8085                 /* LLC, SNAP etc are considered non-mergeable */
8086                 default:
8087                         return -1;
8088         }
8089
8090         *ip = (struct iphdr *)((u8 *)buffer + ip_off);
8091         ip_len = (u8)((*ip)->ihl);
8092         ip_len <<= 2;
8093         *tcp = (struct tcphdr *)((unsigned long)*ip + ip_len);
8094
8095         return 0;
8096 }
8097
8098 static int check_for_socket_match(struct lro *lro, struct iphdr *ip,
8099                                   struct tcphdr *tcp)
8100 {
8101         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8102         if ((lro->iph->saddr != ip->saddr) || (lro->iph->daddr != ip->daddr) ||
8103            (lro->tcph->source != tcp->source) || (lro->tcph->dest != tcp->dest))
8104                 return -1;
8105         return 0;
8106 }
8107
8108 static inline int get_l4_pyld_length(struct iphdr *ip, struct tcphdr *tcp)
8109 {
8110         return(ntohs(ip->tot_len) - (ip->ihl << 2) - (tcp->doff << 2));
8111 }
8112
8113 static void initiate_new_session(struct lro *lro, u8 *l2h,
8114                      struct iphdr *ip, struct tcphdr *tcp, u32 tcp_pyld_len)
8115 {
8116         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8117         lro->l2h = l2h;
8118         lro->iph = ip;
8119         lro->tcph = tcp;
8120         lro->tcp_next_seq = tcp_pyld_len + ntohl(tcp->seq);
8121         lro->tcp_ack = tcp->ack_seq;
8122         lro->sg_num = 1;
8123         lro->total_len = ntohs(ip->tot_len);
8124         lro->frags_len = 0;
8125         /*
8126          * check if we saw TCP timestamp. Other consistency checks have
8127          * already been done.
8128          */
8129         if (tcp->doff == 8) {
8130                 __be32 *ptr;
8131                 ptr = (__be32 *)(tcp+1);
8132                 lro->saw_ts = 1;
8133                 lro->cur_tsval = ntohl(*(ptr+1));
8134                 lro->cur_tsecr = *(ptr+2);
8135         }
8136         lro->in_use = 1;
8137 }
8138
8139 static void update_L3L4_header(struct s2io_nic *sp, struct lro *lro)
8140 {
8141         struct iphdr *ip = lro->iph;
8142         struct tcphdr *tcp = lro->tcph;
8143         __sum16 nchk;
8144         struct stat_block *statinfo = sp->mac_control.stats_info;
8145         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8146
8147         /* Update L3 header */
8148         ip->tot_len = htons(lro->total_len);
8149         ip->check = 0;
8150         nchk = ip_fast_csum((u8 *)lro->iph, ip->ihl);
8151         ip->check = nchk;
8152
8153         /* Update L4 header */
8154         tcp->ack_seq = lro->tcp_ack;
8155         tcp->window = lro->window;
8156
8157         /* Update tsecr field if this session has timestamps enabled */
8158         if (lro->saw_ts) {
8159                 __be32 *ptr = (__be32 *)(tcp + 1);
8160                 *(ptr+2) = lro->cur_tsecr;
8161         }
8162
8163         /* Update counters required for calculation of
8164          * average no. of packets aggregated.
8165          */
8166         statinfo->sw_stat.sum_avg_pkts_aggregated += lro->sg_num;
8167         statinfo->sw_stat.num_aggregations++;
8168 }
8169
8170 static void aggregate_new_rx(struct lro *lro, struct iphdr *ip,
8171                 struct tcphdr *tcp, u32 l4_pyld)
8172 {
8173         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8174         lro->total_len += l4_pyld;
8175         lro->frags_len += l4_pyld;
8176         lro->tcp_next_seq += l4_pyld;
8177         lro->sg_num++;
8178
8179         /* Update ack seq no. and window ad(from this pkt) in LRO object */
8180         lro->tcp_ack = tcp->ack_seq;
8181         lro->window = tcp->window;
8182
8183         if (lro->saw_ts) {
8184                 __be32 *ptr;
8185                 /* Update tsecr and tsval from this packet */
8186                 ptr = (__be32 *)(tcp+1);
8187                 lro->cur_tsval = ntohl(*(ptr+1));
8188                 lro->cur_tsecr = *(ptr + 2);
8189         }
8190 }
8191
8192 static int verify_l3_l4_lro_capable(struct lro *l_lro, struct iphdr *ip,
8193                                     struct tcphdr *tcp, u32 tcp_pyld_len)
8194 {
8195         u8 *ptr;
8196
8197         DBG_PRINT(INFO_DBG,"%s: Been here...\n", __FUNCTION__);
8198
8199         if (!tcp_pyld_len) {
8200                 /* Runt frame or a pure ack */
8201                 return -1;
8202         }
8203
8204         if (ip->ihl != 5) /* IP has options */
8205                 return -1;
8206
8207         /* If we see CE codepoint in IP header, packet is not mergeable */
8208         if (INET_ECN_is_ce(ipv4_get_dsfield(ip)))
8209                 return -1;
8210
8211         /* If we see ECE or CWR flags in TCP header, packet is not mergeable */
8212         if (tcp->urg || tcp->psh || tcp->rst || tcp->syn || tcp->fin ||
8213                                     tcp->ece || tcp->cwr || !tcp->ack) {
8214                 /*
8215                  * Currently recognize only the ack control word and
8216                  * any other control field being set would result in
8217                  * flushing the LRO session
8218                  */
8219                 return -1;
8220         }
8221
8222         /*
8223          * Allow only one TCP timestamp option. Don't aggregate if
8224          * any other options are detected.
8225          */
8226         if (tcp->doff != 5 && tcp->doff != 8)
8227                 return -1;
8228
8229         if (tcp->doff == 8) {
8230                 ptr = (u8 *)(tcp + 1);
8231                 while (*ptr == TCPOPT_NOP)
8232                         ptr++;
8233                 if (*ptr != TCPOPT_TIMESTAMP || *(ptr+1) != TCPOLEN_TIMESTAMP)
8234                         return -1;
8235
8236                 /* Ensure timestamp value increases monotonically */
8237                 if (l_lro)
8238                         if (l_lro->cur_tsval > ntohl(*((__be32 *)(ptr+2))))
8239                                 return -1;
8240
8241                 /* timestamp echo reply should be non-zero */
8242                 if (*((__be32 *)(ptr+6)) == 0)
8243                         return -1;
8244         }
8245
8246         return 0;
8247 }
8248
8249 static int
8250 s2io_club_tcp_session(u8 *buffer, u8 **tcp, u32 *tcp_len, struct lro **lro,
8251                       struct RxD_t *rxdp, struct s2io_nic *sp)
8252 {
8253         struct iphdr *ip;
8254         struct tcphdr *tcph;
8255         int ret = 0, i;
8256
8257         if (!(ret = check_L2_lro_capable(buffer, &ip, (struct tcphdr **)tcp,
8258                                          rxdp))) {
8259                 DBG_PRINT(INFO_DBG,"IP Saddr: %x Daddr: %x\n",
8260                           ip->saddr, ip->daddr);
8261         } else {
8262                 return ret;
8263         }
8264
8265         tcph = (struct tcphdr *)*tcp;
8266         *tcp_len = get_l4_pyld_length(ip, tcph);
8267         for (i=0; i<MAX_LRO_SESSIONS; i++) {
8268                 struct lro *l_lro = &sp->lro0_n[i];
8269                 if (l_lro->in_use) {
8270                         if (check_for_socket_match(l_lro, ip, tcph))
8271                                 continue;
8272                         /* Sock pair matched */
8273                         *lro = l_lro;
8274
8275                         if ((*lro)->tcp_next_seq != ntohl(tcph->seq)) {
8276                                 DBG_PRINT(INFO_DBG, "%s:Out of order. expected "
8277                                           "0x%x, actual 0x%x\n", __FUNCTION__,
8278                                           (*lro)->tcp_next_seq,
8279                                           ntohl(tcph->seq));
8280
8281                                 sp->mac_control.stats_info->
8282                                    sw_stat.outof_sequence_pkts++;
8283                                 ret = 2;
8284                                 break;
8285                         }
8286
8287                         if (!verify_l3_l4_lro_capable(l_lro, ip, tcph,*tcp_len))
8288                                 ret = 1; /* Aggregate */
8289                         else
8290                                 ret = 2; /* Flush both */
8291                         break;
8292                 }
8293         }
8294
8295         if (ret == 0) {
8296                 /* Before searching for available LRO objects,
8297                  * check if the pkt is L3/L4 aggregatable. If not
8298                  * don't create new LRO session. Just send this
8299                  * packet up.
8300                  */
8301                 if (verify_l3_l4_lro_capable(NULL, ip, tcph, *tcp_len)) {
8302                         return 5;
8303                 }
8304
8305                 for (i=0; i<MAX_LRO_SESSIONS; i++) {
8306                         struct lro *l_lro = &sp->lro0_n[i];
8307                         if (!(l_lro->in_use)) {
8308                                 *lro = l_lro;
8309                                 ret = 3; /* Begin anew */
8310                                 break;
8311                         }
8312                 }
8313         }
8314
8315         if (ret == 0) { /* sessions exceeded */
8316                 DBG_PRINT(INFO_DBG,"%s:All LRO sessions already in use\n",
8317                           __FUNCTION__);
8318                 *lro = NULL;
8319                 return ret;
8320         }
8321
8322         switch (ret) {
8323                 case 3:
8324                         initiate_new_session(*lro, buffer, ip, tcph, *tcp_len);
8325                         break;
8326                 case 2:
8327                         update_L3L4_header(sp, *lro);
8328                         break;
8329                 case 1:
8330                         aggregate_new_rx(*lro, ip, tcph, *tcp_len);
8331                         if ((*lro)->sg_num == sp->lro_max_aggr_per_sess) {
8332                                 update_L3L4_header(sp, *lro);
8333                                 ret = 4; /* Flush the LRO */
8334                         }
8335                         break;
8336                 default:
8337                         DBG_PRINT(ERR_DBG,"%s:Dont know, can't say!!\n",
8338                                 __FUNCTION__);
8339                         break;
8340         }
8341
8342         return ret;
8343 }
8344
8345 static void clear_lro_session(struct lro *lro)
8346 {
8347         static u16 lro_struct_size = sizeof(struct lro);
8348
8349         memset(lro, 0, lro_struct_size);
8350 }
8351
8352 static void queue_rx_frame(struct sk_buff *skb)
8353 {
8354         struct net_device *dev = skb->dev;
8355
8356         skb->protocol = eth_type_trans(skb, dev);
8357         if (napi)
8358                 netif_receive_skb(skb);
8359         else
8360                 netif_rx(skb);
8361 }
8362
8363 static void lro_append_pkt(struct s2io_nic *sp, struct lro *lro,
8364                            struct sk_buff *skb,
8365                            u32 tcp_len)
8366 {
8367         struct sk_buff *first = lro->parent;
8368
8369         first->len += tcp_len;
8370         first->data_len = lro->frags_len;
8371         skb_pull(skb, (skb->len - tcp_len));
8372         if (skb_shinfo(first)->frag_list)
8373                 lro->last_frag->next = skb;
8374         else
8375                 skb_shinfo(first)->frag_list = skb;
8376         first->truesize += skb->truesize;
8377         lro->last_frag = skb;
8378         sp->mac_control.stats_info->sw_stat.clubbed_frms_cnt++;
8379         return;
8380 }
8381
8382 /**
8383  * s2io_io_error_detected - called when PCI error is detected
8384  * @pdev: Pointer to PCI device
8385  * @state: The current pci connection state
8386  *
8387  * This function is called after a PCI bus error affecting
8388  * this device has been detected.
8389  */
8390 static pci_ers_result_t s2io_io_error_detected(struct pci_dev *pdev,
8391                                                pci_channel_state_t state)
8392 {
8393         struct net_device *netdev = pci_get_drvdata(pdev);
8394         struct s2io_nic *sp = netdev->priv;
8395
8396         netif_device_detach(netdev);
8397
8398         if (netif_running(netdev)) {
8399                 /* Bring down the card, while avoiding PCI I/O */
8400                 do_s2io_card_down(sp, 0);
8401         }
8402         pci_disable_device(pdev);
8403
8404         return PCI_ERS_RESULT_NEED_RESET;
8405 }
8406
8407 /**
8408  * s2io_io_slot_reset - called after the pci bus has been reset.
8409  * @pdev: Pointer to PCI device
8410  *
8411  * Restart the card from scratch, as if from a cold-boot.
8412  * At this point, the card has exprienced a hard reset,
8413  * followed by fixups by BIOS, and has its config space
8414  * set up identically to what it was at cold boot.
8415  */
8416 static pci_ers_result_t s2io_io_slot_reset(struct pci_dev *pdev)
8417 {
8418         struct net_device *netdev = pci_get_drvdata(pdev);
8419         struct s2io_nic *sp = netdev->priv;
8420
8421         if (pci_enable_device(pdev)) {
8422                 printk(KERN_ERR "s2io: "
8423                        "Cannot re-enable PCI device after reset.\n");
8424                 return PCI_ERS_RESULT_DISCONNECT;
8425         }
8426
8427         pci_set_master(pdev);
8428         s2io_reset(sp);
8429
8430         return PCI_ERS_RESULT_RECOVERED;
8431 }
8432
8433 /**
8434  * s2io_io_resume - called when traffic can start flowing again.
8435  * @pdev: Pointer to PCI device
8436  *
8437  * This callback is called when the error recovery driver tells
8438  * us that its OK to resume normal operation.
8439  */
8440 static void s2io_io_resume(struct pci_dev *pdev)
8441 {
8442         struct net_device *netdev = pci_get_drvdata(pdev);
8443         struct s2io_nic *sp = netdev->priv;
8444
8445         if (netif_running(netdev)) {
8446                 if (s2io_card_up(sp)) {
8447                         printk(KERN_ERR "s2io: "
8448                                "Can't bring device back up after reset.\n");
8449                         return;
8450                 }
8451
8452                 if (s2io_set_mac_addr(netdev, netdev->dev_addr) == FAILURE) {
8453                         s2io_card_down(sp);
8454                         printk(KERN_ERR "s2io: "
8455                                "Can't resetore mac addr after reset.\n");
8456                         return;
8457                 }
8458         }
8459
8460         netif_device_attach(netdev);
8461         netif_wake_queue(netdev);
8462 }