KVM: MMU: Make flooding detection work when guest page faults are bypassed
[linux-2.6] / drivers / kvm / mmu.c
1 /*
2  * Kernel-based Virtual Machine driver for Linux
3  *
4  * This module enables machines with Intel VT-x extensions to run virtual
5  * machines without emulation or binary translation.
6  *
7  * MMU support
8  *
9  * Copyright (C) 2006 Qumranet, Inc.
10  *
11  * Authors:
12  *   Yaniv Kamay  <yaniv@qumranet.com>
13  *   Avi Kivity   <avi@qumranet.com>
14  *
15  * This work is licensed under the terms of the GNU GPL, version 2.  See
16  * the COPYING file in the top-level directory.
17  *
18  */
19
20 #include "vmx.h"
21 #include "kvm.h"
22
23 #include <linux/types.h>
24 #include <linux/string.h>
25 #include <linux/mm.h>
26 #include <linux/highmem.h>
27 #include <linux/module.h>
28
29 #include <asm/page.h>
30 #include <asm/cmpxchg.h>
31
32 #undef MMU_DEBUG
33
34 #undef AUDIT
35
36 #ifdef AUDIT
37 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
38 #else
39 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
40 #endif
41
42 #ifdef MMU_DEBUG
43
44 #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
45 #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
46
47 #else
48
49 #define pgprintk(x...) do { } while (0)
50 #define rmap_printk(x...) do { } while (0)
51
52 #endif
53
54 #if defined(MMU_DEBUG) || defined(AUDIT)
55 static int dbg = 1;
56 #endif
57
58 #ifndef MMU_DEBUG
59 #define ASSERT(x) do { } while (0)
60 #else
61 #define ASSERT(x)                                                       \
62         if (!(x)) {                                                     \
63                 printk(KERN_WARNING "assertion failed %s:%d: %s\n",     \
64                        __FILE__, __LINE__, #x);                         \
65         }
66 #endif
67
68 #define PT64_PT_BITS 9
69 #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
70 #define PT32_PT_BITS 10
71 #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
72
73 #define PT_WRITABLE_SHIFT 1
74
75 #define PT_PRESENT_MASK (1ULL << 0)
76 #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
77 #define PT_USER_MASK (1ULL << 2)
78 #define PT_PWT_MASK (1ULL << 3)
79 #define PT_PCD_MASK (1ULL << 4)
80 #define PT_ACCESSED_MASK (1ULL << 5)
81 #define PT_DIRTY_MASK (1ULL << 6)
82 #define PT_PAGE_SIZE_MASK (1ULL << 7)
83 #define PT_PAT_MASK (1ULL << 7)
84 #define PT_GLOBAL_MASK (1ULL << 8)
85 #define PT64_NX_MASK (1ULL << 63)
86
87 #define PT_PAT_SHIFT 7
88 #define PT_DIR_PAT_SHIFT 12
89 #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
90
91 #define PT32_DIR_PSE36_SIZE 4
92 #define PT32_DIR_PSE36_SHIFT 13
93 #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
94
95
96 #define PT_FIRST_AVAIL_BITS_SHIFT 9
97 #define PT64_SECOND_AVAIL_BITS_SHIFT 52
98
99 #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
100
101 #define VALID_PAGE(x) ((x) != INVALID_PAGE)
102
103 #define PT64_LEVEL_BITS 9
104
105 #define PT64_LEVEL_SHIFT(level) \
106                 ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
107
108 #define PT64_LEVEL_MASK(level) \
109                 (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
110
111 #define PT64_INDEX(address, level)\
112         (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
113
114
115 #define PT32_LEVEL_BITS 10
116
117 #define PT32_LEVEL_SHIFT(level) \
118                 ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
119
120 #define PT32_LEVEL_MASK(level) \
121                 (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
122
123 #define PT32_INDEX(address, level)\
124         (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
125
126
127 #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
128 #define PT64_DIR_BASE_ADDR_MASK \
129         (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
130
131 #define PT32_BASE_ADDR_MASK PAGE_MASK
132 #define PT32_DIR_BASE_ADDR_MASK \
133         (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
134
135
136 #define PFERR_PRESENT_MASK (1U << 0)
137 #define PFERR_WRITE_MASK (1U << 1)
138 #define PFERR_USER_MASK (1U << 2)
139 #define PFERR_FETCH_MASK (1U << 4)
140
141 #define PT64_ROOT_LEVEL 4
142 #define PT32_ROOT_LEVEL 2
143 #define PT32E_ROOT_LEVEL 3
144
145 #define PT_DIRECTORY_LEVEL 2
146 #define PT_PAGE_TABLE_LEVEL 1
147
148 #define RMAP_EXT 4
149
150 struct kvm_rmap_desc {
151         u64 *shadow_ptes[RMAP_EXT];
152         struct kvm_rmap_desc *more;
153 };
154
155 static struct kmem_cache *pte_chain_cache;
156 static struct kmem_cache *rmap_desc_cache;
157 static struct kmem_cache *mmu_page_header_cache;
158
159 static u64 __read_mostly shadow_trap_nonpresent_pte;
160 static u64 __read_mostly shadow_notrap_nonpresent_pte;
161
162 void kvm_mmu_set_nonpresent_ptes(u64 trap_pte, u64 notrap_pte)
163 {
164         shadow_trap_nonpresent_pte = trap_pte;
165         shadow_notrap_nonpresent_pte = notrap_pte;
166 }
167 EXPORT_SYMBOL_GPL(kvm_mmu_set_nonpresent_ptes);
168
169 static int is_write_protection(struct kvm_vcpu *vcpu)
170 {
171         return vcpu->cr0 & X86_CR0_WP;
172 }
173
174 static int is_cpuid_PSE36(void)
175 {
176         return 1;
177 }
178
179 static int is_nx(struct kvm_vcpu *vcpu)
180 {
181         return vcpu->shadow_efer & EFER_NX;
182 }
183
184 static int is_present_pte(unsigned long pte)
185 {
186         return pte & PT_PRESENT_MASK;
187 }
188
189 static int is_shadow_present_pte(u64 pte)
190 {
191         pte &= ~PT_SHADOW_IO_MARK;
192         return pte != shadow_trap_nonpresent_pte
193                 && pte != shadow_notrap_nonpresent_pte;
194 }
195
196 static int is_writeble_pte(unsigned long pte)
197 {
198         return pte & PT_WRITABLE_MASK;
199 }
200
201 static int is_io_pte(unsigned long pte)
202 {
203         return pte & PT_SHADOW_IO_MARK;
204 }
205
206 static int is_rmap_pte(u64 pte)
207 {
208         return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
209                 == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
210 }
211
212 static void set_shadow_pte(u64 *sptep, u64 spte)
213 {
214 #ifdef CONFIG_X86_64
215         set_64bit((unsigned long *)sptep, spte);
216 #else
217         set_64bit((unsigned long long *)sptep, spte);
218 #endif
219 }
220
221 static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
222                                   struct kmem_cache *base_cache, int min)
223 {
224         void *obj;
225
226         if (cache->nobjs >= min)
227                 return 0;
228         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
229                 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
230                 if (!obj)
231                         return -ENOMEM;
232                 cache->objects[cache->nobjs++] = obj;
233         }
234         return 0;
235 }
236
237 static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
238 {
239         while (mc->nobjs)
240                 kfree(mc->objects[--mc->nobjs]);
241 }
242
243 static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
244                                        int min)
245 {
246         struct page *page;
247
248         if (cache->nobjs >= min)
249                 return 0;
250         while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
251                 page = alloc_page(GFP_KERNEL);
252                 if (!page)
253                         return -ENOMEM;
254                 set_page_private(page, 0);
255                 cache->objects[cache->nobjs++] = page_address(page);
256         }
257         return 0;
258 }
259
260 static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
261 {
262         while (mc->nobjs)
263                 free_page((unsigned long)mc->objects[--mc->nobjs]);
264 }
265
266 static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
267 {
268         int r;
269
270         kvm_mmu_free_some_pages(vcpu);
271         r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
272                                    pte_chain_cache, 4);
273         if (r)
274                 goto out;
275         r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
276                                    rmap_desc_cache, 1);
277         if (r)
278                 goto out;
279         r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 4);
280         if (r)
281                 goto out;
282         r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
283                                    mmu_page_header_cache, 4);
284 out:
285         return r;
286 }
287
288 static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
289 {
290         mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
291         mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
292         mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
293         mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
294 }
295
296 static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
297                                     size_t size)
298 {
299         void *p;
300
301         BUG_ON(!mc->nobjs);
302         p = mc->objects[--mc->nobjs];
303         memset(p, 0, size);
304         return p;
305 }
306
307 static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
308 {
309         return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
310                                       sizeof(struct kvm_pte_chain));
311 }
312
313 static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
314 {
315         kfree(pc);
316 }
317
318 static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
319 {
320         return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
321                                       sizeof(struct kvm_rmap_desc));
322 }
323
324 static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
325 {
326         kfree(rd);
327 }
328
329 /*
330  * Reverse mapping data structures:
331  *
332  * If page->private bit zero is zero, then page->private points to the
333  * shadow page table entry that points to page_address(page).
334  *
335  * If page->private bit zero is one, (then page->private & ~1) points
336  * to a struct kvm_rmap_desc containing more mappings.
337  */
338 static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
339 {
340         struct page *page;
341         struct kvm_rmap_desc *desc;
342         int i;
343
344         if (!is_rmap_pte(*spte))
345                 return;
346         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
347         if (!page_private(page)) {
348                 rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
349                 set_page_private(page,(unsigned long)spte);
350         } else if (!(page_private(page) & 1)) {
351                 rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
352                 desc = mmu_alloc_rmap_desc(vcpu);
353                 desc->shadow_ptes[0] = (u64 *)page_private(page);
354                 desc->shadow_ptes[1] = spte;
355                 set_page_private(page,(unsigned long)desc | 1);
356         } else {
357                 rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
358                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
359                 while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
360                         desc = desc->more;
361                 if (desc->shadow_ptes[RMAP_EXT-1]) {
362                         desc->more = mmu_alloc_rmap_desc(vcpu);
363                         desc = desc->more;
364                 }
365                 for (i = 0; desc->shadow_ptes[i]; ++i)
366                         ;
367                 desc->shadow_ptes[i] = spte;
368         }
369 }
370
371 static void rmap_desc_remove_entry(struct page *page,
372                                    struct kvm_rmap_desc *desc,
373                                    int i,
374                                    struct kvm_rmap_desc *prev_desc)
375 {
376         int j;
377
378         for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
379                 ;
380         desc->shadow_ptes[i] = desc->shadow_ptes[j];
381         desc->shadow_ptes[j] = NULL;
382         if (j != 0)
383                 return;
384         if (!prev_desc && !desc->more)
385                 set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
386         else
387                 if (prev_desc)
388                         prev_desc->more = desc->more;
389                 else
390                         set_page_private(page,(unsigned long)desc->more | 1);
391         mmu_free_rmap_desc(desc);
392 }
393
394 static void rmap_remove(u64 *spte)
395 {
396         struct page *page;
397         struct kvm_rmap_desc *desc;
398         struct kvm_rmap_desc *prev_desc;
399         int i;
400
401         if (!is_rmap_pte(*spte))
402                 return;
403         page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
404         if (!page_private(page)) {
405                 printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
406                 BUG();
407         } else if (!(page_private(page) & 1)) {
408                 rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte);
409                 if ((u64 *)page_private(page) != spte) {
410                         printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n",
411                                spte, *spte);
412                         BUG();
413                 }
414                 set_page_private(page,0);
415         } else {
416                 rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte);
417                 desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
418                 prev_desc = NULL;
419                 while (desc) {
420                         for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
421                                 if (desc->shadow_ptes[i] == spte) {
422                                         rmap_desc_remove_entry(page,
423                                                                desc, i,
424                                                                prev_desc);
425                                         return;
426                                 }
427                         prev_desc = desc;
428                         desc = desc->more;
429                 }
430                 BUG();
431         }
432 }
433
434 static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
435 {
436         struct kvm *kvm = vcpu->kvm;
437         struct page *page;
438         struct kvm_rmap_desc *desc;
439         u64 *spte;
440
441         page = gfn_to_page(kvm, gfn);
442         BUG_ON(!page);
443
444         while (page_private(page)) {
445                 if (!(page_private(page) & 1))
446                         spte = (u64 *)page_private(page);
447                 else {
448                         desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
449                         spte = desc->shadow_ptes[0];
450                 }
451                 BUG_ON(!spte);
452                 BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
453                        != page_to_pfn(page));
454                 BUG_ON(!(*spte & PT_PRESENT_MASK));
455                 BUG_ON(!(*spte & PT_WRITABLE_MASK));
456                 rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
457                 rmap_remove(spte);
458                 set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
459                 kvm_flush_remote_tlbs(vcpu->kvm);
460         }
461 }
462
463 #ifdef MMU_DEBUG
464 static int is_empty_shadow_page(u64 *spt)
465 {
466         u64 *pos;
467         u64 *end;
468
469         for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
470                 if ((*pos & ~PT_SHADOW_IO_MARK) != shadow_trap_nonpresent_pte) {
471                         printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
472                                pos, *pos);
473                         return 0;
474                 }
475         return 1;
476 }
477 #endif
478
479 static void kvm_mmu_free_page(struct kvm *kvm,
480                               struct kvm_mmu_page *page_head)
481 {
482         ASSERT(is_empty_shadow_page(page_head->spt));
483         list_del(&page_head->link);
484         __free_page(virt_to_page(page_head->spt));
485         kfree(page_head);
486         ++kvm->n_free_mmu_pages;
487 }
488
489 static unsigned kvm_page_table_hashfn(gfn_t gfn)
490 {
491         return gfn;
492 }
493
494 static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
495                                                u64 *parent_pte)
496 {
497         struct kvm_mmu_page *page;
498
499         if (!vcpu->kvm->n_free_mmu_pages)
500                 return NULL;
501
502         page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
503                                       sizeof *page);
504         page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
505         set_page_private(virt_to_page(page->spt), (unsigned long)page);
506         list_add(&page->link, &vcpu->kvm->active_mmu_pages);
507         ASSERT(is_empty_shadow_page(page->spt));
508         page->slot_bitmap = 0;
509         page->multimapped = 0;
510         page->parent_pte = parent_pte;
511         --vcpu->kvm->n_free_mmu_pages;
512         return page;
513 }
514
515 static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
516                                     struct kvm_mmu_page *page, u64 *parent_pte)
517 {
518         struct kvm_pte_chain *pte_chain;
519         struct hlist_node *node;
520         int i;
521
522         if (!parent_pte)
523                 return;
524         if (!page->multimapped) {
525                 u64 *old = page->parent_pte;
526
527                 if (!old) {
528                         page->parent_pte = parent_pte;
529                         return;
530                 }
531                 page->multimapped = 1;
532                 pte_chain = mmu_alloc_pte_chain(vcpu);
533                 INIT_HLIST_HEAD(&page->parent_ptes);
534                 hlist_add_head(&pte_chain->link, &page->parent_ptes);
535                 pte_chain->parent_ptes[0] = old;
536         }
537         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
538                 if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
539                         continue;
540                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
541                         if (!pte_chain->parent_ptes[i]) {
542                                 pte_chain->parent_ptes[i] = parent_pte;
543                                 return;
544                         }
545         }
546         pte_chain = mmu_alloc_pte_chain(vcpu);
547         BUG_ON(!pte_chain);
548         hlist_add_head(&pte_chain->link, &page->parent_ptes);
549         pte_chain->parent_ptes[0] = parent_pte;
550 }
551
552 static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
553                                        u64 *parent_pte)
554 {
555         struct kvm_pte_chain *pte_chain;
556         struct hlist_node *node;
557         int i;
558
559         if (!page->multimapped) {
560                 BUG_ON(page->parent_pte != parent_pte);
561                 page->parent_pte = NULL;
562                 return;
563         }
564         hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
565                 for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
566                         if (!pte_chain->parent_ptes[i])
567                                 break;
568                         if (pte_chain->parent_ptes[i] != parent_pte)
569                                 continue;
570                         while (i + 1 < NR_PTE_CHAIN_ENTRIES
571                                 && pte_chain->parent_ptes[i + 1]) {
572                                 pte_chain->parent_ptes[i]
573                                         = pte_chain->parent_ptes[i + 1];
574                                 ++i;
575                         }
576                         pte_chain->parent_ptes[i] = NULL;
577                         if (i == 0) {
578                                 hlist_del(&pte_chain->link);
579                                 mmu_free_pte_chain(pte_chain);
580                                 if (hlist_empty(&page->parent_ptes)) {
581                                         page->multimapped = 0;
582                                         page->parent_pte = NULL;
583                                 }
584                         }
585                         return;
586                 }
587         BUG();
588 }
589
590 static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
591                                                 gfn_t gfn)
592 {
593         unsigned index;
594         struct hlist_head *bucket;
595         struct kvm_mmu_page *page;
596         struct hlist_node *node;
597
598         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
599         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
600         bucket = &vcpu->kvm->mmu_page_hash[index];
601         hlist_for_each_entry(page, node, bucket, hash_link)
602                 if (page->gfn == gfn && !page->role.metaphysical) {
603                         pgprintk("%s: found role %x\n",
604                                  __FUNCTION__, page->role.word);
605                         return page;
606                 }
607         return NULL;
608 }
609
610 static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
611                                              gfn_t gfn,
612                                              gva_t gaddr,
613                                              unsigned level,
614                                              int metaphysical,
615                                              unsigned hugepage_access,
616                                              u64 *parent_pte)
617 {
618         union kvm_mmu_page_role role;
619         unsigned index;
620         unsigned quadrant;
621         struct hlist_head *bucket;
622         struct kvm_mmu_page *page;
623         struct hlist_node *node;
624
625         role.word = 0;
626         role.glevels = vcpu->mmu.root_level;
627         role.level = level;
628         role.metaphysical = metaphysical;
629         role.hugepage_access = hugepage_access;
630         if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
631                 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
632                 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
633                 role.quadrant = quadrant;
634         }
635         pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
636                  gfn, role.word);
637         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
638         bucket = &vcpu->kvm->mmu_page_hash[index];
639         hlist_for_each_entry(page, node, bucket, hash_link)
640                 if (page->gfn == gfn && page->role.word == role.word) {
641                         mmu_page_add_parent_pte(vcpu, page, parent_pte);
642                         pgprintk("%s: found\n", __FUNCTION__);
643                         return page;
644                 }
645         page = kvm_mmu_alloc_page(vcpu, parent_pte);
646         if (!page)
647                 return page;
648         pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
649         page->gfn = gfn;
650         page->role = role;
651         hlist_add_head(&page->hash_link, bucket);
652         vcpu->mmu.prefetch_page(vcpu, page);
653         if (!metaphysical)
654                 rmap_write_protect(vcpu, gfn);
655         return page;
656 }
657
658 static void kvm_mmu_page_unlink_children(struct kvm *kvm,
659                                          struct kvm_mmu_page *page)
660 {
661         unsigned i;
662         u64 *pt;
663         u64 ent;
664
665         pt = page->spt;
666
667         if (page->role.level == PT_PAGE_TABLE_LEVEL) {
668                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
669                         if (is_shadow_present_pte(pt[i]))
670                                 rmap_remove(&pt[i]);
671                         pt[i] = shadow_trap_nonpresent_pte;
672                 }
673                 kvm_flush_remote_tlbs(kvm);
674                 return;
675         }
676
677         for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
678                 ent = pt[i];
679
680                 pt[i] = shadow_trap_nonpresent_pte;
681                 if (!is_shadow_present_pte(ent))
682                         continue;
683                 ent &= PT64_BASE_ADDR_MASK;
684                 mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
685         }
686         kvm_flush_remote_tlbs(kvm);
687 }
688
689 static void kvm_mmu_put_page(struct kvm_mmu_page *page,
690                              u64 *parent_pte)
691 {
692         mmu_page_remove_parent_pte(page, parent_pte);
693 }
694
695 static void kvm_mmu_reset_last_pte_updated(struct kvm *kvm)
696 {
697         int i;
698
699         for (i = 0; i < KVM_MAX_VCPUS; ++i)
700                 if (kvm->vcpus[i])
701                         kvm->vcpus[i]->last_pte_updated = NULL;
702 }
703
704 static void kvm_mmu_zap_page(struct kvm *kvm,
705                              struct kvm_mmu_page *page)
706 {
707         u64 *parent_pte;
708
709         while (page->multimapped || page->parent_pte) {
710                 if (!page->multimapped)
711                         parent_pte = page->parent_pte;
712                 else {
713                         struct kvm_pte_chain *chain;
714
715                         chain = container_of(page->parent_ptes.first,
716                                              struct kvm_pte_chain, link);
717                         parent_pte = chain->parent_ptes[0];
718                 }
719                 BUG_ON(!parent_pte);
720                 kvm_mmu_put_page(page, parent_pte);
721                 set_shadow_pte(parent_pte, shadow_trap_nonpresent_pte);
722         }
723         kvm_mmu_page_unlink_children(kvm, page);
724         if (!page->root_count) {
725                 hlist_del(&page->hash_link);
726                 kvm_mmu_free_page(kvm, page);
727         } else
728                 list_move(&page->link, &kvm->active_mmu_pages);
729         kvm_mmu_reset_last_pte_updated(kvm);
730 }
731
732 static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
733 {
734         unsigned index;
735         struct hlist_head *bucket;
736         struct kvm_mmu_page *page;
737         struct hlist_node *node, *n;
738         int r;
739
740         pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
741         r = 0;
742         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
743         bucket = &vcpu->kvm->mmu_page_hash[index];
744         hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
745                 if (page->gfn == gfn && !page->role.metaphysical) {
746                         pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
747                                  page->role.word);
748                         kvm_mmu_zap_page(vcpu->kvm, page);
749                         r = 1;
750                 }
751         return r;
752 }
753
754 static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
755 {
756         struct kvm_mmu_page *page;
757
758         while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
759                 pgprintk("%s: zap %lx %x\n",
760                          __FUNCTION__, gfn, page->role.word);
761                 kvm_mmu_zap_page(vcpu->kvm, page);
762         }
763 }
764
765 static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
766 {
767         int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
768         struct kvm_mmu_page *page_head = page_header(__pa(pte));
769
770         __set_bit(slot, &page_head->slot_bitmap);
771 }
772
773 hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
774 {
775         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
776
777         return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
778 }
779
780 hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
781 {
782         struct page *page;
783
784         ASSERT((gpa & HPA_ERR_MASK) == 0);
785         page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
786         if (!page)
787                 return gpa | HPA_ERR_MASK;
788         return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
789                 | (gpa & (PAGE_SIZE-1));
790 }
791
792 hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
793 {
794         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
795
796         if (gpa == UNMAPPED_GVA)
797                 return UNMAPPED_GVA;
798         return gpa_to_hpa(vcpu, gpa);
799 }
800
801 struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
802 {
803         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
804
805         if (gpa == UNMAPPED_GVA)
806                 return NULL;
807         return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
808 }
809
810 static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
811 {
812 }
813
814 static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
815 {
816         int level = PT32E_ROOT_LEVEL;
817         hpa_t table_addr = vcpu->mmu.root_hpa;
818
819         for (; ; level--) {
820                 u32 index = PT64_INDEX(v, level);
821                 u64 *table;
822                 u64 pte;
823
824                 ASSERT(VALID_PAGE(table_addr));
825                 table = __va(table_addr);
826
827                 if (level == 1) {
828                         pte = table[index];
829                         if (is_shadow_present_pte(pte) && is_writeble_pte(pte))
830                                 return 0;
831                         mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
832                         page_header_update_slot(vcpu->kvm, table, v);
833                         table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
834                                                                 PT_USER_MASK;
835                         rmap_add(vcpu, &table[index]);
836                         return 0;
837                 }
838
839                 if (table[index] == shadow_trap_nonpresent_pte) {
840                         struct kvm_mmu_page *new_table;
841                         gfn_t pseudo_gfn;
842
843                         pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
844                                 >> PAGE_SHIFT;
845                         new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
846                                                      v, level - 1,
847                                                      1, 0, &table[index]);
848                         if (!new_table) {
849                                 pgprintk("nonpaging_map: ENOMEM\n");
850                                 return -ENOMEM;
851                         }
852
853                         table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
854                                 | PT_WRITABLE_MASK | PT_USER_MASK;
855                 }
856                 table_addr = table[index] & PT64_BASE_ADDR_MASK;
857         }
858 }
859
860 static void nonpaging_prefetch_page(struct kvm_vcpu *vcpu,
861                                     struct kvm_mmu_page *sp)
862 {
863         int i;
864
865         for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
866                 sp->spt[i] = shadow_trap_nonpresent_pte;
867 }
868
869 static void mmu_free_roots(struct kvm_vcpu *vcpu)
870 {
871         int i;
872         struct kvm_mmu_page *page;
873
874         if (!VALID_PAGE(vcpu->mmu.root_hpa))
875                 return;
876 #ifdef CONFIG_X86_64
877         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
878                 hpa_t root = vcpu->mmu.root_hpa;
879
880                 page = page_header(root);
881                 --page->root_count;
882                 vcpu->mmu.root_hpa = INVALID_PAGE;
883                 return;
884         }
885 #endif
886         for (i = 0; i < 4; ++i) {
887                 hpa_t root = vcpu->mmu.pae_root[i];
888
889                 if (root) {
890                         root &= PT64_BASE_ADDR_MASK;
891                         page = page_header(root);
892                         --page->root_count;
893                 }
894                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
895         }
896         vcpu->mmu.root_hpa = INVALID_PAGE;
897 }
898
899 static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
900 {
901         int i;
902         gfn_t root_gfn;
903         struct kvm_mmu_page *page;
904
905         root_gfn = vcpu->cr3 >> PAGE_SHIFT;
906
907 #ifdef CONFIG_X86_64
908         if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
909                 hpa_t root = vcpu->mmu.root_hpa;
910
911                 ASSERT(!VALID_PAGE(root));
912                 page = kvm_mmu_get_page(vcpu, root_gfn, 0,
913                                         PT64_ROOT_LEVEL, 0, 0, NULL);
914                 root = __pa(page->spt);
915                 ++page->root_count;
916                 vcpu->mmu.root_hpa = root;
917                 return;
918         }
919 #endif
920         for (i = 0; i < 4; ++i) {
921                 hpa_t root = vcpu->mmu.pae_root[i];
922
923                 ASSERT(!VALID_PAGE(root));
924                 if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
925                         if (!is_present_pte(vcpu->pdptrs[i])) {
926                                 vcpu->mmu.pae_root[i] = 0;
927                                 continue;
928                         }
929                         root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
930                 } else if (vcpu->mmu.root_level == 0)
931                         root_gfn = 0;
932                 page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
933                                         PT32_ROOT_LEVEL, !is_paging(vcpu),
934                                         0, NULL);
935                 root = __pa(page->spt);
936                 ++page->root_count;
937                 vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
938         }
939         vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
940 }
941
942 static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
943 {
944         return vaddr;
945 }
946
947 static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
948                                u32 error_code)
949 {
950         gpa_t addr = gva;
951         hpa_t paddr;
952         int r;
953
954         r = mmu_topup_memory_caches(vcpu);
955         if (r)
956                 return r;
957
958         ASSERT(vcpu);
959         ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
960
961
962         paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
963
964         if (is_error_hpa(paddr))
965                 return 1;
966
967         return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
968 }
969
970 static void nonpaging_free(struct kvm_vcpu *vcpu)
971 {
972         mmu_free_roots(vcpu);
973 }
974
975 static int nonpaging_init_context(struct kvm_vcpu *vcpu)
976 {
977         struct kvm_mmu *context = &vcpu->mmu;
978
979         context->new_cr3 = nonpaging_new_cr3;
980         context->page_fault = nonpaging_page_fault;
981         context->gva_to_gpa = nonpaging_gva_to_gpa;
982         context->free = nonpaging_free;
983         context->prefetch_page = nonpaging_prefetch_page;
984         context->root_level = 0;
985         context->shadow_root_level = PT32E_ROOT_LEVEL;
986         context->root_hpa = INVALID_PAGE;
987         return 0;
988 }
989
990 static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
991 {
992         ++vcpu->stat.tlb_flush;
993         kvm_x86_ops->tlb_flush(vcpu);
994 }
995
996 static void paging_new_cr3(struct kvm_vcpu *vcpu)
997 {
998         pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
999         mmu_free_roots(vcpu);
1000 }
1001
1002 static void inject_page_fault(struct kvm_vcpu *vcpu,
1003                               u64 addr,
1004                               u32 err_code)
1005 {
1006         kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
1007 }
1008
1009 static void paging_free(struct kvm_vcpu *vcpu)
1010 {
1011         nonpaging_free(vcpu);
1012 }
1013
1014 #define PTTYPE 64
1015 #include "paging_tmpl.h"
1016 #undef PTTYPE
1017
1018 #define PTTYPE 32
1019 #include "paging_tmpl.h"
1020 #undef PTTYPE
1021
1022 static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
1023 {
1024         struct kvm_mmu *context = &vcpu->mmu;
1025
1026         ASSERT(is_pae(vcpu));
1027         context->new_cr3 = paging_new_cr3;
1028         context->page_fault = paging64_page_fault;
1029         context->gva_to_gpa = paging64_gva_to_gpa;
1030         context->prefetch_page = paging64_prefetch_page;
1031         context->free = paging_free;
1032         context->root_level = level;
1033         context->shadow_root_level = level;
1034         context->root_hpa = INVALID_PAGE;
1035         return 0;
1036 }
1037
1038 static int paging64_init_context(struct kvm_vcpu *vcpu)
1039 {
1040         return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
1041 }
1042
1043 static int paging32_init_context(struct kvm_vcpu *vcpu)
1044 {
1045         struct kvm_mmu *context = &vcpu->mmu;
1046
1047         context->new_cr3 = paging_new_cr3;
1048         context->page_fault = paging32_page_fault;
1049         context->gva_to_gpa = paging32_gva_to_gpa;
1050         context->free = paging_free;
1051         context->prefetch_page = paging32_prefetch_page;
1052         context->root_level = PT32_ROOT_LEVEL;
1053         context->shadow_root_level = PT32E_ROOT_LEVEL;
1054         context->root_hpa = INVALID_PAGE;
1055         return 0;
1056 }
1057
1058 static int paging32E_init_context(struct kvm_vcpu *vcpu)
1059 {
1060         return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
1061 }
1062
1063 static int init_kvm_mmu(struct kvm_vcpu *vcpu)
1064 {
1065         ASSERT(vcpu);
1066         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1067
1068         if (!is_paging(vcpu))
1069                 return nonpaging_init_context(vcpu);
1070         else if (is_long_mode(vcpu))
1071                 return paging64_init_context(vcpu);
1072         else if (is_pae(vcpu))
1073                 return paging32E_init_context(vcpu);
1074         else
1075                 return paging32_init_context(vcpu);
1076 }
1077
1078 static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
1079 {
1080         ASSERT(vcpu);
1081         if (VALID_PAGE(vcpu->mmu.root_hpa)) {
1082                 vcpu->mmu.free(vcpu);
1083                 vcpu->mmu.root_hpa = INVALID_PAGE;
1084         }
1085 }
1086
1087 int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
1088 {
1089         destroy_kvm_mmu(vcpu);
1090         return init_kvm_mmu(vcpu);
1091 }
1092 EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
1093
1094 int kvm_mmu_load(struct kvm_vcpu *vcpu)
1095 {
1096         int r;
1097
1098         mutex_lock(&vcpu->kvm->lock);
1099         r = mmu_topup_memory_caches(vcpu);
1100         if (r)
1101                 goto out;
1102         mmu_alloc_roots(vcpu);
1103         kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
1104         kvm_mmu_flush_tlb(vcpu);
1105 out:
1106         mutex_unlock(&vcpu->kvm->lock);
1107         return r;
1108 }
1109 EXPORT_SYMBOL_GPL(kvm_mmu_load);
1110
1111 void kvm_mmu_unload(struct kvm_vcpu *vcpu)
1112 {
1113         mmu_free_roots(vcpu);
1114 }
1115
1116 static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
1117                                   struct kvm_mmu_page *page,
1118                                   u64 *spte)
1119 {
1120         u64 pte;
1121         struct kvm_mmu_page *child;
1122
1123         pte = *spte;
1124         if (is_shadow_present_pte(pte)) {
1125                 if (page->role.level == PT_PAGE_TABLE_LEVEL)
1126                         rmap_remove(spte);
1127                 else {
1128                         child = page_header(pte & PT64_BASE_ADDR_MASK);
1129                         mmu_page_remove_parent_pte(child, spte);
1130                 }
1131         }
1132         set_shadow_pte(spte, shadow_trap_nonpresent_pte);
1133         kvm_flush_remote_tlbs(vcpu->kvm);
1134 }
1135
1136 static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
1137                                   struct kvm_mmu_page *page,
1138                                   u64 *spte,
1139                                   const void *new, int bytes,
1140                                   int offset_in_pte)
1141 {
1142         if (page->role.level != PT_PAGE_TABLE_LEVEL)
1143                 return;
1144
1145         if (page->role.glevels == PT32_ROOT_LEVEL)
1146                 paging32_update_pte(vcpu, page, spte, new, bytes,
1147                                     offset_in_pte);
1148         else
1149                 paging64_update_pte(vcpu, page, spte, new, bytes,
1150                                     offset_in_pte);
1151 }
1152
1153 static bool last_updated_pte_accessed(struct kvm_vcpu *vcpu)
1154 {
1155         u64 *spte = vcpu->last_pte_updated;
1156
1157         return !!(spte && (*spte & PT_ACCESSED_MASK));
1158 }
1159
1160 void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
1161                        const u8 *new, int bytes)
1162 {
1163         gfn_t gfn = gpa >> PAGE_SHIFT;
1164         struct kvm_mmu_page *page;
1165         struct hlist_node *node, *n;
1166         struct hlist_head *bucket;
1167         unsigned index;
1168         u64 *spte;
1169         unsigned offset = offset_in_page(gpa);
1170         unsigned pte_size;
1171         unsigned page_offset;
1172         unsigned misaligned;
1173         unsigned quadrant;
1174         int level;
1175         int flooded = 0;
1176         int npte;
1177
1178         pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
1179         kvm_mmu_audit(vcpu, "pre pte write");
1180         if (gfn == vcpu->last_pt_write_gfn
1181             && !last_updated_pte_accessed(vcpu)) {
1182                 ++vcpu->last_pt_write_count;
1183                 if (vcpu->last_pt_write_count >= 3)
1184                         flooded = 1;
1185         } else {
1186                 vcpu->last_pt_write_gfn = gfn;
1187                 vcpu->last_pt_write_count = 1;
1188                 vcpu->last_pte_updated = NULL;
1189         }
1190         index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
1191         bucket = &vcpu->kvm->mmu_page_hash[index];
1192         hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
1193                 if (page->gfn != gfn || page->role.metaphysical)
1194                         continue;
1195                 pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
1196                 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
1197                 misaligned |= bytes < 4;
1198                 if (misaligned || flooded) {
1199                         /*
1200                          * Misaligned accesses are too much trouble to fix
1201                          * up; also, they usually indicate a page is not used
1202                          * as a page table.
1203                          *
1204                          * If we're seeing too many writes to a page,
1205                          * it may no longer be a page table, or we may be
1206                          * forking, in which case it is better to unmap the
1207                          * page.
1208                          */
1209                         pgprintk("misaligned: gpa %llx bytes %d role %x\n",
1210                                  gpa, bytes, page->role.word);
1211                         kvm_mmu_zap_page(vcpu->kvm, page);
1212                         continue;
1213                 }
1214                 page_offset = offset;
1215                 level = page->role.level;
1216                 npte = 1;
1217                 if (page->role.glevels == PT32_ROOT_LEVEL) {
1218                         page_offset <<= 1;      /* 32->64 */
1219                         /*
1220                          * A 32-bit pde maps 4MB while the shadow pdes map
1221                          * only 2MB.  So we need to double the offset again
1222                          * and zap two pdes instead of one.
1223                          */
1224                         if (level == PT32_ROOT_LEVEL) {
1225                                 page_offset &= ~7; /* kill rounding error */
1226                                 page_offset <<= 1;
1227                                 npte = 2;
1228                         }
1229                         quadrant = page_offset >> PAGE_SHIFT;
1230                         page_offset &= ~PAGE_MASK;
1231                         if (quadrant != page->role.quadrant)
1232                                 continue;
1233                 }
1234                 spte = &page->spt[page_offset / sizeof(*spte)];
1235                 while (npte--) {
1236                         mmu_pte_write_zap_pte(vcpu, page, spte);
1237                         mmu_pte_write_new_pte(vcpu, page, spte, new, bytes,
1238                                               page_offset & (pte_size - 1));
1239                         ++spte;
1240                 }
1241         }
1242         kvm_mmu_audit(vcpu, "post pte write");
1243 }
1244
1245 int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
1246 {
1247         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
1248
1249         return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
1250 }
1251
1252 void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
1253 {
1254         while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
1255                 struct kvm_mmu_page *page;
1256
1257                 page = container_of(vcpu->kvm->active_mmu_pages.prev,
1258                                     struct kvm_mmu_page, link);
1259                 kvm_mmu_zap_page(vcpu->kvm, page);
1260         }
1261 }
1262
1263 static void free_mmu_pages(struct kvm_vcpu *vcpu)
1264 {
1265         struct kvm_mmu_page *page;
1266
1267         while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
1268                 page = container_of(vcpu->kvm->active_mmu_pages.next,
1269                                     struct kvm_mmu_page, link);
1270                 kvm_mmu_zap_page(vcpu->kvm, page);
1271         }
1272         free_page((unsigned long)vcpu->mmu.pae_root);
1273 }
1274
1275 static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
1276 {
1277         struct page *page;
1278         int i;
1279
1280         ASSERT(vcpu);
1281
1282         vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
1283
1284         /*
1285          * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
1286          * Therefore we need to allocate shadow page tables in the first
1287          * 4GB of memory, which happens to fit the DMA32 zone.
1288          */
1289         page = alloc_page(GFP_KERNEL | __GFP_DMA32);
1290         if (!page)
1291                 goto error_1;
1292         vcpu->mmu.pae_root = page_address(page);
1293         for (i = 0; i < 4; ++i)
1294                 vcpu->mmu.pae_root[i] = INVALID_PAGE;
1295
1296         return 0;
1297
1298 error_1:
1299         free_mmu_pages(vcpu);
1300         return -ENOMEM;
1301 }
1302
1303 int kvm_mmu_create(struct kvm_vcpu *vcpu)
1304 {
1305         ASSERT(vcpu);
1306         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1307
1308         return alloc_mmu_pages(vcpu);
1309 }
1310
1311 int kvm_mmu_setup(struct kvm_vcpu *vcpu)
1312 {
1313         ASSERT(vcpu);
1314         ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
1315
1316         return init_kvm_mmu(vcpu);
1317 }
1318
1319 void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
1320 {
1321         ASSERT(vcpu);
1322
1323         destroy_kvm_mmu(vcpu);
1324         free_mmu_pages(vcpu);
1325         mmu_free_memory_caches(vcpu);
1326 }
1327
1328 void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
1329 {
1330         struct kvm_mmu_page *page;
1331
1332         list_for_each_entry(page, &kvm->active_mmu_pages, link) {
1333                 int i;
1334                 u64 *pt;
1335
1336                 if (!test_bit(slot, &page->slot_bitmap))
1337                         continue;
1338
1339                 pt = page->spt;
1340                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1341                         /* avoid RMW */
1342                         if (pt[i] & PT_WRITABLE_MASK) {
1343                                 rmap_remove(&pt[i]);
1344                                 pt[i] &= ~PT_WRITABLE_MASK;
1345                         }
1346         }
1347 }
1348
1349 void kvm_mmu_zap_all(struct kvm *kvm)
1350 {
1351         struct kvm_mmu_page *page, *node;
1352
1353         list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
1354                 kvm_mmu_zap_page(kvm, page);
1355
1356         kvm_flush_remote_tlbs(kvm);
1357 }
1358
1359 void kvm_mmu_module_exit(void)
1360 {
1361         if (pte_chain_cache)
1362                 kmem_cache_destroy(pte_chain_cache);
1363         if (rmap_desc_cache)
1364                 kmem_cache_destroy(rmap_desc_cache);
1365         if (mmu_page_header_cache)
1366                 kmem_cache_destroy(mmu_page_header_cache);
1367 }
1368
1369 int kvm_mmu_module_init(void)
1370 {
1371         pte_chain_cache = kmem_cache_create("kvm_pte_chain",
1372                                             sizeof(struct kvm_pte_chain),
1373                                             0, 0, NULL);
1374         if (!pte_chain_cache)
1375                 goto nomem;
1376         rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
1377                                             sizeof(struct kvm_rmap_desc),
1378                                             0, 0, NULL);
1379         if (!rmap_desc_cache)
1380                 goto nomem;
1381
1382         mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
1383                                                   sizeof(struct kvm_mmu_page),
1384                                                   0, 0, NULL);
1385         if (!mmu_page_header_cache)
1386                 goto nomem;
1387
1388         return 0;
1389
1390 nomem:
1391         kvm_mmu_module_exit();
1392         return -ENOMEM;
1393 }
1394
1395 #ifdef AUDIT
1396
1397 static const char *audit_msg;
1398
1399 static gva_t canonicalize(gva_t gva)
1400 {
1401 #ifdef CONFIG_X86_64
1402         gva = (long long)(gva << 16) >> 16;
1403 #endif
1404         return gva;
1405 }
1406
1407 static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
1408                                 gva_t va, int level)
1409 {
1410         u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
1411         int i;
1412         gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
1413
1414         for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
1415                 u64 ent = pt[i];
1416
1417                 if (ent == shadow_trap_nonpresent_pte)
1418                         continue;
1419
1420                 va = canonicalize(va);
1421                 if (level > 1) {
1422                         if (ent == shadow_notrap_nonpresent_pte)
1423                                 printk(KERN_ERR "audit: (%s) nontrapping pte"
1424                                        " in nonleaf level: levels %d gva %lx"
1425                                        " level %d pte %llx\n", audit_msg,
1426                                        vcpu->mmu.root_level, va, level, ent);
1427
1428                         audit_mappings_page(vcpu, ent, va, level - 1);
1429                 } else {
1430                         gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
1431                         hpa_t hpa = gpa_to_hpa(vcpu, gpa);
1432
1433                         if (is_shadow_present_pte(ent)
1434                             && (ent & PT64_BASE_ADDR_MASK) != hpa)
1435                                 printk(KERN_ERR "xx audit error: (%s) levels %d"
1436                                        " gva %lx gpa %llx hpa %llx ent %llx %d\n",
1437                                        audit_msg, vcpu->mmu.root_level,
1438                                        va, gpa, hpa, ent, is_shadow_present_pte(ent));
1439                         else if (ent == shadow_notrap_nonpresent_pte
1440                                  && !is_error_hpa(hpa))
1441                                 printk(KERN_ERR "audit: (%s) notrap shadow,"
1442                                        " valid guest gva %lx\n", audit_msg, va);
1443
1444                 }
1445         }
1446 }
1447
1448 static void audit_mappings(struct kvm_vcpu *vcpu)
1449 {
1450         unsigned i;
1451
1452         if (vcpu->mmu.root_level == 4)
1453                 audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
1454         else
1455                 for (i = 0; i < 4; ++i)
1456                         if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
1457                                 audit_mappings_page(vcpu,
1458                                                     vcpu->mmu.pae_root[i],
1459                                                     i << 30,
1460                                                     2);
1461 }
1462
1463 static int count_rmaps(struct kvm_vcpu *vcpu)
1464 {
1465         int nmaps = 0;
1466         int i, j, k;
1467
1468         for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
1469                 struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
1470                 struct kvm_rmap_desc *d;
1471
1472                 for (j = 0; j < m->npages; ++j) {
1473                         struct page *page = m->phys_mem[j];
1474
1475                         if (!page->private)
1476                                 continue;
1477                         if (!(page->private & 1)) {
1478                                 ++nmaps;
1479                                 continue;
1480                         }
1481                         d = (struct kvm_rmap_desc *)(page->private & ~1ul);
1482                         while (d) {
1483                                 for (k = 0; k < RMAP_EXT; ++k)
1484                                         if (d->shadow_ptes[k])
1485                                                 ++nmaps;
1486                                         else
1487                                                 break;
1488                                 d = d->more;
1489                         }
1490                 }
1491         }
1492         return nmaps;
1493 }
1494
1495 static int count_writable_mappings(struct kvm_vcpu *vcpu)
1496 {
1497         int nmaps = 0;
1498         struct kvm_mmu_page *page;
1499         int i;
1500
1501         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1502                 u64 *pt = page->spt;
1503
1504                 if (page->role.level != PT_PAGE_TABLE_LEVEL)
1505                         continue;
1506
1507                 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
1508                         u64 ent = pt[i];
1509
1510                         if (!(ent & PT_PRESENT_MASK))
1511                                 continue;
1512                         if (!(ent & PT_WRITABLE_MASK))
1513                                 continue;
1514                         ++nmaps;
1515                 }
1516         }
1517         return nmaps;
1518 }
1519
1520 static void audit_rmap(struct kvm_vcpu *vcpu)
1521 {
1522         int n_rmap = count_rmaps(vcpu);
1523         int n_actual = count_writable_mappings(vcpu);
1524
1525         if (n_rmap != n_actual)
1526                 printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
1527                        __FUNCTION__, audit_msg, n_rmap, n_actual);
1528 }
1529
1530 static void audit_write_protection(struct kvm_vcpu *vcpu)
1531 {
1532         struct kvm_mmu_page *page;
1533
1534         list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
1535                 hfn_t hfn;
1536                 struct page *pg;
1537
1538                 if (page->role.metaphysical)
1539                         continue;
1540
1541                 hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
1542                         >> PAGE_SHIFT;
1543                 pg = pfn_to_page(hfn);
1544                 if (pg->private)
1545                         printk(KERN_ERR "%s: (%s) shadow page has writable"
1546                                " mappings: gfn %lx role %x\n",
1547                                __FUNCTION__, audit_msg, page->gfn,
1548                                page->role.word);
1549         }
1550 }
1551
1552 static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
1553 {
1554         int olddbg = dbg;
1555
1556         dbg = 0;
1557         audit_msg = msg;
1558         audit_rmap(vcpu);
1559         audit_write_protection(vcpu);
1560         audit_mappings(vcpu);
1561         dbg = olddbg;
1562 }
1563
1564 #endif