2 * drivers/usb/driver.c - most of the driver model stuff for usb
4 * (C) Copyright 2005 Greg Kroah-Hartman <gregkh@suse.de>
6 * based on drivers/usb/usb.c which had the following copyrights:
7 * (C) Copyright Linus Torvalds 1999
8 * (C) Copyright Johannes Erdfelt 1999-2001
9 * (C) Copyright Andreas Gal 1999
10 * (C) Copyright Gregory P. Smith 1999
11 * (C) Copyright Deti Fliegl 1999 (new USB architecture)
12 * (C) Copyright Randy Dunlap 2000
13 * (C) Copyright David Brownell 2000-2004
14 * (C) Copyright Yggdrasil Computing, Inc. 2000
15 * (usb_device_id matching changes by Adam J. Richter)
16 * (C) Copyright Greg Kroah-Hartman 2002-2003
18 * NOTE! This is not actually a driver at all, rather this is
19 * just a collection of helper routines that implement the
20 * matching, probing, releasing, suspending and resuming for
25 #include <linux/device.h>
26 #include <linux/usb.h>
27 #include <linux/usb/quirks.h>
28 #include <linux/workqueue.h>
36 * Adds a new dynamic USBdevice ID to this driver,
37 * and cause the driver to probe for all devices again.
39 ssize_t usb_store_new_id(struct usb_dynids *dynids,
40 struct device_driver *driver,
41 const char *buf, size_t count)
43 struct usb_dynid *dynid;
49 fields = sscanf(buf, "%x %x", &idVendor, &idProduct);
53 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
57 INIT_LIST_HEAD(&dynid->node);
58 dynid->id.idVendor = idVendor;
59 dynid->id.idProduct = idProduct;
60 dynid->id.match_flags = USB_DEVICE_ID_MATCH_DEVICE;
62 spin_lock(&dynids->lock);
63 list_add_tail(&dynid->node, &dynids->list);
64 spin_unlock(&dynids->lock);
66 if (get_driver(driver)) {
67 retval = driver_attach(driver);
75 EXPORT_SYMBOL_GPL(usb_store_new_id);
77 static ssize_t store_new_id(struct device_driver *driver,
78 const char *buf, size_t count)
80 struct usb_driver *usb_drv = to_usb_driver(driver);
82 return usb_store_new_id(&usb_drv->dynids, driver, buf, count);
84 static DRIVER_ATTR(new_id, S_IWUSR, NULL, store_new_id);
86 static int usb_create_newid_file(struct usb_driver *usb_drv)
90 if (usb_drv->no_dynamic_id)
93 if (usb_drv->probe != NULL)
94 error = sysfs_create_file(&usb_drv->drvwrap.driver.kobj,
95 &driver_attr_new_id.attr);
100 static void usb_remove_newid_file(struct usb_driver *usb_drv)
102 if (usb_drv->no_dynamic_id)
105 if (usb_drv->probe != NULL)
106 sysfs_remove_file(&usb_drv->drvwrap.driver.kobj,
107 &driver_attr_new_id.attr);
110 static void usb_free_dynids(struct usb_driver *usb_drv)
112 struct usb_dynid *dynid, *n;
114 spin_lock(&usb_drv->dynids.lock);
115 list_for_each_entry_safe(dynid, n, &usb_drv->dynids.list, node) {
116 list_del(&dynid->node);
119 spin_unlock(&usb_drv->dynids.lock);
122 static inline int usb_create_newid_file(struct usb_driver *usb_drv)
127 static void usb_remove_newid_file(struct usb_driver *usb_drv)
131 static inline void usb_free_dynids(struct usb_driver *usb_drv)
136 static const struct usb_device_id *usb_match_dynamic_id(struct usb_interface *intf,
137 struct usb_driver *drv)
139 struct usb_dynid *dynid;
141 spin_lock(&drv->dynids.lock);
142 list_for_each_entry(dynid, &drv->dynids.list, node) {
143 if (usb_match_one_id(intf, &dynid->id)) {
144 spin_unlock(&drv->dynids.lock);
148 spin_unlock(&drv->dynids.lock);
153 /* called from driver core with dev locked */
154 static int usb_probe_device(struct device *dev)
156 struct usb_device_driver *udriver = to_usb_device_driver(dev->driver);
157 struct usb_device *udev;
160 dev_dbg(dev, "%s\n", __FUNCTION__);
162 if (!is_usb_device(dev)) /* Sanity check */
165 udev = to_usb_device(dev);
167 /* TODO: Add real matching code */
169 /* The device should always appear to be in use
170 * unless the driver suports autosuspend.
172 udev->pm_usage_cnt = !(udriver->supports_autosuspend);
174 error = udriver->probe(udev);
178 /* called from driver core with dev locked */
179 static int usb_unbind_device(struct device *dev)
181 struct usb_device_driver *udriver = to_usb_device_driver(dev->driver);
183 udriver->disconnect(to_usb_device(dev));
188 /* called from driver core with dev locked */
189 static int usb_probe_interface(struct device *dev)
191 struct usb_driver *driver = to_usb_driver(dev->driver);
192 struct usb_interface *intf;
193 struct usb_device *udev;
194 const struct usb_device_id *id;
197 dev_dbg(dev, "%s\n", __FUNCTION__);
199 if (is_usb_device(dev)) /* Sanity check */
202 intf = to_usb_interface(dev);
203 udev = interface_to_usbdev(intf);
205 if (udev->authorized == 0) {
206 dev_err(&intf->dev, "Device is not authorized for usage\n");
210 id = usb_match_id(intf, driver->id_table);
212 id = usb_match_dynamic_id(intf, driver);
214 dev_dbg(dev, "%s - got id\n", __FUNCTION__);
216 error = usb_autoresume_device(udev);
220 /* Interface "power state" doesn't correspond to any hardware
221 * state whatsoever. We use it to record when it's bound to
222 * a driver that may start I/0: it's not frozen/quiesced.
225 intf->condition = USB_INTERFACE_BINDING;
227 /* The interface should always appear to be in use
228 * unless the driver suports autosuspend.
230 intf->pm_usage_cnt = !(driver->supports_autosuspend);
232 error = driver->probe(intf, id);
235 intf->needs_remote_wakeup = 0;
236 intf->condition = USB_INTERFACE_UNBOUND;
238 intf->condition = USB_INTERFACE_BOUND;
240 usb_autosuspend_device(udev);
246 /* called from driver core with dev locked */
247 static int usb_unbind_interface(struct device *dev)
249 struct usb_driver *driver = to_usb_driver(dev->driver);
250 struct usb_interface *intf = to_usb_interface(dev);
251 struct usb_device *udev;
254 intf->condition = USB_INTERFACE_UNBINDING;
256 /* Autoresume for set_interface call below */
257 udev = interface_to_usbdev(intf);
258 error = usb_autoresume_device(udev);
260 /* release all urbs for this interface */
261 usb_disable_interface(interface_to_usbdev(intf), intf);
263 driver->disconnect(intf);
265 /* reset other interface state */
266 usb_set_interface(interface_to_usbdev(intf),
267 intf->altsetting[0].desc.bInterfaceNumber,
269 usb_set_intfdata(intf, NULL);
271 intf->condition = USB_INTERFACE_UNBOUND;
273 intf->needs_remote_wakeup = 0;
276 usb_autosuspend_device(udev);
282 * usb_driver_claim_interface - bind a driver to an interface
283 * @driver: the driver to be bound
284 * @iface: the interface to which it will be bound; must be in the
285 * usb device's active configuration
286 * @priv: driver data associated with that interface
288 * This is used by usb device drivers that need to claim more than one
289 * interface on a device when probing (audio and acm are current examples).
290 * No device driver should directly modify internal usb_interface or
291 * usb_device structure members.
293 * Few drivers should need to use this routine, since the most natural
294 * way to bind to an interface is to return the private data from
295 * the driver's probe() method.
297 * Callers must own the device lock, so driver probe() entries don't need
298 * extra locking, but other call contexts may need to explicitly claim that
301 int usb_driver_claim_interface(struct usb_driver *driver,
302 struct usb_interface *iface, void* priv)
304 struct device *dev = &iface->dev;
305 struct usb_device *udev = interface_to_usbdev(iface);
311 dev->driver = &driver->drvwrap.driver;
312 usb_set_intfdata(iface, priv);
315 iface->condition = USB_INTERFACE_BOUND;
317 iface->pm_usage_cnt = !(driver->supports_autosuspend);
320 /* if interface was already added, bind now; else let
321 * the future device_add() bind it, bypassing probe()
323 if (device_is_registered(dev))
324 retval = device_bind_driver(dev);
328 EXPORT_SYMBOL(usb_driver_claim_interface);
331 * usb_driver_release_interface - unbind a driver from an interface
332 * @driver: the driver to be unbound
333 * @iface: the interface from which it will be unbound
335 * This can be used by drivers to release an interface without waiting
336 * for their disconnect() methods to be called. In typical cases this
337 * also causes the driver disconnect() method to be called.
339 * This call is synchronous, and may not be used in an interrupt context.
340 * Callers must own the device lock, so driver disconnect() entries don't
341 * need extra locking, but other call contexts may need to explicitly claim
344 void usb_driver_release_interface(struct usb_driver *driver,
345 struct usb_interface *iface)
347 struct device *dev = &iface->dev;
348 struct usb_device *udev = interface_to_usbdev(iface);
350 /* this should never happen, don't release something that's not ours */
351 if (!dev->driver || dev->driver != &driver->drvwrap.driver)
354 /* don't release from within disconnect() */
355 if (iface->condition != USB_INTERFACE_BOUND)
358 /* don't release if the interface hasn't been added yet */
359 if (device_is_registered(dev)) {
360 iface->condition = USB_INTERFACE_UNBINDING;
361 device_release_driver(dev);
365 usb_set_intfdata(iface, NULL);
368 iface->condition = USB_INTERFACE_UNBOUND;
369 mark_quiesced(iface);
370 iface->needs_remote_wakeup = 0;
373 EXPORT_SYMBOL(usb_driver_release_interface);
375 /* returns 0 if no match, 1 if match */
376 int usb_match_device(struct usb_device *dev, const struct usb_device_id *id)
378 if ((id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
379 id->idVendor != le16_to_cpu(dev->descriptor.idVendor))
382 if ((id->match_flags & USB_DEVICE_ID_MATCH_PRODUCT) &&
383 id->idProduct != le16_to_cpu(dev->descriptor.idProduct))
386 /* No need to test id->bcdDevice_lo != 0, since 0 is never
387 greater than any unsigned number. */
388 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_LO) &&
389 (id->bcdDevice_lo > le16_to_cpu(dev->descriptor.bcdDevice)))
392 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_HI) &&
393 (id->bcdDevice_hi < le16_to_cpu(dev->descriptor.bcdDevice)))
396 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_CLASS) &&
397 (id->bDeviceClass != dev->descriptor.bDeviceClass))
400 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_SUBCLASS) &&
401 (id->bDeviceSubClass!= dev->descriptor.bDeviceSubClass))
404 if ((id->match_flags & USB_DEVICE_ID_MATCH_DEV_PROTOCOL) &&
405 (id->bDeviceProtocol != dev->descriptor.bDeviceProtocol))
411 /* returns 0 if no match, 1 if match */
412 int usb_match_one_id(struct usb_interface *interface,
413 const struct usb_device_id *id)
415 struct usb_host_interface *intf;
416 struct usb_device *dev;
418 /* proc_connectinfo in devio.c may call us with id == NULL. */
422 intf = interface->cur_altsetting;
423 dev = interface_to_usbdev(interface);
425 if (!usb_match_device(dev, id))
428 /* The interface class, subclass, and protocol should never be
429 * checked for a match if the device class is Vendor Specific,
430 * unless the match record specifies the Vendor ID. */
431 if (dev->descriptor.bDeviceClass == USB_CLASS_VENDOR_SPEC &&
432 !(id->match_flags & USB_DEVICE_ID_MATCH_VENDOR) &&
433 (id->match_flags & (USB_DEVICE_ID_MATCH_INT_CLASS |
434 USB_DEVICE_ID_MATCH_INT_SUBCLASS |
435 USB_DEVICE_ID_MATCH_INT_PROTOCOL)))
438 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_CLASS) &&
439 (id->bInterfaceClass != intf->desc.bInterfaceClass))
442 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_SUBCLASS) &&
443 (id->bInterfaceSubClass != intf->desc.bInterfaceSubClass))
446 if ((id->match_flags & USB_DEVICE_ID_MATCH_INT_PROTOCOL) &&
447 (id->bInterfaceProtocol != intf->desc.bInterfaceProtocol))
452 EXPORT_SYMBOL_GPL(usb_match_one_id);
455 * usb_match_id - find first usb_device_id matching device or interface
456 * @interface: the interface of interest
457 * @id: array of usb_device_id structures, terminated by zero entry
459 * usb_match_id searches an array of usb_device_id's and returns
460 * the first one matching the device or interface, or null.
461 * This is used when binding (or rebinding) a driver to an interface.
462 * Most USB device drivers will use this indirectly, through the usb core,
463 * but some layered driver frameworks use it directly.
464 * These device tables are exported with MODULE_DEVICE_TABLE, through
465 * modutils, to support the driver loading functionality of USB hotplugging.
469 * The "match_flags" element in a usb_device_id controls which
470 * members are used. If the corresponding bit is set, the
471 * value in the device_id must match its corresponding member
472 * in the device or interface descriptor, or else the device_id
475 * "driver_info" is normally used only by device drivers,
476 * but you can create a wildcard "matches anything" usb_device_id
477 * as a driver's "modules.usbmap" entry if you provide an id with
478 * only a nonzero "driver_info" field. If you do this, the USB device
479 * driver's probe() routine should use additional intelligence to
480 * decide whether to bind to the specified interface.
482 * What Makes Good usb_device_id Tables:
484 * The match algorithm is very simple, so that intelligence in
485 * driver selection must come from smart driver id records.
486 * Unless you have good reasons to use another selection policy,
487 * provide match elements only in related groups, and order match
488 * specifiers from specific to general. Use the macros provided
489 * for that purpose if you can.
491 * The most specific match specifiers use device descriptor
492 * data. These are commonly used with product-specific matches;
493 * the USB_DEVICE macro lets you provide vendor and product IDs,
494 * and you can also match against ranges of product revisions.
495 * These are widely used for devices with application or vendor
496 * specific bDeviceClass values.
498 * Matches based on device class/subclass/protocol specifications
499 * are slightly more general; use the USB_DEVICE_INFO macro, or
500 * its siblings. These are used with single-function devices
501 * where bDeviceClass doesn't specify that each interface has
504 * Matches based on interface class/subclass/protocol are the
505 * most general; they let drivers bind to any interface on a
506 * multiple-function device. Use the USB_INTERFACE_INFO
507 * macro, or its siblings, to match class-per-interface style
508 * devices (as recorded in bInterfaceClass).
510 * Note that an entry created by USB_INTERFACE_INFO won't match
511 * any interface if the device class is set to Vendor-Specific.
512 * This is deliberate; according to the USB spec the meanings of
513 * the interface class/subclass/protocol for these devices are also
514 * vendor-specific, and hence matching against a standard product
515 * class wouldn't work anyway. If you really want to use an
516 * interface-based match for such a device, create a match record
517 * that also specifies the vendor ID. (Unforunately there isn't a
518 * standard macro for creating records like this.)
520 * Within those groups, remember that not all combinations are
521 * meaningful. For example, don't give a product version range
522 * without vendor and product IDs; or specify a protocol without
523 * its associated class and subclass.
525 const struct usb_device_id *usb_match_id(struct usb_interface *interface,
526 const struct usb_device_id *id)
528 /* proc_connectinfo in devio.c may call us with id == NULL. */
532 /* It is important to check that id->driver_info is nonzero,
533 since an entry that is all zeroes except for a nonzero
534 id->driver_info is the way to create an entry that
535 indicates that the driver want to examine every
536 device and interface. */
537 for (; id->idVendor || id->bDeviceClass || id->bInterfaceClass ||
538 id->driver_info; id++) {
539 if (usb_match_one_id(interface, id))
545 EXPORT_SYMBOL_GPL_FUTURE(usb_match_id);
547 static int usb_device_match(struct device *dev, struct device_driver *drv)
549 /* devices and interfaces are handled separately */
550 if (is_usb_device(dev)) {
552 /* interface drivers never match devices */
553 if (!is_usb_device_driver(drv))
556 /* TODO: Add real matching code */
560 struct usb_interface *intf;
561 struct usb_driver *usb_drv;
562 const struct usb_device_id *id;
564 /* device drivers never match interfaces */
565 if (is_usb_device_driver(drv))
568 intf = to_usb_interface(dev);
569 usb_drv = to_usb_driver(drv);
571 id = usb_match_id(intf, usb_drv->id_table);
575 id = usb_match_dynamic_id(intf, usb_drv);
583 #ifdef CONFIG_HOTPLUG
584 static int usb_uevent(struct device *dev, char **envp, int num_envp,
585 char *buffer, int buffer_size)
587 struct usb_device *usb_dev;
594 /* driver is often null here; dev_dbg() would oops */
595 pr_debug ("usb %s: uevent\n", dev->bus_id);
597 if (is_usb_device(dev))
598 usb_dev = to_usb_device(dev);
600 struct usb_interface *intf = to_usb_interface(dev);
601 usb_dev = interface_to_usbdev(intf);
604 if (usb_dev->devnum < 0) {
605 pr_debug ("usb %s: already deleted?\n", dev->bus_id);
609 pr_debug ("usb %s: bus removed?\n", dev->bus_id);
613 #ifdef CONFIG_USB_DEVICEFS
614 /* If this is available, userspace programs can directly read
615 * all the device descriptors we don't tell them about. Or
616 * act as usermode drivers.
618 if (add_uevent_var(envp, num_envp, &i,
619 buffer, buffer_size, &length,
620 "DEVICE=/proc/bus/usb/%03d/%03d",
621 usb_dev->bus->busnum, usb_dev->devnum))
625 /* per-device configurations are common */
626 if (add_uevent_var(envp, num_envp, &i,
627 buffer, buffer_size, &length,
629 le16_to_cpu(usb_dev->descriptor.idVendor),
630 le16_to_cpu(usb_dev->descriptor.idProduct),
631 le16_to_cpu(usb_dev->descriptor.bcdDevice)))
634 /* class-based driver binding models */
635 if (add_uevent_var(envp, num_envp, &i,
636 buffer, buffer_size, &length,
638 usb_dev->descriptor.bDeviceClass,
639 usb_dev->descriptor.bDeviceSubClass,
640 usb_dev->descriptor.bDeviceProtocol))
643 if (add_uevent_var(envp, num_envp, &i,
644 buffer, buffer_size, &length,
646 usb_dev->bus->busnum))
649 if (add_uevent_var(envp, num_envp, &i,
650 buffer, buffer_size, &length,
661 static int usb_uevent(struct device *dev, char **envp,
662 int num_envp, char *buffer, int buffer_size)
666 #endif /* CONFIG_HOTPLUG */
669 * usb_register_device_driver - register a USB device (not interface) driver
670 * @new_udriver: USB operations for the device driver
671 * @owner: module owner of this driver.
673 * Registers a USB device driver with the USB core. The list of
674 * unattached devices will be rescanned whenever a new driver is
675 * added, allowing the new driver to attach to any recognized devices.
676 * Returns a negative error code on failure and 0 on success.
678 int usb_register_device_driver(struct usb_device_driver *new_udriver,
679 struct module *owner)
686 new_udriver->drvwrap.for_devices = 1;
687 new_udriver->drvwrap.driver.name = (char *) new_udriver->name;
688 new_udriver->drvwrap.driver.bus = &usb_bus_type;
689 new_udriver->drvwrap.driver.probe = usb_probe_device;
690 new_udriver->drvwrap.driver.remove = usb_unbind_device;
691 new_udriver->drvwrap.driver.owner = owner;
693 retval = driver_register(&new_udriver->drvwrap.driver);
696 pr_info("%s: registered new device driver %s\n",
697 usbcore_name, new_udriver->name);
698 usbfs_update_special();
700 printk(KERN_ERR "%s: error %d registering device "
702 usbcore_name, retval, new_udriver->name);
707 EXPORT_SYMBOL_GPL(usb_register_device_driver);
710 * usb_deregister_device_driver - unregister a USB device (not interface) driver
711 * @udriver: USB operations of the device driver to unregister
712 * Context: must be able to sleep
714 * Unlinks the specified driver from the internal USB driver list.
716 void usb_deregister_device_driver(struct usb_device_driver *udriver)
718 pr_info("%s: deregistering device driver %s\n",
719 usbcore_name, udriver->name);
721 driver_unregister(&udriver->drvwrap.driver);
722 usbfs_update_special();
724 EXPORT_SYMBOL_GPL(usb_deregister_device_driver);
727 * usb_register_driver - register a USB interface driver
728 * @new_driver: USB operations for the interface driver
729 * @owner: module owner of this driver.
730 * @mod_name: module name string
732 * Registers a USB interface driver with the USB core. The list of
733 * unattached interfaces will be rescanned whenever a new driver is
734 * added, allowing the new driver to attach to any recognized interfaces.
735 * Returns a negative error code on failure and 0 on success.
737 * NOTE: if you want your driver to use the USB major number, you must call
738 * usb_register_dev() to enable that functionality. This function no longer
739 * takes care of that.
741 int usb_register_driver(struct usb_driver *new_driver, struct module *owner,
742 const char *mod_name)
749 new_driver->drvwrap.for_devices = 0;
750 new_driver->drvwrap.driver.name = (char *) new_driver->name;
751 new_driver->drvwrap.driver.bus = &usb_bus_type;
752 new_driver->drvwrap.driver.probe = usb_probe_interface;
753 new_driver->drvwrap.driver.remove = usb_unbind_interface;
754 new_driver->drvwrap.driver.owner = owner;
755 new_driver->drvwrap.driver.mod_name = mod_name;
756 spin_lock_init(&new_driver->dynids.lock);
757 INIT_LIST_HEAD(&new_driver->dynids.list);
759 retval = driver_register(&new_driver->drvwrap.driver);
762 pr_info("%s: registered new interface driver %s\n",
763 usbcore_name, new_driver->name);
764 usbfs_update_special();
765 usb_create_newid_file(new_driver);
767 printk(KERN_ERR "%s: error %d registering interface "
769 usbcore_name, retval, new_driver->name);
774 EXPORT_SYMBOL_GPL_FUTURE(usb_register_driver);
777 * usb_deregister - unregister a USB interface driver
778 * @driver: USB operations of the interface driver to unregister
779 * Context: must be able to sleep
781 * Unlinks the specified driver from the internal USB driver list.
783 * NOTE: If you called usb_register_dev(), you still need to call
784 * usb_deregister_dev() to clean up your driver's allocated minor numbers,
785 * this * call will no longer do it for you.
787 void usb_deregister(struct usb_driver *driver)
789 pr_info("%s: deregistering interface driver %s\n",
790 usbcore_name, driver->name);
792 usb_remove_newid_file(driver);
793 usb_free_dynids(driver);
794 driver_unregister(&driver->drvwrap.driver);
796 usbfs_update_special();
798 EXPORT_SYMBOL_GPL_FUTURE(usb_deregister);
802 /* Caller has locked udev's pm_mutex */
803 static int usb_suspend_device(struct usb_device *udev, pm_message_t msg)
805 struct usb_device_driver *udriver;
808 if (udev->state == USB_STATE_NOTATTACHED ||
809 udev->state == USB_STATE_SUSPENDED)
812 /* For devices that don't have a driver, we do a generic suspend. */
813 if (udev->dev.driver)
814 udriver = to_usb_device_driver(udev->dev.driver);
816 udev->do_remote_wakeup = 0;
817 udriver = &usb_generic_driver;
819 status = udriver->suspend(udev, msg);
822 dev_vdbg(&udev->dev, "%s: status %d\n", __FUNCTION__, status);
824 udev->dev.power.power_state.event = msg.event;
828 /* Caller has locked udev's pm_mutex */
829 static int usb_resume_device(struct usb_device *udev)
831 struct usb_device_driver *udriver;
834 if (udev->state == USB_STATE_NOTATTACHED)
836 if (udev->state != USB_STATE_SUSPENDED && !udev->reset_resume)
839 /* Can't resume it if it doesn't have a driver. */
840 if (udev->dev.driver == NULL) {
845 if (udev->quirks & USB_QUIRK_RESET_RESUME)
846 udev->reset_resume = 1;
848 udriver = to_usb_device_driver(udev->dev.driver);
849 status = udriver->resume(udev);
852 dev_vdbg(&udev->dev, "%s: status %d\n", __FUNCTION__, status);
854 udev->autoresume_disabled = 0;
855 udev->dev.power.power_state.event = PM_EVENT_ON;
860 /* Caller has locked intf's usb_device's pm mutex */
861 static int usb_suspend_interface(struct usb_interface *intf, pm_message_t msg)
863 struct usb_driver *driver;
866 /* with no hardware, USB interfaces only use FREEZE and ON states */
867 if (interface_to_usbdev(intf)->state == USB_STATE_NOTATTACHED ||
871 if (intf->condition == USB_INTERFACE_UNBOUND) /* This can't happen */
873 driver = to_usb_driver(intf->dev.driver);
875 if (driver->suspend && driver->resume) {
876 status = driver->suspend(intf, msg);
879 else if (!interface_to_usbdev(intf)->auto_pm)
880 dev_err(&intf->dev, "%s error %d\n",
883 // FIXME else if there's no suspend method, disconnect...
884 // Not possible if auto_pm is set...
885 dev_warn(&intf->dev, "no suspend for driver %s?\n",
891 dev_vdbg(&intf->dev, "%s: status %d\n", __FUNCTION__, status);
895 /* Caller has locked intf's usb_device's pm_mutex */
896 static int usb_resume_interface(struct usb_interface *intf, int reset_resume)
898 struct usb_driver *driver;
901 if (interface_to_usbdev(intf)->state == USB_STATE_NOTATTACHED ||
905 /* Don't let autoresume interfere with unbinding */
906 if (intf->condition == USB_INTERFACE_UNBINDING)
909 /* Can't resume it if it doesn't have a driver. */
910 if (intf->condition == USB_INTERFACE_UNBOUND) {
914 driver = to_usb_driver(intf->dev.driver);
917 if (driver->reset_resume) {
918 status = driver->reset_resume(intf);
920 dev_err(&intf->dev, "%s error %d\n",
921 "reset_resume", status);
923 // status = -EOPNOTSUPP;
924 dev_warn(&intf->dev, "no %s for driver %s?\n",
925 "reset_resume", driver->name);
928 if (driver->resume) {
929 status = driver->resume(intf);
931 dev_err(&intf->dev, "%s error %d\n",
934 // status = -EOPNOTSUPP;
935 dev_warn(&intf->dev, "no %s for driver %s?\n",
936 "resume", driver->name);
941 dev_vdbg(&intf->dev, "%s: status %d\n", __FUNCTION__, status);
945 /* FIXME: Unbind the driver and reprobe if the resume failed
946 * (not possible if auto_pm is set) */
950 #ifdef CONFIG_USB_SUSPEND
952 /* Internal routine to check whether we may autosuspend a device. */
953 static int autosuspend_check(struct usb_device *udev, int reschedule)
956 struct usb_interface *intf;
957 unsigned long suspend_time, j;
959 /* For autosuspend, fail fast if anything is in use or autosuspend
960 * is disabled. Also fail if any interfaces require remote wakeup
961 * but it isn't available.
963 udev->do_remote_wakeup = device_may_wakeup(&udev->dev);
964 if (udev->pm_usage_cnt > 0)
966 if (udev->autosuspend_delay < 0 || udev->autosuspend_disabled)
969 suspend_time = udev->last_busy + udev->autosuspend_delay;
970 if (udev->actconfig) {
971 for (i = 0; i < udev->actconfig->desc.bNumInterfaces; i++) {
972 intf = udev->actconfig->interface[i];
973 if (!is_active(intf))
975 if (intf->pm_usage_cnt > 0)
977 if (intf->needs_remote_wakeup &&
978 !udev->do_remote_wakeup) {
979 dev_dbg(&udev->dev, "remote wakeup needed "
980 "for autosuspend\n");
984 /* Don't allow autosuspend if the device will need
985 * a reset-resume and any of its interface drivers
986 * doesn't include support.
988 if (udev->quirks & USB_QUIRK_RESET_RESUME) {
989 struct usb_driver *driver;
991 driver = to_usb_driver(intf->dev.driver);
992 if (!driver->reset_resume)
998 /* If everything is okay but the device hasn't been idle for long
999 * enough, queue a delayed autosuspend request. If the device
1000 * _has_ been idle for long enough and the reschedule flag is set,
1001 * likewise queue a delayed (1 second) autosuspend request.
1004 if (time_before(j, suspend_time))
1007 suspend_time = j + HZ;
1009 if (!timer_pending(&udev->autosuspend.timer)) {
1010 queue_delayed_work(ksuspend_usb_wq, &udev->autosuspend,
1011 round_jiffies_relative(suspend_time - j));
1020 static inline int autosuspend_check(struct usb_device *udev, int reschedule)
1025 #endif /* CONFIG_USB_SUSPEND */
1028 * usb_suspend_both - suspend a USB device and its interfaces
1029 * @udev: the usb_device to suspend
1030 * @msg: Power Management message describing this state transition
1032 * This is the central routine for suspending USB devices. It calls the
1033 * suspend methods for all the interface drivers in @udev and then calls
1034 * the suspend method for @udev itself. If an error occurs at any stage,
1035 * all the interfaces which were suspended are resumed so that they remain
1036 * in the same state as the device.
1038 * If an autosuspend is in progress (@udev->auto_pm is set), the routine
1039 * checks first to make sure that neither the device itself or any of its
1040 * active interfaces is in use (pm_usage_cnt is greater than 0). If they
1041 * are, the autosuspend fails.
1043 * If the suspend succeeds, the routine recursively queues an autosuspend
1044 * request for @udev's parent device, thereby propagating the change up
1045 * the device tree. If all of the parent's children are now suspended,
1046 * the parent will autosuspend in turn.
1048 * The suspend method calls are subject to mutual exclusion under control
1049 * of @udev's pm_mutex. Many of these calls are also under the protection
1050 * of @udev's device lock (including all requests originating outside the
1051 * USB subsystem), but autosuspend requests generated by a child device or
1052 * interface driver may not be. Usbcore will insure that the method calls
1053 * do not arrive during bind, unbind, or reset operations. However, drivers
1054 * must be prepared to handle suspend calls arriving at unpredictable times.
1055 * The only way to block such calls is to do an autoresume (preventing
1056 * autosuspends) while holding @udev's device lock (preventing outside
1059 * The caller must hold @udev->pm_mutex.
1061 * This routine can run only in process context.
1063 static int usb_suspend_both(struct usb_device *udev, pm_message_t msg)
1067 struct usb_interface *intf;
1068 struct usb_device *parent = udev->parent;
1070 if (udev->state == USB_STATE_NOTATTACHED ||
1071 udev->state == USB_STATE_SUSPENDED)
1074 udev->do_remote_wakeup = device_may_wakeup(&udev->dev);
1076 if (udev->auto_pm) {
1077 status = autosuspend_check(udev, 0);
1082 /* Suspend all the interfaces and then udev itself */
1083 if (udev->actconfig) {
1084 for (; i < udev->actconfig->desc.bNumInterfaces; i++) {
1085 intf = udev->actconfig->interface[i];
1086 status = usb_suspend_interface(intf, msg);
1092 status = usb_suspend_device(udev, msg);
1094 /* If the suspend failed, resume interfaces that did get suspended */
1097 intf = udev->actconfig->interface[i];
1098 usb_resume_interface(intf, 0);
1101 /* Try another autosuspend when the interfaces aren't busy */
1103 autosuspend_check(udev, status == -EBUSY);
1105 /* If the suspend succeeded then prevent any more URB submissions,
1106 * flush any outstanding URBs, and propagate the suspend up the tree.
1109 cancel_delayed_work(&udev->autosuspend);
1110 udev->can_submit = 0;
1111 for (i = 0; i < 16; ++i) {
1112 usb_hcd_flush_endpoint(udev, udev->ep_out[i]);
1113 usb_hcd_flush_endpoint(udev, udev->ep_in[i]);
1116 /* If this is just a FREEZE or a PRETHAW, udev might
1117 * not really be suspended. Only true suspends get
1118 * propagated up the device tree.
1120 if (parent && udev->state == USB_STATE_SUSPENDED)
1121 usb_autosuspend_device(parent);
1125 dev_vdbg(&udev->dev, "%s: status %d\n", __FUNCTION__, status);
1130 * usb_resume_both - resume a USB device and its interfaces
1131 * @udev: the usb_device to resume
1133 * This is the central routine for resuming USB devices. It calls the
1134 * the resume method for @udev and then calls the resume methods for all
1135 * the interface drivers in @udev.
1137 * Before starting the resume, the routine calls itself recursively for
1138 * the parent device of @udev, thereby propagating the change up the device
1139 * tree and assuring that @udev will be able to resume. If the parent is
1140 * unable to resume successfully, the routine fails.
1142 * The resume method calls are subject to mutual exclusion under control
1143 * of @udev's pm_mutex. Many of these calls are also under the protection
1144 * of @udev's device lock (including all requests originating outside the
1145 * USB subsystem), but autoresume requests generated by a child device or
1146 * interface driver may not be. Usbcore will insure that the method calls
1147 * do not arrive during bind, unbind, or reset operations. However, drivers
1148 * must be prepared to handle resume calls arriving at unpredictable times.
1149 * The only way to block such calls is to do an autoresume (preventing
1150 * other autoresumes) while holding @udev's device lock (preventing outside
1153 * The caller must hold @udev->pm_mutex.
1155 * This routine can run only in process context.
1157 static int usb_resume_both(struct usb_device *udev)
1161 struct usb_interface *intf;
1162 struct usb_device *parent = udev->parent;
1164 cancel_delayed_work(&udev->autosuspend);
1165 if (udev->state == USB_STATE_NOTATTACHED) {
1169 udev->can_submit = 1;
1171 /* Propagate the resume up the tree, if necessary */
1172 if (udev->state == USB_STATE_SUSPENDED) {
1173 if (udev->auto_pm && udev->autoresume_disabled) {
1178 status = usb_autoresume_device(parent);
1180 status = usb_resume_device(udev);
1181 if (status || udev->state ==
1182 USB_STATE_NOTATTACHED) {
1183 usb_autosuspend_device(parent);
1185 /* It's possible usb_resume_device()
1186 * failed after the port was
1187 * unsuspended, causing udev to be
1188 * logically disconnected. We don't
1189 * want usb_disconnect() to autosuspend
1190 * the parent again, so tell it that
1191 * udev disconnected while still
1194 USB_STATE_NOTATTACHED)
1195 udev->discon_suspended = 1;
1200 /* We can't progagate beyond the USB subsystem,
1201 * so if a root hub's controller is suspended
1202 * then we're stuck. */
1203 status = usb_resume_device(udev);
1207 /* Needed for setting udev->dev.power.power_state.event,
1208 * for possible debugging message, and for reset_resume. */
1209 status = usb_resume_device(udev);
1212 if (status == 0 && udev->actconfig) {
1213 for (i = 0; i < udev->actconfig->desc.bNumInterfaces; i++) {
1214 intf = udev->actconfig->interface[i];
1215 usb_resume_interface(intf, udev->reset_resume);
1220 dev_vdbg(&udev->dev, "%s: status %d\n", __FUNCTION__, status);
1221 udev->reset_resume = 0;
1225 #ifdef CONFIG_USB_SUSPEND
1227 /* Internal routine to adjust a device's usage counter and change
1228 * its autosuspend state.
1230 static int usb_autopm_do_device(struct usb_device *udev, int inc_usage_cnt)
1236 udev->pm_usage_cnt += inc_usage_cnt;
1237 WARN_ON(udev->pm_usage_cnt < 0);
1239 udev->last_busy = jiffies;
1240 if (inc_usage_cnt >= 0 && udev->pm_usage_cnt > 0) {
1241 if (udev->state == USB_STATE_SUSPENDED)
1242 status = usb_resume_both(udev);
1244 udev->pm_usage_cnt -= inc_usage_cnt;
1245 else if (inc_usage_cnt)
1246 udev->last_busy = jiffies;
1247 } else if (inc_usage_cnt <= 0 && udev->pm_usage_cnt <= 0) {
1248 status = usb_suspend_both(udev, PMSG_SUSPEND);
1250 usb_pm_unlock(udev);
1254 /* usb_autosuspend_work - callback routine to autosuspend a USB device */
1255 void usb_autosuspend_work(struct work_struct *work)
1257 struct usb_device *udev =
1258 container_of(work, struct usb_device, autosuspend.work);
1260 usb_autopm_do_device(udev, 0);
1264 * usb_autosuspend_device - delayed autosuspend of a USB device and its interfaces
1265 * @udev: the usb_device to autosuspend
1267 * This routine should be called when a core subsystem is finished using
1268 * @udev and wants to allow it to autosuspend. Examples would be when
1269 * @udev's device file in usbfs is closed or after a configuration change.
1271 * @udev's usage counter is decremented. If it or any of the usage counters
1272 * for an active interface is greater than 0, no autosuspend request will be
1273 * queued. (If an interface driver does not support autosuspend then its
1274 * usage counter is permanently positive.) Furthermore, if an interface
1275 * driver requires remote-wakeup capability during autosuspend but remote
1276 * wakeup is disabled, the autosuspend will fail.
1278 * Often the caller will hold @udev's device lock, but this is not
1281 * This routine can run only in process context.
1283 void usb_autosuspend_device(struct usb_device *udev)
1287 status = usb_autopm_do_device(udev, -1);
1288 dev_vdbg(&udev->dev, "%s: cnt %d\n",
1289 __FUNCTION__, udev->pm_usage_cnt);
1293 * usb_try_autosuspend_device - attempt an autosuspend of a USB device and its interfaces
1294 * @udev: the usb_device to autosuspend
1296 * This routine should be called when a core subsystem thinks @udev may
1297 * be ready to autosuspend.
1299 * @udev's usage counter left unchanged. If it or any of the usage counters
1300 * for an active interface is greater than 0, or autosuspend is not allowed
1301 * for any other reason, no autosuspend request will be queued.
1303 * This routine can run only in process context.
1305 void usb_try_autosuspend_device(struct usb_device *udev)
1307 usb_autopm_do_device(udev, 0);
1308 dev_vdbg(&udev->dev, "%s: cnt %d\n",
1309 __FUNCTION__, udev->pm_usage_cnt);
1313 * usb_autoresume_device - immediately autoresume a USB device and its interfaces
1314 * @udev: the usb_device to autoresume
1316 * This routine should be called when a core subsystem wants to use @udev
1317 * and needs to guarantee that it is not suspended. No autosuspend will
1318 * occur until usb_autosuspend_device is called. (Note that this will not
1319 * prevent suspend events originating in the PM core.) Examples would be
1320 * when @udev's device file in usbfs is opened or when a remote-wakeup
1321 * request is received.
1323 * @udev's usage counter is incremented to prevent subsequent autosuspends.
1324 * However if the autoresume fails then the usage counter is re-decremented.
1326 * Often the caller will hold @udev's device lock, but this is not
1327 * necessary (and attempting it might cause deadlock).
1329 * This routine can run only in process context.
1331 int usb_autoresume_device(struct usb_device *udev)
1335 status = usb_autopm_do_device(udev, 1);
1336 dev_vdbg(&udev->dev, "%s: status %d cnt %d\n",
1337 __FUNCTION__, status, udev->pm_usage_cnt);
1341 /* Internal routine to adjust an interface's usage counter and change
1342 * its device's autosuspend state.
1344 static int usb_autopm_do_interface(struct usb_interface *intf,
1347 struct usb_device *udev = interface_to_usbdev(intf);
1351 if (intf->condition == USB_INTERFACE_UNBOUND)
1355 intf->pm_usage_cnt += inc_usage_cnt;
1356 udev->last_busy = jiffies;
1357 if (inc_usage_cnt >= 0 && intf->pm_usage_cnt > 0) {
1358 if (udev->state == USB_STATE_SUSPENDED)
1359 status = usb_resume_both(udev);
1361 intf->pm_usage_cnt -= inc_usage_cnt;
1363 udev->last_busy = jiffies;
1364 } else if (inc_usage_cnt <= 0 && intf->pm_usage_cnt <= 0) {
1365 status = usb_suspend_both(udev, PMSG_SUSPEND);
1368 usb_pm_unlock(udev);
1373 * usb_autopm_put_interface - decrement a USB interface's PM-usage counter
1374 * @intf: the usb_interface whose counter should be decremented
1376 * This routine should be called by an interface driver when it is
1377 * finished using @intf and wants to allow it to autosuspend. A typical
1378 * example would be a character-device driver when its device file is
1381 * The routine decrements @intf's usage counter. When the counter reaches
1382 * 0, a delayed autosuspend request for @intf's device is queued. When
1383 * the delay expires, if @intf->pm_usage_cnt is still <= 0 along with all
1384 * the other usage counters for the sibling interfaces and @intf's
1385 * usb_device, the device and all its interfaces will be autosuspended.
1387 * Note that @intf->pm_usage_cnt is owned by the interface driver. The
1388 * core will not change its value other than the increment and decrement
1389 * in usb_autopm_get_interface and usb_autopm_put_interface. The driver
1390 * may use this simple counter-oriented discipline or may set the value
1393 * If the driver has set @intf->needs_remote_wakeup then autosuspend will
1394 * take place only if the device's remote-wakeup facility is enabled.
1396 * Suspend method calls queued by this routine can arrive at any time
1397 * while @intf is resumed and its usage counter is equal to 0. They are
1398 * not protected by the usb_device's lock but only by its pm_mutex.
1399 * Drivers must provide their own synchronization.
1401 * This routine can run only in process context.
1403 void usb_autopm_put_interface(struct usb_interface *intf)
1407 status = usb_autopm_do_interface(intf, -1);
1408 dev_vdbg(&intf->dev, "%s: status %d cnt %d\n",
1409 __FUNCTION__, status, intf->pm_usage_cnt);
1411 EXPORT_SYMBOL_GPL(usb_autopm_put_interface);
1414 * usb_autopm_get_interface - increment a USB interface's PM-usage counter
1415 * @intf: the usb_interface whose counter should be incremented
1417 * This routine should be called by an interface driver when it wants to
1418 * use @intf and needs to guarantee that it is not suspended. In addition,
1419 * the routine prevents @intf from being autosuspended subsequently. (Note
1420 * that this will not prevent suspend events originating in the PM core.)
1421 * This prevention will persist until usb_autopm_put_interface() is called
1422 * or @intf is unbound. A typical example would be a character-device
1423 * driver when its device file is opened.
1426 * The routine increments @intf's usage counter. (However if the
1427 * autoresume fails then the counter is re-decremented.) So long as the
1428 * counter is greater than 0, autosuspend will not be allowed for @intf
1429 * or its usb_device. When the driver is finished using @intf it should
1430 * call usb_autopm_put_interface() to decrement the usage counter and
1431 * queue a delayed autosuspend request (if the counter is <= 0).
1434 * Note that @intf->pm_usage_cnt is owned by the interface driver. The
1435 * core will not change its value other than the increment and decrement
1436 * in usb_autopm_get_interface and usb_autopm_put_interface. The driver
1437 * may use this simple counter-oriented discipline or may set the value
1440 * Resume method calls generated by this routine can arrive at any time
1441 * while @intf is suspended. They are not protected by the usb_device's
1442 * lock but only by its pm_mutex. Drivers must provide their own
1445 * This routine can run only in process context.
1447 int usb_autopm_get_interface(struct usb_interface *intf)
1451 status = usb_autopm_do_interface(intf, 1);
1452 dev_vdbg(&intf->dev, "%s: status %d cnt %d\n",
1453 __FUNCTION__, status, intf->pm_usage_cnt);
1456 EXPORT_SYMBOL_GPL(usb_autopm_get_interface);
1459 * usb_autopm_set_interface - set a USB interface's autosuspend state
1460 * @intf: the usb_interface whose state should be set
1462 * This routine sets the autosuspend state of @intf's device according
1463 * to @intf's usage counter, which the caller must have set previously.
1464 * If the counter is <= 0, the device is autosuspended (if it isn't
1465 * already suspended and if nothing else prevents the autosuspend). If
1466 * the counter is > 0, the device is autoresumed (if it isn't already
1469 int usb_autopm_set_interface(struct usb_interface *intf)
1473 status = usb_autopm_do_interface(intf, 0);
1474 dev_vdbg(&intf->dev, "%s: status %d cnt %d\n",
1475 __FUNCTION__, status, intf->pm_usage_cnt);
1478 EXPORT_SYMBOL_GPL(usb_autopm_set_interface);
1482 void usb_autosuspend_work(struct work_struct *work)
1485 #endif /* CONFIG_USB_SUSPEND */
1488 * usb_external_suspend_device - external suspend of a USB device and its interfaces
1489 * @udev: the usb_device to suspend
1490 * @msg: Power Management message describing this state transition
1492 * This routine handles external suspend requests: ones not generated
1493 * internally by a USB driver (autosuspend) but rather coming from the user
1494 * (via sysfs) or the PM core (system sleep). The suspend will be carried
1495 * out regardless of @udev's usage counter or those of its interfaces,
1496 * and regardless of whether or not remote wakeup is enabled. Of course,
1497 * interface drivers still have the option of failing the suspend (if
1498 * there are unsuspended children, for example).
1500 * The caller must hold @udev's device lock.
1502 int usb_external_suspend_device(struct usb_device *udev, pm_message_t msg)
1508 status = usb_suspend_both(udev, msg);
1509 usb_pm_unlock(udev);
1514 * usb_external_resume_device - external resume of a USB device and its interfaces
1515 * @udev: the usb_device to resume
1517 * This routine handles external resume requests: ones not generated
1518 * internally by a USB driver (autoresume) but rather coming from the user
1519 * (via sysfs), the PM core (system resume), or the device itself (remote
1520 * wakeup). @udev's usage counter is unaffected.
1522 * The caller must hold @udev's device lock.
1524 int usb_external_resume_device(struct usb_device *udev)
1530 status = usb_resume_both(udev);
1531 udev->last_busy = jiffies;
1532 usb_pm_unlock(udev);
1534 /* Now that the device is awake, we can start trying to autosuspend
1537 usb_try_autosuspend_device(udev);
1541 static int usb_suspend(struct device *dev, pm_message_t message)
1543 struct usb_device *udev;
1545 if (!is_usb_device(dev)) /* Ignore PM for interfaces */
1547 udev = to_usb_device(dev);
1549 /* If udev is already suspended, we can skip this suspend and
1550 * we should also skip the upcoming system resume. */
1551 if (udev->state == USB_STATE_SUSPENDED) {
1552 udev->skip_sys_resume = 1;
1556 udev->skip_sys_resume = 0;
1557 return usb_external_suspend_device(udev, message);
1560 static int usb_resume(struct device *dev)
1562 struct usb_device *udev;
1564 if (!is_usb_device(dev)) /* Ignore PM for interfaces */
1566 udev = to_usb_device(dev);
1568 /* If udev->skip_sys_resume is set then udev was already suspended
1569 * when the system suspend started, so we don't want to resume
1570 * udev during this system wakeup. However a reset-resume counts
1571 * as a wakeup event, so allow a reset-resume to occur if remote
1572 * wakeup is enabled. */
1573 if (udev->skip_sys_resume) {
1574 if (!(udev->reset_resume && udev->do_remote_wakeup))
1575 return -EHOSTUNREACH;
1577 return usb_external_resume_device(udev);
1582 #define usb_suspend NULL
1583 #define usb_resume NULL
1585 #endif /* CONFIG_PM */
1587 struct bus_type usb_bus_type = {
1589 .match = usb_device_match,
1590 .uevent = usb_uevent,
1591 .suspend = usb_suspend,
1592 .resume = usb_resume,