2 * Initialize MMU support.
4 * Copyright (C) 1998-2003 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
7 #include <linux/kernel.h>
8 #include <linux/init.h>
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
23 #include <asm/a.out.h>
27 #include <asm/machvec.h>
29 #include <asm/patch.h>
30 #include <asm/pgalloc.h>
32 #include <asm/sections.h>
33 #include <asm/system.h>
35 #include <asm/uaccess.h>
36 #include <asm/unistd.h>
39 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41 DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
42 DEFINE_PER_CPU(long, __pgtable_quicklist_size);
44 extern void ia64_tlb_init (void);
46 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
48 #ifdef CONFIG_VIRTUAL_MEM_MAP
49 unsigned long vmalloc_end = VMALLOC_END_INIT;
50 EXPORT_SYMBOL(vmalloc_end);
51 struct page *vmem_map;
52 EXPORT_SYMBOL(vmem_map);
55 struct page *zero_page_memmap_ptr; /* map entry for zero page */
56 EXPORT_SYMBOL(zero_page_memmap_ptr);
58 #define MIN_PGT_PAGES 25UL
59 #define MAX_PGT_FREES_PER_PASS 16L
60 #define PGT_FRACTION_OF_NODE_MEM 16
65 u64 node_free_pages, max_pgt_pages;
68 node_free_pages = nr_free_pages();
70 node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
72 max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
73 max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
78 min_pages_to_free(void)
82 pages_to_free = pgtable_quicklist_size - max_pgt_pages();
83 pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
92 if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
96 while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
97 while (pages_to_free--) {
98 free_page((unsigned long)pgtable_quicklist_alloc());
107 lazy_mmu_prot_update (pte_t pte)
114 return; /* not an executable page... */
116 page = pte_page(pte);
117 addr = (unsigned long) page_address(page);
119 if (test_bit(PG_arch_1, &page->flags))
120 return; /* i-cache is already coherent with d-cache */
122 if (PageCompound(page)) {
123 order = (unsigned long) (page[1].lru.prev);
124 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
127 flush_icache_range(addr, addr + PAGE_SIZE);
128 set_bit(PG_arch_1, &page->flags); /* mark page as clean */
132 ia64_set_rbs_bot (void)
134 unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
136 if (stack_size > MAX_USER_STACK_SIZE)
137 stack_size = MAX_USER_STACK_SIZE;
138 current->thread.rbs_bot = STACK_TOP - stack_size;
142 * This performs some platform-dependent address space initialization.
143 * On IA-64, we want to setup the VM area for the register backing
144 * store (which grows upwards) and install the gateway page which is
145 * used for signal trampolines, etc.
148 ia64_init_addr_space (void)
150 struct vm_area_struct *vma;
155 * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
156 * the problem. When the process attempts to write to the register backing store
157 * for the first time, it will get a SEGFAULT in this case.
159 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
161 memset(vma, 0, sizeof(*vma));
162 vma->vm_mm = current->mm;
163 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
164 vma->vm_end = vma->vm_start + PAGE_SIZE;
165 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
166 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
167 down_write(¤t->mm->mmap_sem);
168 if (insert_vm_struct(current->mm, vma)) {
169 up_write(¤t->mm->mmap_sem);
170 kmem_cache_free(vm_area_cachep, vma);
173 up_write(¤t->mm->mmap_sem);
176 /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
177 if (!(current->personality & MMAP_PAGE_ZERO)) {
178 vma = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
180 memset(vma, 0, sizeof(*vma));
181 vma->vm_mm = current->mm;
182 vma->vm_end = PAGE_SIZE;
183 vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
184 vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
185 down_write(¤t->mm->mmap_sem);
186 if (insert_vm_struct(current->mm, vma)) {
187 up_write(¤t->mm->mmap_sem);
188 kmem_cache_free(vm_area_cachep, vma);
191 up_write(¤t->mm->mmap_sem);
199 unsigned long addr, eaddr;
201 addr = (unsigned long) ia64_imva(__init_begin);
202 eaddr = (unsigned long) ia64_imva(__init_end);
203 while (addr < eaddr) {
204 ClearPageReserved(virt_to_page(addr));
205 init_page_count(virt_to_page(addr));
210 printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
211 (__init_end - __init_begin) >> 10);
215 free_initrd_mem (unsigned long start, unsigned long end)
219 * EFI uses 4KB pages while the kernel can use 4KB or bigger.
220 * Thus EFI and the kernel may have different page sizes. It is
221 * therefore possible to have the initrd share the same page as
222 * the end of the kernel (given current setup).
224 * To avoid freeing/using the wrong page (kernel sized) we:
225 * - align up the beginning of initrd
226 * - align down the end of initrd
229 * |=============| a000
235 * |=============| 8000
238 * |/////////////| 7000
241 * |=============| 6000
244 * K=kernel using 8KB pages
246 * In this example, we must free page 8000 ONLY. So we must align up
247 * initrd_start and keep initrd_end as is.
249 start = PAGE_ALIGN(start);
250 end = end & PAGE_MASK;
253 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
255 for (; start < end; start += PAGE_SIZE) {
256 if (!virt_addr_valid(start))
258 page = virt_to_page(start);
259 ClearPageReserved(page);
260 init_page_count(page);
267 * This installs a clean page in the kernel's page table.
269 static struct page * __init
270 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
277 if (!PageReserved(page))
278 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
281 pgd = pgd_offset_k(address); /* note: this is NOT pgd_offset()! */
284 pud = pud_alloc(&init_mm, pgd, address);
287 pmd = pmd_alloc(&init_mm, pud, address);
290 pte = pte_alloc_kernel(pmd, address);
295 set_pte(pte, mk_pte(page, pgprot));
298 /* no need for flush_tlb */
308 * Map the gate page twice: once read-only to export the ELF
309 * headers etc. and once execute-only page to enable
310 * privilege-promotion via "epc":
312 page = virt_to_page(ia64_imva(__start_gate_section));
313 put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
314 #ifdef HAVE_BUGGY_SEGREL
315 page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
316 put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
318 put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
319 /* Fill in the holes (if any) with read-only zero pages: */
323 for (addr = GATE_ADDR + PAGE_SIZE;
324 addr < GATE_ADDR + PERCPU_PAGE_SIZE;
327 put_kernel_page(ZERO_PAGE(0), addr,
329 put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
338 ia64_mmu_init (void *my_cpu_data)
340 unsigned long psr, pta, impl_va_bits;
341 extern void __devinit tlb_init (void);
343 #ifdef CONFIG_DISABLE_VHPT
344 # define VHPT_ENABLE_BIT 0
346 # define VHPT_ENABLE_BIT 1
349 /* Pin mapping for percpu area into TLB */
350 psr = ia64_clear_ic();
351 ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
352 pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
359 * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
360 * address space. The IA-64 architecture guarantees that at least 50 bits of
361 * virtual address space are implemented but if we pick a large enough page size
362 * (e.g., 64KB), the mapped address space is big enough that it will overlap with
363 * VMLPT. I assume that once we run on machines big enough to warrant 64KB pages,
364 * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
365 * problem in practice. Alternatively, we could truncate the top of the mapped
366 * address space to not permit mappings that would overlap with the VMLPT.
370 # define mapped_space_bits (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
372 * The virtual page table has to cover the entire implemented address space within
373 * a region even though not all of this space may be mappable. The reason for
374 * this is that the Access bit and Dirty bit fault handlers perform
375 * non-speculative accesses to the virtual page table, so the address range of the
376 * virtual page table itself needs to be covered by virtual page table.
378 # define vmlpt_bits (impl_va_bits - PAGE_SHIFT + pte_bits)
379 # define POW2(n) (1ULL << (n))
381 impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
383 if (impl_va_bits < 51 || impl_va_bits > 61)
384 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
386 * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
387 * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
388 * the test makes sure that our mapped space doesn't overlap the
389 * unimplemented hole in the middle of the region.
391 if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
392 (mapped_space_bits > impl_va_bits - 1))
393 panic("Cannot build a big enough virtual-linear page table"
394 " to cover mapped address space.\n"
395 " Try using a smaller page size.\n");
398 /* place the VMLPT at the end of each page-table mapped region: */
399 pta = POW2(61) - POW2(vmlpt_bits);
402 * Set the (virtually mapped linear) page table address. Bit
403 * 8 selects between the short and long format, bits 2-7 the
404 * size of the table, and bit 0 whether the VHPT walker is
407 ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
411 #ifdef CONFIG_HUGETLB_PAGE
412 ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
417 #ifdef CONFIG_VIRTUAL_MEM_MAP
418 int vmemmap_find_next_valid_pfn(int node, int i)
420 unsigned long end_address, hole_next_pfn;
421 unsigned long stop_address;
422 pg_data_t *pgdat = NODE_DATA(node);
424 end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
425 end_address = PAGE_ALIGN(end_address);
427 stop_address = (unsigned long) &vmem_map[
428 pgdat->node_start_pfn + pgdat->node_spanned_pages];
436 pgd = pgd_offset_k(end_address);
437 if (pgd_none(*pgd)) {
438 end_address += PGDIR_SIZE;
442 pud = pud_offset(pgd, end_address);
443 if (pud_none(*pud)) {
444 end_address += PUD_SIZE;
448 pmd = pmd_offset(pud, end_address);
449 if (pmd_none(*pmd)) {
450 end_address += PMD_SIZE;
454 pte = pte_offset_kernel(pmd, end_address);
456 if (pte_none(*pte)) {
457 end_address += PAGE_SIZE;
459 if ((end_address < stop_address) &&
460 (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
464 /* Found next valid vmem_map page */
466 } while (end_address < stop_address);
468 end_address = min(end_address, stop_address);
469 end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
470 hole_next_pfn = end_address / sizeof(struct page);
471 return hole_next_pfn - pgdat->node_start_pfn;
475 create_mem_map_page_table (u64 start, u64 end, void *arg)
477 unsigned long address, start_page, end_page;
478 struct page *map_start, *map_end;
485 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
486 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
488 start_page = (unsigned long) map_start & PAGE_MASK;
489 end_page = PAGE_ALIGN((unsigned long) map_end);
490 node = paddr_to_nid(__pa(start));
492 for (address = start_page; address < end_page; address += PAGE_SIZE) {
493 pgd = pgd_offset_k(address);
495 pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
496 pud = pud_offset(pgd, address);
499 pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
500 pmd = pmd_offset(pud, address);
503 pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
504 pte = pte_offset_kernel(pmd, address);
507 set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
513 struct memmap_init_callback_data {
521 virtual_memmap_init (u64 start, u64 end, void *arg)
523 struct memmap_init_callback_data *args;
524 struct page *map_start, *map_end;
526 args = (struct memmap_init_callback_data *) arg;
527 map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
528 map_end = vmem_map + (__pa(end) >> PAGE_SHIFT);
530 if (map_start < args->start)
531 map_start = args->start;
532 if (map_end > args->end)
536 * We have to initialize "out of bounds" struct page elements that fit completely
537 * on the same pages that were allocated for the "in bounds" elements because they
538 * may be referenced later (and found to be "reserved").
540 map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
541 map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
542 / sizeof(struct page));
544 if (map_start < map_end)
545 memmap_init_zone((unsigned long)(map_end - map_start),
546 args->nid, args->zone, page_to_pfn(map_start));
551 memmap_init (unsigned long size, int nid, unsigned long zone,
552 unsigned long start_pfn)
555 memmap_init_zone(size, nid, zone, start_pfn);
558 struct memmap_init_callback_data args;
560 start = pfn_to_page(start_pfn);
562 args.end = start + size;
566 efi_memmap_walk(virtual_memmap_init, &args);
571 ia64_pfn_valid (unsigned long pfn)
574 struct page *pg = pfn_to_page(pfn);
576 return (__get_user(byte, (char __user *) pg) == 0)
577 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
578 || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
580 EXPORT_SYMBOL(ia64_pfn_valid);
583 find_largest_hole (u64 start, u64 end, void *arg)
587 static u64 last_end = PAGE_OFFSET;
589 /* NOTE: this algorithm assumes efi memmap table is ordered */
591 if (*max_gap < (start - last_end))
592 *max_gap = start - last_end;
596 #endif /* CONFIG_VIRTUAL_MEM_MAP */
599 count_reserved_pages (u64 start, u64 end, void *arg)
601 unsigned long num_reserved = 0;
602 unsigned long *count = arg;
604 for (; start < end; start += PAGE_SIZE)
605 if (PageReserved(virt_to_page(start)))
607 *count += num_reserved;
612 * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
613 * system call handler. When this option is in effect, all fsyscalls will end up bubbling
614 * down into the kernel and calling the normal (heavy-weight) syscall handler. This is
615 * useful for performance testing, but conceivably could also come in handy for debugging
619 static int nolwsys __initdata;
622 nolwsys_setup (char *s)
628 __setup("nolwsys", nolwsys_setup);
633 long reserved_pages, codesize, datasize, initsize;
636 static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
638 BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
639 BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
640 BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
644 * This needs to be called _after_ the command line has been parsed but _before_
645 * any drivers that may need the PCI DMA interface are initialized or bootmem has
651 #ifdef CONFIG_FLATMEM
654 max_mapnr = max_low_pfn;
657 high_memory = __va(max_low_pfn * PAGE_SIZE);
659 kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
660 kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
661 kclist_add(&kcore_kernel, _stext, _end - _stext);
663 for_each_online_pgdat(pgdat)
664 if (pgdat->bdata->node_bootmem_map)
665 totalram_pages += free_all_bootmem_node(pgdat);
668 efi_memmap_walk(count_reserved_pages, &reserved_pages);
670 codesize = (unsigned long) _etext - (unsigned long) _stext;
671 datasize = (unsigned long) _edata - (unsigned long) _etext;
672 initsize = (unsigned long) __init_end - (unsigned long) __init_begin;
674 printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
675 "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
676 num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
677 reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
681 * For fsyscall entrpoints with no light-weight handler, use the ordinary
682 * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
683 * code can tell them apart.
685 for (i = 0; i < NR_syscalls; ++i) {
686 extern unsigned long fsyscall_table[NR_syscalls];
687 extern unsigned long sys_call_table[NR_syscalls];
689 if (!fsyscall_table[i] || nolwsys)
690 fsyscall_table[i] = sys_call_table[i] | 1;
694 #ifdef CONFIG_IA32_SUPPORT
699 #ifdef CONFIG_MEMORY_HOTPLUG
700 void online_page(struct page *page)
702 ClearPageReserved(page);
703 init_page_count(page);
709 int arch_add_memory(int nid, u64 start, u64 size)
713 unsigned long start_pfn = start >> PAGE_SHIFT;
714 unsigned long nr_pages = size >> PAGE_SHIFT;
717 pgdat = NODE_DATA(nid);
719 zone = pgdat->node_zones + ZONE_NORMAL;
720 ret = __add_pages(zone, start_pfn, nr_pages);
723 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
729 int remove_memory(u64 start, u64 size)
733 EXPORT_SYMBOL_GPL(remove_memory);