4 * Copyright (C) 1991, 1992 Linus Torvalds
8 * #!-checking implemented by tytso.
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
25 #include <linux/slab.h>
26 #include <linux/file.h>
27 #include <linux/mman.h>
28 #include <linux/a.out.h>
29 #include <linux/stat.h>
30 #include <linux/fcntl.h>
31 #include <linux/smp_lock.h>
32 #include <linux/init.h>
33 #include <linux/pagemap.h>
34 #include <linux/highmem.h>
35 #include <linux/spinlock.h>
36 #include <linux/key.h>
37 #include <linux/personality.h>
38 #include <linux/binfmts.h>
39 #include <linux/swap.h>
40 #include <linux/utsname.h>
41 #include <linux/pid_namespace.h>
42 #include <linux/module.h>
43 #include <linux/namei.h>
44 #include <linux/proc_fs.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/security.h>
48 #include <linux/syscalls.h>
49 #include <linux/rmap.h>
50 #include <linux/tsacct_kern.h>
51 #include <linux/cn_proc.h>
52 #include <linux/audit.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
58 #include <linux/kmod.h>
62 char core_pattern[128] = "core";
63 int suid_dumpable = 0;
65 EXPORT_SYMBOL(suid_dumpable);
66 /* The maximal length of core_pattern is also specified in sysctl.c */
68 static struct linux_binfmt *formats;
69 static DEFINE_RWLOCK(binfmt_lock);
71 int register_binfmt(struct linux_binfmt * fmt)
73 struct linux_binfmt ** tmp = &formats;
79 write_lock(&binfmt_lock);
82 write_unlock(&binfmt_lock);
89 write_unlock(&binfmt_lock);
93 EXPORT_SYMBOL(register_binfmt);
95 int unregister_binfmt(struct linux_binfmt * fmt)
97 struct linux_binfmt ** tmp = &formats;
99 write_lock(&binfmt_lock);
103 write_unlock(&binfmt_lock);
108 write_unlock(&binfmt_lock);
112 EXPORT_SYMBOL(unregister_binfmt);
114 static inline void put_binfmt(struct linux_binfmt * fmt)
116 module_put(fmt->module);
120 * Note that a shared library must be both readable and executable due to
123 * Also note that we take the address to load from from the file itself.
125 asmlinkage long sys_uselib(const char __user * library)
131 error = __user_path_lookup_open(library, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
136 if (!S_ISREG(nd.dentry->d_inode->i_mode))
139 error = vfs_permission(&nd, MAY_READ | MAY_EXEC);
143 file = nameidata_to_filp(&nd, O_RDONLY);
144 error = PTR_ERR(file);
150 struct linux_binfmt * fmt;
152 read_lock(&binfmt_lock);
153 for (fmt = formats ; fmt ; fmt = fmt->next) {
154 if (!fmt->load_shlib)
156 if (!try_module_get(fmt->module))
158 read_unlock(&binfmt_lock);
159 error = fmt->load_shlib(file);
160 read_lock(&binfmt_lock);
162 if (error != -ENOEXEC)
165 read_unlock(&binfmt_lock);
171 release_open_intent(&nd);
177 * count() counts the number of strings in array ARGV.
179 static int count(char __user * __user * argv, int max)
187 if (get_user(p, argv))
201 * 'copy_strings()' copies argument/environment strings from user
202 * memory to free pages in kernel mem. These are in a format ready
203 * to be put directly into the top of new user memory.
205 static int copy_strings(int argc, char __user * __user * argv,
206 struct linux_binprm *bprm)
208 struct page *kmapped_page = NULL;
217 if (get_user(str, argv+argc) ||
218 !(len = strnlen_user(str, bprm->p))) {
229 /* XXX: add architecture specific overflow check here. */
234 int offset, bytes_to_copy;
237 offset = pos % PAGE_SIZE;
239 page = bprm->page[i];
242 page = alloc_page(GFP_HIGHUSER);
243 bprm->page[i] = page;
251 if (page != kmapped_page) {
253 kunmap(kmapped_page);
255 kaddr = kmap(kmapped_page);
258 memset(kaddr, 0, offset);
259 bytes_to_copy = PAGE_SIZE - offset;
260 if (bytes_to_copy > len) {
263 memset(kaddr+offset+len, 0,
264 PAGE_SIZE-offset-len);
266 err = copy_from_user(kaddr+offset, str, bytes_to_copy);
272 pos += bytes_to_copy;
273 str += bytes_to_copy;
274 len -= bytes_to_copy;
280 kunmap(kmapped_page);
285 * Like copy_strings, but get argv and its values from kernel memory.
287 int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm)
290 mm_segment_t oldfs = get_fs();
292 r = copy_strings(argc, (char __user * __user *)argv, bprm);
297 EXPORT_SYMBOL(copy_strings_kernel);
301 * This routine is used to map in a page into an address space: needed by
302 * execve() for the initial stack and environment pages.
304 * vma->vm_mm->mmap_sem is held for writing.
306 void install_arg_page(struct vm_area_struct *vma,
307 struct page *page, unsigned long address)
309 struct mm_struct *mm = vma->vm_mm;
313 if (unlikely(anon_vma_prepare(vma)))
316 flush_dcache_page(page);
317 pte = get_locked_pte(mm, address, &ptl);
320 if (!pte_none(*pte)) {
321 pte_unmap_unlock(pte, ptl);
324 inc_mm_counter(mm, anon_rss);
325 lru_cache_add_active(page);
326 set_pte_at(mm, address, pte, pte_mkdirty(pte_mkwrite(mk_pte(
327 page, vma->vm_page_prot))));
328 page_add_new_anon_rmap(page, vma, address);
329 pte_unmap_unlock(pte, ptl);
331 /* no need for flush_tlb */
335 force_sig(SIGKILL, current);
338 #define EXTRA_STACK_VM_PAGES 20 /* random */
340 int setup_arg_pages(struct linux_binprm *bprm,
341 unsigned long stack_top,
342 int executable_stack)
344 unsigned long stack_base;
345 struct vm_area_struct *mpnt;
346 struct mm_struct *mm = current->mm;
350 #ifdef CONFIG_STACK_GROWSUP
351 /* Move the argument and environment strings to the bottom of the
357 /* Start by shifting all the pages down */
359 for (j = 0; j < MAX_ARG_PAGES; j++) {
360 struct page *page = bprm->page[j];
363 bprm->page[i++] = page;
366 /* Now move them within their pages */
367 offset = bprm->p % PAGE_SIZE;
368 to = kmap(bprm->page[0]);
369 for (j = 1; j < i; j++) {
370 memmove(to, to + offset, PAGE_SIZE - offset);
371 from = kmap(bprm->page[j]);
372 memcpy(to + PAGE_SIZE - offset, from, offset);
373 kunmap(bprm->page[j - 1]);
376 memmove(to, to + offset, PAGE_SIZE - offset);
377 kunmap(bprm->page[j - 1]);
379 /* Limit stack size to 1GB */
380 stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max;
381 if (stack_base > (1 << 30))
382 stack_base = 1 << 30;
383 stack_base = PAGE_ALIGN(stack_top - stack_base);
385 /* Adjust bprm->p to point to the end of the strings. */
386 bprm->p = stack_base + PAGE_SIZE * i - offset;
388 mm->arg_start = stack_base;
389 arg_size = i << PAGE_SHIFT;
391 /* zero pages that were copied above */
392 while (i < MAX_ARG_PAGES)
393 bprm->page[i++] = NULL;
395 stack_base = arch_align_stack(stack_top - MAX_ARG_PAGES*PAGE_SIZE);
396 stack_base = PAGE_ALIGN(stack_base);
397 bprm->p += stack_base;
398 mm->arg_start = bprm->p;
399 arg_size = stack_top - (PAGE_MASK & (unsigned long) mm->arg_start);
402 arg_size += EXTRA_STACK_VM_PAGES * PAGE_SIZE;
405 bprm->loader += stack_base;
406 bprm->exec += stack_base;
408 mpnt = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
412 memset(mpnt, 0, sizeof(*mpnt));
414 down_write(&mm->mmap_sem);
417 #ifdef CONFIG_STACK_GROWSUP
418 mpnt->vm_start = stack_base;
419 mpnt->vm_end = stack_base + arg_size;
421 mpnt->vm_end = stack_top;
422 mpnt->vm_start = mpnt->vm_end - arg_size;
424 /* Adjust stack execute permissions; explicitly enable
425 * for EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X
426 * and leave alone (arch default) otherwise. */
427 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
428 mpnt->vm_flags = VM_STACK_FLAGS | VM_EXEC;
429 else if (executable_stack == EXSTACK_DISABLE_X)
430 mpnt->vm_flags = VM_STACK_FLAGS & ~VM_EXEC;
432 mpnt->vm_flags = VM_STACK_FLAGS;
433 mpnt->vm_flags |= mm->def_flags;
434 mpnt->vm_page_prot = protection_map[mpnt->vm_flags & 0x7];
435 if ((ret = insert_vm_struct(mm, mpnt))) {
436 up_write(&mm->mmap_sem);
437 kmem_cache_free(vm_area_cachep, mpnt);
440 mm->stack_vm = mm->total_vm = vma_pages(mpnt);
443 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
444 struct page *page = bprm->page[i];
446 bprm->page[i] = NULL;
447 install_arg_page(mpnt, page, stack_base);
449 stack_base += PAGE_SIZE;
451 up_write(&mm->mmap_sem);
456 EXPORT_SYMBOL(setup_arg_pages);
458 #define free_arg_pages(bprm) do { } while (0)
462 static inline void free_arg_pages(struct linux_binprm *bprm)
466 for (i = 0; i < MAX_ARG_PAGES; i++) {
468 __free_page(bprm->page[i]);
469 bprm->page[i] = NULL;
473 #endif /* CONFIG_MMU */
475 struct file *open_exec(const char *name)
481 err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, FMODE_READ|FMODE_EXEC);
485 struct inode *inode = nd.dentry->d_inode;
486 file = ERR_PTR(-EACCES);
487 if (!(nd.mnt->mnt_flags & MNT_NOEXEC) &&
488 S_ISREG(inode->i_mode)) {
489 int err = vfs_permission(&nd, MAY_EXEC);
492 file = nameidata_to_filp(&nd, O_RDONLY);
494 err = deny_write_access(file);
504 release_open_intent(&nd);
510 EXPORT_SYMBOL(open_exec);
512 int kernel_read(struct file *file, unsigned long offset,
513 char *addr, unsigned long count)
521 /* The cast to a user pointer is valid due to the set_fs() */
522 result = vfs_read(file, (void __user *)addr, count, &pos);
527 EXPORT_SYMBOL(kernel_read);
529 static int exec_mmap(struct mm_struct *mm)
531 struct task_struct *tsk;
532 struct mm_struct * old_mm, *active_mm;
534 /* Notify parent that we're no longer interested in the old VM */
536 old_mm = current->mm;
537 mm_release(tsk, old_mm);
541 * Make sure that if there is a core dump in progress
542 * for the old mm, we get out and die instead of going
543 * through with the exec. We must hold mmap_sem around
544 * checking core_waiters and changing tsk->mm. The
545 * core-inducing thread will increment core_waiters for
546 * each thread whose ->mm == old_mm.
548 down_read(&old_mm->mmap_sem);
549 if (unlikely(old_mm->core_waiters)) {
550 up_read(&old_mm->mmap_sem);
555 active_mm = tsk->active_mm;
558 activate_mm(active_mm, mm);
560 arch_pick_mmap_layout(mm);
562 up_read(&old_mm->mmap_sem);
563 BUG_ON(active_mm != old_mm);
572 * This function makes sure the current process has its own signal table,
573 * so that flush_signal_handlers can later reset the handlers without
574 * disturbing other processes. (Other processes might share the signal
575 * table via the CLONE_SIGHAND option to clone().)
577 static int de_thread(struct task_struct *tsk)
579 struct signal_struct *sig = tsk->signal;
580 struct sighand_struct *newsighand, *oldsighand = tsk->sighand;
581 spinlock_t *lock = &oldsighand->siglock;
582 struct task_struct *leader = NULL;
586 * If we don't share sighandlers, then we aren't sharing anything
587 * and we can just re-use it all.
589 if (atomic_read(&oldsighand->count) <= 1) {
590 BUG_ON(atomic_read(&sig->count) != 1);
595 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
599 if (thread_group_empty(tsk))
600 goto no_thread_group;
603 * Kill all other threads in the thread group.
604 * We must hold tasklist_lock to call zap_other_threads.
606 read_lock(&tasklist_lock);
608 if (sig->flags & SIGNAL_GROUP_EXIT) {
610 * Another group action in progress, just
611 * return so that the signal is processed.
613 spin_unlock_irq(lock);
614 read_unlock(&tasklist_lock);
615 kmem_cache_free(sighand_cachep, newsighand);
620 * child_reaper ignores SIGKILL, change it now.
621 * Reparenting needs write_lock on tasklist_lock,
622 * so it is safe to do it under read_lock.
624 if (unlikely(tsk->group_leader == child_reaper(tsk)))
625 tsk->nsproxy->pid_ns->child_reaper = tsk;
627 zap_other_threads(tsk);
628 read_unlock(&tasklist_lock);
631 * Account for the thread group leader hanging around:
634 if (!thread_group_leader(tsk)) {
637 * The SIGALRM timer survives the exec, but needs to point
638 * at us as the new group leader now. We have a race with
639 * a timer firing now getting the old leader, so we need to
640 * synchronize with any firing (by calling del_timer_sync)
641 * before we can safely let the old group leader die.
644 spin_unlock_irq(lock);
645 if (hrtimer_cancel(&sig->real_timer))
646 hrtimer_restart(&sig->real_timer);
649 while (atomic_read(&sig->count) > count) {
650 sig->group_exit_task = tsk;
651 sig->notify_count = count;
652 __set_current_state(TASK_UNINTERRUPTIBLE);
653 spin_unlock_irq(lock);
657 sig->group_exit_task = NULL;
658 sig->notify_count = 0;
659 spin_unlock_irq(lock);
662 * At this point all other threads have exited, all we have to
663 * do is to wait for the thread group leader to become inactive,
664 * and to assume its PID:
666 if (!thread_group_leader(tsk)) {
668 * Wait for the thread group leader to be a zombie.
669 * It should already be zombie at this point, most
672 leader = tsk->group_leader;
673 while (leader->exit_state != EXIT_ZOMBIE)
677 * The only record we have of the real-time age of a
678 * process, regardless of execs it's done, is start_time.
679 * All the past CPU time is accumulated in signal_struct
680 * from sister threads now dead. But in this non-leader
681 * exec, nothing survives from the original leader thread,
682 * whose birth marks the true age of this process now.
683 * When we take on its identity by switching to its PID, we
684 * also take its birthdate (always earlier than our own).
686 tsk->start_time = leader->start_time;
688 write_lock_irq(&tasklist_lock);
690 BUG_ON(leader->tgid != tsk->tgid);
691 BUG_ON(tsk->pid == tsk->tgid);
693 * An exec() starts a new thread group with the
694 * TGID of the previous thread group. Rehash the
695 * two threads with a switched PID, and release
696 * the former thread group leader:
699 /* Become a process group leader with the old leader's pid.
700 * The old leader becomes a thread of the this thread group.
701 * Note: The old leader also uses this pid until release_task
702 * is called. Odd but simple and correct.
704 detach_pid(tsk, PIDTYPE_PID);
705 tsk->pid = leader->pid;
706 attach_pid(tsk, PIDTYPE_PID, tsk->pid);
707 transfer_pid(leader, tsk, PIDTYPE_PGID);
708 transfer_pid(leader, tsk, PIDTYPE_SID);
709 list_replace_rcu(&leader->tasks, &tsk->tasks);
711 tsk->group_leader = tsk;
712 leader->group_leader = tsk;
714 tsk->exit_signal = SIGCHLD;
716 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
717 leader->exit_state = EXIT_DEAD;
719 write_unlock_irq(&tasklist_lock);
723 * There may be one thread left which is just exiting,
724 * but it's safe to stop telling the group to kill themselves.
731 release_task(leader);
733 BUG_ON(atomic_read(&sig->count) != 1);
735 if (atomic_read(&oldsighand->count) == 1) {
737 * Now that we nuked the rest of the thread group,
738 * it turns out we are not sharing sighand any more either.
739 * So we can just keep it.
741 kmem_cache_free(sighand_cachep, newsighand);
744 * Move our state over to newsighand and switch it in.
746 atomic_set(&newsighand->count, 1);
747 memcpy(newsighand->action, oldsighand->action,
748 sizeof(newsighand->action));
750 write_lock_irq(&tasklist_lock);
751 spin_lock(&oldsighand->siglock);
752 spin_lock_nested(&newsighand->siglock, SINGLE_DEPTH_NESTING);
754 rcu_assign_pointer(tsk->sighand, newsighand);
757 spin_unlock(&newsighand->siglock);
758 spin_unlock(&oldsighand->siglock);
759 write_unlock_irq(&tasklist_lock);
761 if (atomic_dec_and_test(&oldsighand->count))
762 kmem_cache_free(sighand_cachep, oldsighand);
765 BUG_ON(!thread_group_leader(tsk));
770 * These functions flushes out all traces of the currently running executable
771 * so that a new one can be started
774 static void flush_old_files(struct files_struct * files)
779 spin_lock(&files->file_lock);
781 unsigned long set, i;
785 fdt = files_fdtable(files);
786 if (i >= fdt->max_fds || i >= fdt->max_fdset)
788 set = fdt->close_on_exec->fds_bits[j];
791 fdt->close_on_exec->fds_bits[j] = 0;
792 spin_unlock(&files->file_lock);
793 for ( ; set ; i++,set >>= 1) {
798 spin_lock(&files->file_lock);
801 spin_unlock(&files->file_lock);
804 void get_task_comm(char *buf, struct task_struct *tsk)
806 /* buf must be at least sizeof(tsk->comm) in size */
808 strncpy(buf, tsk->comm, sizeof(tsk->comm));
812 void set_task_comm(struct task_struct *tsk, char *buf)
815 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
819 int flush_old_exec(struct linux_binprm * bprm)
823 struct files_struct *files;
824 char tcomm[sizeof(current->comm)];
827 * Make sure we have a private signal table and that
828 * we are unassociated from the previous thread group.
830 retval = de_thread(current);
835 * Make sure we have private file handles. Ask the
836 * fork helper to do the work for us and the exit
837 * helper to do the cleanup of the old one.
839 files = current->files; /* refcounted so safe to hold */
840 retval = unshare_files();
844 * Release all of the old mmap stuff
846 retval = exec_mmap(bprm->mm);
850 bprm->mm = NULL; /* We're using it now */
852 /* This is the point of no return */
853 put_files_struct(files);
855 current->sas_ss_sp = current->sas_ss_size = 0;
857 if (current->euid == current->uid && current->egid == current->gid)
858 current->mm->dumpable = 1;
860 current->mm->dumpable = suid_dumpable;
862 name = bprm->filename;
864 /* Copies the binary name from after last slash */
865 for (i=0; (ch = *(name++)) != '\0';) {
867 i = 0; /* overwrite what we wrote */
869 if (i < (sizeof(tcomm) - 1))
873 set_task_comm(current, tcomm);
875 current->flags &= ~PF_RANDOMIZE;
878 /* Set the new mm task size. We have to do that late because it may
879 * depend on TIF_32BIT which is only updated in flush_thread() on
880 * some architectures like powerpc
882 current->mm->task_size = TASK_SIZE;
884 if (bprm->e_uid != current->euid || bprm->e_gid != current->egid ||
885 file_permission(bprm->file, MAY_READ) ||
886 (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) {
888 current->mm->dumpable = suid_dumpable;
891 /* An exec changes our domain. We are no longer part of the thread
894 current->self_exec_id++;
896 flush_signal_handlers(current, 0);
897 flush_old_files(current->files);
902 reset_files_struct(current, files);
907 EXPORT_SYMBOL(flush_old_exec);
910 * Fill the binprm structure from the inode.
911 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
913 int prepare_binprm(struct linux_binprm *bprm)
916 struct inode * inode = bprm->file->f_path.dentry->d_inode;
919 mode = inode->i_mode;
920 if (bprm->file->f_op == NULL)
923 bprm->e_uid = current->euid;
924 bprm->e_gid = current->egid;
926 if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
928 if (mode & S_ISUID) {
929 current->personality &= ~PER_CLEAR_ON_SETID;
930 bprm->e_uid = inode->i_uid;
935 * If setgid is set but no group execute bit then this
936 * is a candidate for mandatory locking, not a setgid
939 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
940 current->personality &= ~PER_CLEAR_ON_SETID;
941 bprm->e_gid = inode->i_gid;
945 /* fill in binprm security blob */
946 retval = security_bprm_set(bprm);
950 memset(bprm->buf,0,BINPRM_BUF_SIZE);
951 return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE);
954 EXPORT_SYMBOL(prepare_binprm);
956 static int unsafe_exec(struct task_struct *p)
959 if (p->ptrace & PT_PTRACED) {
960 if (p->ptrace & PT_PTRACE_CAP)
961 unsafe |= LSM_UNSAFE_PTRACE_CAP;
963 unsafe |= LSM_UNSAFE_PTRACE;
965 if (atomic_read(&p->fs->count) > 1 ||
966 atomic_read(&p->files->count) > 1 ||
967 atomic_read(&p->sighand->count) > 1)
968 unsafe |= LSM_UNSAFE_SHARE;
973 void compute_creds(struct linux_binprm *bprm)
977 if (bprm->e_uid != current->uid)
982 unsafe = unsafe_exec(current);
983 security_bprm_apply_creds(bprm, unsafe);
984 task_unlock(current);
985 security_bprm_post_apply_creds(bprm);
988 EXPORT_SYMBOL(compute_creds);
990 void remove_arg_zero(struct linux_binprm *bprm)
993 unsigned long offset;
997 offset = bprm->p % PAGE_SIZE;
1000 while (bprm->p++, *(kaddr+offset++)) {
1001 if (offset != PAGE_SIZE)
1004 kunmap_atomic(kaddr, KM_USER0);
1006 page = bprm->page[bprm->p/PAGE_SIZE];
1007 kaddr = kmap_atomic(page, KM_USER0);
1009 kunmap_atomic(kaddr, KM_USER0);
1014 EXPORT_SYMBOL(remove_arg_zero);
1017 * cycle the list of binary formats handler, until one recognizes the image
1019 int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1022 struct linux_binfmt *fmt;
1024 /* handle /sbin/loader.. */
1026 struct exec * eh = (struct exec *) bprm->buf;
1028 if (!bprm->loader && eh->fh.f_magic == 0x183 &&
1029 (eh->fh.f_flags & 0x3000) == 0x3000)
1032 unsigned long loader;
1034 allow_write_access(bprm->file);
1038 loader = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1040 file = open_exec("/sbin/loader");
1041 retval = PTR_ERR(file);
1045 /* Remember if the application is TASO. */
1046 bprm->sh_bang = eh->ah.entry < 0x100000000UL;
1049 bprm->loader = loader;
1050 retval = prepare_binprm(bprm);
1053 /* should call search_binary_handler recursively here,
1054 but it does not matter */
1058 retval = security_bprm_check(bprm);
1062 /* kernel module loader fixup */
1063 /* so we don't try to load run modprobe in kernel space. */
1066 retval = audit_bprm(bprm);
1071 for (try=0; try<2; try++) {
1072 read_lock(&binfmt_lock);
1073 for (fmt = formats ; fmt ; fmt = fmt->next) {
1074 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1077 if (!try_module_get(fmt->module))
1079 read_unlock(&binfmt_lock);
1080 retval = fn(bprm, regs);
1083 allow_write_access(bprm->file);
1087 current->did_exec = 1;
1088 proc_exec_connector(current);
1091 read_lock(&binfmt_lock);
1093 if (retval != -ENOEXEC || bprm->mm == NULL)
1096 read_unlock(&binfmt_lock);
1100 read_unlock(&binfmt_lock);
1101 if (retval != -ENOEXEC || bprm->mm == NULL) {
1105 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1106 if (printable(bprm->buf[0]) &&
1107 printable(bprm->buf[1]) &&
1108 printable(bprm->buf[2]) &&
1109 printable(bprm->buf[3]))
1110 break; /* -ENOEXEC */
1111 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1118 EXPORT_SYMBOL(search_binary_handler);
1121 * sys_execve() executes a new program.
1123 int do_execve(char * filename,
1124 char __user *__user *argv,
1125 char __user *__user *envp,
1126 struct pt_regs * regs)
1128 struct linux_binprm *bprm;
1134 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1138 file = open_exec(filename);
1139 retval = PTR_ERR(file);
1145 bprm->p = PAGE_SIZE*MAX_ARG_PAGES-sizeof(void *);
1148 bprm->filename = filename;
1149 bprm->interp = filename;
1150 bprm->mm = mm_alloc();
1155 retval = init_new_context(current, bprm->mm);
1159 bprm->argc = count(argv, bprm->p / sizeof(void *));
1160 if ((retval = bprm->argc) < 0)
1163 bprm->envc = count(envp, bprm->p / sizeof(void *));
1164 if ((retval = bprm->envc) < 0)
1167 retval = security_bprm_alloc(bprm);
1171 retval = prepare_binprm(bprm);
1175 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1179 bprm->exec = bprm->p;
1180 retval = copy_strings(bprm->envc, envp, bprm);
1184 retval = copy_strings(bprm->argc, argv, bprm);
1188 retval = search_binary_handler(bprm,regs);
1190 free_arg_pages(bprm);
1192 /* execve success */
1193 security_bprm_free(bprm);
1194 acct_update_integrals(current);
1200 /* Something went wrong, return the inode and free the argument pages*/
1201 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1202 struct page * page = bprm->page[i];
1208 security_bprm_free(bprm);
1216 allow_write_access(bprm->file);
1227 int set_binfmt(struct linux_binfmt *new)
1229 struct linux_binfmt *old = current->binfmt;
1232 if (!try_module_get(new->module))
1235 current->binfmt = new;
1237 module_put(old->module);
1241 EXPORT_SYMBOL(set_binfmt);
1243 #define CORENAME_MAX_SIZE 64
1245 /* format_corename will inspect the pattern parameter, and output a
1246 * name into corename, which must have space for at least
1247 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1249 static void format_corename(char *corename, const char *pattern, long signr)
1251 const char *pat_ptr = pattern;
1252 char *out_ptr = corename;
1253 char *const out_end = corename + CORENAME_MAX_SIZE;
1255 int pid_in_pattern = 0;
1257 /* Repeat as long as we have more pattern to process and more output
1260 if (*pat_ptr != '%') {
1261 if (out_ptr == out_end)
1263 *out_ptr++ = *pat_ptr++;
1265 switch (*++pat_ptr) {
1268 /* Double percent, output one percent */
1270 if (out_ptr == out_end)
1277 rc = snprintf(out_ptr, out_end - out_ptr,
1278 "%d", current->tgid);
1279 if (rc > out_end - out_ptr)
1285 rc = snprintf(out_ptr, out_end - out_ptr,
1286 "%d", current->uid);
1287 if (rc > out_end - out_ptr)
1293 rc = snprintf(out_ptr, out_end - out_ptr,
1294 "%d", current->gid);
1295 if (rc > out_end - out_ptr)
1299 /* signal that caused the coredump */
1301 rc = snprintf(out_ptr, out_end - out_ptr,
1303 if (rc > out_end - out_ptr)
1307 /* UNIX time of coredump */
1310 do_gettimeofday(&tv);
1311 rc = snprintf(out_ptr, out_end - out_ptr,
1313 if (rc > out_end - out_ptr)
1320 down_read(&uts_sem);
1321 rc = snprintf(out_ptr, out_end - out_ptr,
1322 "%s", utsname()->nodename);
1324 if (rc > out_end - out_ptr)
1330 rc = snprintf(out_ptr, out_end - out_ptr,
1331 "%s", current->comm);
1332 if (rc > out_end - out_ptr)
1342 /* Backward compatibility with core_uses_pid:
1344 * If core_pattern does not include a %p (as is the default)
1345 * and core_uses_pid is set, then .%pid will be appended to
1348 && (core_uses_pid || atomic_read(¤t->mm->mm_users) != 1)) {
1349 rc = snprintf(out_ptr, out_end - out_ptr,
1350 ".%d", current->tgid);
1351 if (rc > out_end - out_ptr)
1359 static void zap_process(struct task_struct *start)
1361 struct task_struct *t;
1363 start->signal->flags = SIGNAL_GROUP_EXIT;
1364 start->signal->group_stop_count = 0;
1368 if (t != current && t->mm) {
1369 t->mm->core_waiters++;
1370 sigaddset(&t->pending.signal, SIGKILL);
1371 signal_wake_up(t, 1);
1373 } while ((t = next_thread(t)) != start);
1376 static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
1379 struct task_struct *g, *p;
1380 unsigned long flags;
1383 spin_lock_irq(&tsk->sighand->siglock);
1384 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT)) {
1385 tsk->signal->group_exit_code = exit_code;
1389 spin_unlock_irq(&tsk->sighand->siglock);
1393 if (atomic_read(&mm->mm_users) == mm->core_waiters + 1)
1397 for_each_process(g) {
1398 if (g == tsk->group_leader)
1406 * p->sighand can't disappear, but
1407 * may be changed by de_thread()
1409 lock_task_sighand(p, &flags);
1411 unlock_task_sighand(p, &flags);
1415 } while ((p = next_thread(p)) != g);
1419 return mm->core_waiters;
1422 static int coredump_wait(int exit_code)
1424 struct task_struct *tsk = current;
1425 struct mm_struct *mm = tsk->mm;
1426 struct completion startup_done;
1427 struct completion *vfork_done;
1430 init_completion(&mm->core_done);
1431 init_completion(&startup_done);
1432 mm->core_startup_done = &startup_done;
1434 core_waiters = zap_threads(tsk, mm, exit_code);
1435 up_write(&mm->mmap_sem);
1437 if (unlikely(core_waiters < 0))
1441 * Make sure nobody is waiting for us to release the VM,
1442 * otherwise we can deadlock when we wait on each other
1444 vfork_done = tsk->vfork_done;
1446 tsk->vfork_done = NULL;
1447 complete(vfork_done);
1451 wait_for_completion(&startup_done);
1453 BUG_ON(mm->core_waiters);
1454 return core_waiters;
1457 int do_coredump(long signr, int exit_code, struct pt_regs * regs)
1459 char corename[CORENAME_MAX_SIZE + 1];
1460 struct mm_struct *mm = current->mm;
1461 struct linux_binfmt * binfmt;
1462 struct inode * inode;
1465 int fsuid = current->fsuid;
1469 binfmt = current->binfmt;
1470 if (!binfmt || !binfmt->core_dump)
1472 down_write(&mm->mmap_sem);
1473 if (!mm->dumpable) {
1474 up_write(&mm->mmap_sem);
1479 * We cannot trust fsuid as being the "true" uid of the
1480 * process nor do we know its entire history. We only know it
1481 * was tainted so we dump it as root in mode 2.
1483 if (mm->dumpable == 2) { /* Setuid core dump mode */
1484 flag = O_EXCL; /* Stop rewrite attacks */
1485 current->fsuid = 0; /* Dump root private */
1489 retval = coredump_wait(exit_code);
1494 * Clear any false indication of pending signals that might
1495 * be seen by the filesystem code called to write the core file.
1497 clear_thread_flag(TIF_SIGPENDING);
1499 if (current->signal->rlim[RLIMIT_CORE].rlim_cur < binfmt->min_coredump)
1503 * lock_kernel() because format_corename() is controlled by sysctl, which
1504 * uses lock_kernel()
1507 format_corename(corename, core_pattern, signr);
1509 if (corename[0] == '|') {
1510 /* SIGPIPE can happen, but it's just never processed */
1511 if(call_usermodehelper_pipe(corename+1, NULL, NULL, &file)) {
1512 printk(KERN_INFO "Core dump to %s pipe failed\n",
1518 file = filp_open(corename,
1519 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
1523 inode = file->f_path.dentry->d_inode;
1524 if (inode->i_nlink > 1)
1525 goto close_fail; /* multiple links - don't dump */
1526 if (!ispipe && d_unhashed(file->f_path.dentry))
1529 /* AK: actually i see no reason to not allow this for named pipes etc.,
1530 but keep the previous behaviour for now. */
1531 if (!ispipe && !S_ISREG(inode->i_mode))
1535 if (!file->f_op->write)
1537 if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0)
1540 retval = binfmt->core_dump(signr, regs, file);
1543 current->signal->group_exit_code |= 0x80;
1545 filp_close(file, NULL);
1547 current->fsuid = fsuid;
1548 complete_all(&mm->core_done);