4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
22 #include <linux/module.h>
23 #include <linux/nmi.h>
24 #include <linux/init.h>
25 #include <asm/uaccess.h>
26 #include <linux/highmem.h>
27 #include <linux/smp_lock.h>
28 #include <asm/mmu_context.h>
29 #include <linux/interrupt.h>
30 #include <linux/capability.h>
31 #include <linux/completion.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/security.h>
34 #include <linux/notifier.h>
35 #include <linux/profile.h>
36 #include <linux/suspend.h>
37 #include <linux/vmalloc.h>
38 #include <linux/blkdev.h>
39 #include <linux/delay.h>
40 #include <linux/smp.h>
41 #include <linux/threads.h>
42 #include <linux/timer.h>
43 #include <linux/rcupdate.h>
44 #include <linux/cpu.h>
45 #include <linux/cpuset.h>
46 #include <linux/percpu.h>
47 #include <linux/kthread.h>
48 #include <linux/seq_file.h>
49 #include <linux/syscalls.h>
50 #include <linux/times.h>
51 #include <linux/acct.h>
54 #include <asm/unistd.h>
57 * Convert user-nice values [ -20 ... 0 ... 19 ]
58 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
61 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
62 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
63 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
66 * 'User priority' is the nice value converted to something we
67 * can work with better when scaling various scheduler parameters,
68 * it's a [ 0 ... 39 ] range.
70 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
71 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
72 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
75 * Some helpers for converting nanosecond timing to jiffy resolution
77 #define NS_TO_JIFFIES(TIME) ((TIME) / (1000000000 / HZ))
78 #define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
81 * These are the 'tuning knobs' of the scheduler:
83 * Minimum timeslice is 5 msecs (or 1 jiffy, whichever is larger),
84 * default timeslice is 100 msecs, maximum timeslice is 800 msecs.
85 * Timeslices get refilled after they expire.
87 #define MIN_TIMESLICE max(5 * HZ / 1000, 1)
88 #define DEF_TIMESLICE (100 * HZ / 1000)
89 #define ON_RUNQUEUE_WEIGHT 30
90 #define CHILD_PENALTY 95
91 #define PARENT_PENALTY 100
93 #define PRIO_BONUS_RATIO 25
94 #define MAX_BONUS (MAX_USER_PRIO * PRIO_BONUS_RATIO / 100)
95 #define INTERACTIVE_DELTA 2
96 #define MAX_SLEEP_AVG (DEF_TIMESLICE * MAX_BONUS)
97 #define STARVATION_LIMIT (MAX_SLEEP_AVG)
98 #define NS_MAX_SLEEP_AVG (JIFFIES_TO_NS(MAX_SLEEP_AVG))
101 * If a task is 'interactive' then we reinsert it in the active
102 * array after it has expired its current timeslice. (it will not
103 * continue to run immediately, it will still roundrobin with
104 * other interactive tasks.)
106 * This part scales the interactivity limit depending on niceness.
108 * We scale it linearly, offset by the INTERACTIVE_DELTA delta.
109 * Here are a few examples of different nice levels:
111 * TASK_INTERACTIVE(-20): [1,1,1,1,1,1,1,1,1,0,0]
112 * TASK_INTERACTIVE(-10): [1,1,1,1,1,1,1,0,0,0,0]
113 * TASK_INTERACTIVE( 0): [1,1,1,1,0,0,0,0,0,0,0]
114 * TASK_INTERACTIVE( 10): [1,1,0,0,0,0,0,0,0,0,0]
115 * TASK_INTERACTIVE( 19): [0,0,0,0,0,0,0,0,0,0,0]
117 * (the X axis represents the possible -5 ... 0 ... +5 dynamic
118 * priority range a task can explore, a value of '1' means the
119 * task is rated interactive.)
121 * Ie. nice +19 tasks can never get 'interactive' enough to be
122 * reinserted into the active array. And only heavily CPU-hog nice -20
123 * tasks will be expired. Default nice 0 tasks are somewhere between,
124 * it takes some effort for them to get interactive, but it's not
128 #define CURRENT_BONUS(p) \
129 (NS_TO_JIFFIES((p)->sleep_avg) * MAX_BONUS / \
132 #define GRANULARITY (10 * HZ / 1000 ? : 1)
135 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
136 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)) * \
139 #define TIMESLICE_GRANULARITY(p) (GRANULARITY * \
140 (1 << (((MAX_BONUS - CURRENT_BONUS(p)) ? : 1) - 1)))
143 #define SCALE(v1,v1_max,v2_max) \
144 (v1) * (v2_max) / (v1_max)
147 (SCALE(TASK_NICE(p), 40, MAX_BONUS) + INTERACTIVE_DELTA)
149 #define TASK_INTERACTIVE(p) \
150 ((p)->prio <= (p)->static_prio - DELTA(p))
152 #define INTERACTIVE_SLEEP(p) \
153 (JIFFIES_TO_NS(MAX_SLEEP_AVG * \
154 (MAX_BONUS / 2 + DELTA((p)) + 1) / MAX_BONUS - 1))
156 #define TASK_PREEMPTS_CURR(p, rq) \
157 ((p)->prio < (rq)->curr->prio)
160 * task_timeslice() scales user-nice values [ -20 ... 0 ... 19 ]
161 * to time slice values: [800ms ... 100ms ... 5ms]
163 * The higher a thread's priority, the bigger timeslices
164 * it gets during one round of execution. But even the lowest
165 * priority thread gets MIN_TIMESLICE worth of execution time.
168 #define SCALE_PRIO(x, prio) \
169 max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO/2), MIN_TIMESLICE)
171 static unsigned int task_timeslice(task_t *p)
173 if (p->static_prio < NICE_TO_PRIO(0))
174 return SCALE_PRIO(DEF_TIMESLICE*4, p->static_prio);
176 return SCALE_PRIO(DEF_TIMESLICE, p->static_prio);
178 #define task_hot(p, now, sd) ((long long) ((now) - (p)->last_ran) \
179 < (long long) (sd)->cache_hot_time)
182 * These are the runqueue data structures:
185 #define BITMAP_SIZE ((((MAX_PRIO+1+7)/8)+sizeof(long)-1)/sizeof(long))
187 typedef struct runqueue runqueue_t;
190 unsigned int nr_active;
191 unsigned long bitmap[BITMAP_SIZE];
192 struct list_head queue[MAX_PRIO];
196 * This is the main, per-CPU runqueue data structure.
198 * Locking rule: those places that want to lock multiple runqueues
199 * (such as the load balancing or the thread migration code), lock
200 * acquire operations must be ordered by ascending &runqueue.
206 * nr_running and cpu_load should be in the same cacheline because
207 * remote CPUs use both these fields when doing load calculation.
209 unsigned long nr_running;
211 unsigned long cpu_load[3];
213 unsigned long long nr_switches;
216 * This is part of a global counter where only the total sum
217 * over all CPUs matters. A task can increase this counter on
218 * one CPU and if it got migrated afterwards it may decrease
219 * it on another CPU. Always updated under the runqueue lock:
221 unsigned long nr_uninterruptible;
223 unsigned long expired_timestamp;
224 unsigned long long timestamp_last_tick;
226 struct mm_struct *prev_mm;
227 prio_array_t *active, *expired, arrays[2];
228 int best_expired_prio;
232 struct sched_domain *sd;
234 /* For active balancing */
238 task_t *migration_thread;
239 struct list_head migration_queue;
242 #ifdef CONFIG_SCHEDSTATS
244 struct sched_info rq_sched_info;
246 /* sys_sched_yield() stats */
247 unsigned long yld_exp_empty;
248 unsigned long yld_act_empty;
249 unsigned long yld_both_empty;
250 unsigned long yld_cnt;
252 /* schedule() stats */
253 unsigned long sched_switch;
254 unsigned long sched_cnt;
255 unsigned long sched_goidle;
257 /* try_to_wake_up() stats */
258 unsigned long ttwu_cnt;
259 unsigned long ttwu_local;
263 static DEFINE_PER_CPU(struct runqueue, runqueues);
266 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
267 * See detach_destroy_domains: synchronize_sched for details.
269 * The domain tree of any CPU may only be accessed from within
270 * preempt-disabled sections.
272 #define for_each_domain(cpu, domain) \
273 for (domain = rcu_dereference(cpu_rq(cpu)->sd); domain; domain = domain->parent)
275 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
276 #define this_rq() (&__get_cpu_var(runqueues))
277 #define task_rq(p) cpu_rq(task_cpu(p))
278 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
280 #ifndef prepare_arch_switch
281 # define prepare_arch_switch(next) do { } while (0)
283 #ifndef finish_arch_switch
284 # define finish_arch_switch(prev) do { } while (0)
287 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
288 static inline int task_running(runqueue_t *rq, task_t *p)
290 return rq->curr == p;
293 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
297 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
299 #ifdef CONFIG_DEBUG_SPINLOCK
300 /* this is a valid case when another task releases the spinlock */
301 rq->lock.owner = current;
303 spin_unlock_irq(&rq->lock);
306 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
307 static inline int task_running(runqueue_t *rq, task_t *p)
312 return rq->curr == p;
316 static inline void prepare_lock_switch(runqueue_t *rq, task_t *next)
320 * We can optimise this out completely for !SMP, because the
321 * SMP rebalancing from interrupt is the only thing that cares
326 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
327 spin_unlock_irq(&rq->lock);
329 spin_unlock(&rq->lock);
333 static inline void finish_lock_switch(runqueue_t *rq, task_t *prev)
337 * After ->oncpu is cleared, the task can be moved to a different CPU.
338 * We must ensure this doesn't happen until the switch is completely
344 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
348 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
351 * task_rq_lock - lock the runqueue a given task resides on and disable
352 * interrupts. Note the ordering: we can safely lookup the task_rq without
353 * explicitly disabling preemption.
355 static inline runqueue_t *task_rq_lock(task_t *p, unsigned long *flags)
361 local_irq_save(*flags);
363 spin_lock(&rq->lock);
364 if (unlikely(rq != task_rq(p))) {
365 spin_unlock_irqrestore(&rq->lock, *flags);
366 goto repeat_lock_task;
371 static inline void task_rq_unlock(runqueue_t *rq, unsigned long *flags)
374 spin_unlock_irqrestore(&rq->lock, *flags);
377 #ifdef CONFIG_SCHEDSTATS
379 * bump this up when changing the output format or the meaning of an existing
380 * format, so that tools can adapt (or abort)
382 #define SCHEDSTAT_VERSION 12
384 static int show_schedstat(struct seq_file *seq, void *v)
388 seq_printf(seq, "version %d\n", SCHEDSTAT_VERSION);
389 seq_printf(seq, "timestamp %lu\n", jiffies);
390 for_each_online_cpu(cpu) {
391 runqueue_t *rq = cpu_rq(cpu);
393 struct sched_domain *sd;
397 /* runqueue-specific stats */
399 "cpu%d %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu",
400 cpu, rq->yld_both_empty,
401 rq->yld_act_empty, rq->yld_exp_empty, rq->yld_cnt,
402 rq->sched_switch, rq->sched_cnt, rq->sched_goidle,
403 rq->ttwu_cnt, rq->ttwu_local,
404 rq->rq_sched_info.cpu_time,
405 rq->rq_sched_info.run_delay, rq->rq_sched_info.pcnt);
407 seq_printf(seq, "\n");
410 /* domain-specific stats */
412 for_each_domain(cpu, sd) {
413 enum idle_type itype;
414 char mask_str[NR_CPUS];
416 cpumask_scnprintf(mask_str, NR_CPUS, sd->span);
417 seq_printf(seq, "domain%d %s", dcnt++, mask_str);
418 for (itype = SCHED_IDLE; itype < MAX_IDLE_TYPES;
420 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu",
422 sd->lb_balanced[itype],
423 sd->lb_failed[itype],
424 sd->lb_imbalance[itype],
425 sd->lb_gained[itype],
426 sd->lb_hot_gained[itype],
427 sd->lb_nobusyq[itype],
428 sd->lb_nobusyg[itype]);
430 seq_printf(seq, " %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu\n",
431 sd->alb_cnt, sd->alb_failed, sd->alb_pushed,
432 sd->sbe_cnt, sd->sbe_balanced, sd->sbe_pushed,
433 sd->sbf_cnt, sd->sbf_balanced, sd->sbf_pushed,
434 sd->ttwu_wake_remote, sd->ttwu_move_affine, sd->ttwu_move_balance);
442 static int schedstat_open(struct inode *inode, struct file *file)
444 unsigned int size = PAGE_SIZE * (1 + num_online_cpus() / 32);
445 char *buf = kmalloc(size, GFP_KERNEL);
451 res = single_open(file, show_schedstat, NULL);
453 m = file->private_data;
461 struct file_operations proc_schedstat_operations = {
462 .open = schedstat_open,
465 .release = single_release,
468 # define schedstat_inc(rq, field) do { (rq)->field++; } while (0)
469 # define schedstat_add(rq, field, amt) do { (rq)->field += (amt); } while (0)
470 #else /* !CONFIG_SCHEDSTATS */
471 # define schedstat_inc(rq, field) do { } while (0)
472 # define schedstat_add(rq, field, amt) do { } while (0)
476 * rq_lock - lock a given runqueue and disable interrupts.
478 static inline runqueue_t *this_rq_lock(void)
485 spin_lock(&rq->lock);
490 #ifdef CONFIG_SCHEDSTATS
492 * Called when a process is dequeued from the active array and given
493 * the cpu. We should note that with the exception of interactive
494 * tasks, the expired queue will become the active queue after the active
495 * queue is empty, without explicitly dequeuing and requeuing tasks in the
496 * expired queue. (Interactive tasks may be requeued directly to the
497 * active queue, thus delaying tasks in the expired queue from running;
498 * see scheduler_tick()).
500 * This function is only called from sched_info_arrive(), rather than
501 * dequeue_task(). Even though a task may be queued and dequeued multiple
502 * times as it is shuffled about, we're really interested in knowing how
503 * long it was from the *first* time it was queued to the time that it
506 static inline void sched_info_dequeued(task_t *t)
508 t->sched_info.last_queued = 0;
512 * Called when a task finally hits the cpu. We can now calculate how
513 * long it was waiting to run. We also note when it began so that we
514 * can keep stats on how long its timeslice is.
516 static void sched_info_arrive(task_t *t)
518 unsigned long now = jiffies, diff = 0;
519 struct runqueue *rq = task_rq(t);
521 if (t->sched_info.last_queued)
522 diff = now - t->sched_info.last_queued;
523 sched_info_dequeued(t);
524 t->sched_info.run_delay += diff;
525 t->sched_info.last_arrival = now;
526 t->sched_info.pcnt++;
531 rq->rq_sched_info.run_delay += diff;
532 rq->rq_sched_info.pcnt++;
536 * Called when a process is queued into either the active or expired
537 * array. The time is noted and later used to determine how long we
538 * had to wait for us to reach the cpu. Since the expired queue will
539 * become the active queue after active queue is empty, without dequeuing
540 * and requeuing any tasks, we are interested in queuing to either. It
541 * is unusual but not impossible for tasks to be dequeued and immediately
542 * requeued in the same or another array: this can happen in sched_yield(),
543 * set_user_nice(), and even load_balance() as it moves tasks from runqueue
546 * This function is only called from enqueue_task(), but also only updates
547 * the timestamp if it is already not set. It's assumed that
548 * sched_info_dequeued() will clear that stamp when appropriate.
550 static inline void sched_info_queued(task_t *t)
552 if (!t->sched_info.last_queued)
553 t->sched_info.last_queued = jiffies;
557 * Called when a process ceases being the active-running process, either
558 * voluntarily or involuntarily. Now we can calculate how long we ran.
560 static inline void sched_info_depart(task_t *t)
562 struct runqueue *rq = task_rq(t);
563 unsigned long diff = jiffies - t->sched_info.last_arrival;
565 t->sched_info.cpu_time += diff;
568 rq->rq_sched_info.cpu_time += diff;
572 * Called when tasks are switched involuntarily due, typically, to expiring
573 * their time slice. (This may also be called when switching to or from
574 * the idle task.) We are only called when prev != next.
576 static inline void sched_info_switch(task_t *prev, task_t *next)
578 struct runqueue *rq = task_rq(prev);
581 * prev now departs the cpu. It's not interesting to record
582 * stats about how efficient we were at scheduling the idle
585 if (prev != rq->idle)
586 sched_info_depart(prev);
588 if (next != rq->idle)
589 sched_info_arrive(next);
592 #define sched_info_queued(t) do { } while (0)
593 #define sched_info_switch(t, next) do { } while (0)
594 #endif /* CONFIG_SCHEDSTATS */
597 * Adding/removing a task to/from a priority array:
599 static void dequeue_task(struct task_struct *p, prio_array_t *array)
602 list_del(&p->run_list);
603 if (list_empty(array->queue + p->prio))
604 __clear_bit(p->prio, array->bitmap);
607 static void enqueue_task(struct task_struct *p, prio_array_t *array)
609 sched_info_queued(p);
610 list_add_tail(&p->run_list, array->queue + p->prio);
611 __set_bit(p->prio, array->bitmap);
617 * Put task to the end of the run list without the overhead of dequeue
618 * followed by enqueue.
620 static void requeue_task(struct task_struct *p, prio_array_t *array)
622 list_move_tail(&p->run_list, array->queue + p->prio);
625 static inline void enqueue_task_head(struct task_struct *p, prio_array_t *array)
627 list_add(&p->run_list, array->queue + p->prio);
628 __set_bit(p->prio, array->bitmap);
634 * effective_prio - return the priority that is based on the static
635 * priority but is modified by bonuses/penalties.
637 * We scale the actual sleep average [0 .... MAX_SLEEP_AVG]
638 * into the -5 ... 0 ... +5 bonus/penalty range.
640 * We use 25% of the full 0...39 priority range so that:
642 * 1) nice +19 interactive tasks do not preempt nice 0 CPU hogs.
643 * 2) nice -20 CPU hogs do not get preempted by nice 0 tasks.
645 * Both properties are important to certain workloads.
647 static int effective_prio(task_t *p)
654 bonus = CURRENT_BONUS(p) - MAX_BONUS / 2;
656 prio = p->static_prio - bonus;
657 if (prio < MAX_RT_PRIO)
659 if (prio > MAX_PRIO-1)
665 * __activate_task - move a task to the runqueue.
667 static inline void __activate_task(task_t *p, runqueue_t *rq)
669 enqueue_task(p, rq->active);
674 * __activate_idle_task - move idle task to the _front_ of runqueue.
676 static inline void __activate_idle_task(task_t *p, runqueue_t *rq)
678 enqueue_task_head(p, rq->active);
682 static int recalc_task_prio(task_t *p, unsigned long long now)
684 /* Caller must always ensure 'now >= p->timestamp' */
685 unsigned long long __sleep_time = now - p->timestamp;
686 unsigned long sleep_time;
688 if (unlikely(p->policy == SCHED_BATCH))
691 if (__sleep_time > NS_MAX_SLEEP_AVG)
692 sleep_time = NS_MAX_SLEEP_AVG;
694 sleep_time = (unsigned long)__sleep_time;
697 if (likely(sleep_time > 0)) {
699 * User tasks that sleep a long time are categorised as
700 * idle and will get just interactive status to stay active &
701 * prevent them suddenly becoming cpu hogs and starving
704 if (p->mm && p->activated != -1 &&
705 sleep_time > INTERACTIVE_SLEEP(p)) {
706 p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
710 * Tasks waking from uninterruptible sleep are
711 * limited in their sleep_avg rise as they
712 * are likely to be waiting on I/O
714 if (p->activated == -1 && p->mm) {
715 if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
717 else if (p->sleep_avg + sleep_time >=
718 INTERACTIVE_SLEEP(p)) {
719 p->sleep_avg = INTERACTIVE_SLEEP(p);
725 * This code gives a bonus to interactive tasks.
727 * The boost works by updating the 'average sleep time'
728 * value here, based on ->timestamp. The more time a
729 * task spends sleeping, the higher the average gets -
730 * and the higher the priority boost gets as well.
732 p->sleep_avg += sleep_time;
734 if (p->sleep_avg > NS_MAX_SLEEP_AVG)
735 p->sleep_avg = NS_MAX_SLEEP_AVG;
739 return effective_prio(p);
743 * activate_task - move a task to the runqueue and do priority recalculation
745 * Update all the scheduling statistics stuff. (sleep average
746 * calculation, priority modifiers, etc.)
748 static void activate_task(task_t *p, runqueue_t *rq, int local)
750 unsigned long long now;
755 /* Compensate for drifting sched_clock */
756 runqueue_t *this_rq = this_rq();
757 now = (now - this_rq->timestamp_last_tick)
758 + rq->timestamp_last_tick;
763 p->prio = recalc_task_prio(p, now);
766 * This checks to make sure it's not an uninterruptible task
767 * that is now waking up.
771 * Tasks which were woken up by interrupts (ie. hw events)
772 * are most likely of interactive nature. So we give them
773 * the credit of extending their sleep time to the period
774 * of time they spend on the runqueue, waiting for execution
775 * on a CPU, first time around:
781 * Normal first-time wakeups get a credit too for
782 * on-runqueue time, but it will be weighted down:
789 __activate_task(p, rq);
793 * deactivate_task - remove a task from the runqueue.
795 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
798 dequeue_task(p, p->array);
803 * resched_task - mark a task 'to be rescheduled now'.
805 * On UP this means the setting of the need_resched flag, on SMP it
806 * might also involve a cross-CPU call to trigger the scheduler on
810 static void resched_task(task_t *p)
814 assert_spin_locked(&task_rq(p)->lock);
816 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
819 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
822 if (cpu == smp_processor_id())
825 /* NEED_RESCHED must be visible before we test POLLING_NRFLAG */
827 if (!test_tsk_thread_flag(p, TIF_POLLING_NRFLAG))
828 smp_send_reschedule(cpu);
831 static inline void resched_task(task_t *p)
833 assert_spin_locked(&task_rq(p)->lock);
834 set_tsk_need_resched(p);
839 * task_curr - is this task currently executing on a CPU?
840 * @p: the task in question.
842 inline int task_curr(const task_t *p)
844 return cpu_curr(task_cpu(p)) == p;
849 struct list_head list;
854 struct completion done;
858 * The task's runqueue lock must be held.
859 * Returns true if you have to wait for migration thread.
861 static int migrate_task(task_t *p, int dest_cpu, migration_req_t *req)
863 runqueue_t *rq = task_rq(p);
866 * If the task is not on a runqueue (and not running), then
867 * it is sufficient to simply update the task's cpu field.
869 if (!p->array && !task_running(rq, p)) {
870 set_task_cpu(p, dest_cpu);
874 init_completion(&req->done);
876 req->dest_cpu = dest_cpu;
877 list_add(&req->list, &rq->migration_queue);
882 * wait_task_inactive - wait for a thread to unschedule.
884 * The caller must ensure that the task *will* unschedule sometime soon,
885 * else this function might spin for a *long* time. This function can't
886 * be called with interrupts off, or it may introduce deadlock with
887 * smp_call_function() if an IPI is sent by the same process we are
888 * waiting to become inactive.
890 void wait_task_inactive(task_t *p)
897 rq = task_rq_lock(p, &flags);
898 /* Must be off runqueue entirely, not preempted. */
899 if (unlikely(p->array || task_running(rq, p))) {
900 /* If it's preempted, we yield. It could be a while. */
901 preempted = !task_running(rq, p);
902 task_rq_unlock(rq, &flags);
908 task_rq_unlock(rq, &flags);
912 * kick_process - kick a running thread to enter/exit the kernel
913 * @p: the to-be-kicked thread
915 * Cause a process which is running on another CPU to enter
916 * kernel-mode, without any delay. (to get signals handled.)
918 * NOTE: this function doesnt have to take the runqueue lock,
919 * because all it wants to ensure is that the remote task enters
920 * the kernel. If the IPI races and the task has been migrated
921 * to another CPU then no harm is done and the purpose has been
924 void kick_process(task_t *p)
930 if ((cpu != smp_processor_id()) && task_curr(p))
931 smp_send_reschedule(cpu);
936 * Return a low guess at the load of a migration-source cpu.
938 * We want to under-estimate the load of migration sources, to
939 * balance conservatively.
941 static inline unsigned long source_load(int cpu, int type)
943 runqueue_t *rq = cpu_rq(cpu);
944 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
948 return min(rq->cpu_load[type-1], load_now);
952 * Return a high guess at the load of a migration-target cpu
954 static inline unsigned long target_load(int cpu, int type)
956 runqueue_t *rq = cpu_rq(cpu);
957 unsigned long load_now = rq->nr_running * SCHED_LOAD_SCALE;
961 return max(rq->cpu_load[type-1], load_now);
965 * find_idlest_group finds and returns the least busy CPU group within the
968 static struct sched_group *
969 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
971 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
972 unsigned long min_load = ULONG_MAX, this_load = 0;
973 int load_idx = sd->forkexec_idx;
974 int imbalance = 100 + (sd->imbalance_pct-100)/2;
977 unsigned long load, avg_load;
981 /* Skip over this group if it has no CPUs allowed */
982 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
985 local_group = cpu_isset(this_cpu, group->cpumask);
987 /* Tally up the load of all CPUs in the group */
990 for_each_cpu_mask(i, group->cpumask) {
991 /* Bias balancing toward cpus of our domain */
993 load = source_load(i, load_idx);
995 load = target_load(i, load_idx);
1000 /* Adjust by relative CPU power of the group */
1001 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1004 this_load = avg_load;
1006 } else if (avg_load < min_load) {
1007 min_load = avg_load;
1011 group = group->next;
1012 } while (group != sd->groups);
1014 if (!idlest || 100*this_load < imbalance*min_load)
1020 * find_idlest_queue - find the idlest runqueue among the cpus in group.
1023 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
1026 unsigned long load, min_load = ULONG_MAX;
1030 /* Traverse only the allowed CPUs */
1031 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1033 for_each_cpu_mask(i, tmp) {
1034 load = source_load(i, 0);
1036 if (load < min_load || (load == min_load && i == this_cpu)) {
1046 * sched_balance_self: balance the current task (running on cpu) in domains
1047 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1050 * Balance, ie. select the least loaded group.
1052 * Returns the target CPU number, or the same CPU if no balancing is needed.
1054 * preempt must be disabled.
1056 static int sched_balance_self(int cpu, int flag)
1058 struct task_struct *t = current;
1059 struct sched_domain *tmp, *sd = NULL;
1061 for_each_domain(cpu, tmp)
1062 if (tmp->flags & flag)
1067 struct sched_group *group;
1072 group = find_idlest_group(sd, t, cpu);
1076 new_cpu = find_idlest_cpu(group, t, cpu);
1077 if (new_cpu == -1 || new_cpu == cpu)
1080 /* Now try balancing at a lower domain level */
1084 weight = cpus_weight(span);
1085 for_each_domain(cpu, tmp) {
1086 if (weight <= cpus_weight(tmp->span))
1088 if (tmp->flags & flag)
1091 /* while loop will break here if sd == NULL */
1097 #endif /* CONFIG_SMP */
1100 * wake_idle() will wake a task on an idle cpu if task->cpu is
1101 * not idle and an idle cpu is available. The span of cpus to
1102 * search starts with cpus closest then further out as needed,
1103 * so we always favor a closer, idle cpu.
1105 * Returns the CPU we should wake onto.
1107 #if defined(ARCH_HAS_SCHED_WAKE_IDLE)
1108 static int wake_idle(int cpu, task_t *p)
1111 struct sched_domain *sd;
1117 for_each_domain(cpu, sd) {
1118 if (sd->flags & SD_WAKE_IDLE) {
1119 cpus_and(tmp, sd->span, p->cpus_allowed);
1120 for_each_cpu_mask(i, tmp) {
1131 static inline int wake_idle(int cpu, task_t *p)
1138 * try_to_wake_up - wake up a thread
1139 * @p: the to-be-woken-up thread
1140 * @state: the mask of task states that can be woken
1141 * @sync: do a synchronous wakeup?
1143 * Put it on the run-queue if it's not already there. The "current"
1144 * thread is always on the run-queue (except when the actual
1145 * re-schedule is in progress), and as such you're allowed to do
1146 * the simpler "current->state = TASK_RUNNING" to mark yourself
1147 * runnable without the overhead of this.
1149 * returns failure only if the task is already active.
1151 static int try_to_wake_up(task_t *p, unsigned int state, int sync)
1153 int cpu, this_cpu, success = 0;
1154 unsigned long flags;
1158 unsigned long load, this_load;
1159 struct sched_domain *sd, *this_sd = NULL;
1163 rq = task_rq_lock(p, &flags);
1164 old_state = p->state;
1165 if (!(old_state & state))
1172 this_cpu = smp_processor_id();
1175 if (unlikely(task_running(rq, p)))
1180 schedstat_inc(rq, ttwu_cnt);
1181 if (cpu == this_cpu) {
1182 schedstat_inc(rq, ttwu_local);
1186 for_each_domain(this_cpu, sd) {
1187 if (cpu_isset(cpu, sd->span)) {
1188 schedstat_inc(sd, ttwu_wake_remote);
1194 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1198 * Check for affine wakeup and passive balancing possibilities.
1201 int idx = this_sd->wake_idx;
1202 unsigned int imbalance;
1204 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1206 load = source_load(cpu, idx);
1207 this_load = target_load(this_cpu, idx);
1209 new_cpu = this_cpu; /* Wake to this CPU if we can */
1211 if (this_sd->flags & SD_WAKE_AFFINE) {
1212 unsigned long tl = this_load;
1214 * If sync wakeup then subtract the (maximum possible)
1215 * effect of the currently running task from the load
1216 * of the current CPU:
1219 tl -= SCHED_LOAD_SCALE;
1222 tl + target_load(cpu, idx) <= SCHED_LOAD_SCALE) ||
1223 100*(tl + SCHED_LOAD_SCALE) <= imbalance*load) {
1225 * This domain has SD_WAKE_AFFINE and
1226 * p is cache cold in this domain, and
1227 * there is no bad imbalance.
1229 schedstat_inc(this_sd, ttwu_move_affine);
1235 * Start passive balancing when half the imbalance_pct
1238 if (this_sd->flags & SD_WAKE_BALANCE) {
1239 if (imbalance*this_load <= 100*load) {
1240 schedstat_inc(this_sd, ttwu_move_balance);
1246 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1248 new_cpu = wake_idle(new_cpu, p);
1249 if (new_cpu != cpu) {
1250 set_task_cpu(p, new_cpu);
1251 task_rq_unlock(rq, &flags);
1252 /* might preempt at this point */
1253 rq = task_rq_lock(p, &flags);
1254 old_state = p->state;
1255 if (!(old_state & state))
1260 this_cpu = smp_processor_id();
1265 #endif /* CONFIG_SMP */
1266 if (old_state == TASK_UNINTERRUPTIBLE) {
1267 rq->nr_uninterruptible--;
1269 * Tasks on involuntary sleep don't earn
1270 * sleep_avg beyond just interactive state.
1276 * Tasks that have marked their sleep as noninteractive get
1277 * woken up without updating their sleep average. (i.e. their
1278 * sleep is handled in a priority-neutral manner, no priority
1279 * boost and no penalty.)
1281 if (old_state & TASK_NONINTERACTIVE)
1282 __activate_task(p, rq);
1284 activate_task(p, rq, cpu == this_cpu);
1286 * Sync wakeups (i.e. those types of wakeups where the waker
1287 * has indicated that it will leave the CPU in short order)
1288 * don't trigger a preemption, if the woken up task will run on
1289 * this cpu. (in this case the 'I will reschedule' promise of
1290 * the waker guarantees that the freshly woken up task is going
1291 * to be considered on this CPU.)
1293 if (!sync || cpu != this_cpu) {
1294 if (TASK_PREEMPTS_CURR(p, rq))
1295 resched_task(rq->curr);
1300 p->state = TASK_RUNNING;
1302 task_rq_unlock(rq, &flags);
1307 int fastcall wake_up_process(task_t *p)
1309 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1310 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1313 EXPORT_SYMBOL(wake_up_process);
1315 int fastcall wake_up_state(task_t *p, unsigned int state)
1317 return try_to_wake_up(p, state, 0);
1321 * Perform scheduler related setup for a newly forked process p.
1322 * p is forked by current.
1324 void fastcall sched_fork(task_t *p, int clone_flags)
1326 int cpu = get_cpu();
1329 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1331 set_task_cpu(p, cpu);
1334 * We mark the process as running here, but have not actually
1335 * inserted it onto the runqueue yet. This guarantees that
1336 * nobody will actually run it, and a signal or other external
1337 * event cannot wake it up and insert it on the runqueue either.
1339 p->state = TASK_RUNNING;
1340 INIT_LIST_HEAD(&p->run_list);
1342 #ifdef CONFIG_SCHEDSTATS
1343 memset(&p->sched_info, 0, sizeof(p->sched_info));
1345 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
1348 #ifdef CONFIG_PREEMPT
1349 /* Want to start with kernel preemption disabled. */
1350 task_thread_info(p)->preempt_count = 1;
1353 * Share the timeslice between parent and child, thus the
1354 * total amount of pending timeslices in the system doesn't change,
1355 * resulting in more scheduling fairness.
1357 local_irq_disable();
1358 p->time_slice = (current->time_slice + 1) >> 1;
1360 * The remainder of the first timeslice might be recovered by
1361 * the parent if the child exits early enough.
1363 p->first_time_slice = 1;
1364 current->time_slice >>= 1;
1365 p->timestamp = sched_clock();
1366 if (unlikely(!current->time_slice)) {
1368 * This case is rare, it happens when the parent has only
1369 * a single jiffy left from its timeslice. Taking the
1370 * runqueue lock is not a problem.
1372 current->time_slice = 1;
1380 * wake_up_new_task - wake up a newly created task for the first time.
1382 * This function will do some initial scheduler statistics housekeeping
1383 * that must be done for every newly created context, then puts the task
1384 * on the runqueue and wakes it.
1386 void fastcall wake_up_new_task(task_t *p, unsigned long clone_flags)
1388 unsigned long flags;
1390 runqueue_t *rq, *this_rq;
1392 rq = task_rq_lock(p, &flags);
1393 BUG_ON(p->state != TASK_RUNNING);
1394 this_cpu = smp_processor_id();
1398 * We decrease the sleep average of forking parents
1399 * and children as well, to keep max-interactive tasks
1400 * from forking tasks that are max-interactive. The parent
1401 * (current) is done further down, under its lock.
1403 p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
1404 CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1406 p->prio = effective_prio(p);
1408 if (likely(cpu == this_cpu)) {
1409 if (!(clone_flags & CLONE_VM)) {
1411 * The VM isn't cloned, so we're in a good position to
1412 * do child-runs-first in anticipation of an exec. This
1413 * usually avoids a lot of COW overhead.
1415 if (unlikely(!current->array))
1416 __activate_task(p, rq);
1418 p->prio = current->prio;
1419 list_add_tail(&p->run_list, ¤t->run_list);
1420 p->array = current->array;
1421 p->array->nr_active++;
1426 /* Run child last */
1427 __activate_task(p, rq);
1429 * We skip the following code due to cpu == this_cpu
1431 * task_rq_unlock(rq, &flags);
1432 * this_rq = task_rq_lock(current, &flags);
1436 this_rq = cpu_rq(this_cpu);
1439 * Not the local CPU - must adjust timestamp. This should
1440 * get optimised away in the !CONFIG_SMP case.
1442 p->timestamp = (p->timestamp - this_rq->timestamp_last_tick)
1443 + rq->timestamp_last_tick;
1444 __activate_task(p, rq);
1445 if (TASK_PREEMPTS_CURR(p, rq))
1446 resched_task(rq->curr);
1449 * Parent and child are on different CPUs, now get the
1450 * parent runqueue to update the parent's ->sleep_avg:
1452 task_rq_unlock(rq, &flags);
1453 this_rq = task_rq_lock(current, &flags);
1455 current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
1456 PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
1457 task_rq_unlock(this_rq, &flags);
1461 * Potentially available exiting-child timeslices are
1462 * retrieved here - this way the parent does not get
1463 * penalized for creating too many threads.
1465 * (this cannot be used to 'generate' timeslices
1466 * artificially, because any timeslice recovered here
1467 * was given away by the parent in the first place.)
1469 void fastcall sched_exit(task_t *p)
1471 unsigned long flags;
1475 * If the child was a (relative-) CPU hog then decrease
1476 * the sleep_avg of the parent as well.
1478 rq = task_rq_lock(p->parent, &flags);
1479 if (p->first_time_slice && task_cpu(p) == task_cpu(p->parent)) {
1480 p->parent->time_slice += p->time_slice;
1481 if (unlikely(p->parent->time_slice > task_timeslice(p)))
1482 p->parent->time_slice = task_timeslice(p);
1484 if (p->sleep_avg < p->parent->sleep_avg)
1485 p->parent->sleep_avg = p->parent->sleep_avg /
1486 (EXIT_WEIGHT + 1) * EXIT_WEIGHT + p->sleep_avg /
1488 task_rq_unlock(rq, &flags);
1492 * prepare_task_switch - prepare to switch tasks
1493 * @rq: the runqueue preparing to switch
1494 * @next: the task we are going to switch to.
1496 * This is called with the rq lock held and interrupts off. It must
1497 * be paired with a subsequent finish_task_switch after the context
1500 * prepare_task_switch sets up locking and calls architecture specific
1503 static inline void prepare_task_switch(runqueue_t *rq, task_t *next)
1505 prepare_lock_switch(rq, next);
1506 prepare_arch_switch(next);
1510 * finish_task_switch - clean up after a task-switch
1511 * @rq: runqueue associated with task-switch
1512 * @prev: the thread we just switched away from.
1514 * finish_task_switch must be called after the context switch, paired
1515 * with a prepare_task_switch call before the context switch.
1516 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1517 * and do any other architecture-specific cleanup actions.
1519 * Note that we may have delayed dropping an mm in context_switch(). If
1520 * so, we finish that here outside of the runqueue lock. (Doing it
1521 * with the lock held can cause deadlocks; see schedule() for
1524 static inline void finish_task_switch(runqueue_t *rq, task_t *prev)
1525 __releases(rq->lock)
1527 struct mm_struct *mm = rq->prev_mm;
1528 unsigned long prev_task_flags;
1533 * A task struct has one reference for the use as "current".
1534 * If a task dies, then it sets EXIT_ZOMBIE in tsk->exit_state and
1535 * calls schedule one last time. The schedule call will never return,
1536 * and the scheduled task must drop that reference.
1537 * The test for EXIT_ZOMBIE must occur while the runqueue locks are
1538 * still held, otherwise prev could be scheduled on another cpu, die
1539 * there before we look at prev->state, and then the reference would
1541 * Manfred Spraul <manfred@colorfullife.com>
1543 prev_task_flags = prev->flags;
1544 finish_arch_switch(prev);
1545 finish_lock_switch(rq, prev);
1548 if (unlikely(prev_task_flags & PF_DEAD))
1549 put_task_struct(prev);
1553 * schedule_tail - first thing a freshly forked thread must call.
1554 * @prev: the thread we just switched away from.
1556 asmlinkage void schedule_tail(task_t *prev)
1557 __releases(rq->lock)
1559 runqueue_t *rq = this_rq();
1560 finish_task_switch(rq, prev);
1561 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
1562 /* In this case, finish_task_switch does not reenable preemption */
1565 if (current->set_child_tid)
1566 put_user(current->pid, current->set_child_tid);
1570 * context_switch - switch to the new MM and the new
1571 * thread's register state.
1574 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1576 struct mm_struct *mm = next->mm;
1577 struct mm_struct *oldmm = prev->active_mm;
1579 if (unlikely(!mm)) {
1580 next->active_mm = oldmm;
1581 atomic_inc(&oldmm->mm_count);
1582 enter_lazy_tlb(oldmm, next);
1584 switch_mm(oldmm, mm, next);
1586 if (unlikely(!prev->mm)) {
1587 prev->active_mm = NULL;
1588 WARN_ON(rq->prev_mm);
1589 rq->prev_mm = oldmm;
1592 /* Here we just switch the register state and the stack. */
1593 switch_to(prev, next, prev);
1599 * nr_running, nr_uninterruptible and nr_context_switches:
1601 * externally visible scheduler statistics: current number of runnable
1602 * threads, current number of uninterruptible-sleeping threads, total
1603 * number of context switches performed since bootup.
1605 unsigned long nr_running(void)
1607 unsigned long i, sum = 0;
1609 for_each_online_cpu(i)
1610 sum += cpu_rq(i)->nr_running;
1615 unsigned long nr_uninterruptible(void)
1617 unsigned long i, sum = 0;
1620 sum += cpu_rq(i)->nr_uninterruptible;
1623 * Since we read the counters lockless, it might be slightly
1624 * inaccurate. Do not allow it to go below zero though:
1626 if (unlikely((long)sum < 0))
1632 unsigned long long nr_context_switches(void)
1634 unsigned long long i, sum = 0;
1637 sum += cpu_rq(i)->nr_switches;
1642 unsigned long nr_iowait(void)
1644 unsigned long i, sum = 0;
1647 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1655 * double_rq_lock - safely lock two runqueues
1657 * Note this does not disable interrupts like task_rq_lock,
1658 * you need to do so manually before calling.
1660 static void double_rq_lock(runqueue_t *rq1, runqueue_t *rq2)
1661 __acquires(rq1->lock)
1662 __acquires(rq2->lock)
1665 spin_lock(&rq1->lock);
1666 __acquire(rq2->lock); /* Fake it out ;) */
1669 spin_lock(&rq1->lock);
1670 spin_lock(&rq2->lock);
1672 spin_lock(&rq2->lock);
1673 spin_lock(&rq1->lock);
1679 * double_rq_unlock - safely unlock two runqueues
1681 * Note this does not restore interrupts like task_rq_unlock,
1682 * you need to do so manually after calling.
1684 static void double_rq_unlock(runqueue_t *rq1, runqueue_t *rq2)
1685 __releases(rq1->lock)
1686 __releases(rq2->lock)
1688 spin_unlock(&rq1->lock);
1690 spin_unlock(&rq2->lock);
1692 __release(rq2->lock);
1696 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1698 static void double_lock_balance(runqueue_t *this_rq, runqueue_t *busiest)
1699 __releases(this_rq->lock)
1700 __acquires(busiest->lock)
1701 __acquires(this_rq->lock)
1703 if (unlikely(!spin_trylock(&busiest->lock))) {
1704 if (busiest < this_rq) {
1705 spin_unlock(&this_rq->lock);
1706 spin_lock(&busiest->lock);
1707 spin_lock(&this_rq->lock);
1709 spin_lock(&busiest->lock);
1714 * If dest_cpu is allowed for this process, migrate the task to it.
1715 * This is accomplished by forcing the cpu_allowed mask to only
1716 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1717 * the cpu_allowed mask is restored.
1719 static void sched_migrate_task(task_t *p, int dest_cpu)
1721 migration_req_t req;
1723 unsigned long flags;
1725 rq = task_rq_lock(p, &flags);
1726 if (!cpu_isset(dest_cpu, p->cpus_allowed)
1727 || unlikely(cpu_is_offline(dest_cpu)))
1730 /* force the process onto the specified CPU */
1731 if (migrate_task(p, dest_cpu, &req)) {
1732 /* Need to wait for migration thread (might exit: take ref). */
1733 struct task_struct *mt = rq->migration_thread;
1734 get_task_struct(mt);
1735 task_rq_unlock(rq, &flags);
1736 wake_up_process(mt);
1737 put_task_struct(mt);
1738 wait_for_completion(&req.done);
1742 task_rq_unlock(rq, &flags);
1746 * sched_exec - execve() is a valuable balancing opportunity, because at
1747 * this point the task has the smallest effective memory and cache footprint.
1749 void sched_exec(void)
1751 int new_cpu, this_cpu = get_cpu();
1752 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1754 if (new_cpu != this_cpu)
1755 sched_migrate_task(current, new_cpu);
1759 * pull_task - move a task from a remote runqueue to the local runqueue.
1760 * Both runqueues must be locked.
1763 void pull_task(runqueue_t *src_rq, prio_array_t *src_array, task_t *p,
1764 runqueue_t *this_rq, prio_array_t *this_array, int this_cpu)
1766 dequeue_task(p, src_array);
1767 src_rq->nr_running--;
1768 set_task_cpu(p, this_cpu);
1769 this_rq->nr_running++;
1770 enqueue_task(p, this_array);
1771 p->timestamp = (p->timestamp - src_rq->timestamp_last_tick)
1772 + this_rq->timestamp_last_tick;
1774 * Note that idle threads have a prio of MAX_PRIO, for this test
1775 * to be always true for them.
1777 if (TASK_PREEMPTS_CURR(p, this_rq))
1778 resched_task(this_rq->curr);
1782 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
1785 int can_migrate_task(task_t *p, runqueue_t *rq, int this_cpu,
1786 struct sched_domain *sd, enum idle_type idle,
1790 * We do not migrate tasks that are:
1791 * 1) running (obviously), or
1792 * 2) cannot be migrated to this CPU due to cpus_allowed, or
1793 * 3) are cache-hot on their current CPU.
1795 if (!cpu_isset(this_cpu, p->cpus_allowed))
1799 if (task_running(rq, p))
1803 * Aggressive migration if:
1804 * 1) task is cache cold, or
1805 * 2) too many balance attempts have failed.
1808 if (sd->nr_balance_failed > sd->cache_nice_tries)
1811 if (task_hot(p, rq->timestamp_last_tick, sd))
1817 * move_tasks tries to move up to max_nr_move tasks from busiest to this_rq,
1818 * as part of a balancing operation within "domain". Returns the number of
1821 * Called with both runqueues locked.
1823 static int move_tasks(runqueue_t *this_rq, int this_cpu, runqueue_t *busiest,
1824 unsigned long max_nr_move, struct sched_domain *sd,
1825 enum idle_type idle, int *all_pinned)
1827 prio_array_t *array, *dst_array;
1828 struct list_head *head, *curr;
1829 int idx, pulled = 0, pinned = 0;
1832 if (max_nr_move == 0)
1838 * We first consider expired tasks. Those will likely not be
1839 * executed in the near future, and they are most likely to
1840 * be cache-cold, thus switching CPUs has the least effect
1843 if (busiest->expired->nr_active) {
1844 array = busiest->expired;
1845 dst_array = this_rq->expired;
1847 array = busiest->active;
1848 dst_array = this_rq->active;
1852 /* Start searching at priority 0: */
1856 idx = sched_find_first_bit(array->bitmap);
1858 idx = find_next_bit(array->bitmap, MAX_PRIO, idx);
1859 if (idx >= MAX_PRIO) {
1860 if (array == busiest->expired && busiest->active->nr_active) {
1861 array = busiest->active;
1862 dst_array = this_rq->active;
1868 head = array->queue + idx;
1871 tmp = list_entry(curr, task_t, run_list);
1875 if (!can_migrate_task(tmp, busiest, this_cpu, sd, idle, &pinned)) {
1882 #ifdef CONFIG_SCHEDSTATS
1883 if (task_hot(tmp, busiest->timestamp_last_tick, sd))
1884 schedstat_inc(sd, lb_hot_gained[idle]);
1887 pull_task(busiest, array, tmp, this_rq, dst_array, this_cpu);
1890 /* We only want to steal up to the prescribed number of tasks. */
1891 if (pulled < max_nr_move) {
1899 * Right now, this is the only place pull_task() is called,
1900 * so we can safely collect pull_task() stats here rather than
1901 * inside pull_task().
1903 schedstat_add(sd, lb_gained[idle], pulled);
1906 *all_pinned = pinned;
1911 * find_busiest_group finds and returns the busiest CPU group within the
1912 * domain. It calculates and returns the number of tasks which should be
1913 * moved to restore balance via the imbalance parameter.
1915 static struct sched_group *
1916 find_busiest_group(struct sched_domain *sd, int this_cpu,
1917 unsigned long *imbalance, enum idle_type idle, int *sd_idle)
1919 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
1920 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
1921 unsigned long max_pull;
1924 max_load = this_load = total_load = total_pwr = 0;
1925 if (idle == NOT_IDLE)
1926 load_idx = sd->busy_idx;
1927 else if (idle == NEWLY_IDLE)
1928 load_idx = sd->newidle_idx;
1930 load_idx = sd->idle_idx;
1937 local_group = cpu_isset(this_cpu, group->cpumask);
1939 /* Tally up the load of all CPUs in the group */
1942 for_each_cpu_mask(i, group->cpumask) {
1943 if (*sd_idle && !idle_cpu(i))
1946 /* Bias balancing toward cpus of our domain */
1948 load = target_load(i, load_idx);
1950 load = source_load(i, load_idx);
1955 total_load += avg_load;
1956 total_pwr += group->cpu_power;
1958 /* Adjust by relative CPU power of the group */
1959 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
1962 this_load = avg_load;
1964 } else if (avg_load > max_load) {
1965 max_load = avg_load;
1968 group = group->next;
1969 } while (group != sd->groups);
1971 if (!busiest || this_load >= max_load || max_load <= SCHED_LOAD_SCALE)
1974 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
1976 if (this_load >= avg_load ||
1977 100*max_load <= sd->imbalance_pct*this_load)
1981 * We're trying to get all the cpus to the average_load, so we don't
1982 * want to push ourselves above the average load, nor do we wish to
1983 * reduce the max loaded cpu below the average load, as either of these
1984 * actions would just result in more rebalancing later, and ping-pong
1985 * tasks around. Thus we look for the minimum possible imbalance.
1986 * Negative imbalances (*we* are more loaded than anyone else) will
1987 * be counted as no imbalance for these purposes -- we can't fix that
1988 * by pulling tasks to us. Be careful of negative numbers as they'll
1989 * appear as very large values with unsigned longs.
1992 /* Don't want to pull so many tasks that a group would go idle */
1993 max_pull = min(max_load - avg_load, max_load - SCHED_LOAD_SCALE);
1995 /* How much load to actually move to equalise the imbalance */
1996 *imbalance = min(max_pull * busiest->cpu_power,
1997 (avg_load - this_load) * this->cpu_power)
2000 if (*imbalance < SCHED_LOAD_SCALE) {
2001 unsigned long pwr_now = 0, pwr_move = 0;
2004 if (max_load - this_load >= SCHED_LOAD_SCALE*2) {
2010 * OK, we don't have enough imbalance to justify moving tasks,
2011 * however we may be able to increase total CPU power used by
2015 pwr_now += busiest->cpu_power*min(SCHED_LOAD_SCALE, max_load);
2016 pwr_now += this->cpu_power*min(SCHED_LOAD_SCALE, this_load);
2017 pwr_now /= SCHED_LOAD_SCALE;
2019 /* Amount of load we'd subtract */
2020 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/busiest->cpu_power;
2022 pwr_move += busiest->cpu_power*min(SCHED_LOAD_SCALE,
2025 /* Amount of load we'd add */
2026 if (max_load*busiest->cpu_power <
2027 SCHED_LOAD_SCALE*SCHED_LOAD_SCALE)
2028 tmp = max_load*busiest->cpu_power/this->cpu_power;
2030 tmp = SCHED_LOAD_SCALE*SCHED_LOAD_SCALE/this->cpu_power;
2031 pwr_move += this->cpu_power*min(SCHED_LOAD_SCALE, this_load + tmp);
2032 pwr_move /= SCHED_LOAD_SCALE;
2034 /* Move if we gain throughput */
2035 if (pwr_move <= pwr_now)
2042 /* Get rid of the scaling factor, rounding down as we divide */
2043 *imbalance = *imbalance / SCHED_LOAD_SCALE;
2053 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2055 static runqueue_t *find_busiest_queue(struct sched_group *group,
2056 enum idle_type idle)
2058 unsigned long load, max_load = 0;
2059 runqueue_t *busiest = NULL;
2062 for_each_cpu_mask(i, group->cpumask) {
2063 load = source_load(i, 0);
2065 if (load > max_load) {
2067 busiest = cpu_rq(i);
2075 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2076 * so long as it is large enough.
2078 #define MAX_PINNED_INTERVAL 512
2081 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2082 * tasks if there is an imbalance.
2084 * Called with this_rq unlocked.
2086 static int load_balance(int this_cpu, runqueue_t *this_rq,
2087 struct sched_domain *sd, enum idle_type idle)
2089 struct sched_group *group;
2090 runqueue_t *busiest;
2091 unsigned long imbalance;
2092 int nr_moved, all_pinned = 0;
2093 int active_balance = 0;
2096 if (idle != NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER)
2099 schedstat_inc(sd, lb_cnt[idle]);
2101 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle);
2103 schedstat_inc(sd, lb_nobusyg[idle]);
2107 busiest = find_busiest_queue(group, idle);
2109 schedstat_inc(sd, lb_nobusyq[idle]);
2113 BUG_ON(busiest == this_rq);
2115 schedstat_add(sd, lb_imbalance[idle], imbalance);
2118 if (busiest->nr_running > 1) {
2120 * Attempt to move tasks. If find_busiest_group has found
2121 * an imbalance but busiest->nr_running <= 1, the group is
2122 * still unbalanced. nr_moved simply stays zero, so it is
2123 * correctly treated as an imbalance.
2125 double_rq_lock(this_rq, busiest);
2126 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2127 imbalance, sd, idle, &all_pinned);
2128 double_rq_unlock(this_rq, busiest);
2130 /* All tasks on this runqueue were pinned by CPU affinity */
2131 if (unlikely(all_pinned))
2136 schedstat_inc(sd, lb_failed[idle]);
2137 sd->nr_balance_failed++;
2139 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
2141 spin_lock(&busiest->lock);
2143 /* don't kick the migration_thread, if the curr
2144 * task on busiest cpu can't be moved to this_cpu
2146 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
2147 spin_unlock(&busiest->lock);
2149 goto out_one_pinned;
2152 if (!busiest->active_balance) {
2153 busiest->active_balance = 1;
2154 busiest->push_cpu = this_cpu;
2157 spin_unlock(&busiest->lock);
2159 wake_up_process(busiest->migration_thread);
2162 * We've kicked active balancing, reset the failure
2165 sd->nr_balance_failed = sd->cache_nice_tries+1;
2168 sd->nr_balance_failed = 0;
2170 if (likely(!active_balance)) {
2171 /* We were unbalanced, so reset the balancing interval */
2172 sd->balance_interval = sd->min_interval;
2175 * If we've begun active balancing, start to back off. This
2176 * case may not be covered by the all_pinned logic if there
2177 * is only 1 task on the busy runqueue (because we don't call
2180 if (sd->balance_interval < sd->max_interval)
2181 sd->balance_interval *= 2;
2184 if (!nr_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2189 schedstat_inc(sd, lb_balanced[idle]);
2191 sd->nr_balance_failed = 0;
2194 /* tune up the balancing interval */
2195 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2196 (sd->balance_interval < sd->max_interval))
2197 sd->balance_interval *= 2;
2199 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2205 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2206 * tasks if there is an imbalance.
2208 * Called from schedule when this_rq is about to become idle (NEWLY_IDLE).
2209 * this_rq is locked.
2211 static int load_balance_newidle(int this_cpu, runqueue_t *this_rq,
2212 struct sched_domain *sd)
2214 struct sched_group *group;
2215 runqueue_t *busiest = NULL;
2216 unsigned long imbalance;
2220 if (sd->flags & SD_SHARE_CPUPOWER)
2223 schedstat_inc(sd, lb_cnt[NEWLY_IDLE]);
2224 group = find_busiest_group(sd, this_cpu, &imbalance, NEWLY_IDLE, &sd_idle);
2226 schedstat_inc(sd, lb_nobusyg[NEWLY_IDLE]);
2230 busiest = find_busiest_queue(group, NEWLY_IDLE);
2232 schedstat_inc(sd, lb_nobusyq[NEWLY_IDLE]);
2236 BUG_ON(busiest == this_rq);
2238 schedstat_add(sd, lb_imbalance[NEWLY_IDLE], imbalance);
2241 if (busiest->nr_running > 1) {
2242 /* Attempt to move tasks */
2243 double_lock_balance(this_rq, busiest);
2244 nr_moved = move_tasks(this_rq, this_cpu, busiest,
2245 imbalance, sd, NEWLY_IDLE, NULL);
2246 spin_unlock(&busiest->lock);
2250 schedstat_inc(sd, lb_failed[NEWLY_IDLE]);
2251 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2254 sd->nr_balance_failed = 0;
2259 schedstat_inc(sd, lb_balanced[NEWLY_IDLE]);
2260 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER)
2262 sd->nr_balance_failed = 0;
2267 * idle_balance is called by schedule() if this_cpu is about to become
2268 * idle. Attempts to pull tasks from other CPUs.
2270 static void idle_balance(int this_cpu, runqueue_t *this_rq)
2272 struct sched_domain *sd;
2274 for_each_domain(this_cpu, sd) {
2275 if (sd->flags & SD_BALANCE_NEWIDLE) {
2276 if (load_balance_newidle(this_cpu, this_rq, sd)) {
2277 /* We've pulled tasks over so stop searching */
2285 * active_load_balance is run by migration threads. It pushes running tasks
2286 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2287 * running on each physical CPU where possible, and avoids physical /
2288 * logical imbalances.
2290 * Called with busiest_rq locked.
2292 static void active_load_balance(runqueue_t *busiest_rq, int busiest_cpu)
2294 struct sched_domain *sd;
2295 runqueue_t *target_rq;
2296 int target_cpu = busiest_rq->push_cpu;
2298 if (busiest_rq->nr_running <= 1)
2299 /* no task to move */
2302 target_rq = cpu_rq(target_cpu);
2305 * This condition is "impossible", if it occurs
2306 * we need to fix it. Originally reported by
2307 * Bjorn Helgaas on a 128-cpu setup.
2309 BUG_ON(busiest_rq == target_rq);
2311 /* move a task from busiest_rq to target_rq */
2312 double_lock_balance(busiest_rq, target_rq);
2314 /* Search for an sd spanning us and the target CPU. */
2315 for_each_domain(target_cpu, sd)
2316 if ((sd->flags & SD_LOAD_BALANCE) &&
2317 cpu_isset(busiest_cpu, sd->span))
2320 if (unlikely(sd == NULL))
2323 schedstat_inc(sd, alb_cnt);
2325 if (move_tasks(target_rq, target_cpu, busiest_rq, 1, sd, SCHED_IDLE, NULL))
2326 schedstat_inc(sd, alb_pushed);
2328 schedstat_inc(sd, alb_failed);
2330 spin_unlock(&target_rq->lock);
2334 * rebalance_tick will get called every timer tick, on every CPU.
2336 * It checks each scheduling domain to see if it is due to be balanced,
2337 * and initiates a balancing operation if so.
2339 * Balancing parameters are set up in arch_init_sched_domains.
2342 /* Don't have all balancing operations going off at once */
2343 #define CPU_OFFSET(cpu) (HZ * cpu / NR_CPUS)
2345 static void rebalance_tick(int this_cpu, runqueue_t *this_rq,
2346 enum idle_type idle)
2348 unsigned long old_load, this_load;
2349 unsigned long j = jiffies + CPU_OFFSET(this_cpu);
2350 struct sched_domain *sd;
2353 this_load = this_rq->nr_running * SCHED_LOAD_SCALE;
2354 /* Update our load */
2355 for (i = 0; i < 3; i++) {
2356 unsigned long new_load = this_load;
2358 old_load = this_rq->cpu_load[i];
2360 * Round up the averaging division if load is increasing. This
2361 * prevents us from getting stuck on 9 if the load is 10, for
2364 if (new_load > old_load)
2365 new_load += scale-1;
2366 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) / scale;
2369 for_each_domain(this_cpu, sd) {
2370 unsigned long interval;
2372 if (!(sd->flags & SD_LOAD_BALANCE))
2375 interval = sd->balance_interval;
2376 if (idle != SCHED_IDLE)
2377 interval *= sd->busy_factor;
2379 /* scale ms to jiffies */
2380 interval = msecs_to_jiffies(interval);
2381 if (unlikely(!interval))
2384 if (j - sd->last_balance >= interval) {
2385 if (load_balance(this_cpu, this_rq, sd, idle)) {
2387 * We've pulled tasks over so either we're no
2388 * longer idle, or one of our SMT siblings is
2393 sd->last_balance += interval;
2399 * on UP we do not need to balance between CPUs:
2401 static inline void rebalance_tick(int cpu, runqueue_t *rq, enum idle_type idle)
2404 static inline void idle_balance(int cpu, runqueue_t *rq)
2409 static inline int wake_priority_sleeper(runqueue_t *rq)
2412 #ifdef CONFIG_SCHED_SMT
2413 spin_lock(&rq->lock);
2415 * If an SMT sibling task has been put to sleep for priority
2416 * reasons reschedule the idle task to see if it can now run.
2418 if (rq->nr_running) {
2419 resched_task(rq->idle);
2422 spin_unlock(&rq->lock);
2427 DEFINE_PER_CPU(struct kernel_stat, kstat);
2429 EXPORT_PER_CPU_SYMBOL(kstat);
2432 * This is called on clock ticks and on context switches.
2433 * Bank in p->sched_time the ns elapsed since the last tick or switch.
2435 static inline void update_cpu_clock(task_t *p, runqueue_t *rq,
2436 unsigned long long now)
2438 unsigned long long last = max(p->timestamp, rq->timestamp_last_tick);
2439 p->sched_time += now - last;
2443 * Return current->sched_time plus any more ns on the sched_clock
2444 * that have not yet been banked.
2446 unsigned long long current_sched_time(const task_t *tsk)
2448 unsigned long long ns;
2449 unsigned long flags;
2450 local_irq_save(flags);
2451 ns = max(tsk->timestamp, task_rq(tsk)->timestamp_last_tick);
2452 ns = tsk->sched_time + (sched_clock() - ns);
2453 local_irq_restore(flags);
2458 * We place interactive tasks back into the active array, if possible.
2460 * To guarantee that this does not starve expired tasks we ignore the
2461 * interactivity of a task if the first expired task had to wait more
2462 * than a 'reasonable' amount of time. This deadline timeout is
2463 * load-dependent, as the frequency of array switched decreases with
2464 * increasing number of running tasks. We also ignore the interactivity
2465 * if a better static_prio task has expired:
2467 #define EXPIRED_STARVING(rq) \
2468 ((STARVATION_LIMIT && ((rq)->expired_timestamp && \
2469 (jiffies - (rq)->expired_timestamp >= \
2470 STARVATION_LIMIT * ((rq)->nr_running) + 1))) || \
2471 ((rq)->curr->static_prio > (rq)->best_expired_prio))
2474 * Account user cpu time to a process.
2475 * @p: the process that the cpu time gets accounted to
2476 * @hardirq_offset: the offset to subtract from hardirq_count()
2477 * @cputime: the cpu time spent in user space since the last update
2479 void account_user_time(struct task_struct *p, cputime_t cputime)
2481 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2484 p->utime = cputime_add(p->utime, cputime);
2486 /* Add user time to cpustat. */
2487 tmp = cputime_to_cputime64(cputime);
2488 if (TASK_NICE(p) > 0)
2489 cpustat->nice = cputime64_add(cpustat->nice, tmp);
2491 cpustat->user = cputime64_add(cpustat->user, tmp);
2495 * Account system cpu time to a process.
2496 * @p: the process that the cpu time gets accounted to
2497 * @hardirq_offset: the offset to subtract from hardirq_count()
2498 * @cputime: the cpu time spent in kernel space since the last update
2500 void account_system_time(struct task_struct *p, int hardirq_offset,
2503 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2504 runqueue_t *rq = this_rq();
2507 p->stime = cputime_add(p->stime, cputime);
2509 /* Add system time to cpustat. */
2510 tmp = cputime_to_cputime64(cputime);
2511 if (hardirq_count() - hardirq_offset)
2512 cpustat->irq = cputime64_add(cpustat->irq, tmp);
2513 else if (softirq_count())
2514 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
2515 else if (p != rq->idle)
2516 cpustat->system = cputime64_add(cpustat->system, tmp);
2517 else if (atomic_read(&rq->nr_iowait) > 0)
2518 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2520 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2521 /* Account for system time used */
2522 acct_update_integrals(p);
2526 * Account for involuntary wait time.
2527 * @p: the process from which the cpu time has been stolen
2528 * @steal: the cpu time spent in involuntary wait
2530 void account_steal_time(struct task_struct *p, cputime_t steal)
2532 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
2533 cputime64_t tmp = cputime_to_cputime64(steal);
2534 runqueue_t *rq = this_rq();
2536 if (p == rq->idle) {
2537 p->stime = cputime_add(p->stime, steal);
2538 if (atomic_read(&rq->nr_iowait) > 0)
2539 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
2541 cpustat->idle = cputime64_add(cpustat->idle, tmp);
2543 cpustat->steal = cputime64_add(cpustat->steal, tmp);
2547 * This function gets called by the timer code, with HZ frequency.
2548 * We call it with interrupts disabled.
2550 * It also gets called by the fork code, when changing the parent's
2553 void scheduler_tick(void)
2555 int cpu = smp_processor_id();
2556 runqueue_t *rq = this_rq();
2557 task_t *p = current;
2558 unsigned long long now = sched_clock();
2560 update_cpu_clock(p, rq, now);
2562 rq->timestamp_last_tick = now;
2564 if (p == rq->idle) {
2565 if (wake_priority_sleeper(rq))
2567 rebalance_tick(cpu, rq, SCHED_IDLE);
2571 /* Task might have expired already, but not scheduled off yet */
2572 if (p->array != rq->active) {
2573 set_tsk_need_resched(p);
2576 spin_lock(&rq->lock);
2578 * The task was running during this tick - update the
2579 * time slice counter. Note: we do not update a thread's
2580 * priority until it either goes to sleep or uses up its
2581 * timeslice. This makes it possible for interactive tasks
2582 * to use up their timeslices at their highest priority levels.
2586 * RR tasks need a special form of timeslice management.
2587 * FIFO tasks have no timeslices.
2589 if ((p->policy == SCHED_RR) && !--p->time_slice) {
2590 p->time_slice = task_timeslice(p);
2591 p->first_time_slice = 0;
2592 set_tsk_need_resched(p);
2594 /* put it at the end of the queue: */
2595 requeue_task(p, rq->active);
2599 if (!--p->time_slice) {
2600 dequeue_task(p, rq->active);
2601 set_tsk_need_resched(p);
2602 p->prio = effective_prio(p);
2603 p->time_slice = task_timeslice(p);
2604 p->first_time_slice = 0;
2606 if (!rq->expired_timestamp)
2607 rq->expired_timestamp = jiffies;
2608 if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2609 enqueue_task(p, rq->expired);
2610 if (p->static_prio < rq->best_expired_prio)
2611 rq->best_expired_prio = p->static_prio;
2613 enqueue_task(p, rq->active);
2616 * Prevent a too long timeslice allowing a task to monopolize
2617 * the CPU. We do this by splitting up the timeslice into
2620 * Note: this does not mean the task's timeslices expire or
2621 * get lost in any way, they just might be preempted by
2622 * another task of equal priority. (one with higher
2623 * priority would have preempted this task already.) We
2624 * requeue this task to the end of the list on this priority
2625 * level, which is in essence a round-robin of tasks with
2628 * This only applies to tasks in the interactive
2629 * delta range with at least TIMESLICE_GRANULARITY to requeue.
2631 if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2632 p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2633 (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2634 (p->array == rq->active)) {
2636 requeue_task(p, rq->active);
2637 set_tsk_need_resched(p);
2641 spin_unlock(&rq->lock);
2643 rebalance_tick(cpu, rq, NOT_IDLE);
2646 #ifdef CONFIG_SCHED_SMT
2647 static inline void wakeup_busy_runqueue(runqueue_t *rq)
2649 /* If an SMT runqueue is sleeping due to priority reasons wake it up */
2650 if (rq->curr == rq->idle && rq->nr_running)
2651 resched_task(rq->idle);
2654 static void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2656 struct sched_domain *tmp, *sd = NULL;
2657 cpumask_t sibling_map;
2660 for_each_domain(this_cpu, tmp)
2661 if (tmp->flags & SD_SHARE_CPUPOWER)
2668 * Unlock the current runqueue because we have to lock in
2669 * CPU order to avoid deadlocks. Caller knows that we might
2670 * unlock. We keep IRQs disabled.
2672 spin_unlock(&this_rq->lock);
2674 sibling_map = sd->span;
2676 for_each_cpu_mask(i, sibling_map)
2677 spin_lock(&cpu_rq(i)->lock);
2679 * We clear this CPU from the mask. This both simplifies the
2680 * inner loop and keps this_rq locked when we exit:
2682 cpu_clear(this_cpu, sibling_map);
2684 for_each_cpu_mask(i, sibling_map) {
2685 runqueue_t *smt_rq = cpu_rq(i);
2687 wakeup_busy_runqueue(smt_rq);
2690 for_each_cpu_mask(i, sibling_map)
2691 spin_unlock(&cpu_rq(i)->lock);
2693 * We exit with this_cpu's rq still held and IRQs
2699 * number of 'lost' timeslices this task wont be able to fully
2700 * utilize, if another task runs on a sibling. This models the
2701 * slowdown effect of other tasks running on siblings:
2703 static inline unsigned long smt_slice(task_t *p, struct sched_domain *sd)
2705 return p->time_slice * (100 - sd->per_cpu_gain) / 100;
2708 static int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2710 struct sched_domain *tmp, *sd = NULL;
2711 cpumask_t sibling_map;
2712 prio_array_t *array;
2716 for_each_domain(this_cpu, tmp)
2717 if (tmp->flags & SD_SHARE_CPUPOWER)
2724 * The same locking rules and details apply as for
2725 * wake_sleeping_dependent():
2727 spin_unlock(&this_rq->lock);
2728 sibling_map = sd->span;
2729 for_each_cpu_mask(i, sibling_map)
2730 spin_lock(&cpu_rq(i)->lock);
2731 cpu_clear(this_cpu, sibling_map);
2734 * Establish next task to be run - it might have gone away because
2735 * we released the runqueue lock above:
2737 if (!this_rq->nr_running)
2739 array = this_rq->active;
2740 if (!array->nr_active)
2741 array = this_rq->expired;
2742 BUG_ON(!array->nr_active);
2744 p = list_entry(array->queue[sched_find_first_bit(array->bitmap)].next,
2747 for_each_cpu_mask(i, sibling_map) {
2748 runqueue_t *smt_rq = cpu_rq(i);
2749 task_t *smt_curr = smt_rq->curr;
2751 /* Kernel threads do not participate in dependent sleeping */
2752 if (!p->mm || !smt_curr->mm || rt_task(p))
2753 goto check_smt_task;
2756 * If a user task with lower static priority than the
2757 * running task on the SMT sibling is trying to schedule,
2758 * delay it till there is proportionately less timeslice
2759 * left of the sibling task to prevent a lower priority
2760 * task from using an unfair proportion of the
2761 * physical cpu's resources. -ck
2763 if (rt_task(smt_curr)) {
2765 * With real time tasks we run non-rt tasks only
2766 * per_cpu_gain% of the time.
2768 if ((jiffies % DEF_TIMESLICE) >
2769 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2772 if (smt_curr->static_prio < p->static_prio &&
2773 !TASK_PREEMPTS_CURR(p, smt_rq) &&
2774 smt_slice(smt_curr, sd) > task_timeslice(p))
2778 if ((!smt_curr->mm && smt_curr != smt_rq->idle) ||
2782 wakeup_busy_runqueue(smt_rq);
2787 * Reschedule a lower priority task on the SMT sibling for
2788 * it to be put to sleep, or wake it up if it has been put to
2789 * sleep for priority reasons to see if it should run now.
2792 if ((jiffies % DEF_TIMESLICE) >
2793 (sd->per_cpu_gain * DEF_TIMESLICE / 100))
2794 resched_task(smt_curr);
2796 if (TASK_PREEMPTS_CURR(p, smt_rq) &&
2797 smt_slice(p, sd) > task_timeslice(smt_curr))
2798 resched_task(smt_curr);
2800 wakeup_busy_runqueue(smt_rq);
2804 for_each_cpu_mask(i, sibling_map)
2805 spin_unlock(&cpu_rq(i)->lock);
2809 static inline void wake_sleeping_dependent(int this_cpu, runqueue_t *this_rq)
2813 static inline int dependent_sleeper(int this_cpu, runqueue_t *this_rq)
2819 #if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
2821 void fastcall add_preempt_count(int val)
2826 BUG_ON((preempt_count() < 0));
2827 preempt_count() += val;
2829 * Spinlock count overflowing soon?
2831 BUG_ON((preempt_count() & PREEMPT_MASK) >= PREEMPT_MASK-10);
2833 EXPORT_SYMBOL(add_preempt_count);
2835 void fastcall sub_preempt_count(int val)
2840 BUG_ON(val > preempt_count());
2842 * Is the spinlock portion underflowing?
2844 BUG_ON((val < PREEMPT_MASK) && !(preempt_count() & PREEMPT_MASK));
2845 preempt_count() -= val;
2847 EXPORT_SYMBOL(sub_preempt_count);
2852 * schedule() is the main scheduler function.
2854 asmlinkage void __sched schedule(void)
2857 task_t *prev, *next;
2859 prio_array_t *array;
2860 struct list_head *queue;
2861 unsigned long long now;
2862 unsigned long run_time;
2863 int cpu, idx, new_prio;
2866 * Test if we are atomic. Since do_exit() needs to call into
2867 * schedule() atomically, we ignore that path for now.
2868 * Otherwise, whine if we are scheduling when we should not be.
2870 if (likely(!current->exit_state)) {
2871 if (unlikely(in_atomic())) {
2872 printk(KERN_ERR "scheduling while atomic: "
2874 current->comm, preempt_count(), current->pid);
2878 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2883 release_kernel_lock(prev);
2884 need_resched_nonpreemptible:
2888 * The idle thread is not allowed to schedule!
2889 * Remove this check after it has been exercised a bit.
2891 if (unlikely(prev == rq->idle) && prev->state != TASK_RUNNING) {
2892 printk(KERN_ERR "bad: scheduling from the idle thread!\n");
2896 schedstat_inc(rq, sched_cnt);
2897 now = sched_clock();
2898 if (likely((long long)(now - prev->timestamp) < NS_MAX_SLEEP_AVG)) {
2899 run_time = now - prev->timestamp;
2900 if (unlikely((long long)(now - prev->timestamp) < 0))
2903 run_time = NS_MAX_SLEEP_AVG;
2906 * Tasks charged proportionately less run_time at high sleep_avg to
2907 * delay them losing their interactive status
2909 run_time /= (CURRENT_BONUS(prev) ? : 1);
2911 spin_lock_irq(&rq->lock);
2913 if (unlikely(prev->flags & PF_DEAD))
2914 prev->state = EXIT_DEAD;
2916 switch_count = &prev->nivcsw;
2917 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2918 switch_count = &prev->nvcsw;
2919 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2920 unlikely(signal_pending(prev))))
2921 prev->state = TASK_RUNNING;
2923 if (prev->state == TASK_UNINTERRUPTIBLE)
2924 rq->nr_uninterruptible++;
2925 deactivate_task(prev, rq);
2929 cpu = smp_processor_id();
2930 if (unlikely(!rq->nr_running)) {
2932 idle_balance(cpu, rq);
2933 if (!rq->nr_running) {
2935 rq->expired_timestamp = 0;
2936 wake_sleeping_dependent(cpu, rq);
2938 * wake_sleeping_dependent() might have released
2939 * the runqueue, so break out if we got new
2942 if (!rq->nr_running)
2946 if (dependent_sleeper(cpu, rq)) {
2951 * dependent_sleeper() releases and reacquires the runqueue
2952 * lock, hence go into the idle loop if the rq went
2955 if (unlikely(!rq->nr_running))
2960 if (unlikely(!array->nr_active)) {
2962 * Switch the active and expired arrays.
2964 schedstat_inc(rq, sched_switch);
2965 rq->active = rq->expired;
2966 rq->expired = array;
2968 rq->expired_timestamp = 0;
2969 rq->best_expired_prio = MAX_PRIO;
2972 idx = sched_find_first_bit(array->bitmap);
2973 queue = array->queue + idx;
2974 next = list_entry(queue->next, task_t, run_list);
2976 if (!rt_task(next) && next->activated > 0) {
2977 unsigned long long delta = now - next->timestamp;
2978 if (unlikely((long long)(now - next->timestamp) < 0))
2981 if (next->activated == 1)
2982 delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2984 array = next->array;
2985 new_prio = recalc_task_prio(next, next->timestamp + delta);
2987 if (unlikely(next->prio != new_prio)) {
2988 dequeue_task(next, array);
2989 next->prio = new_prio;
2990 enqueue_task(next, array);
2992 requeue_task(next, array);
2994 next->activated = 0;
2996 if (next == rq->idle)
2997 schedstat_inc(rq, sched_goidle);
2999 prefetch_stack(next);
3000 clear_tsk_need_resched(prev);
3001 rcu_qsctr_inc(task_cpu(prev));
3003 update_cpu_clock(prev, rq, now);
3005 prev->sleep_avg -= run_time;
3006 if ((long)prev->sleep_avg <= 0)
3007 prev->sleep_avg = 0;
3008 prev->timestamp = prev->last_ran = now;
3010 sched_info_switch(prev, next);
3011 if (likely(prev != next)) {
3012 next->timestamp = now;
3017 prepare_task_switch(rq, next);
3018 prev = context_switch(rq, prev, next);
3021 * this_rq must be evaluated again because prev may have moved
3022 * CPUs since it called schedule(), thus the 'rq' on its stack
3023 * frame will be invalid.
3025 finish_task_switch(this_rq(), prev);
3027 spin_unlock_irq(&rq->lock);
3030 if (unlikely(reacquire_kernel_lock(prev) < 0))
3031 goto need_resched_nonpreemptible;
3032 preempt_enable_no_resched();
3033 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3037 EXPORT_SYMBOL(schedule);
3039 #ifdef CONFIG_PREEMPT
3041 * this is is the entry point to schedule() from in-kernel preemption
3042 * off of preempt_enable. Kernel preemptions off return from interrupt
3043 * occur there and call schedule directly.
3045 asmlinkage void __sched preempt_schedule(void)
3047 struct thread_info *ti = current_thread_info();
3048 #ifdef CONFIG_PREEMPT_BKL
3049 struct task_struct *task = current;
3050 int saved_lock_depth;
3053 * If there is a non-zero preempt_count or interrupts are disabled,
3054 * we do not want to preempt the current task. Just return..
3056 if (unlikely(ti->preempt_count || irqs_disabled()))
3060 add_preempt_count(PREEMPT_ACTIVE);
3062 * We keep the big kernel semaphore locked, but we
3063 * clear ->lock_depth so that schedule() doesnt
3064 * auto-release the semaphore:
3066 #ifdef CONFIG_PREEMPT_BKL
3067 saved_lock_depth = task->lock_depth;
3068 task->lock_depth = -1;
3071 #ifdef CONFIG_PREEMPT_BKL
3072 task->lock_depth = saved_lock_depth;
3074 sub_preempt_count(PREEMPT_ACTIVE);
3076 /* we could miss a preemption opportunity between schedule and now */
3078 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3082 EXPORT_SYMBOL(preempt_schedule);
3085 * this is is the entry point to schedule() from kernel preemption
3086 * off of irq context.
3087 * Note, that this is called and return with irqs disabled. This will
3088 * protect us against recursive calling from irq.
3090 asmlinkage void __sched preempt_schedule_irq(void)
3092 struct thread_info *ti = current_thread_info();
3093 #ifdef CONFIG_PREEMPT_BKL
3094 struct task_struct *task = current;
3095 int saved_lock_depth;
3097 /* Catch callers which need to be fixed*/
3098 BUG_ON(ti->preempt_count || !irqs_disabled());
3101 add_preempt_count(PREEMPT_ACTIVE);
3103 * We keep the big kernel semaphore locked, but we
3104 * clear ->lock_depth so that schedule() doesnt
3105 * auto-release the semaphore:
3107 #ifdef CONFIG_PREEMPT_BKL
3108 saved_lock_depth = task->lock_depth;
3109 task->lock_depth = -1;
3113 local_irq_disable();
3114 #ifdef CONFIG_PREEMPT_BKL
3115 task->lock_depth = saved_lock_depth;
3117 sub_preempt_count(PREEMPT_ACTIVE);
3119 /* we could miss a preemption opportunity between schedule and now */
3121 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3125 #endif /* CONFIG_PREEMPT */
3127 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3130 task_t *p = curr->private;
3131 return try_to_wake_up(p, mode, sync);
3134 EXPORT_SYMBOL(default_wake_function);
3137 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3138 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3139 * number) then we wake all the non-exclusive tasks and one exclusive task.
3141 * There are circumstances in which we can try to wake a task which has already
3142 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3143 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3145 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3146 int nr_exclusive, int sync, void *key)
3148 struct list_head *tmp, *next;
3150 list_for_each_safe(tmp, next, &q->task_list) {
3153 curr = list_entry(tmp, wait_queue_t, task_list);
3154 flags = curr->flags;
3155 if (curr->func(curr, mode, sync, key) &&
3156 (flags & WQ_FLAG_EXCLUSIVE) &&
3163 * __wake_up - wake up threads blocked on a waitqueue.
3165 * @mode: which threads
3166 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3167 * @key: is directly passed to the wakeup function
3169 void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
3170 int nr_exclusive, void *key)
3172 unsigned long flags;
3174 spin_lock_irqsave(&q->lock, flags);
3175 __wake_up_common(q, mode, nr_exclusive, 0, key);
3176 spin_unlock_irqrestore(&q->lock, flags);
3179 EXPORT_SYMBOL(__wake_up);
3182 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3184 void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3186 __wake_up_common(q, mode, 1, 0, NULL);
3190 * __wake_up_sync - wake up threads blocked on a waitqueue.
3192 * @mode: which threads
3193 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3195 * The sync wakeup differs that the waker knows that it will schedule
3196 * away soon, so while the target thread will be woken up, it will not
3197 * be migrated to another CPU - ie. the two threads are 'synchronized'
3198 * with each other. This can prevent needless bouncing between CPUs.
3200 * On UP it can prevent extra preemption.
3203 __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3205 unsigned long flags;
3211 if (unlikely(!nr_exclusive))
3214 spin_lock_irqsave(&q->lock, flags);
3215 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3216 spin_unlock_irqrestore(&q->lock, flags);
3218 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3220 void fastcall complete(struct completion *x)
3222 unsigned long flags;
3224 spin_lock_irqsave(&x->wait.lock, flags);
3226 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3228 spin_unlock_irqrestore(&x->wait.lock, flags);
3230 EXPORT_SYMBOL(complete);
3232 void fastcall complete_all(struct completion *x)
3234 unsigned long flags;
3236 spin_lock_irqsave(&x->wait.lock, flags);
3237 x->done += UINT_MAX/2;
3238 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3240 spin_unlock_irqrestore(&x->wait.lock, flags);
3242 EXPORT_SYMBOL(complete_all);
3244 void fastcall __sched wait_for_completion(struct completion *x)
3247 spin_lock_irq(&x->wait.lock);
3249 DECLARE_WAITQUEUE(wait, current);
3251 wait.flags |= WQ_FLAG_EXCLUSIVE;
3252 __add_wait_queue_tail(&x->wait, &wait);
3254 __set_current_state(TASK_UNINTERRUPTIBLE);
3255 spin_unlock_irq(&x->wait.lock);
3257 spin_lock_irq(&x->wait.lock);
3259 __remove_wait_queue(&x->wait, &wait);
3262 spin_unlock_irq(&x->wait.lock);
3264 EXPORT_SYMBOL(wait_for_completion);
3266 unsigned long fastcall __sched
3267 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
3271 spin_lock_irq(&x->wait.lock);
3273 DECLARE_WAITQUEUE(wait, current);
3275 wait.flags |= WQ_FLAG_EXCLUSIVE;
3276 __add_wait_queue_tail(&x->wait, &wait);
3278 __set_current_state(TASK_UNINTERRUPTIBLE);
3279 spin_unlock_irq(&x->wait.lock);
3280 timeout = schedule_timeout(timeout);
3281 spin_lock_irq(&x->wait.lock);
3283 __remove_wait_queue(&x->wait, &wait);
3287 __remove_wait_queue(&x->wait, &wait);
3291 spin_unlock_irq(&x->wait.lock);
3294 EXPORT_SYMBOL(wait_for_completion_timeout);
3296 int fastcall __sched wait_for_completion_interruptible(struct completion *x)
3302 spin_lock_irq(&x->wait.lock);
3304 DECLARE_WAITQUEUE(wait, current);
3306 wait.flags |= WQ_FLAG_EXCLUSIVE;
3307 __add_wait_queue_tail(&x->wait, &wait);
3309 if (signal_pending(current)) {
3311 __remove_wait_queue(&x->wait, &wait);
3314 __set_current_state(TASK_INTERRUPTIBLE);
3315 spin_unlock_irq(&x->wait.lock);
3317 spin_lock_irq(&x->wait.lock);
3319 __remove_wait_queue(&x->wait, &wait);
3323 spin_unlock_irq(&x->wait.lock);
3327 EXPORT_SYMBOL(wait_for_completion_interruptible);
3329 unsigned long fastcall __sched
3330 wait_for_completion_interruptible_timeout(struct completion *x,
3331 unsigned long timeout)
3335 spin_lock_irq(&x->wait.lock);
3337 DECLARE_WAITQUEUE(wait, current);
3339 wait.flags |= WQ_FLAG_EXCLUSIVE;
3340 __add_wait_queue_tail(&x->wait, &wait);
3342 if (signal_pending(current)) {
3343 timeout = -ERESTARTSYS;
3344 __remove_wait_queue(&x->wait, &wait);
3347 __set_current_state(TASK_INTERRUPTIBLE);
3348 spin_unlock_irq(&x->wait.lock);
3349 timeout = schedule_timeout(timeout);
3350 spin_lock_irq(&x->wait.lock);
3352 __remove_wait_queue(&x->wait, &wait);
3356 __remove_wait_queue(&x->wait, &wait);
3360 spin_unlock_irq(&x->wait.lock);
3363 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
3366 #define SLEEP_ON_VAR \
3367 unsigned long flags; \
3368 wait_queue_t wait; \
3369 init_waitqueue_entry(&wait, current);
3371 #define SLEEP_ON_HEAD \
3372 spin_lock_irqsave(&q->lock,flags); \
3373 __add_wait_queue(q, &wait); \
3374 spin_unlock(&q->lock);
3376 #define SLEEP_ON_TAIL \
3377 spin_lock_irq(&q->lock); \
3378 __remove_wait_queue(q, &wait); \
3379 spin_unlock_irqrestore(&q->lock, flags);
3381 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
3385 current->state = TASK_INTERRUPTIBLE;
3392 EXPORT_SYMBOL(interruptible_sleep_on);
3394 long fastcall __sched
3395 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
3399 current->state = TASK_INTERRUPTIBLE;
3402 timeout = schedule_timeout(timeout);
3408 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3410 void fastcall __sched sleep_on(wait_queue_head_t *q)
3414 current->state = TASK_UNINTERRUPTIBLE;
3421 EXPORT_SYMBOL(sleep_on);
3423 long fastcall __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
3427 current->state = TASK_UNINTERRUPTIBLE;
3430 timeout = schedule_timeout(timeout);
3436 EXPORT_SYMBOL(sleep_on_timeout);
3438 void set_user_nice(task_t *p, long nice)
3440 unsigned long flags;
3441 prio_array_t *array;
3443 int old_prio, new_prio, delta;
3445 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3448 * We have to be careful, if called from sys_setpriority(),
3449 * the task might be in the middle of scheduling on another CPU.
3451 rq = task_rq_lock(p, &flags);
3453 * The RT priorities are set via sched_setscheduler(), but we still
3454 * allow the 'normal' nice value to be set - but as expected
3455 * it wont have any effect on scheduling until the task is
3456 * not SCHED_NORMAL/SCHED_BATCH:
3459 p->static_prio = NICE_TO_PRIO(nice);
3464 dequeue_task(p, array);
3467 new_prio = NICE_TO_PRIO(nice);
3468 delta = new_prio - old_prio;
3469 p->static_prio = NICE_TO_PRIO(nice);
3473 enqueue_task(p, array);
3475 * If the task increased its priority or is running and
3476 * lowered its priority, then reschedule its CPU:
3478 if (delta < 0 || (delta > 0 && task_running(rq, p)))
3479 resched_task(rq->curr);
3482 task_rq_unlock(rq, &flags);
3485 EXPORT_SYMBOL(set_user_nice);
3488 * can_nice - check if a task can reduce its nice value
3492 int can_nice(const task_t *p, const int nice)
3494 /* convert nice value [19,-20] to rlimit style value [1,40] */
3495 int nice_rlim = 20 - nice;
3496 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
3497 capable(CAP_SYS_NICE));
3500 #ifdef __ARCH_WANT_SYS_NICE
3503 * sys_nice - change the priority of the current process.
3504 * @increment: priority increment
3506 * sys_setpriority is a more generic, but much slower function that
3507 * does similar things.
3509 asmlinkage long sys_nice(int increment)
3515 * Setpriority might change our priority at the same moment.
3516 * We don't have to worry. Conceptually one call occurs first
3517 * and we have a single winner.
3519 if (increment < -40)
3524 nice = PRIO_TO_NICE(current->static_prio) + increment;
3530 if (increment < 0 && !can_nice(current, nice))
3533 retval = security_task_setnice(current, nice);
3537 set_user_nice(current, nice);
3544 * task_prio - return the priority value of a given task.
3545 * @p: the task in question.
3547 * This is the priority value as seen by users in /proc.
3548 * RT tasks are offset by -200. Normal tasks are centered
3549 * around 0, value goes from -16 to +15.
3551 int task_prio(const task_t *p)
3553 return p->prio - MAX_RT_PRIO;
3557 * task_nice - return the nice value of a given task.
3558 * @p: the task in question.
3560 int task_nice(const task_t *p)
3562 return TASK_NICE(p);
3564 EXPORT_SYMBOL_GPL(task_nice);
3567 * idle_cpu - is a given cpu idle currently?
3568 * @cpu: the processor in question.
3570 int idle_cpu(int cpu)
3572 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
3576 * idle_task - return the idle task for a given cpu.
3577 * @cpu: the processor in question.
3579 task_t *idle_task(int cpu)
3581 return cpu_rq(cpu)->idle;
3585 * find_process_by_pid - find a process with a matching PID value.
3586 * @pid: the pid in question.
3588 static inline task_t *find_process_by_pid(pid_t pid)
3590 return pid ? find_task_by_pid(pid) : current;
3593 /* Actually do priority change: must hold rq lock. */
3594 static void __setscheduler(struct task_struct *p, int policy, int prio)
3598 p->rt_priority = prio;
3599 if (policy != SCHED_NORMAL && policy != SCHED_BATCH) {
3600 p->prio = MAX_RT_PRIO-1 - p->rt_priority;
3602 p->prio = p->static_prio;
3604 * SCHED_BATCH tasks are treated as perpetual CPU hogs:
3606 if (policy == SCHED_BATCH)
3612 * sched_setscheduler - change the scheduling policy and/or RT priority of
3614 * @p: the task in question.
3615 * @policy: new policy.
3616 * @param: structure containing the new RT priority.
3618 int sched_setscheduler(struct task_struct *p, int policy,
3619 struct sched_param *param)
3622 int oldprio, oldpolicy = -1;
3623 prio_array_t *array;
3624 unsigned long flags;
3628 /* double check policy once rq lock held */
3630 policy = oldpolicy = p->policy;
3631 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
3632 policy != SCHED_NORMAL && policy != SCHED_BATCH)
3635 * Valid priorities for SCHED_FIFO and SCHED_RR are
3636 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL and
3639 if (param->sched_priority < 0 ||
3640 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
3641 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
3643 if ((policy == SCHED_NORMAL || policy == SCHED_BATCH)
3644 != (param->sched_priority == 0))
3648 * Allow unprivileged RT tasks to decrease priority:
3650 if (!capable(CAP_SYS_NICE)) {
3652 * can't change policy, except between SCHED_NORMAL
3655 if (((policy != SCHED_NORMAL && p->policy != SCHED_BATCH) &&
3656 (policy != SCHED_BATCH && p->policy != SCHED_NORMAL)) &&
3657 !p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3659 /* can't increase priority */
3660 if ((policy != SCHED_NORMAL && policy != SCHED_BATCH) &&
3661 param->sched_priority > p->rt_priority &&
3662 param->sched_priority >
3663 p->signal->rlim[RLIMIT_RTPRIO].rlim_cur)
3665 /* can't change other user's priorities */
3666 if ((current->euid != p->euid) &&
3667 (current->euid != p->uid))
3671 retval = security_task_setscheduler(p, policy, param);
3675 * To be able to change p->policy safely, the apropriate
3676 * runqueue lock must be held.
3678 rq = task_rq_lock(p, &flags);
3679 /* recheck policy now with rq lock held */
3680 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3681 policy = oldpolicy = -1;
3682 task_rq_unlock(rq, &flags);
3687 deactivate_task(p, rq);
3689 __setscheduler(p, policy, param->sched_priority);
3691 __activate_task(p, rq);
3693 * Reschedule if we are currently running on this runqueue and
3694 * our priority decreased, or if we are not currently running on
3695 * this runqueue and our priority is higher than the current's
3697 if (task_running(rq, p)) {
3698 if (p->prio > oldprio)
3699 resched_task(rq->curr);
3700 } else if (TASK_PREEMPTS_CURR(p, rq))
3701 resched_task(rq->curr);
3703 task_rq_unlock(rq, &flags);
3706 EXPORT_SYMBOL_GPL(sched_setscheduler);
3709 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
3712 struct sched_param lparam;
3713 struct task_struct *p;
3715 if (!param || pid < 0)
3717 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3719 read_lock_irq(&tasklist_lock);
3720 p = find_process_by_pid(pid);
3722 read_unlock_irq(&tasklist_lock);
3725 retval = sched_setscheduler(p, policy, &lparam);
3726 read_unlock_irq(&tasklist_lock);
3731 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3732 * @pid: the pid in question.
3733 * @policy: new policy.
3734 * @param: structure containing the new RT priority.
3736 asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
3737 struct sched_param __user *param)
3739 /* negative values for policy are not valid */
3743 return do_sched_setscheduler(pid, policy, param);
3747 * sys_sched_setparam - set/change the RT priority of a thread
3748 * @pid: the pid in question.
3749 * @param: structure containing the new RT priority.
3751 asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
3753 return do_sched_setscheduler(pid, -1, param);
3757 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3758 * @pid: the pid in question.
3760 asmlinkage long sys_sched_getscheduler(pid_t pid)
3762 int retval = -EINVAL;
3769 read_lock(&tasklist_lock);
3770 p = find_process_by_pid(pid);
3772 retval = security_task_getscheduler(p);
3776 read_unlock(&tasklist_lock);
3783 * sys_sched_getscheduler - get the RT priority of a thread
3784 * @pid: the pid in question.
3785 * @param: structure containing the RT priority.
3787 asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
3789 struct sched_param lp;
3790 int retval = -EINVAL;
3793 if (!param || pid < 0)
3796 read_lock(&tasklist_lock);
3797 p = find_process_by_pid(pid);
3802 retval = security_task_getscheduler(p);
3806 lp.sched_priority = p->rt_priority;
3807 read_unlock(&tasklist_lock);
3810 * This one might sleep, we cannot do it with a spinlock held ...
3812 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3818 read_unlock(&tasklist_lock);
3822 long sched_setaffinity(pid_t pid, cpumask_t new_mask)
3826 cpumask_t cpus_allowed;
3829 read_lock(&tasklist_lock);
3831 p = find_process_by_pid(pid);
3833 read_unlock(&tasklist_lock);
3834 unlock_cpu_hotplug();
3839 * It is not safe to call set_cpus_allowed with the
3840 * tasklist_lock held. We will bump the task_struct's
3841 * usage count and then drop tasklist_lock.
3844 read_unlock(&tasklist_lock);
3847 if ((current->euid != p->euid) && (current->euid != p->uid) &&
3848 !capable(CAP_SYS_NICE))
3851 cpus_allowed = cpuset_cpus_allowed(p);
3852 cpus_and(new_mask, new_mask, cpus_allowed);
3853 retval = set_cpus_allowed(p, new_mask);
3857 unlock_cpu_hotplug();
3861 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
3862 cpumask_t *new_mask)
3864 if (len < sizeof(cpumask_t)) {
3865 memset(new_mask, 0, sizeof(cpumask_t));
3866 } else if (len > sizeof(cpumask_t)) {
3867 len = sizeof(cpumask_t);
3869 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
3873 * sys_sched_setaffinity - set the cpu affinity of a process
3874 * @pid: pid of the process
3875 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3876 * @user_mask_ptr: user-space pointer to the new cpu mask
3878 asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
3879 unsigned long __user *user_mask_ptr)
3884 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
3888 return sched_setaffinity(pid, new_mask);
3892 * Represents all cpu's present in the system
3893 * In systems capable of hotplug, this map could dynamically grow
3894 * as new cpu's are detected in the system via any platform specific
3895 * method, such as ACPI for e.g.
3898 cpumask_t cpu_present_map __read_mostly;
3899 EXPORT_SYMBOL(cpu_present_map);
3902 cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
3903 cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
3906 long sched_getaffinity(pid_t pid, cpumask_t *mask)
3912 read_lock(&tasklist_lock);
3915 p = find_process_by_pid(pid);
3920 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
3923 read_unlock(&tasklist_lock);
3924 unlock_cpu_hotplug();
3932 * sys_sched_getaffinity - get the cpu affinity of a process
3933 * @pid: pid of the process
3934 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
3935 * @user_mask_ptr: user-space pointer to hold the current cpu mask
3937 asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
3938 unsigned long __user *user_mask_ptr)
3943 if (len < sizeof(cpumask_t))
3946 ret = sched_getaffinity(pid, &mask);
3950 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
3953 return sizeof(cpumask_t);
3957 * sys_sched_yield - yield the current processor to other threads.
3959 * this function yields the current CPU by moving the calling thread
3960 * to the expired array. If there are no other threads running on this
3961 * CPU then this function will return.
3963 asmlinkage long sys_sched_yield(void)
3965 runqueue_t *rq = this_rq_lock();
3966 prio_array_t *array = current->array;
3967 prio_array_t *target = rq->expired;
3969 schedstat_inc(rq, yld_cnt);
3971 * We implement yielding by moving the task into the expired
3974 * (special rule: RT tasks will just roundrobin in the active
3977 if (rt_task(current))
3978 target = rq->active;
3980 if (array->nr_active == 1) {
3981 schedstat_inc(rq, yld_act_empty);
3982 if (!rq->expired->nr_active)
3983 schedstat_inc(rq, yld_both_empty);
3984 } else if (!rq->expired->nr_active)
3985 schedstat_inc(rq, yld_exp_empty);
3987 if (array != target) {
3988 dequeue_task(current, array);
3989 enqueue_task(current, target);
3992 * requeue_task is cheaper so perform that if possible.
3994 requeue_task(current, array);
3997 * Since we are going to call schedule() anyway, there's
3998 * no need to preempt or enable interrupts:
4000 __release(rq->lock);
4001 _raw_spin_unlock(&rq->lock);
4002 preempt_enable_no_resched();
4009 static inline void __cond_resched(void)
4012 * The BKS might be reacquired before we have dropped
4013 * PREEMPT_ACTIVE, which could trigger a second
4014 * cond_resched() call.
4016 if (unlikely(preempt_count()))
4018 if (unlikely(system_state != SYSTEM_RUNNING))
4021 add_preempt_count(PREEMPT_ACTIVE);
4023 sub_preempt_count(PREEMPT_ACTIVE);
4024 } while (need_resched());
4027 int __sched cond_resched(void)
4029 if (need_resched()) {
4036 EXPORT_SYMBOL(cond_resched);
4039 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4040 * call schedule, and on return reacquire the lock.
4042 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4043 * operations here to prevent schedule() from being called twice (once via
4044 * spin_unlock(), once by hand).
4046 int cond_resched_lock(spinlock_t *lock)
4050 if (need_lockbreak(lock)) {
4056 if (need_resched()) {
4057 _raw_spin_unlock(lock);
4058 preempt_enable_no_resched();
4066 EXPORT_SYMBOL(cond_resched_lock);
4068 int __sched cond_resched_softirq(void)
4070 BUG_ON(!in_softirq());
4072 if (need_resched()) {
4073 __local_bh_enable();
4081 EXPORT_SYMBOL(cond_resched_softirq);
4085 * yield - yield the current processor to other threads.
4087 * this is a shortcut for kernel-space yielding - it marks the
4088 * thread runnable and calls sys_sched_yield().
4090 void __sched yield(void)
4092 set_current_state(TASK_RUNNING);
4096 EXPORT_SYMBOL(yield);
4099 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4100 * that process accounting knows that this is a task in IO wait state.
4102 * But don't do that if it is a deliberate, throttling IO wait (this task
4103 * has set its backing_dev_info: the queue against which it should throttle)
4105 void __sched io_schedule(void)
4107 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4109 atomic_inc(&rq->nr_iowait);
4111 atomic_dec(&rq->nr_iowait);
4114 EXPORT_SYMBOL(io_schedule);
4116 long __sched io_schedule_timeout(long timeout)
4118 struct runqueue *rq = &per_cpu(runqueues, raw_smp_processor_id());
4121 atomic_inc(&rq->nr_iowait);
4122 ret = schedule_timeout(timeout);
4123 atomic_dec(&rq->nr_iowait);
4128 * sys_sched_get_priority_max - return maximum RT priority.
4129 * @policy: scheduling class.
4131 * this syscall returns the maximum rt_priority that can be used
4132 * by a given scheduling class.
4134 asmlinkage long sys_sched_get_priority_max(int policy)
4141 ret = MAX_USER_RT_PRIO-1;
4152 * sys_sched_get_priority_min - return minimum RT priority.
4153 * @policy: scheduling class.
4155 * this syscall returns the minimum rt_priority that can be used
4156 * by a given scheduling class.
4158 asmlinkage long sys_sched_get_priority_min(int policy)
4175 * sys_sched_rr_get_interval - return the default timeslice of a process.
4176 * @pid: pid of the process.
4177 * @interval: userspace pointer to the timeslice value.
4179 * this syscall writes the default timeslice value of a given process
4180 * into the user-space timespec buffer. A value of '0' means infinity.
4183 long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4185 int retval = -EINVAL;
4193 read_lock(&tasklist_lock);
4194 p = find_process_by_pid(pid);
4198 retval = security_task_getscheduler(p);
4202 jiffies_to_timespec(p->policy & SCHED_FIFO ?
4203 0 : task_timeslice(p), &t);
4204 read_unlock(&tasklist_lock);
4205 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
4209 read_unlock(&tasklist_lock);
4213 static inline struct task_struct *eldest_child(struct task_struct *p)
4215 if (list_empty(&p->children)) return NULL;
4216 return list_entry(p->children.next,struct task_struct,sibling);
4219 static inline struct task_struct *older_sibling(struct task_struct *p)
4221 if (p->sibling.prev==&p->parent->children) return NULL;
4222 return list_entry(p->sibling.prev,struct task_struct,sibling);
4225 static inline struct task_struct *younger_sibling(struct task_struct *p)
4227 if (p->sibling.next==&p->parent->children) return NULL;
4228 return list_entry(p->sibling.next,struct task_struct,sibling);
4231 static void show_task(task_t *p)
4235 unsigned long free = 0;
4236 static const char *stat_nam[] = { "R", "S", "D", "T", "t", "Z", "X" };
4238 printk("%-13.13s ", p->comm);
4239 state = p->state ? __ffs(p->state) + 1 : 0;
4240 if (state < ARRAY_SIZE(stat_nam))
4241 printk(stat_nam[state]);
4244 #if (BITS_PER_LONG == 32)
4245 if (state == TASK_RUNNING)
4246 printk(" running ");
4248 printk(" %08lX ", thread_saved_pc(p));
4250 if (state == TASK_RUNNING)
4251 printk(" running task ");
4253 printk(" %016lx ", thread_saved_pc(p));
4255 #ifdef CONFIG_DEBUG_STACK_USAGE
4257 unsigned long *n = end_of_stack(p);
4260 free = (unsigned long)n - (unsigned long)end_of_stack(p);
4263 printk("%5lu %5d %6d ", free, p->pid, p->parent->pid);
4264 if ((relative = eldest_child(p)))
4265 printk("%5d ", relative->pid);
4268 if ((relative = younger_sibling(p)))
4269 printk("%7d", relative->pid);
4272 if ((relative = older_sibling(p)))
4273 printk(" %5d", relative->pid);
4277 printk(" (L-TLB)\n");
4279 printk(" (NOTLB)\n");
4281 if (state != TASK_RUNNING)
4282 show_stack(p, NULL);
4285 void show_state(void)
4289 #if (BITS_PER_LONG == 32)
4292 printk(" task PC pid father child younger older\n");
4296 printk(" task PC pid father child younger older\n");
4298 read_lock(&tasklist_lock);
4299 do_each_thread(g, p) {
4301 * reset the NMI-timeout, listing all files on a slow
4302 * console might take alot of time:
4304 touch_nmi_watchdog();
4306 } while_each_thread(g, p);
4308 read_unlock(&tasklist_lock);
4309 mutex_debug_show_all_locks();
4313 * init_idle - set up an idle thread for a given CPU
4314 * @idle: task in question
4315 * @cpu: cpu the idle task belongs to
4317 * NOTE: this function does not set the idle thread's NEED_RESCHED
4318 * flag, to make booting more robust.
4320 void __devinit init_idle(task_t *idle, int cpu)
4322 runqueue_t *rq = cpu_rq(cpu);
4323 unsigned long flags;
4325 idle->timestamp = sched_clock();
4326 idle->sleep_avg = 0;
4328 idle->prio = MAX_PRIO;
4329 idle->state = TASK_RUNNING;
4330 idle->cpus_allowed = cpumask_of_cpu(cpu);
4331 set_task_cpu(idle, cpu);
4333 spin_lock_irqsave(&rq->lock, flags);
4334 rq->curr = rq->idle = idle;
4335 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4338 spin_unlock_irqrestore(&rq->lock, flags);
4340 /* Set the preempt count _outside_ the spinlocks! */
4341 #if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
4342 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
4344 task_thread_info(idle)->preempt_count = 0;
4349 * In a system that switches off the HZ timer nohz_cpu_mask
4350 * indicates which cpus entered this state. This is used
4351 * in the rcu update to wait only for active cpus. For system
4352 * which do not switch off the HZ timer nohz_cpu_mask should
4353 * always be CPU_MASK_NONE.
4355 cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4359 * This is how migration works:
4361 * 1) we queue a migration_req_t structure in the source CPU's
4362 * runqueue and wake up that CPU's migration thread.
4363 * 2) we down() the locked semaphore => thread blocks.
4364 * 3) migration thread wakes up (implicitly it forces the migrated
4365 * thread off the CPU)
4366 * 4) it gets the migration request and checks whether the migrated
4367 * task is still in the wrong runqueue.
4368 * 5) if it's in the wrong runqueue then the migration thread removes
4369 * it and puts it into the right queue.
4370 * 6) migration thread up()s the semaphore.
4371 * 7) we wake up and the migration is done.
4375 * Change a given task's CPU affinity. Migrate the thread to a
4376 * proper CPU and schedule it away if the CPU it's executing on
4377 * is removed from the allowed bitmask.
4379 * NOTE: the caller must have a valid reference to the task, the
4380 * task must not exit() & deallocate itself prematurely. The
4381 * call is not atomic; no spinlocks may be held.
4383 int set_cpus_allowed(task_t *p, cpumask_t new_mask)
4385 unsigned long flags;
4387 migration_req_t req;
4390 rq = task_rq_lock(p, &flags);
4391 if (!cpus_intersects(new_mask, cpu_online_map)) {
4396 p->cpus_allowed = new_mask;
4397 /* Can the task run on the task's current CPU? If so, we're done */
4398 if (cpu_isset(task_cpu(p), new_mask))
4401 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
4402 /* Need help from migration thread: drop lock and wait. */
4403 task_rq_unlock(rq, &flags);
4404 wake_up_process(rq->migration_thread);
4405 wait_for_completion(&req.done);
4406 tlb_migrate_finish(p->mm);
4410 task_rq_unlock(rq, &flags);
4414 EXPORT_SYMBOL_GPL(set_cpus_allowed);
4417 * Move (not current) task off this cpu, onto dest cpu. We're doing
4418 * this because either it can't run here any more (set_cpus_allowed()
4419 * away from this CPU, or CPU going down), or because we're
4420 * attempting to rebalance this task on exec (sched_exec).
4422 * So we race with normal scheduler movements, but that's OK, as long
4423 * as the task is no longer on this CPU.
4425 static void __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
4427 runqueue_t *rq_dest, *rq_src;
4429 if (unlikely(cpu_is_offline(dest_cpu)))
4432 rq_src = cpu_rq(src_cpu);
4433 rq_dest = cpu_rq(dest_cpu);
4435 double_rq_lock(rq_src, rq_dest);
4436 /* Already moved. */
4437 if (task_cpu(p) != src_cpu)
4439 /* Affinity changed (again). */
4440 if (!cpu_isset(dest_cpu, p->cpus_allowed))
4443 set_task_cpu(p, dest_cpu);
4446 * Sync timestamp with rq_dest's before activating.
4447 * The same thing could be achieved by doing this step
4448 * afterwards, and pretending it was a local activate.
4449 * This way is cleaner and logically correct.
4451 p->timestamp = p->timestamp - rq_src->timestamp_last_tick
4452 + rq_dest->timestamp_last_tick;
4453 deactivate_task(p, rq_src);
4454 activate_task(p, rq_dest, 0);
4455 if (TASK_PREEMPTS_CURR(p, rq_dest))
4456 resched_task(rq_dest->curr);
4460 double_rq_unlock(rq_src, rq_dest);
4464 * migration_thread - this is a highprio system thread that performs
4465 * thread migration by bumping thread off CPU then 'pushing' onto
4468 static int migration_thread(void *data)
4471 int cpu = (long)data;
4474 BUG_ON(rq->migration_thread != current);
4476 set_current_state(TASK_INTERRUPTIBLE);
4477 while (!kthread_should_stop()) {
4478 struct list_head *head;
4479 migration_req_t *req;
4483 spin_lock_irq(&rq->lock);
4485 if (cpu_is_offline(cpu)) {
4486 spin_unlock_irq(&rq->lock);
4490 if (rq->active_balance) {
4491 active_load_balance(rq, cpu);
4492 rq->active_balance = 0;
4495 head = &rq->migration_queue;
4497 if (list_empty(head)) {
4498 spin_unlock_irq(&rq->lock);
4500 set_current_state(TASK_INTERRUPTIBLE);
4503 req = list_entry(head->next, migration_req_t, list);
4504 list_del_init(head->next);
4506 spin_unlock(&rq->lock);
4507 __migrate_task(req->task, cpu, req->dest_cpu);
4510 complete(&req->done);
4512 __set_current_state(TASK_RUNNING);
4516 /* Wait for kthread_stop */
4517 set_current_state(TASK_INTERRUPTIBLE);
4518 while (!kthread_should_stop()) {
4520 set_current_state(TASK_INTERRUPTIBLE);
4522 __set_current_state(TASK_RUNNING);
4526 #ifdef CONFIG_HOTPLUG_CPU
4527 /* Figure out where task on dead CPU should go, use force if neccessary. */
4528 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *tsk)
4534 mask = node_to_cpumask(cpu_to_node(dead_cpu));
4535 cpus_and(mask, mask, tsk->cpus_allowed);
4536 dest_cpu = any_online_cpu(mask);
4538 /* On any allowed CPU? */
4539 if (dest_cpu == NR_CPUS)
4540 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4542 /* No more Mr. Nice Guy. */
4543 if (dest_cpu == NR_CPUS) {
4544 cpus_setall(tsk->cpus_allowed);
4545 dest_cpu = any_online_cpu(tsk->cpus_allowed);
4548 * Don't tell them about moving exiting tasks or
4549 * kernel threads (both mm NULL), since they never
4552 if (tsk->mm && printk_ratelimit())
4553 printk(KERN_INFO "process %d (%s) no "
4554 "longer affine to cpu%d\n",
4555 tsk->pid, tsk->comm, dead_cpu);
4557 __migrate_task(tsk, dead_cpu, dest_cpu);
4561 * While a dead CPU has no uninterruptible tasks queued at this point,
4562 * it might still have a nonzero ->nr_uninterruptible counter, because
4563 * for performance reasons the counter is not stricly tracking tasks to
4564 * their home CPUs. So we just add the counter to another CPU's counter,
4565 * to keep the global sum constant after CPU-down:
4567 static void migrate_nr_uninterruptible(runqueue_t *rq_src)
4569 runqueue_t *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
4570 unsigned long flags;
4572 local_irq_save(flags);
4573 double_rq_lock(rq_src, rq_dest);
4574 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
4575 rq_src->nr_uninterruptible = 0;
4576 double_rq_unlock(rq_src, rq_dest);
4577 local_irq_restore(flags);
4580 /* Run through task list and migrate tasks from the dead cpu. */
4581 static void migrate_live_tasks(int src_cpu)
4583 struct task_struct *tsk, *t;
4585 write_lock_irq(&tasklist_lock);
4587 do_each_thread(t, tsk) {
4591 if (task_cpu(tsk) == src_cpu)
4592 move_task_off_dead_cpu(src_cpu, tsk);
4593 } while_each_thread(t, tsk);
4595 write_unlock_irq(&tasklist_lock);
4598 /* Schedules idle task to be the next runnable task on current CPU.
4599 * It does so by boosting its priority to highest possible and adding it to
4600 * the _front_ of runqueue. Used by CPU offline code.
4602 void sched_idle_next(void)
4604 int cpu = smp_processor_id();
4605 runqueue_t *rq = this_rq();
4606 struct task_struct *p = rq->idle;
4607 unsigned long flags;
4609 /* cpu has to be offline */
4610 BUG_ON(cpu_online(cpu));
4612 /* Strictly not necessary since rest of the CPUs are stopped by now
4613 * and interrupts disabled on current cpu.
4615 spin_lock_irqsave(&rq->lock, flags);
4617 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4618 /* Add idle task to _front_ of it's priority queue */
4619 __activate_idle_task(p, rq);
4621 spin_unlock_irqrestore(&rq->lock, flags);
4624 /* Ensures that the idle task is using init_mm right before its cpu goes
4627 void idle_task_exit(void)
4629 struct mm_struct *mm = current->active_mm;
4631 BUG_ON(cpu_online(smp_processor_id()));
4634 switch_mm(mm, &init_mm, current);
4638 static void migrate_dead(unsigned int dead_cpu, task_t *tsk)
4640 struct runqueue *rq = cpu_rq(dead_cpu);
4642 /* Must be exiting, otherwise would be on tasklist. */
4643 BUG_ON(tsk->exit_state != EXIT_ZOMBIE && tsk->exit_state != EXIT_DEAD);
4645 /* Cannot have done final schedule yet: would have vanished. */
4646 BUG_ON(tsk->flags & PF_DEAD);
4648 get_task_struct(tsk);
4651 * Drop lock around migration; if someone else moves it,
4652 * that's OK. No task can be added to this CPU, so iteration is
4655 spin_unlock_irq(&rq->lock);
4656 move_task_off_dead_cpu(dead_cpu, tsk);
4657 spin_lock_irq(&rq->lock);
4659 put_task_struct(tsk);
4662 /* release_task() removes task from tasklist, so we won't find dead tasks. */
4663 static void migrate_dead_tasks(unsigned int dead_cpu)
4666 struct runqueue *rq = cpu_rq(dead_cpu);
4668 for (arr = 0; arr < 2; arr++) {
4669 for (i = 0; i < MAX_PRIO; i++) {
4670 struct list_head *list = &rq->arrays[arr].queue[i];
4671 while (!list_empty(list))
4672 migrate_dead(dead_cpu,
4673 list_entry(list->next, task_t,
4678 #endif /* CONFIG_HOTPLUG_CPU */
4681 * migration_call - callback that gets triggered when a CPU is added.
4682 * Here we can start up the necessary migration thread for the new CPU.
4684 static int migration_call(struct notifier_block *nfb, unsigned long action,
4687 int cpu = (long)hcpu;
4688 struct task_struct *p;
4689 struct runqueue *rq;
4690 unsigned long flags;
4693 case CPU_UP_PREPARE:
4694 p = kthread_create(migration_thread, hcpu, "migration/%d",cpu);
4697 p->flags |= PF_NOFREEZE;
4698 kthread_bind(p, cpu);
4699 /* Must be high prio: stop_machine expects to yield to it. */
4700 rq = task_rq_lock(p, &flags);
4701 __setscheduler(p, SCHED_FIFO, MAX_RT_PRIO-1);
4702 task_rq_unlock(rq, &flags);
4703 cpu_rq(cpu)->migration_thread = p;
4706 /* Strictly unneccessary, as first user will wake it. */
4707 wake_up_process(cpu_rq(cpu)->migration_thread);
4709 #ifdef CONFIG_HOTPLUG_CPU
4710 case CPU_UP_CANCELED:
4711 /* Unbind it from offline cpu so it can run. Fall thru. */
4712 kthread_bind(cpu_rq(cpu)->migration_thread,
4713 any_online_cpu(cpu_online_map));
4714 kthread_stop(cpu_rq(cpu)->migration_thread);
4715 cpu_rq(cpu)->migration_thread = NULL;
4718 migrate_live_tasks(cpu);
4720 kthread_stop(rq->migration_thread);
4721 rq->migration_thread = NULL;
4722 /* Idle task back to normal (off runqueue, low prio) */
4723 rq = task_rq_lock(rq->idle, &flags);
4724 deactivate_task(rq->idle, rq);
4725 rq->idle->static_prio = MAX_PRIO;
4726 __setscheduler(rq->idle, SCHED_NORMAL, 0);
4727 migrate_dead_tasks(cpu);
4728 task_rq_unlock(rq, &flags);
4729 migrate_nr_uninterruptible(rq);
4730 BUG_ON(rq->nr_running != 0);
4732 /* No need to migrate the tasks: it was best-effort if
4733 * they didn't do lock_cpu_hotplug(). Just wake up
4734 * the requestors. */
4735 spin_lock_irq(&rq->lock);
4736 while (!list_empty(&rq->migration_queue)) {
4737 migration_req_t *req;
4738 req = list_entry(rq->migration_queue.next,
4739 migration_req_t, list);
4740 list_del_init(&req->list);
4741 complete(&req->done);
4743 spin_unlock_irq(&rq->lock);
4750 /* Register at highest priority so that task migration (migrate_all_tasks)
4751 * happens before everything else.
4753 static struct notifier_block __devinitdata migration_notifier = {
4754 .notifier_call = migration_call,
4758 int __init migration_init(void)
4760 void *cpu = (void *)(long)smp_processor_id();
4761 /* Start one for boot CPU. */
4762 migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
4763 migration_call(&migration_notifier, CPU_ONLINE, cpu);
4764 register_cpu_notifier(&migration_notifier);
4770 #undef SCHED_DOMAIN_DEBUG
4771 #ifdef SCHED_DOMAIN_DEBUG
4772 static void sched_domain_debug(struct sched_domain *sd, int cpu)
4777 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
4781 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
4786 struct sched_group *group = sd->groups;
4787 cpumask_t groupmask;
4789 cpumask_scnprintf(str, NR_CPUS, sd->span);
4790 cpus_clear(groupmask);
4793 for (i = 0; i < level + 1; i++)
4795 printk("domain %d: ", level);
4797 if (!(sd->flags & SD_LOAD_BALANCE)) {
4798 printk("does not load-balance\n");
4800 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain has parent");
4804 printk("span %s\n", str);
4806 if (!cpu_isset(cpu, sd->span))
4807 printk(KERN_ERR "ERROR: domain->span does not contain CPU%d\n", cpu);
4808 if (!cpu_isset(cpu, group->cpumask))
4809 printk(KERN_ERR "ERROR: domain->groups does not contain CPU%d\n", cpu);
4812 for (i = 0; i < level + 2; i++)
4818 printk(KERN_ERR "ERROR: group is NULL\n");
4822 if (!group->cpu_power) {
4824 printk(KERN_ERR "ERROR: domain->cpu_power not set\n");
4827 if (!cpus_weight(group->cpumask)) {
4829 printk(KERN_ERR "ERROR: empty group\n");
4832 if (cpus_intersects(groupmask, group->cpumask)) {
4834 printk(KERN_ERR "ERROR: repeated CPUs\n");
4837 cpus_or(groupmask, groupmask, group->cpumask);
4839 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
4842 group = group->next;
4843 } while (group != sd->groups);
4846 if (!cpus_equal(sd->span, groupmask))
4847 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
4853 if (!cpus_subset(groupmask, sd->span))
4854 printk(KERN_ERR "ERROR: parent span is not a superset of domain->span\n");
4860 #define sched_domain_debug(sd, cpu) {}
4863 static int sd_degenerate(struct sched_domain *sd)
4865 if (cpus_weight(sd->span) == 1)
4868 /* Following flags need at least 2 groups */
4869 if (sd->flags & (SD_LOAD_BALANCE |
4870 SD_BALANCE_NEWIDLE |
4873 if (sd->groups != sd->groups->next)
4877 /* Following flags don't use groups */
4878 if (sd->flags & (SD_WAKE_IDLE |
4886 static int sd_parent_degenerate(struct sched_domain *sd,
4887 struct sched_domain *parent)
4889 unsigned long cflags = sd->flags, pflags = parent->flags;
4891 if (sd_degenerate(parent))
4894 if (!cpus_equal(sd->span, parent->span))
4897 /* Does parent contain flags not in child? */
4898 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
4899 if (cflags & SD_WAKE_AFFINE)
4900 pflags &= ~SD_WAKE_BALANCE;
4901 /* Flags needing groups don't count if only 1 group in parent */
4902 if (parent->groups == parent->groups->next) {
4903 pflags &= ~(SD_LOAD_BALANCE |
4904 SD_BALANCE_NEWIDLE |
4908 if (~cflags & pflags)
4915 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
4916 * hold the hotplug lock.
4918 static void cpu_attach_domain(struct sched_domain *sd, int cpu)
4920 runqueue_t *rq = cpu_rq(cpu);
4921 struct sched_domain *tmp;
4923 /* Remove the sched domains which do not contribute to scheduling. */
4924 for (tmp = sd; tmp; tmp = tmp->parent) {
4925 struct sched_domain *parent = tmp->parent;
4928 if (sd_parent_degenerate(tmp, parent))
4929 tmp->parent = parent->parent;
4932 if (sd && sd_degenerate(sd))
4935 sched_domain_debug(sd, cpu);
4937 rcu_assign_pointer(rq->sd, sd);
4940 /* cpus with isolated domains */
4941 static cpumask_t __devinitdata cpu_isolated_map = CPU_MASK_NONE;
4943 /* Setup the mask of cpus configured for isolated domains */
4944 static int __init isolated_cpu_setup(char *str)
4946 int ints[NR_CPUS], i;
4948 str = get_options(str, ARRAY_SIZE(ints), ints);
4949 cpus_clear(cpu_isolated_map);
4950 for (i = 1; i <= ints[0]; i++)
4951 if (ints[i] < NR_CPUS)
4952 cpu_set(ints[i], cpu_isolated_map);
4956 __setup ("isolcpus=", isolated_cpu_setup);
4959 * init_sched_build_groups takes an array of groups, the cpumask we wish
4960 * to span, and a pointer to a function which identifies what group a CPU
4961 * belongs to. The return value of group_fn must be a valid index into the
4962 * groups[] array, and must be >= 0 and < NR_CPUS (due to the fact that we
4963 * keep track of groups covered with a cpumask_t).
4965 * init_sched_build_groups will build a circular linked list of the groups
4966 * covered by the given span, and will set each group's ->cpumask correctly,
4967 * and ->cpu_power to 0.
4969 static void init_sched_build_groups(struct sched_group groups[], cpumask_t span,
4970 int (*group_fn)(int cpu))
4972 struct sched_group *first = NULL, *last = NULL;
4973 cpumask_t covered = CPU_MASK_NONE;
4976 for_each_cpu_mask(i, span) {
4977 int group = group_fn(i);
4978 struct sched_group *sg = &groups[group];
4981 if (cpu_isset(i, covered))
4984 sg->cpumask = CPU_MASK_NONE;
4987 for_each_cpu_mask(j, span) {
4988 if (group_fn(j) != group)
4991 cpu_set(j, covered);
4992 cpu_set(j, sg->cpumask);
5003 #define SD_NODES_PER_DOMAIN 16
5006 * Self-tuning task migration cost measurement between source and target CPUs.
5008 * This is done by measuring the cost of manipulating buffers of varying
5009 * sizes. For a given buffer-size here are the steps that are taken:
5011 * 1) the source CPU reads+dirties a shared buffer
5012 * 2) the target CPU reads+dirties the same shared buffer
5014 * We measure how long they take, in the following 4 scenarios:
5016 * - source: CPU1, target: CPU2 | cost1
5017 * - source: CPU2, target: CPU1 | cost2
5018 * - source: CPU1, target: CPU1 | cost3
5019 * - source: CPU2, target: CPU2 | cost4
5021 * We then calculate the cost3+cost4-cost1-cost2 difference - this is
5022 * the cost of migration.
5024 * We then start off from a small buffer-size and iterate up to larger
5025 * buffer sizes, in 5% steps - measuring each buffer-size separately, and
5026 * doing a maximum search for the cost. (The maximum cost for a migration
5027 * normally occurs when the working set size is around the effective cache
5030 #define SEARCH_SCOPE 2
5031 #define MIN_CACHE_SIZE (64*1024U)
5032 #define DEFAULT_CACHE_SIZE (5*1024*1024U)
5033 #define ITERATIONS 1
5034 #define SIZE_THRESH 130
5035 #define COST_THRESH 130
5038 * The migration cost is a function of 'domain distance'. Domain
5039 * distance is the number of steps a CPU has to iterate down its
5040 * domain tree to share a domain with the other CPU. The farther
5041 * two CPUs are from each other, the larger the distance gets.
5043 * Note that we use the distance only to cache measurement results,
5044 * the distance value is not used numerically otherwise. When two
5045 * CPUs have the same distance it is assumed that the migration
5046 * cost is the same. (this is a simplification but quite practical)
5048 #define MAX_DOMAIN_DISTANCE 32
5050 static unsigned long long migration_cost[MAX_DOMAIN_DISTANCE] =
5051 { [ 0 ... MAX_DOMAIN_DISTANCE-1 ] =
5053 * Architectures may override the migration cost and thus avoid
5054 * boot-time calibration. Unit is nanoseconds. Mostly useful for
5055 * virtualized hardware:
5057 #ifdef CONFIG_DEFAULT_MIGRATION_COST
5058 CONFIG_DEFAULT_MIGRATION_COST
5065 * Allow override of migration cost - in units of microseconds.
5066 * E.g. migration_cost=1000,2000,3000 will set up a level-1 cost
5067 * of 1 msec, level-2 cost of 2 msecs and level3 cost of 3 msecs:
5069 static int __init migration_cost_setup(char *str)
5071 int ints[MAX_DOMAIN_DISTANCE+1], i;
5073 str = get_options(str, ARRAY_SIZE(ints), ints);
5075 printk("#ints: %d\n", ints[0]);
5076 for (i = 1; i <= ints[0]; i++) {
5077 migration_cost[i-1] = (unsigned long long)ints[i]*1000;
5078 printk("migration_cost[%d]: %Ld\n", i-1, migration_cost[i-1]);
5083 __setup ("migration_cost=", migration_cost_setup);
5086 * Global multiplier (divisor) for migration-cutoff values,
5087 * in percentiles. E.g. use a value of 150 to get 1.5 times
5088 * longer cache-hot cutoff times.
5090 * (We scale it from 100 to 128 to long long handling easier.)
5093 #define MIGRATION_FACTOR_SCALE 128
5095 static unsigned int migration_factor = MIGRATION_FACTOR_SCALE;
5097 static int __init setup_migration_factor(char *str)
5099 get_option(&str, &migration_factor);
5100 migration_factor = migration_factor * MIGRATION_FACTOR_SCALE / 100;
5104 __setup("migration_factor=", setup_migration_factor);
5107 * Estimated distance of two CPUs, measured via the number of domains
5108 * we have to pass for the two CPUs to be in the same span:
5110 static unsigned long domain_distance(int cpu1, int cpu2)
5112 unsigned long distance = 0;
5113 struct sched_domain *sd;
5115 for_each_domain(cpu1, sd) {
5116 WARN_ON(!cpu_isset(cpu1, sd->span));
5117 if (cpu_isset(cpu2, sd->span))
5121 if (distance >= MAX_DOMAIN_DISTANCE) {
5123 distance = MAX_DOMAIN_DISTANCE-1;
5129 static unsigned int migration_debug;
5131 static int __init setup_migration_debug(char *str)
5133 get_option(&str, &migration_debug);
5137 __setup("migration_debug=", setup_migration_debug);
5140 * Maximum cache-size that the scheduler should try to measure.
5141 * Architectures with larger caches should tune this up during
5142 * bootup. Gets used in the domain-setup code (i.e. during SMP
5145 unsigned int max_cache_size;
5147 static int __init setup_max_cache_size(char *str)
5149 get_option(&str, &max_cache_size);
5153 __setup("max_cache_size=", setup_max_cache_size);
5156 * Dirty a big buffer in a hard-to-predict (for the L2 cache) way. This
5157 * is the operation that is timed, so we try to generate unpredictable
5158 * cachemisses that still end up filling the L2 cache:
5160 static void touch_cache(void *__cache, unsigned long __size)
5162 unsigned long size = __size/sizeof(long), chunk1 = size/3,
5164 unsigned long *cache = __cache;
5167 for (i = 0; i < size/6; i += 8) {
5170 case 1: cache[size-1-i]++;
5171 case 2: cache[chunk1-i]++;
5172 case 3: cache[chunk1+i]++;
5173 case 4: cache[chunk2-i]++;
5174 case 5: cache[chunk2+i]++;
5180 * Measure the cache-cost of one task migration. Returns in units of nsec.
5182 static unsigned long long measure_one(void *cache, unsigned long size,
5183 int source, int target)
5185 cpumask_t mask, saved_mask;
5186 unsigned long long t0, t1, t2, t3, cost;
5188 saved_mask = current->cpus_allowed;
5191 * Flush source caches to RAM and invalidate them:
5196 * Migrate to the source CPU:
5198 mask = cpumask_of_cpu(source);
5199 set_cpus_allowed(current, mask);
5200 WARN_ON(smp_processor_id() != source);
5203 * Dirty the working set:
5206 touch_cache(cache, size);
5210 * Migrate to the target CPU, dirty the L2 cache and access
5211 * the shared buffer. (which represents the working set
5212 * of a migrated task.)
5214 mask = cpumask_of_cpu(target);
5215 set_cpus_allowed(current, mask);
5216 WARN_ON(smp_processor_id() != target);
5219 touch_cache(cache, size);
5222 cost = t1-t0 + t3-t2;
5224 if (migration_debug >= 2)
5225 printk("[%d->%d]: %8Ld %8Ld %8Ld => %10Ld.\n",
5226 source, target, t1-t0, t1-t0, t3-t2, cost);
5228 * Flush target caches to RAM and invalidate them:
5232 set_cpus_allowed(current, saved_mask);
5238 * Measure a series of task migrations and return the average
5239 * result. Since this code runs early during bootup the system
5240 * is 'undisturbed' and the average latency makes sense.
5242 * The algorithm in essence auto-detects the relevant cache-size,
5243 * so it will properly detect different cachesizes for different
5244 * cache-hierarchies, depending on how the CPUs are connected.
5246 * Architectures can prime the upper limit of the search range via
5247 * max_cache_size, otherwise the search range defaults to 20MB...64K.
5249 static unsigned long long
5250 measure_cost(int cpu1, int cpu2, void *cache, unsigned int size)
5252 unsigned long long cost1, cost2;
5256 * Measure the migration cost of 'size' bytes, over an
5257 * average of 10 runs:
5259 * (We perturb the cache size by a small (0..4k)
5260 * value to compensate size/alignment related artifacts.
5261 * We also subtract the cost of the operation done on
5267 * dry run, to make sure we start off cache-cold on cpu1,
5268 * and to get any vmalloc pagefaults in advance:
5270 measure_one(cache, size, cpu1, cpu2);
5271 for (i = 0; i < ITERATIONS; i++)
5272 cost1 += measure_one(cache, size - i*1024, cpu1, cpu2);
5274 measure_one(cache, size, cpu2, cpu1);
5275 for (i = 0; i < ITERATIONS; i++)
5276 cost1 += measure_one(cache, size - i*1024, cpu2, cpu1);
5279 * (We measure the non-migrating [cached] cost on both
5280 * cpu1 and cpu2, to handle CPUs with different speeds)
5284 measure_one(cache, size, cpu1, cpu1);
5285 for (i = 0; i < ITERATIONS; i++)
5286 cost2 += measure_one(cache, size - i*1024, cpu1, cpu1);
5288 measure_one(cache, size, cpu2, cpu2);
5289 for (i = 0; i < ITERATIONS; i++)
5290 cost2 += measure_one(cache, size - i*1024, cpu2, cpu2);
5293 * Get the per-iteration migration cost:
5295 do_div(cost1, 2*ITERATIONS);
5296 do_div(cost2, 2*ITERATIONS);
5298 return cost1 - cost2;
5301 static unsigned long long measure_migration_cost(int cpu1, int cpu2)
5303 unsigned long long max_cost = 0, fluct = 0, avg_fluct = 0;
5304 unsigned int max_size, size, size_found = 0;
5305 long long cost = 0, prev_cost;
5309 * Search from max_cache_size*5 down to 64K - the real relevant
5310 * cachesize has to lie somewhere inbetween.
5312 if (max_cache_size) {
5313 max_size = max(max_cache_size * SEARCH_SCOPE, MIN_CACHE_SIZE);
5314 size = max(max_cache_size / SEARCH_SCOPE, MIN_CACHE_SIZE);
5317 * Since we have no estimation about the relevant
5320 max_size = DEFAULT_CACHE_SIZE * SEARCH_SCOPE;
5321 size = MIN_CACHE_SIZE;
5324 if (!cpu_online(cpu1) || !cpu_online(cpu2)) {
5325 printk("cpu %d and %d not both online!\n", cpu1, cpu2);
5330 * Allocate the working set:
5332 cache = vmalloc(max_size);
5334 printk("could not vmalloc %d bytes for cache!\n", 2*max_size);
5335 return 1000000; // return 1 msec on very small boxen
5338 while (size <= max_size) {
5340 cost = measure_cost(cpu1, cpu2, cache, size);
5346 if (max_cost < cost) {
5352 * Calculate average fluctuation, we use this to prevent
5353 * noise from triggering an early break out of the loop:
5355 fluct = abs(cost - prev_cost);
5356 avg_fluct = (avg_fluct + fluct)/2;
5358 if (migration_debug)
5359 printk("-> [%d][%d][%7d] %3ld.%ld [%3ld.%ld] (%ld): (%8Ld %8Ld)\n",
5361 (long)cost / 1000000,
5362 ((long)cost / 100000) % 10,
5363 (long)max_cost / 1000000,
5364 ((long)max_cost / 100000) % 10,
5365 domain_distance(cpu1, cpu2),
5369 * If we iterated at least 20% past the previous maximum,
5370 * and the cost has dropped by more than 20% already,
5371 * (taking fluctuations into account) then we assume to
5372 * have found the maximum and break out of the loop early:
5374 if (size_found && (size*100 > size_found*SIZE_THRESH))
5375 if (cost+avg_fluct <= 0 ||
5376 max_cost*100 > (cost+avg_fluct)*COST_THRESH) {
5378 if (migration_debug)
5379 printk("-> found max.\n");
5383 * Increase the cachesize in 10% steps:
5385 size = size * 10 / 9;
5388 if (migration_debug)
5389 printk("[%d][%d] working set size found: %d, cost: %Ld\n",
5390 cpu1, cpu2, size_found, max_cost);
5395 * A task is considered 'cache cold' if at least 2 times
5396 * the worst-case cost of migration has passed.
5398 * (this limit is only listened to if the load-balancing
5399 * situation is 'nice' - if there is a large imbalance we
5400 * ignore it for the sake of CPU utilization and
5401 * processing fairness.)
5403 return 2 * max_cost * migration_factor / MIGRATION_FACTOR_SCALE;
5406 static void calibrate_migration_costs(const cpumask_t *cpu_map)
5408 int cpu1 = -1, cpu2 = -1, cpu, orig_cpu = raw_smp_processor_id();
5409 unsigned long j0, j1, distance, max_distance = 0;
5410 struct sched_domain *sd;
5415 * First pass - calculate the cacheflush times:
5417 for_each_cpu_mask(cpu1, *cpu_map) {
5418 for_each_cpu_mask(cpu2, *cpu_map) {
5421 distance = domain_distance(cpu1, cpu2);
5422 max_distance = max(max_distance, distance);
5424 * No result cached yet?
5426 if (migration_cost[distance] == -1LL)
5427 migration_cost[distance] =
5428 measure_migration_cost(cpu1, cpu2);
5432 * Second pass - update the sched domain hierarchy with
5433 * the new cache-hot-time estimations:
5435 for_each_cpu_mask(cpu, *cpu_map) {
5437 for_each_domain(cpu, sd) {
5438 sd->cache_hot_time = migration_cost[distance];
5445 if (migration_debug)
5446 printk("migration: max_cache_size: %d, cpu: %d MHz:\n",
5454 if (system_state == SYSTEM_BOOTING) {
5455 printk("migration_cost=");
5456 for (distance = 0; distance <= max_distance; distance++) {
5459 printk("%ld", (long)migration_cost[distance] / 1000);
5464 if (migration_debug)
5465 printk("migration: %ld seconds\n", (j1-j0)/HZ);
5468 * Move back to the original CPU. NUMA-Q gets confused
5469 * if we migrate to another quad during bootup.
5471 if (raw_smp_processor_id() != orig_cpu) {
5472 cpumask_t mask = cpumask_of_cpu(orig_cpu),
5473 saved_mask = current->cpus_allowed;
5475 set_cpus_allowed(current, mask);
5476 set_cpus_allowed(current, saved_mask);
5483 * find_next_best_node - find the next node to include in a sched_domain
5484 * @node: node whose sched_domain we're building
5485 * @used_nodes: nodes already in the sched_domain
5487 * Find the next node to include in a given scheduling domain. Simply
5488 * finds the closest node not already in the @used_nodes map.
5490 * Should use nodemask_t.
5492 static int find_next_best_node(int node, unsigned long *used_nodes)
5494 int i, n, val, min_val, best_node = 0;
5498 for (i = 0; i < MAX_NUMNODES; i++) {
5499 /* Start at @node */
5500 n = (node + i) % MAX_NUMNODES;
5502 if (!nr_cpus_node(n))
5505 /* Skip already used nodes */
5506 if (test_bit(n, used_nodes))
5509 /* Simple min distance search */
5510 val = node_distance(node, n);
5512 if (val < min_val) {
5518 set_bit(best_node, used_nodes);
5523 * sched_domain_node_span - get a cpumask for a node's sched_domain
5524 * @node: node whose cpumask we're constructing
5525 * @size: number of nodes to include in this span
5527 * Given a node, construct a good cpumask for its sched_domain to span. It
5528 * should be one that prevents unnecessary balancing, but also spreads tasks
5531 static cpumask_t sched_domain_node_span(int node)
5534 cpumask_t span, nodemask;
5535 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
5538 bitmap_zero(used_nodes, MAX_NUMNODES);
5540 nodemask = node_to_cpumask(node);
5541 cpus_or(span, span, nodemask);
5542 set_bit(node, used_nodes);
5544 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5545 int next_node = find_next_best_node(node, used_nodes);
5546 nodemask = node_to_cpumask(next_node);
5547 cpus_or(span, span, nodemask);
5555 * At the moment, CONFIG_SCHED_SMT is never defined, but leave it in so we
5556 * can switch it on easily if needed.
5558 #ifdef CONFIG_SCHED_SMT
5559 static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
5560 static struct sched_group sched_group_cpus[NR_CPUS];
5561 static int cpu_to_cpu_group(int cpu)
5567 static DEFINE_PER_CPU(struct sched_domain, phys_domains);
5568 static struct sched_group sched_group_phys[NR_CPUS];
5569 static int cpu_to_phys_group(int cpu)
5571 #ifdef CONFIG_SCHED_SMT
5572 return first_cpu(cpu_sibling_map[cpu]);
5580 * The init_sched_build_groups can't handle what we want to do with node
5581 * groups, so roll our own. Now each node has its own list of groups which
5582 * gets dynamically allocated.
5584 static DEFINE_PER_CPU(struct sched_domain, node_domains);
5585 static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
5587 static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
5588 static struct sched_group *sched_group_allnodes_bycpu[NR_CPUS];
5590 static int cpu_to_allnodes_group(int cpu)
5592 return cpu_to_node(cpu);
5597 * Build sched domains for a given set of cpus and attach the sched domains
5598 * to the individual cpus
5600 void build_sched_domains(const cpumask_t *cpu_map)
5604 struct sched_group **sched_group_nodes = NULL;
5605 struct sched_group *sched_group_allnodes = NULL;
5608 * Allocate the per-node list of sched groups
5610 sched_group_nodes = kmalloc(sizeof(struct sched_group*)*MAX_NUMNODES,
5612 if (!sched_group_nodes) {
5613 printk(KERN_WARNING "Can not alloc sched group node list\n");
5616 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
5620 * Set up domains for cpus specified by the cpu_map.
5622 for_each_cpu_mask(i, *cpu_map) {
5624 struct sched_domain *sd = NULL, *p;
5625 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
5627 cpus_and(nodemask, nodemask, *cpu_map);
5630 if (cpus_weight(*cpu_map)
5631 > SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
5632 if (!sched_group_allnodes) {
5633 sched_group_allnodes
5634 = kmalloc(sizeof(struct sched_group)
5637 if (!sched_group_allnodes) {
5639 "Can not alloc allnodes sched group\n");
5642 sched_group_allnodes_bycpu[i]
5643 = sched_group_allnodes;
5645 sd = &per_cpu(allnodes_domains, i);
5646 *sd = SD_ALLNODES_INIT;
5647 sd->span = *cpu_map;
5648 group = cpu_to_allnodes_group(i);
5649 sd->groups = &sched_group_allnodes[group];
5654 sd = &per_cpu(node_domains, i);
5656 sd->span = sched_domain_node_span(cpu_to_node(i));
5658 cpus_and(sd->span, sd->span, *cpu_map);
5662 sd = &per_cpu(phys_domains, i);
5663 group = cpu_to_phys_group(i);
5665 sd->span = nodemask;
5667 sd->groups = &sched_group_phys[group];
5669 #ifdef CONFIG_SCHED_SMT
5671 sd = &per_cpu(cpu_domains, i);
5672 group = cpu_to_cpu_group(i);
5673 *sd = SD_SIBLING_INIT;
5674 sd->span = cpu_sibling_map[i];
5675 cpus_and(sd->span, sd->span, *cpu_map);
5677 sd->groups = &sched_group_cpus[group];
5681 #ifdef CONFIG_SCHED_SMT
5682 /* Set up CPU (sibling) groups */
5683 for_each_cpu_mask(i, *cpu_map) {
5684 cpumask_t this_sibling_map = cpu_sibling_map[i];
5685 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
5686 if (i != first_cpu(this_sibling_map))
5689 init_sched_build_groups(sched_group_cpus, this_sibling_map,
5694 /* Set up physical groups */
5695 for (i = 0; i < MAX_NUMNODES; i++) {
5696 cpumask_t nodemask = node_to_cpumask(i);
5698 cpus_and(nodemask, nodemask, *cpu_map);
5699 if (cpus_empty(nodemask))
5702 init_sched_build_groups(sched_group_phys, nodemask,
5703 &cpu_to_phys_group);
5707 /* Set up node groups */
5708 if (sched_group_allnodes)
5709 init_sched_build_groups(sched_group_allnodes, *cpu_map,
5710 &cpu_to_allnodes_group);
5712 for (i = 0; i < MAX_NUMNODES; i++) {
5713 /* Set up node groups */
5714 struct sched_group *sg, *prev;
5715 cpumask_t nodemask = node_to_cpumask(i);
5716 cpumask_t domainspan;
5717 cpumask_t covered = CPU_MASK_NONE;
5720 cpus_and(nodemask, nodemask, *cpu_map);
5721 if (cpus_empty(nodemask)) {
5722 sched_group_nodes[i] = NULL;
5726 domainspan = sched_domain_node_span(i);
5727 cpus_and(domainspan, domainspan, *cpu_map);
5729 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5730 sched_group_nodes[i] = sg;
5731 for_each_cpu_mask(j, nodemask) {
5732 struct sched_domain *sd;
5733 sd = &per_cpu(node_domains, j);
5735 if (sd->groups == NULL) {
5736 /* Turn off balancing if we have no groups */
5742 "Can not alloc domain group for node %d\n", i);
5746 sg->cpumask = nodemask;
5747 cpus_or(covered, covered, nodemask);
5750 for (j = 0; j < MAX_NUMNODES; j++) {
5751 cpumask_t tmp, notcovered;
5752 int n = (i + j) % MAX_NUMNODES;
5754 cpus_complement(notcovered, covered);
5755 cpus_and(tmp, notcovered, *cpu_map);
5756 cpus_and(tmp, tmp, domainspan);
5757 if (cpus_empty(tmp))
5760 nodemask = node_to_cpumask(n);
5761 cpus_and(tmp, tmp, nodemask);
5762 if (cpus_empty(tmp))
5765 sg = kmalloc(sizeof(struct sched_group), GFP_KERNEL);
5768 "Can not alloc domain group for node %d\n", j);
5773 cpus_or(covered, covered, tmp);
5777 prev->next = sched_group_nodes[i];
5781 /* Calculate CPU power for physical packages and nodes */
5782 for_each_cpu_mask(i, *cpu_map) {
5784 struct sched_domain *sd;
5785 #ifdef CONFIG_SCHED_SMT
5786 sd = &per_cpu(cpu_domains, i);
5787 power = SCHED_LOAD_SCALE;
5788 sd->groups->cpu_power = power;
5791 sd = &per_cpu(phys_domains, i);
5792 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5793 (cpus_weight(sd->groups->cpumask)-1) / 10;
5794 sd->groups->cpu_power = power;
5797 sd = &per_cpu(allnodes_domains, i);
5799 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5800 (cpus_weight(sd->groups->cpumask)-1) / 10;
5801 sd->groups->cpu_power = power;
5807 for (i = 0; i < MAX_NUMNODES; i++) {
5808 struct sched_group *sg = sched_group_nodes[i];
5814 for_each_cpu_mask(j, sg->cpumask) {
5815 struct sched_domain *sd;
5818 sd = &per_cpu(phys_domains, j);
5819 if (j != first_cpu(sd->groups->cpumask)) {
5821 * Only add "power" once for each
5826 power = SCHED_LOAD_SCALE + SCHED_LOAD_SCALE *
5827 (cpus_weight(sd->groups->cpumask)-1) / 10;
5829 sg->cpu_power += power;
5832 if (sg != sched_group_nodes[i])
5837 /* Attach the domains */
5838 for_each_cpu_mask(i, *cpu_map) {
5839 struct sched_domain *sd;
5840 #ifdef CONFIG_SCHED_SMT
5841 sd = &per_cpu(cpu_domains, i);
5843 sd = &per_cpu(phys_domains, i);
5845 cpu_attach_domain(sd, i);
5848 * Tune cache-hot values:
5850 calibrate_migration_costs(cpu_map);
5853 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
5855 static void arch_init_sched_domains(const cpumask_t *cpu_map)
5857 cpumask_t cpu_default_map;
5860 * Setup mask for cpus without special case scheduling requirements.
5861 * For now this just excludes isolated cpus, but could be used to
5862 * exclude other special cases in the future.
5864 cpus_andnot(cpu_default_map, *cpu_map, cpu_isolated_map);
5866 build_sched_domains(&cpu_default_map);
5869 static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
5875 for_each_cpu_mask(cpu, *cpu_map) {
5876 struct sched_group *sched_group_allnodes
5877 = sched_group_allnodes_bycpu[cpu];
5878 struct sched_group **sched_group_nodes
5879 = sched_group_nodes_bycpu[cpu];
5881 if (sched_group_allnodes) {
5882 kfree(sched_group_allnodes);
5883 sched_group_allnodes_bycpu[cpu] = NULL;
5886 if (!sched_group_nodes)
5889 for (i = 0; i < MAX_NUMNODES; i++) {
5890 cpumask_t nodemask = node_to_cpumask(i);
5891 struct sched_group *oldsg, *sg = sched_group_nodes[i];
5893 cpus_and(nodemask, nodemask, *cpu_map);
5894 if (cpus_empty(nodemask))
5904 if (oldsg != sched_group_nodes[i])
5907 kfree(sched_group_nodes);
5908 sched_group_nodes_bycpu[cpu] = NULL;
5914 * Detach sched domains from a group of cpus specified in cpu_map
5915 * These cpus will now be attached to the NULL domain
5917 static void detach_destroy_domains(const cpumask_t *cpu_map)
5921 for_each_cpu_mask(i, *cpu_map)
5922 cpu_attach_domain(NULL, i);
5923 synchronize_sched();
5924 arch_destroy_sched_domains(cpu_map);
5928 * Partition sched domains as specified by the cpumasks below.
5929 * This attaches all cpus from the cpumasks to the NULL domain,
5930 * waits for a RCU quiescent period, recalculates sched
5931 * domain information and then attaches them back to the
5932 * correct sched domains
5933 * Call with hotplug lock held
5935 void partition_sched_domains(cpumask_t *partition1, cpumask_t *partition2)
5937 cpumask_t change_map;
5939 cpus_and(*partition1, *partition1, cpu_online_map);
5940 cpus_and(*partition2, *partition2, cpu_online_map);
5941 cpus_or(change_map, *partition1, *partition2);
5943 /* Detach sched domains from all of the affected cpus */
5944 detach_destroy_domains(&change_map);
5945 if (!cpus_empty(*partition1))
5946 build_sched_domains(partition1);
5947 if (!cpus_empty(*partition2))
5948 build_sched_domains(partition2);
5951 #ifdef CONFIG_HOTPLUG_CPU
5953 * Force a reinitialization of the sched domains hierarchy. The domains
5954 * and groups cannot be updated in place without racing with the balancing
5955 * code, so we temporarily attach all running cpus to the NULL domain
5956 * which will prevent rebalancing while the sched domains are recalculated.
5958 static int update_sched_domains(struct notifier_block *nfb,
5959 unsigned long action, void *hcpu)
5962 case CPU_UP_PREPARE:
5963 case CPU_DOWN_PREPARE:
5964 detach_destroy_domains(&cpu_online_map);
5967 case CPU_UP_CANCELED:
5968 case CPU_DOWN_FAILED:
5972 * Fall through and re-initialise the domains.
5979 /* The hotplug lock is already held by cpu_up/cpu_down */
5980 arch_init_sched_domains(&cpu_online_map);
5986 void __init sched_init_smp(void)
5989 arch_init_sched_domains(&cpu_online_map);
5990 unlock_cpu_hotplug();
5991 /* XXX: Theoretical race here - CPU may be hotplugged now */
5992 hotcpu_notifier(update_sched_domains, 0);
5995 void __init sched_init_smp(void)
5998 #endif /* CONFIG_SMP */
6000 int in_sched_functions(unsigned long addr)
6002 /* Linker adds these: start and end of __sched functions */
6003 extern char __sched_text_start[], __sched_text_end[];
6004 return in_lock_functions(addr) ||
6005 (addr >= (unsigned long)__sched_text_start
6006 && addr < (unsigned long)__sched_text_end);
6009 void __init sched_init(void)
6015 prio_array_t *array;
6018 spin_lock_init(&rq->lock);
6020 rq->active = rq->arrays;
6021 rq->expired = rq->arrays + 1;
6022 rq->best_expired_prio = MAX_PRIO;
6026 for (j = 1; j < 3; j++)
6027 rq->cpu_load[j] = 0;
6028 rq->active_balance = 0;
6030 rq->migration_thread = NULL;
6031 INIT_LIST_HEAD(&rq->migration_queue);
6033 atomic_set(&rq->nr_iowait, 0);
6035 for (j = 0; j < 2; j++) {
6036 array = rq->arrays + j;
6037 for (k = 0; k < MAX_PRIO; k++) {
6038 INIT_LIST_HEAD(array->queue + k);
6039 __clear_bit(k, array->bitmap);
6041 // delimiter for bitsearch
6042 __set_bit(MAX_PRIO, array->bitmap);
6047 * The boot idle thread does lazy MMU switching as well:
6049 atomic_inc(&init_mm.mm_count);
6050 enter_lazy_tlb(&init_mm, current);
6053 * Make us the idle thread. Technically, schedule() should not be
6054 * called from this thread, however somewhere below it might be,
6055 * but because we are the idle thread, we just pick up running again
6056 * when this runqueue becomes "idle".
6058 init_idle(current, smp_processor_id());
6061 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6062 void __might_sleep(char *file, int line)
6064 #if defined(in_atomic)
6065 static unsigned long prev_jiffy; /* ratelimiting */
6067 if ((in_atomic() || irqs_disabled()) &&
6068 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6069 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6071 prev_jiffy = jiffies;
6072 printk(KERN_ERR "Debug: sleeping function called from invalid"
6073 " context at %s:%d\n", file, line);
6074 printk("in_atomic():%d, irqs_disabled():%d\n",
6075 in_atomic(), irqs_disabled());
6080 EXPORT_SYMBOL(__might_sleep);
6083 #ifdef CONFIG_MAGIC_SYSRQ
6084 void normalize_rt_tasks(void)
6086 struct task_struct *p;
6087 prio_array_t *array;
6088 unsigned long flags;
6091 read_lock_irq(&tasklist_lock);
6092 for_each_process (p) {
6096 rq = task_rq_lock(p, &flags);
6100 deactivate_task(p, task_rq(p));
6101 __setscheduler(p, SCHED_NORMAL, 0);
6103 __activate_task(p, task_rq(p));
6104 resched_task(rq->curr);
6107 task_rq_unlock(rq, &flags);
6109 read_unlock_irq(&tasklist_lock);
6112 #endif /* CONFIG_MAGIC_SYSRQ */
6116 * These functions are only useful for the IA64 MCA handling.
6118 * They can only be called when the whole system has been
6119 * stopped - every CPU needs to be quiescent, and no scheduling
6120 * activity can take place. Using them for anything else would
6121 * be a serious bug, and as a result, they aren't even visible
6122 * under any other configuration.
6126 * curr_task - return the current task for a given cpu.
6127 * @cpu: the processor in question.
6129 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6131 task_t *curr_task(int cpu)
6133 return cpu_curr(cpu);
6137 * set_curr_task - set the current task for a given cpu.
6138 * @cpu: the processor in question.
6139 * @p: the task pointer to set.
6141 * Description: This function must only be used when non-maskable interrupts
6142 * are serviced on a separate stack. It allows the architecture to switch the
6143 * notion of the current task on a cpu in a non-blocking manner. This function
6144 * must be called with all CPU's synchronized, and interrupts disabled, the
6145 * and caller must save the original value of the current task (see
6146 * curr_task() above) and restore that value before reenabling interrupts and
6147 * re-starting the system.
6149 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6151 void set_curr_task(int cpu, task_t *p)