Btrfs: fix btrfs_unlock_up_safe to walk the entire path
[linux-2.6] / fs / btrfs / ctree.c
1 /*
2  * Copyright (C) 2007,2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "disk-io.h"
22 #include "transaction.h"
23 #include "print-tree.h"
24 #include "locking.h"
25
26 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
27                       *root, struct btrfs_path *path, int level);
28 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
29                       *root, struct btrfs_key *ins_key,
30                       struct btrfs_path *path, int data_size, int extend);
31 static int push_node_left(struct btrfs_trans_handle *trans,
32                           struct btrfs_root *root, struct extent_buffer *dst,
33                           struct extent_buffer *src, int empty);
34 static int balance_node_right(struct btrfs_trans_handle *trans,
35                               struct btrfs_root *root,
36                               struct extent_buffer *dst_buf,
37                               struct extent_buffer *src_buf);
38 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
39                    struct btrfs_path *path, int level, int slot);
40
41 inline void btrfs_init_path(struct btrfs_path *p)
42 {
43         memset(p, 0, sizeof(*p));
44 }
45
46 struct btrfs_path *btrfs_alloc_path(void)
47 {
48         struct btrfs_path *path;
49         path = kmem_cache_alloc(btrfs_path_cachep, GFP_NOFS);
50         if (path) {
51                 btrfs_init_path(path);
52                 path->reada = 1;
53         }
54         return path;
55 }
56
57 /*
58  * set all locked nodes in the path to blocking locks.  This should
59  * be done before scheduling
60  */
61 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
62 {
63         int i;
64         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
65                 if (p->nodes[i] && p->locks[i])
66                         btrfs_set_lock_blocking(p->nodes[i]);
67         }
68 }
69
70 /*
71  * reset all the locked nodes in the patch to spinning locks.
72  */
73 noinline void btrfs_clear_path_blocking(struct btrfs_path *p)
74 {
75         int i;
76         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
77                 if (p->nodes[i] && p->locks[i])
78                         btrfs_clear_lock_blocking(p->nodes[i]);
79         }
80 }
81
82 /* this also releases the path */
83 void btrfs_free_path(struct btrfs_path *p)
84 {
85         btrfs_release_path(NULL, p);
86         kmem_cache_free(btrfs_path_cachep, p);
87 }
88
89 /*
90  * path release drops references on the extent buffers in the path
91  * and it drops any locks held by this path
92  *
93  * It is safe to call this on paths that no locks or extent buffers held.
94  */
95 noinline void btrfs_release_path(struct btrfs_root *root, struct btrfs_path *p)
96 {
97         int i;
98
99         for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
100                 p->slots[i] = 0;
101                 if (!p->nodes[i])
102                         continue;
103                 if (p->locks[i]) {
104                         btrfs_tree_unlock(p->nodes[i]);
105                         p->locks[i] = 0;
106                 }
107                 free_extent_buffer(p->nodes[i]);
108                 p->nodes[i] = NULL;
109         }
110 }
111
112 /*
113  * safely gets a reference on the root node of a tree.  A lock
114  * is not taken, so a concurrent writer may put a different node
115  * at the root of the tree.  See btrfs_lock_root_node for the
116  * looping required.
117  *
118  * The extent buffer returned by this has a reference taken, so
119  * it won't disappear.  It may stop being the root of the tree
120  * at any time because there are no locks held.
121  */
122 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
123 {
124         struct extent_buffer *eb;
125         spin_lock(&root->node_lock);
126         eb = root->node;
127         extent_buffer_get(eb);
128         spin_unlock(&root->node_lock);
129         return eb;
130 }
131
132 /* loop around taking references on and locking the root node of the
133  * tree until you end up with a lock on the root.  A locked buffer
134  * is returned, with a reference held.
135  */
136 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
137 {
138         struct extent_buffer *eb;
139
140         while (1) {
141                 eb = btrfs_root_node(root);
142                 btrfs_tree_lock(eb);
143
144                 spin_lock(&root->node_lock);
145                 if (eb == root->node) {
146                         spin_unlock(&root->node_lock);
147                         break;
148                 }
149                 spin_unlock(&root->node_lock);
150
151                 btrfs_tree_unlock(eb);
152                 free_extent_buffer(eb);
153         }
154         return eb;
155 }
156
157 /* cowonly root (everything not a reference counted cow subvolume), just get
158  * put onto a simple dirty list.  transaction.c walks this to make sure they
159  * get properly updated on disk.
160  */
161 static void add_root_to_dirty_list(struct btrfs_root *root)
162 {
163         if (root->track_dirty && list_empty(&root->dirty_list)) {
164                 list_add(&root->dirty_list,
165                          &root->fs_info->dirty_cowonly_roots);
166         }
167 }
168
169 /*
170  * used by snapshot creation to make a copy of a root for a tree with
171  * a given objectid.  The buffer with the new root node is returned in
172  * cow_ret, and this func returns zero on success or a negative error code.
173  */
174 int btrfs_copy_root(struct btrfs_trans_handle *trans,
175                       struct btrfs_root *root,
176                       struct extent_buffer *buf,
177                       struct extent_buffer **cow_ret, u64 new_root_objectid)
178 {
179         struct extent_buffer *cow;
180         u32 nritems;
181         int ret = 0;
182         int level;
183         struct btrfs_root *new_root;
184
185         new_root = kmalloc(sizeof(*new_root), GFP_NOFS);
186         if (!new_root)
187                 return -ENOMEM;
188
189         memcpy(new_root, root, sizeof(*new_root));
190         new_root->root_key.objectid = new_root_objectid;
191
192         WARN_ON(root->ref_cows && trans->transid !=
193                 root->fs_info->running_transaction->transid);
194         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
195
196         level = btrfs_header_level(buf);
197         nritems = btrfs_header_nritems(buf);
198
199         cow = btrfs_alloc_free_block(trans, new_root, buf->len, 0,
200                                      new_root_objectid, trans->transid,
201                                      level, buf->start, 0);
202         if (IS_ERR(cow)) {
203                 kfree(new_root);
204                 return PTR_ERR(cow);
205         }
206
207         copy_extent_buffer(cow, buf, 0, 0, cow->len);
208         btrfs_set_header_bytenr(cow, cow->start);
209         btrfs_set_header_generation(cow, trans->transid);
210         btrfs_set_header_owner(cow, new_root_objectid);
211         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
212
213         write_extent_buffer(cow, root->fs_info->fsid,
214                             (unsigned long)btrfs_header_fsid(cow),
215                             BTRFS_FSID_SIZE);
216
217         WARN_ON(btrfs_header_generation(buf) > trans->transid);
218         ret = btrfs_inc_ref(trans, new_root, buf, cow, NULL);
219         kfree(new_root);
220
221         if (ret)
222                 return ret;
223
224         btrfs_mark_buffer_dirty(cow);
225         *cow_ret = cow;
226         return 0;
227 }
228
229 /*
230  * does the dirty work in cow of a single block.  The parent block (if
231  * supplied) is updated to point to the new cow copy.  The new buffer is marked
232  * dirty and returned locked.  If you modify the block it needs to be marked
233  * dirty again.
234  *
235  * search_start -- an allocation hint for the new block
236  *
237  * empty_size -- a hint that you plan on doing more cow.  This is the size in
238  * bytes the allocator should try to find free next to the block it returns.
239  * This is just a hint and may be ignored by the allocator.
240  *
241  * prealloc_dest -- if you have already reserved a destination for the cow,
242  * this uses that block instead of allocating a new one.
243  * btrfs_alloc_reserved_extent is used to finish the allocation.
244  */
245 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
246                              struct btrfs_root *root,
247                              struct extent_buffer *buf,
248                              struct extent_buffer *parent, int parent_slot,
249                              struct extent_buffer **cow_ret,
250                              u64 search_start, u64 empty_size,
251                              u64 prealloc_dest)
252 {
253         u64 parent_start;
254         struct extent_buffer *cow;
255         u32 nritems;
256         int ret = 0;
257         int level;
258         int unlock_orig = 0;
259
260         if (*cow_ret == buf)
261                 unlock_orig = 1;
262
263         WARN_ON(!btrfs_tree_locked(buf));
264
265         if (parent)
266                 parent_start = parent->start;
267         else
268                 parent_start = 0;
269
270         WARN_ON(root->ref_cows && trans->transid !=
271                 root->fs_info->running_transaction->transid);
272         WARN_ON(root->ref_cows && trans->transid != root->last_trans);
273
274         level = btrfs_header_level(buf);
275         nritems = btrfs_header_nritems(buf);
276
277         if (prealloc_dest) {
278                 struct btrfs_key ins;
279
280                 ins.objectid = prealloc_dest;
281                 ins.offset = buf->len;
282                 ins.type = BTRFS_EXTENT_ITEM_KEY;
283
284                 ret = btrfs_alloc_reserved_extent(trans, root, parent_start,
285                                                   root->root_key.objectid,
286                                                   trans->transid, level, &ins);
287                 BUG_ON(ret);
288                 cow = btrfs_init_new_buffer(trans, root, prealloc_dest,
289                                             buf->len);
290         } else {
291                 cow = btrfs_alloc_free_block(trans, root, buf->len,
292                                              parent_start,
293                                              root->root_key.objectid,
294                                              trans->transid, level,
295                                              search_start, empty_size);
296         }
297         if (IS_ERR(cow))
298                 return PTR_ERR(cow);
299
300         /* cow is set to blocking by btrfs_init_new_buffer */
301
302         copy_extent_buffer(cow, buf, 0, 0, cow->len);
303         btrfs_set_header_bytenr(cow, cow->start);
304         btrfs_set_header_generation(cow, trans->transid);
305         btrfs_set_header_owner(cow, root->root_key.objectid);
306         btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN);
307
308         write_extent_buffer(cow, root->fs_info->fsid,
309                             (unsigned long)btrfs_header_fsid(cow),
310                             BTRFS_FSID_SIZE);
311
312         WARN_ON(btrfs_header_generation(buf) > trans->transid);
313         if (btrfs_header_generation(buf) != trans->transid) {
314                 u32 nr_extents;
315                 ret = btrfs_inc_ref(trans, root, buf, cow, &nr_extents);
316                 if (ret)
317                         return ret;
318
319                 ret = btrfs_cache_ref(trans, root, buf, nr_extents);
320                 WARN_ON(ret);
321         } else if (btrfs_header_owner(buf) == BTRFS_TREE_RELOC_OBJECTID) {
322                 /*
323                  * There are only two places that can drop reference to
324                  * tree blocks owned by living reloc trees, one is here,
325                  * the other place is btrfs_drop_subtree. In both places,
326                  * we check reference count while tree block is locked.
327                  * Furthermore, if reference count is one, it won't get
328                  * increased by someone else.
329                  */
330                 u32 refs;
331                 ret = btrfs_lookup_extent_ref(trans, root, buf->start,
332                                               buf->len, &refs);
333                 BUG_ON(ret);
334                 if (refs == 1) {
335                         ret = btrfs_update_ref(trans, root, buf, cow,
336                                                0, nritems);
337                         clean_tree_block(trans, root, buf);
338                 } else {
339                         ret = btrfs_inc_ref(trans, root, buf, cow, NULL);
340                 }
341                 BUG_ON(ret);
342         } else {
343                 ret = btrfs_update_ref(trans, root, buf, cow, 0, nritems);
344                 if (ret)
345                         return ret;
346                 clean_tree_block(trans, root, buf);
347         }
348
349         if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
350                 ret = btrfs_reloc_tree_cache_ref(trans, root, cow, buf->start);
351                 WARN_ON(ret);
352         }
353
354         if (buf == root->node) {
355                 WARN_ON(parent && parent != buf);
356
357                 spin_lock(&root->node_lock);
358                 root->node = cow;
359                 extent_buffer_get(cow);
360                 spin_unlock(&root->node_lock);
361
362                 if (buf != root->commit_root) {
363                         btrfs_free_extent(trans, root, buf->start,
364                                           buf->len, buf->start,
365                                           root->root_key.objectid,
366                                           btrfs_header_generation(buf),
367                                           level, 1);
368                 }
369                 free_extent_buffer(buf);
370                 add_root_to_dirty_list(root);
371         } else {
372                 btrfs_set_node_blockptr(parent, parent_slot,
373                                         cow->start);
374                 WARN_ON(trans->transid == 0);
375                 btrfs_set_node_ptr_generation(parent, parent_slot,
376                                               trans->transid);
377                 btrfs_mark_buffer_dirty(parent);
378                 WARN_ON(btrfs_header_generation(parent) != trans->transid);
379                 btrfs_free_extent(trans, root, buf->start, buf->len,
380                                   parent_start, btrfs_header_owner(parent),
381                                   btrfs_header_generation(parent), level, 1);
382         }
383         if (unlock_orig)
384                 btrfs_tree_unlock(buf);
385         free_extent_buffer(buf);
386         btrfs_mark_buffer_dirty(cow);
387         *cow_ret = cow;
388         return 0;
389 }
390
391 /*
392  * cows a single block, see __btrfs_cow_block for the real work.
393  * This version of it has extra checks so that a block isn't cow'd more than
394  * once per transaction, as long as it hasn't been written yet
395  */
396 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
397                     struct btrfs_root *root, struct extent_buffer *buf,
398                     struct extent_buffer *parent, int parent_slot,
399                     struct extent_buffer **cow_ret, u64 prealloc_dest)
400 {
401         u64 search_start;
402         int ret;
403
404         if (trans->transaction != root->fs_info->running_transaction) {
405                 printk(KERN_CRIT "trans %llu running %llu\n",
406                        (unsigned long long)trans->transid,
407                        (unsigned long long)
408                        root->fs_info->running_transaction->transid);
409                 WARN_ON(1);
410         }
411         if (trans->transid != root->fs_info->generation) {
412                 printk(KERN_CRIT "trans %llu running %llu\n",
413                        (unsigned long long)trans->transid,
414                        (unsigned long long)root->fs_info->generation);
415                 WARN_ON(1);
416         }
417
418         if (btrfs_header_generation(buf) == trans->transid &&
419             btrfs_header_owner(buf) == root->root_key.objectid &&
420             !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
421                 *cow_ret = buf;
422                 WARN_ON(prealloc_dest);
423                 return 0;
424         }
425
426         search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
427
428         if (parent)
429                 btrfs_set_lock_blocking(parent);
430         btrfs_set_lock_blocking(buf);
431
432         ret = __btrfs_cow_block(trans, root, buf, parent,
433                                  parent_slot, cow_ret, search_start, 0,
434                                  prealloc_dest);
435         return ret;
436 }
437
438 /*
439  * helper function for defrag to decide if two blocks pointed to by a
440  * node are actually close by
441  */
442 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
443 {
444         if (blocknr < other && other - (blocknr + blocksize) < 32768)
445                 return 1;
446         if (blocknr > other && blocknr - (other + blocksize) < 32768)
447                 return 1;
448         return 0;
449 }
450
451 /*
452  * compare two keys in a memcmp fashion
453  */
454 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
455 {
456         struct btrfs_key k1;
457
458         btrfs_disk_key_to_cpu(&k1, disk);
459
460         if (k1.objectid > k2->objectid)
461                 return 1;
462         if (k1.objectid < k2->objectid)
463                 return -1;
464         if (k1.type > k2->type)
465                 return 1;
466         if (k1.type < k2->type)
467                 return -1;
468         if (k1.offset > k2->offset)
469                 return 1;
470         if (k1.offset < k2->offset)
471                 return -1;
472         return 0;
473 }
474
475 /*
476  * same as comp_keys only with two btrfs_key's
477  */
478 static int comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
479 {
480         if (k1->objectid > k2->objectid)
481                 return 1;
482         if (k1->objectid < k2->objectid)
483                 return -1;
484         if (k1->type > k2->type)
485                 return 1;
486         if (k1->type < k2->type)
487                 return -1;
488         if (k1->offset > k2->offset)
489                 return 1;
490         if (k1->offset < k2->offset)
491                 return -1;
492         return 0;
493 }
494
495 /*
496  * this is used by the defrag code to go through all the
497  * leaves pointed to by a node and reallocate them so that
498  * disk order is close to key order
499  */
500 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
501                        struct btrfs_root *root, struct extent_buffer *parent,
502                        int start_slot, int cache_only, u64 *last_ret,
503                        struct btrfs_key *progress)
504 {
505         struct extent_buffer *cur;
506         u64 blocknr;
507         u64 gen;
508         u64 search_start = *last_ret;
509         u64 last_block = 0;
510         u64 other;
511         u32 parent_nritems;
512         int end_slot;
513         int i;
514         int err = 0;
515         int parent_level;
516         int uptodate;
517         u32 blocksize;
518         int progress_passed = 0;
519         struct btrfs_disk_key disk_key;
520
521         parent_level = btrfs_header_level(parent);
522         if (cache_only && parent_level != 1)
523                 return 0;
524
525         if (trans->transaction != root->fs_info->running_transaction)
526                 WARN_ON(1);
527         if (trans->transid != root->fs_info->generation)
528                 WARN_ON(1);
529
530         parent_nritems = btrfs_header_nritems(parent);
531         blocksize = btrfs_level_size(root, parent_level - 1);
532         end_slot = parent_nritems;
533
534         if (parent_nritems == 1)
535                 return 0;
536
537         btrfs_set_lock_blocking(parent);
538
539         for (i = start_slot; i < end_slot; i++) {
540                 int close = 1;
541
542                 if (!parent->map_token) {
543                         map_extent_buffer(parent,
544                                         btrfs_node_key_ptr_offset(i),
545                                         sizeof(struct btrfs_key_ptr),
546                                         &parent->map_token, &parent->kaddr,
547                                         &parent->map_start, &parent->map_len,
548                                         KM_USER1);
549                 }
550                 btrfs_node_key(parent, &disk_key, i);
551                 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
552                         continue;
553
554                 progress_passed = 1;
555                 blocknr = btrfs_node_blockptr(parent, i);
556                 gen = btrfs_node_ptr_generation(parent, i);
557                 if (last_block == 0)
558                         last_block = blocknr;
559
560                 if (i > 0) {
561                         other = btrfs_node_blockptr(parent, i - 1);
562                         close = close_blocks(blocknr, other, blocksize);
563                 }
564                 if (!close && i < end_slot - 2) {
565                         other = btrfs_node_blockptr(parent, i + 1);
566                         close = close_blocks(blocknr, other, blocksize);
567                 }
568                 if (close) {
569                         last_block = blocknr;
570                         continue;
571                 }
572                 if (parent->map_token) {
573                         unmap_extent_buffer(parent, parent->map_token,
574                                             KM_USER1);
575                         parent->map_token = NULL;
576                 }
577
578                 cur = btrfs_find_tree_block(root, blocknr, blocksize);
579                 if (cur)
580                         uptodate = btrfs_buffer_uptodate(cur, gen);
581                 else
582                         uptodate = 0;
583                 if (!cur || !uptodate) {
584                         if (cache_only) {
585                                 free_extent_buffer(cur);
586                                 continue;
587                         }
588                         if (!cur) {
589                                 cur = read_tree_block(root, blocknr,
590                                                          blocksize, gen);
591                         } else if (!uptodate) {
592                                 btrfs_read_buffer(cur, gen);
593                         }
594                 }
595                 if (search_start == 0)
596                         search_start = last_block;
597
598                 btrfs_tree_lock(cur);
599                 btrfs_set_lock_blocking(cur);
600                 err = __btrfs_cow_block(trans, root, cur, parent, i,
601                                         &cur, search_start,
602                                         min(16 * blocksize,
603                                             (end_slot - i) * blocksize), 0);
604                 if (err) {
605                         btrfs_tree_unlock(cur);
606                         free_extent_buffer(cur);
607                         break;
608                 }
609                 search_start = cur->start;
610                 last_block = cur->start;
611                 *last_ret = search_start;
612                 btrfs_tree_unlock(cur);
613                 free_extent_buffer(cur);
614         }
615         if (parent->map_token) {
616                 unmap_extent_buffer(parent, parent->map_token,
617                                     KM_USER1);
618                 parent->map_token = NULL;
619         }
620         return err;
621 }
622
623 /*
624  * The leaf data grows from end-to-front in the node.
625  * this returns the address of the start of the last item,
626  * which is the stop of the leaf data stack
627  */
628 static inline unsigned int leaf_data_end(struct btrfs_root *root,
629                                          struct extent_buffer *leaf)
630 {
631         u32 nr = btrfs_header_nritems(leaf);
632         if (nr == 0)
633                 return BTRFS_LEAF_DATA_SIZE(root);
634         return btrfs_item_offset_nr(leaf, nr - 1);
635 }
636
637 /*
638  * extra debugging checks to make sure all the items in a key are
639  * well formed and in the proper order
640  */
641 static int check_node(struct btrfs_root *root, struct btrfs_path *path,
642                       int level)
643 {
644         struct extent_buffer *parent = NULL;
645         struct extent_buffer *node = path->nodes[level];
646         struct btrfs_disk_key parent_key;
647         struct btrfs_disk_key node_key;
648         int parent_slot;
649         int slot;
650         struct btrfs_key cpukey;
651         u32 nritems = btrfs_header_nritems(node);
652
653         if (path->nodes[level + 1])
654                 parent = path->nodes[level + 1];
655
656         slot = path->slots[level];
657         BUG_ON(nritems == 0);
658         if (parent) {
659                 parent_slot = path->slots[level + 1];
660                 btrfs_node_key(parent, &parent_key, parent_slot);
661                 btrfs_node_key(node, &node_key, 0);
662                 BUG_ON(memcmp(&parent_key, &node_key,
663                               sizeof(struct btrfs_disk_key)));
664                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
665                        btrfs_header_bytenr(node));
666         }
667         BUG_ON(nritems > BTRFS_NODEPTRS_PER_BLOCK(root));
668         if (slot != 0) {
669                 btrfs_node_key_to_cpu(node, &cpukey, slot - 1);
670                 btrfs_node_key(node, &node_key, slot);
671                 BUG_ON(comp_keys(&node_key, &cpukey) <= 0);
672         }
673         if (slot < nritems - 1) {
674                 btrfs_node_key_to_cpu(node, &cpukey, slot + 1);
675                 btrfs_node_key(node, &node_key, slot);
676                 BUG_ON(comp_keys(&node_key, &cpukey) >= 0);
677         }
678         return 0;
679 }
680
681 /*
682  * extra checking to make sure all the items in a leaf are
683  * well formed and in the proper order
684  */
685 static int check_leaf(struct btrfs_root *root, struct btrfs_path *path,
686                       int level)
687 {
688         struct extent_buffer *leaf = path->nodes[level];
689         struct extent_buffer *parent = NULL;
690         int parent_slot;
691         struct btrfs_key cpukey;
692         struct btrfs_disk_key parent_key;
693         struct btrfs_disk_key leaf_key;
694         int slot = path->slots[0];
695
696         u32 nritems = btrfs_header_nritems(leaf);
697
698         if (path->nodes[level + 1])
699                 parent = path->nodes[level + 1];
700
701         if (nritems == 0)
702                 return 0;
703
704         if (parent) {
705                 parent_slot = path->slots[level + 1];
706                 btrfs_node_key(parent, &parent_key, parent_slot);
707                 btrfs_item_key(leaf, &leaf_key, 0);
708
709                 BUG_ON(memcmp(&parent_key, &leaf_key,
710                        sizeof(struct btrfs_disk_key)));
711                 BUG_ON(btrfs_node_blockptr(parent, parent_slot) !=
712                        btrfs_header_bytenr(leaf));
713         }
714         if (slot != 0 && slot < nritems - 1) {
715                 btrfs_item_key(leaf, &leaf_key, slot);
716                 btrfs_item_key_to_cpu(leaf, &cpukey, slot - 1);
717                 if (comp_keys(&leaf_key, &cpukey) <= 0) {
718                         btrfs_print_leaf(root, leaf);
719                         printk(KERN_CRIT "slot %d offset bad key\n", slot);
720                         BUG_ON(1);
721                 }
722                 if (btrfs_item_offset_nr(leaf, slot - 1) !=
723                        btrfs_item_end_nr(leaf, slot)) {
724                         btrfs_print_leaf(root, leaf);
725                         printk(KERN_CRIT "slot %d offset bad\n", slot);
726                         BUG_ON(1);
727                 }
728         }
729         if (slot < nritems - 1) {
730                 btrfs_item_key(leaf, &leaf_key, slot);
731                 btrfs_item_key_to_cpu(leaf, &cpukey, slot + 1);
732                 BUG_ON(comp_keys(&leaf_key, &cpukey) >= 0);
733                 if (btrfs_item_offset_nr(leaf, slot) !=
734                         btrfs_item_end_nr(leaf, slot + 1)) {
735                         btrfs_print_leaf(root, leaf);
736                         printk(KERN_CRIT "slot %d offset bad\n", slot);
737                         BUG_ON(1);
738                 }
739         }
740         BUG_ON(btrfs_item_offset_nr(leaf, 0) +
741                btrfs_item_size_nr(leaf, 0) != BTRFS_LEAF_DATA_SIZE(root));
742         return 0;
743 }
744
745 static noinline int check_block(struct btrfs_root *root,
746                                 struct btrfs_path *path, int level)
747 {
748         return 0;
749         if (level == 0)
750                 return check_leaf(root, path, level);
751         return check_node(root, path, level);
752 }
753
754 /*
755  * search for key in the extent_buffer.  The items start at offset p,
756  * and they are item_size apart.  There are 'max' items in p.
757  *
758  * the slot in the array is returned via slot, and it points to
759  * the place where you would insert key if it is not found in
760  * the array.
761  *
762  * slot may point to max if the key is bigger than all of the keys
763  */
764 static noinline int generic_bin_search(struct extent_buffer *eb,
765                                        unsigned long p,
766                                        int item_size, struct btrfs_key *key,
767                                        int max, int *slot)
768 {
769         int low = 0;
770         int high = max;
771         int mid;
772         int ret;
773         struct btrfs_disk_key *tmp = NULL;
774         struct btrfs_disk_key unaligned;
775         unsigned long offset;
776         char *map_token = NULL;
777         char *kaddr = NULL;
778         unsigned long map_start = 0;
779         unsigned long map_len = 0;
780         int err;
781
782         while (low < high) {
783                 mid = (low + high) / 2;
784                 offset = p + mid * item_size;
785
786                 if (!map_token || offset < map_start ||
787                     (offset + sizeof(struct btrfs_disk_key)) >
788                     map_start + map_len) {
789                         if (map_token) {
790                                 unmap_extent_buffer(eb, map_token, KM_USER0);
791                                 map_token = NULL;
792                         }
793
794                         err = map_private_extent_buffer(eb, offset,
795                                                 sizeof(struct btrfs_disk_key),
796                                                 &map_token, &kaddr,
797                                                 &map_start, &map_len, KM_USER0);
798
799                         if (!err) {
800                                 tmp = (struct btrfs_disk_key *)(kaddr + offset -
801                                                         map_start);
802                         } else {
803                                 read_extent_buffer(eb, &unaligned,
804                                                    offset, sizeof(unaligned));
805                                 tmp = &unaligned;
806                         }
807
808                 } else {
809                         tmp = (struct btrfs_disk_key *)(kaddr + offset -
810                                                         map_start);
811                 }
812                 ret = comp_keys(tmp, key);
813
814                 if (ret < 0)
815                         low = mid + 1;
816                 else if (ret > 0)
817                         high = mid;
818                 else {
819                         *slot = mid;
820                         if (map_token)
821                                 unmap_extent_buffer(eb, map_token, KM_USER0);
822                         return 0;
823                 }
824         }
825         *slot = low;
826         if (map_token)
827                 unmap_extent_buffer(eb, map_token, KM_USER0);
828         return 1;
829 }
830
831 /*
832  * simple bin_search frontend that does the right thing for
833  * leaves vs nodes
834  */
835 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
836                       int level, int *slot)
837 {
838         if (level == 0) {
839                 return generic_bin_search(eb,
840                                           offsetof(struct btrfs_leaf, items),
841                                           sizeof(struct btrfs_item),
842                                           key, btrfs_header_nritems(eb),
843                                           slot);
844         } else {
845                 return generic_bin_search(eb,
846                                           offsetof(struct btrfs_node, ptrs),
847                                           sizeof(struct btrfs_key_ptr),
848                                           key, btrfs_header_nritems(eb),
849                                           slot);
850         }
851         return -1;
852 }
853
854 /* given a node and slot number, this reads the blocks it points to.  The
855  * extent buffer is returned with a reference taken (but unlocked).
856  * NULL is returned on error.
857  */
858 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
859                                    struct extent_buffer *parent, int slot)
860 {
861         int level = btrfs_header_level(parent);
862         if (slot < 0)
863                 return NULL;
864         if (slot >= btrfs_header_nritems(parent))
865                 return NULL;
866
867         BUG_ON(level == 0);
868
869         return read_tree_block(root, btrfs_node_blockptr(parent, slot),
870                        btrfs_level_size(root, level - 1),
871                        btrfs_node_ptr_generation(parent, slot));
872 }
873
874 /*
875  * node level balancing, used to make sure nodes are in proper order for
876  * item deletion.  We balance from the top down, so we have to make sure
877  * that a deletion won't leave an node completely empty later on.
878  */
879 static noinline int balance_level(struct btrfs_trans_handle *trans,
880                          struct btrfs_root *root,
881                          struct btrfs_path *path, int level)
882 {
883         struct extent_buffer *right = NULL;
884         struct extent_buffer *mid;
885         struct extent_buffer *left = NULL;
886         struct extent_buffer *parent = NULL;
887         int ret = 0;
888         int wret;
889         int pslot;
890         int orig_slot = path->slots[level];
891         int err_on_enospc = 0;
892         u64 orig_ptr;
893
894         if (level == 0)
895                 return 0;
896
897         mid = path->nodes[level];
898
899         WARN_ON(!path->locks[level]);
900         WARN_ON(btrfs_header_generation(mid) != trans->transid);
901
902         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
903
904         if (level < BTRFS_MAX_LEVEL - 1)
905                 parent = path->nodes[level + 1];
906         pslot = path->slots[level + 1];
907
908         /*
909          * deal with the case where there is only one pointer in the root
910          * by promoting the node below to a root
911          */
912         if (!parent) {
913                 struct extent_buffer *child;
914
915                 if (btrfs_header_nritems(mid) != 1)
916                         return 0;
917
918                 /* promote the child to a root */
919                 child = read_node_slot(root, mid, 0);
920                 btrfs_tree_lock(child);
921                 btrfs_set_lock_blocking(child);
922                 BUG_ON(!child);
923                 ret = btrfs_cow_block(trans, root, child, mid, 0, &child, 0);
924                 BUG_ON(ret);
925
926                 spin_lock(&root->node_lock);
927                 root->node = child;
928                 spin_unlock(&root->node_lock);
929
930                 ret = btrfs_update_extent_ref(trans, root, child->start,
931                                               mid->start, child->start,
932                                               root->root_key.objectid,
933                                               trans->transid, level - 1);
934                 BUG_ON(ret);
935
936                 add_root_to_dirty_list(root);
937                 btrfs_tree_unlock(child);
938
939                 path->locks[level] = 0;
940                 path->nodes[level] = NULL;
941                 clean_tree_block(trans, root, mid);
942                 btrfs_tree_unlock(mid);
943                 /* once for the path */
944                 free_extent_buffer(mid);
945                 ret = btrfs_free_extent(trans, root, mid->start, mid->len,
946                                         mid->start, root->root_key.objectid,
947                                         btrfs_header_generation(mid),
948                                         level, 1);
949                 /* once for the root ptr */
950                 free_extent_buffer(mid);
951                 return ret;
952         }
953         if (btrfs_header_nritems(mid) >
954             BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
955                 return 0;
956
957         if (btrfs_header_nritems(mid) < 2)
958                 err_on_enospc = 1;
959
960         left = read_node_slot(root, parent, pslot - 1);
961         if (left) {
962                 btrfs_tree_lock(left);
963                 btrfs_set_lock_blocking(left);
964                 wret = btrfs_cow_block(trans, root, left,
965                                        parent, pslot - 1, &left, 0);
966                 if (wret) {
967                         ret = wret;
968                         goto enospc;
969                 }
970         }
971         right = read_node_slot(root, parent, pslot + 1);
972         if (right) {
973                 btrfs_tree_lock(right);
974                 btrfs_set_lock_blocking(right);
975                 wret = btrfs_cow_block(trans, root, right,
976                                        parent, pslot + 1, &right, 0);
977                 if (wret) {
978                         ret = wret;
979                         goto enospc;
980                 }
981         }
982
983         /* first, try to make some room in the middle buffer */
984         if (left) {
985                 orig_slot += btrfs_header_nritems(left);
986                 wret = push_node_left(trans, root, left, mid, 1);
987                 if (wret < 0)
988                         ret = wret;
989                 if (btrfs_header_nritems(mid) < 2)
990                         err_on_enospc = 1;
991         }
992
993         /*
994          * then try to empty the right most buffer into the middle
995          */
996         if (right) {
997                 wret = push_node_left(trans, root, mid, right, 1);
998                 if (wret < 0 && wret != -ENOSPC)
999                         ret = wret;
1000                 if (btrfs_header_nritems(right) == 0) {
1001                         u64 bytenr = right->start;
1002                         u64 generation = btrfs_header_generation(parent);
1003                         u32 blocksize = right->len;
1004
1005                         clean_tree_block(trans, root, right);
1006                         btrfs_tree_unlock(right);
1007                         free_extent_buffer(right);
1008                         right = NULL;
1009                         wret = del_ptr(trans, root, path, level + 1, pslot +
1010                                        1);
1011                         if (wret)
1012                                 ret = wret;
1013                         wret = btrfs_free_extent(trans, root, bytenr,
1014                                                  blocksize, parent->start,
1015                                                  btrfs_header_owner(parent),
1016                                                  generation, level, 1);
1017                         if (wret)
1018                                 ret = wret;
1019                 } else {
1020                         struct btrfs_disk_key right_key;
1021                         btrfs_node_key(right, &right_key, 0);
1022                         btrfs_set_node_key(parent, &right_key, pslot + 1);
1023                         btrfs_mark_buffer_dirty(parent);
1024                 }
1025         }
1026         if (btrfs_header_nritems(mid) == 1) {
1027                 /*
1028                  * we're not allowed to leave a node with one item in the
1029                  * tree during a delete.  A deletion from lower in the tree
1030                  * could try to delete the only pointer in this node.
1031                  * So, pull some keys from the left.
1032                  * There has to be a left pointer at this point because
1033                  * otherwise we would have pulled some pointers from the
1034                  * right
1035                  */
1036                 BUG_ON(!left);
1037                 wret = balance_node_right(trans, root, mid, left);
1038                 if (wret < 0) {
1039                         ret = wret;
1040                         goto enospc;
1041                 }
1042                 if (wret == 1) {
1043                         wret = push_node_left(trans, root, left, mid, 1);
1044                         if (wret < 0)
1045                                 ret = wret;
1046                 }
1047                 BUG_ON(wret == 1);
1048         }
1049         if (btrfs_header_nritems(mid) == 0) {
1050                 /* we've managed to empty the middle node, drop it */
1051                 u64 root_gen = btrfs_header_generation(parent);
1052                 u64 bytenr = mid->start;
1053                 u32 blocksize = mid->len;
1054
1055                 clean_tree_block(trans, root, mid);
1056                 btrfs_tree_unlock(mid);
1057                 free_extent_buffer(mid);
1058                 mid = NULL;
1059                 wret = del_ptr(trans, root, path, level + 1, pslot);
1060                 if (wret)
1061                         ret = wret;
1062                 wret = btrfs_free_extent(trans, root, bytenr, blocksize,
1063                                          parent->start,
1064                                          btrfs_header_owner(parent),
1065                                          root_gen, level, 1);
1066                 if (wret)
1067                         ret = wret;
1068         } else {
1069                 /* update the parent key to reflect our changes */
1070                 struct btrfs_disk_key mid_key;
1071                 btrfs_node_key(mid, &mid_key, 0);
1072                 btrfs_set_node_key(parent, &mid_key, pslot);
1073                 btrfs_mark_buffer_dirty(parent);
1074         }
1075
1076         /* update the path */
1077         if (left) {
1078                 if (btrfs_header_nritems(left) > orig_slot) {
1079                         extent_buffer_get(left);
1080                         /* left was locked after cow */
1081                         path->nodes[level] = left;
1082                         path->slots[level + 1] -= 1;
1083                         path->slots[level] = orig_slot;
1084                         if (mid) {
1085                                 btrfs_tree_unlock(mid);
1086                                 free_extent_buffer(mid);
1087                         }
1088                 } else {
1089                         orig_slot -= btrfs_header_nritems(left);
1090                         path->slots[level] = orig_slot;
1091                 }
1092         }
1093         /* double check we haven't messed things up */
1094         check_block(root, path, level);
1095         if (orig_ptr !=
1096             btrfs_node_blockptr(path->nodes[level], path->slots[level]))
1097                 BUG();
1098 enospc:
1099         if (right) {
1100                 btrfs_tree_unlock(right);
1101                 free_extent_buffer(right);
1102         }
1103         if (left) {
1104                 if (path->nodes[level] != left)
1105                         btrfs_tree_unlock(left);
1106                 free_extent_buffer(left);
1107         }
1108         return ret;
1109 }
1110
1111 /* Node balancing for insertion.  Here we only split or push nodes around
1112  * when they are completely full.  This is also done top down, so we
1113  * have to be pessimistic.
1114  */
1115 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
1116                                           struct btrfs_root *root,
1117                                           struct btrfs_path *path, int level)
1118 {
1119         struct extent_buffer *right = NULL;
1120         struct extent_buffer *mid;
1121         struct extent_buffer *left = NULL;
1122         struct extent_buffer *parent = NULL;
1123         int ret = 0;
1124         int wret;
1125         int pslot;
1126         int orig_slot = path->slots[level];
1127         u64 orig_ptr;
1128
1129         if (level == 0)
1130                 return 1;
1131
1132         mid = path->nodes[level];
1133         WARN_ON(btrfs_header_generation(mid) != trans->transid);
1134         orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1135
1136         if (level < BTRFS_MAX_LEVEL - 1)
1137                 parent = path->nodes[level + 1];
1138         pslot = path->slots[level + 1];
1139
1140         if (!parent)
1141                 return 1;
1142
1143         left = read_node_slot(root, parent, pslot - 1);
1144
1145         /* first, try to make some room in the middle buffer */
1146         if (left) {
1147                 u32 left_nr;
1148
1149                 btrfs_tree_lock(left);
1150                 btrfs_set_lock_blocking(left);
1151
1152                 left_nr = btrfs_header_nritems(left);
1153                 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1154                         wret = 1;
1155                 } else {
1156                         ret = btrfs_cow_block(trans, root, left, parent,
1157                                               pslot - 1, &left, 0);
1158                         if (ret)
1159                                 wret = 1;
1160                         else {
1161                                 wret = push_node_left(trans, root,
1162                                                       left, mid, 0);
1163                         }
1164                 }
1165                 if (wret < 0)
1166                         ret = wret;
1167                 if (wret == 0) {
1168                         struct btrfs_disk_key disk_key;
1169                         orig_slot += left_nr;
1170                         btrfs_node_key(mid, &disk_key, 0);
1171                         btrfs_set_node_key(parent, &disk_key, pslot);
1172                         btrfs_mark_buffer_dirty(parent);
1173                         if (btrfs_header_nritems(left) > orig_slot) {
1174                                 path->nodes[level] = left;
1175                                 path->slots[level + 1] -= 1;
1176                                 path->slots[level] = orig_slot;
1177                                 btrfs_tree_unlock(mid);
1178                                 free_extent_buffer(mid);
1179                         } else {
1180                                 orig_slot -=
1181                                         btrfs_header_nritems(left);
1182                                 path->slots[level] = orig_slot;
1183                                 btrfs_tree_unlock(left);
1184                                 free_extent_buffer(left);
1185                         }
1186                         return 0;
1187                 }
1188                 btrfs_tree_unlock(left);
1189                 free_extent_buffer(left);
1190         }
1191         right = read_node_slot(root, parent, pslot + 1);
1192
1193         /*
1194          * then try to empty the right most buffer into the middle
1195          */
1196         if (right) {
1197                 u32 right_nr;
1198
1199                 btrfs_tree_lock(right);
1200                 btrfs_set_lock_blocking(right);
1201
1202                 right_nr = btrfs_header_nritems(right);
1203                 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
1204                         wret = 1;
1205                 } else {
1206                         ret = btrfs_cow_block(trans, root, right,
1207                                               parent, pslot + 1,
1208                                               &right, 0);
1209                         if (ret)
1210                                 wret = 1;
1211                         else {
1212                                 wret = balance_node_right(trans, root,
1213                                                           right, mid);
1214                         }
1215                 }
1216                 if (wret < 0)
1217                         ret = wret;
1218                 if (wret == 0) {
1219                         struct btrfs_disk_key disk_key;
1220
1221                         btrfs_node_key(right, &disk_key, 0);
1222                         btrfs_set_node_key(parent, &disk_key, pslot + 1);
1223                         btrfs_mark_buffer_dirty(parent);
1224
1225                         if (btrfs_header_nritems(mid) <= orig_slot) {
1226                                 path->nodes[level] = right;
1227                                 path->slots[level + 1] += 1;
1228                                 path->slots[level] = orig_slot -
1229                                         btrfs_header_nritems(mid);
1230                                 btrfs_tree_unlock(mid);
1231                                 free_extent_buffer(mid);
1232                         } else {
1233                                 btrfs_tree_unlock(right);
1234                                 free_extent_buffer(right);
1235                         }
1236                         return 0;
1237                 }
1238                 btrfs_tree_unlock(right);
1239                 free_extent_buffer(right);
1240         }
1241         return 1;
1242 }
1243
1244 /*
1245  * readahead one full node of leaves, finding things that are close
1246  * to the block in 'slot', and triggering ra on them.
1247  */
1248 static noinline void reada_for_search(struct btrfs_root *root,
1249                                       struct btrfs_path *path,
1250                                       int level, int slot, u64 objectid)
1251 {
1252         struct extent_buffer *node;
1253         struct btrfs_disk_key disk_key;
1254         u32 nritems;
1255         u64 search;
1256         u64 target;
1257         u64 nread = 0;
1258         int direction = path->reada;
1259         struct extent_buffer *eb;
1260         u32 nr;
1261         u32 blocksize;
1262         u32 nscan = 0;
1263
1264         if (level != 1)
1265                 return;
1266
1267         if (!path->nodes[level])
1268                 return;
1269
1270         node = path->nodes[level];
1271
1272         search = btrfs_node_blockptr(node, slot);
1273         blocksize = btrfs_level_size(root, level - 1);
1274         eb = btrfs_find_tree_block(root, search, blocksize);
1275         if (eb) {
1276                 free_extent_buffer(eb);
1277                 return;
1278         }
1279
1280         target = search;
1281
1282         nritems = btrfs_header_nritems(node);
1283         nr = slot;
1284         while (1) {
1285                 if (direction < 0) {
1286                         if (nr == 0)
1287                                 break;
1288                         nr--;
1289                 } else if (direction > 0) {
1290                         nr++;
1291                         if (nr >= nritems)
1292                                 break;
1293                 }
1294                 if (path->reada < 0 && objectid) {
1295                         btrfs_node_key(node, &disk_key, nr);
1296                         if (btrfs_disk_key_objectid(&disk_key) != objectid)
1297                                 break;
1298                 }
1299                 search = btrfs_node_blockptr(node, nr);
1300                 if ((search <= target && target - search <= 65536) ||
1301                     (search > target && search - target <= 65536)) {
1302                         readahead_tree_block(root, search, blocksize,
1303                                      btrfs_node_ptr_generation(node, nr));
1304                         nread += blocksize;
1305                 }
1306                 nscan++;
1307                 if ((nread > 65536 || nscan > 32))
1308                         break;
1309         }
1310 }
1311
1312 /*
1313  * returns -EAGAIN if it had to drop the path, or zero if everything was in
1314  * cache
1315  */
1316 static noinline int reada_for_balance(struct btrfs_root *root,
1317                                       struct btrfs_path *path, int level)
1318 {
1319         int slot;
1320         int nritems;
1321         struct extent_buffer *parent;
1322         struct extent_buffer *eb;
1323         u64 gen;
1324         u64 block1 = 0;
1325         u64 block2 = 0;
1326         int ret = 0;
1327         int blocksize;
1328
1329         parent = path->nodes[level - 1];
1330         if (!parent)
1331                 return 0;
1332
1333         nritems = btrfs_header_nritems(parent);
1334         slot = path->slots[level];
1335         blocksize = btrfs_level_size(root, level);
1336
1337         if (slot > 0) {
1338                 block1 = btrfs_node_blockptr(parent, slot - 1);
1339                 gen = btrfs_node_ptr_generation(parent, slot - 1);
1340                 eb = btrfs_find_tree_block(root, block1, blocksize);
1341                 if (eb && btrfs_buffer_uptodate(eb, gen))
1342                         block1 = 0;
1343                 free_extent_buffer(eb);
1344         }
1345         if (slot < nritems) {
1346                 block2 = btrfs_node_blockptr(parent, slot + 1);
1347                 gen = btrfs_node_ptr_generation(parent, slot + 1);
1348                 eb = btrfs_find_tree_block(root, block2, blocksize);
1349                 if (eb && btrfs_buffer_uptodate(eb, gen))
1350                         block2 = 0;
1351                 free_extent_buffer(eb);
1352         }
1353         if (block1 || block2) {
1354                 ret = -EAGAIN;
1355                 btrfs_release_path(root, path);
1356                 if (block1)
1357                         readahead_tree_block(root, block1, blocksize, 0);
1358                 if (block2)
1359                         readahead_tree_block(root, block2, blocksize, 0);
1360
1361                 if (block1) {
1362                         eb = read_tree_block(root, block1, blocksize, 0);
1363                         free_extent_buffer(eb);
1364                 }
1365                 if (block1) {
1366                         eb = read_tree_block(root, block2, blocksize, 0);
1367                         free_extent_buffer(eb);
1368                 }
1369         }
1370         return ret;
1371 }
1372
1373
1374 /*
1375  * when we walk down the tree, it is usually safe to unlock the higher layers
1376  * in the tree.  The exceptions are when our path goes through slot 0, because
1377  * operations on the tree might require changing key pointers higher up in the
1378  * tree.
1379  *
1380  * callers might also have set path->keep_locks, which tells this code to keep
1381  * the lock if the path points to the last slot in the block.  This is part of
1382  * walking through the tree, and selecting the next slot in the higher block.
1383  *
1384  * lowest_unlock sets the lowest level in the tree we're allowed to unlock.  so
1385  * if lowest_unlock is 1, level 0 won't be unlocked
1386  */
1387 static noinline void unlock_up(struct btrfs_path *path, int level,
1388                                int lowest_unlock)
1389 {
1390         int i;
1391         int skip_level = level;
1392         int no_skips = 0;
1393         struct extent_buffer *t;
1394
1395         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1396                 if (!path->nodes[i])
1397                         break;
1398                 if (!path->locks[i])
1399                         break;
1400                 if (!no_skips && path->slots[i] == 0) {
1401                         skip_level = i + 1;
1402                         continue;
1403                 }
1404                 if (!no_skips && path->keep_locks) {
1405                         u32 nritems;
1406                         t = path->nodes[i];
1407                         nritems = btrfs_header_nritems(t);
1408                         if (nritems < 1 || path->slots[i] >= nritems - 1) {
1409                                 skip_level = i + 1;
1410                                 continue;
1411                         }
1412                 }
1413                 if (skip_level < i && i >= lowest_unlock)
1414                         no_skips = 1;
1415
1416                 t = path->nodes[i];
1417                 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
1418                         btrfs_tree_unlock(t);
1419                         path->locks[i] = 0;
1420                 }
1421         }
1422 }
1423
1424 /*
1425  * This releases any locks held in the path starting at level and
1426  * going all the way up to the root.
1427  *
1428  * btrfs_search_slot will keep the lock held on higher nodes in a few
1429  * corner cases, such as COW of the block at slot zero in the node.  This
1430  * ignores those rules, and it should only be called when there are no
1431  * more updates to be done higher up in the tree.
1432  */
1433 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
1434 {
1435         int i;
1436
1437         if (path->keep_locks || path->lowest_level)
1438                 return;
1439
1440         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1441                 if (!path->nodes[i])
1442                         continue;
1443                 if (!path->locks[i])
1444                         continue;
1445                 btrfs_tree_unlock(path->nodes[i]);
1446                 path->locks[i] = 0;
1447         }
1448 }
1449
1450 /*
1451  * look for key in the tree.  path is filled in with nodes along the way
1452  * if key is found, we return zero and you can find the item in the leaf
1453  * level of the path (level 0)
1454  *
1455  * If the key isn't found, the path points to the slot where it should
1456  * be inserted, and 1 is returned.  If there are other errors during the
1457  * search a negative error number is returned.
1458  *
1459  * if ins_len > 0, nodes and leaves will be split as we walk down the
1460  * tree.  if ins_len < 0, nodes will be merged as we walk down the tree (if
1461  * possible)
1462  */
1463 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
1464                       *root, struct btrfs_key *key, struct btrfs_path *p, int
1465                       ins_len, int cow)
1466 {
1467         struct extent_buffer *b;
1468         struct extent_buffer *tmp;
1469         int slot;
1470         int ret;
1471         int level;
1472         int should_reada = p->reada;
1473         int lowest_unlock = 1;
1474         int blocksize;
1475         u8 lowest_level = 0;
1476         u64 blocknr;
1477         u64 gen;
1478         struct btrfs_key prealloc_block;
1479
1480         lowest_level = p->lowest_level;
1481         WARN_ON(lowest_level && ins_len > 0);
1482         WARN_ON(p->nodes[0] != NULL);
1483
1484         if (ins_len < 0)
1485                 lowest_unlock = 2;
1486
1487         prealloc_block.objectid = 0;
1488
1489 again:
1490         if (p->skip_locking)
1491                 b = btrfs_root_node(root);
1492         else
1493                 b = btrfs_lock_root_node(root);
1494
1495         while (b) {
1496                 level = btrfs_header_level(b);
1497
1498                 /*
1499                  * setup the path here so we can release it under lock
1500                  * contention with the cow code
1501                  */
1502                 p->nodes[level] = b;
1503                 if (!p->skip_locking)
1504                         p->locks[level] = 1;
1505
1506                 if (cow) {
1507                         int wret;
1508
1509                         /* is a cow on this block not required */
1510                         if (btrfs_header_generation(b) == trans->transid &&
1511                             btrfs_header_owner(b) == root->root_key.objectid &&
1512                             !btrfs_header_flag(b, BTRFS_HEADER_FLAG_WRITTEN)) {
1513                                 goto cow_done;
1514                         }
1515
1516                         /* ok, we have to cow, is our old prealloc the right
1517                          * size?
1518                          */
1519                         if (prealloc_block.objectid &&
1520                             prealloc_block.offset != b->len) {
1521                                 btrfs_set_path_blocking(p);
1522                                 btrfs_free_reserved_extent(root,
1523                                            prealloc_block.objectid,
1524                                            prealloc_block.offset);
1525                                 prealloc_block.objectid = 0;
1526                         }
1527
1528                         /*
1529                          * for higher level blocks, try not to allocate blocks
1530                          * with the block and the parent locks held.
1531                          */
1532                         if (level > 1 && !prealloc_block.objectid &&
1533                             btrfs_path_lock_waiting(p, level)) {
1534                                 u32 size = b->len;
1535                                 u64 hint = b->start;
1536
1537                                 btrfs_release_path(root, p);
1538                                 ret = btrfs_reserve_extent(trans, root,
1539                                                            size, size, 0,
1540                                                            hint, (u64)-1,
1541                                                            &prealloc_block, 0);
1542                                 BUG_ON(ret);
1543                                 goto again;
1544                         }
1545
1546                         btrfs_set_path_blocking(p);
1547
1548                         wret = btrfs_cow_block(trans, root, b,
1549                                                p->nodes[level + 1],
1550                                                p->slots[level + 1],
1551                                                &b, prealloc_block.objectid);
1552                         prealloc_block.objectid = 0;
1553                         if (wret) {
1554                                 free_extent_buffer(b);
1555                                 ret = wret;
1556                                 goto done;
1557                         }
1558                 }
1559 cow_done:
1560                 BUG_ON(!cow && ins_len);
1561                 if (level != btrfs_header_level(b))
1562                         WARN_ON(1);
1563                 level = btrfs_header_level(b);
1564
1565                 p->nodes[level] = b;
1566                 if (!p->skip_locking)
1567                         p->locks[level] = 1;
1568
1569                 btrfs_clear_path_blocking(p);
1570
1571                 /*
1572                  * we have a lock on b and as long as we aren't changing
1573                  * the tree, there is no way to for the items in b to change.
1574                  * It is safe to drop the lock on our parent before we
1575                  * go through the expensive btree search on b.
1576                  *
1577                  * If cow is true, then we might be changing slot zero,
1578                  * which may require changing the parent.  So, we can't
1579                  * drop the lock until after we know which slot we're
1580                  * operating on.
1581                  */
1582                 if (!cow)
1583                         btrfs_unlock_up_safe(p, level + 1);
1584
1585                 ret = check_block(root, p, level);
1586                 if (ret) {
1587                         ret = -1;
1588                         goto done;
1589                 }
1590
1591                 ret = bin_search(b, key, level, &slot);
1592
1593                 if (level != 0) {
1594                         if (ret && slot > 0)
1595                                 slot -= 1;
1596                         p->slots[level] = slot;
1597                         if ((p->search_for_split || ins_len > 0) &&
1598                             btrfs_header_nritems(b) >=
1599                             BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
1600                                 int sret;
1601
1602                                 sret = reada_for_balance(root, p, level);
1603                                 if (sret)
1604                                         goto again;
1605
1606                                 btrfs_set_path_blocking(p);
1607                                 sret = split_node(trans, root, p, level);
1608                                 btrfs_clear_path_blocking(p);
1609
1610                                 BUG_ON(sret > 0);
1611                                 if (sret) {
1612                                         ret = sret;
1613                                         goto done;
1614                                 }
1615                                 b = p->nodes[level];
1616                                 slot = p->slots[level];
1617                         } else if (ins_len < 0) {
1618                                 int sret;
1619
1620                                 sret = reada_for_balance(root, p, level);
1621                                 if (sret)
1622                                         goto again;
1623
1624                                 btrfs_set_path_blocking(p);
1625                                 sret = balance_level(trans, root, p, level);
1626                                 btrfs_clear_path_blocking(p);
1627
1628                                 if (sret) {
1629                                         ret = sret;
1630                                         goto done;
1631                                 }
1632                                 b = p->nodes[level];
1633                                 if (!b) {
1634                                         btrfs_release_path(NULL, p);
1635                                         goto again;
1636                                 }
1637                                 slot = p->slots[level];
1638                                 BUG_ON(btrfs_header_nritems(b) == 1);
1639                         }
1640                         unlock_up(p, level, lowest_unlock);
1641
1642                         /* this is only true while dropping a snapshot */
1643                         if (level == lowest_level) {
1644                                 ret = 0;
1645                                 goto done;
1646                         }
1647
1648                         blocknr = btrfs_node_blockptr(b, slot);
1649                         gen = btrfs_node_ptr_generation(b, slot);
1650                         blocksize = btrfs_level_size(root, level - 1);
1651
1652                         tmp = btrfs_find_tree_block(root, blocknr, blocksize);
1653                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
1654                                 b = tmp;
1655                         } else {
1656                                 /*
1657                                  * reduce lock contention at high levels
1658                                  * of the btree by dropping locks before
1659                                  * we read.
1660                                  */
1661                                 if (level > 0) {
1662                                         btrfs_release_path(NULL, p);
1663                                         if (tmp)
1664                                                 free_extent_buffer(tmp);
1665                                         if (should_reada)
1666                                                 reada_for_search(root, p,
1667                                                                  level, slot,
1668                                                                  key->objectid);
1669
1670                                         tmp = read_tree_block(root, blocknr,
1671                                                          blocksize, gen);
1672                                         if (tmp)
1673                                                 free_extent_buffer(tmp);
1674                                         goto again;
1675                                 } else {
1676                                         btrfs_set_path_blocking(p);
1677                                         if (tmp)
1678                                                 free_extent_buffer(tmp);
1679                                         if (should_reada)
1680                                                 reada_for_search(root, p,
1681                                                                  level, slot,
1682                                                                  key->objectid);
1683                                         b = read_node_slot(root, b, slot);
1684                                 }
1685                         }
1686                         if (!p->skip_locking) {
1687                                 int lret;
1688
1689                                 btrfs_clear_path_blocking(p);
1690                                 lret = btrfs_try_spin_lock(b);
1691
1692                                 if (!lret) {
1693                                         btrfs_set_path_blocking(p);
1694                                         btrfs_tree_lock(b);
1695                                         btrfs_clear_path_blocking(p);
1696                                 }
1697                         }
1698                 } else {
1699                         p->slots[level] = slot;
1700                         if (ins_len > 0 &&
1701                             btrfs_leaf_free_space(root, b) < ins_len) {
1702                                 int sret;
1703
1704                                 btrfs_set_path_blocking(p);
1705                                 sret = split_leaf(trans, root, key,
1706                                                       p, ins_len, ret == 0);
1707                                 btrfs_clear_path_blocking(p);
1708
1709                                 BUG_ON(sret > 0);
1710                                 if (sret) {
1711                                         ret = sret;
1712                                         goto done;
1713                                 }
1714                         }
1715                         if (!p->search_for_split)
1716                                 unlock_up(p, level, lowest_unlock);
1717                         goto done;
1718                 }
1719         }
1720         ret = 1;
1721 done:
1722         /*
1723          * we don't really know what they plan on doing with the path
1724          * from here on, so for now just mark it as blocking
1725          */
1726         btrfs_set_path_blocking(p);
1727         if (prealloc_block.objectid) {
1728                 btrfs_free_reserved_extent(root,
1729                            prealloc_block.objectid,
1730                            prealloc_block.offset);
1731         }
1732         return ret;
1733 }
1734
1735 int btrfs_merge_path(struct btrfs_trans_handle *trans,
1736                      struct btrfs_root *root,
1737                      struct btrfs_key *node_keys,
1738                      u64 *nodes, int lowest_level)
1739 {
1740         struct extent_buffer *eb;
1741         struct extent_buffer *parent;
1742         struct btrfs_key key;
1743         u64 bytenr;
1744         u64 generation;
1745         u32 blocksize;
1746         int level;
1747         int slot;
1748         int key_match;
1749         int ret;
1750
1751         eb = btrfs_lock_root_node(root);
1752         ret = btrfs_cow_block(trans, root, eb, NULL, 0, &eb, 0);
1753         BUG_ON(ret);
1754
1755         btrfs_set_lock_blocking(eb);
1756
1757         parent = eb;
1758         while (1) {
1759                 level = btrfs_header_level(parent);
1760                 if (level == 0 || level <= lowest_level)
1761                         break;
1762
1763                 ret = bin_search(parent, &node_keys[lowest_level], level,
1764                                  &slot);
1765                 if (ret && slot > 0)
1766                         slot--;
1767
1768                 bytenr = btrfs_node_blockptr(parent, slot);
1769                 if (nodes[level - 1] == bytenr)
1770                         break;
1771
1772                 blocksize = btrfs_level_size(root, level - 1);
1773                 generation = btrfs_node_ptr_generation(parent, slot);
1774                 btrfs_node_key_to_cpu(eb, &key, slot);
1775                 key_match = !memcmp(&key, &node_keys[level - 1], sizeof(key));
1776
1777                 if (generation == trans->transid) {
1778                         eb = read_tree_block(root, bytenr, blocksize,
1779                                              generation);
1780                         btrfs_tree_lock(eb);
1781                         btrfs_set_lock_blocking(eb);
1782                 }
1783
1784                 /*
1785                  * if node keys match and node pointer hasn't been modified
1786                  * in the running transaction, we can merge the path. for
1787                  * blocks owened by reloc trees, the node pointer check is
1788                  * skipped, this is because these blocks are fully controlled
1789                  * by the space balance code, no one else can modify them.
1790                  */
1791                 if (!nodes[level - 1] || !key_match ||
1792                     (generation == trans->transid &&
1793                      btrfs_header_owner(eb) != BTRFS_TREE_RELOC_OBJECTID)) {
1794                         if (level == 1 || level == lowest_level + 1) {
1795                                 if (generation == trans->transid) {
1796                                         btrfs_tree_unlock(eb);
1797                                         free_extent_buffer(eb);
1798                                 }
1799                                 break;
1800                         }
1801
1802                         if (generation != trans->transid) {
1803                                 eb = read_tree_block(root, bytenr, blocksize,
1804                                                 generation);
1805                                 btrfs_tree_lock(eb);
1806                                 btrfs_set_lock_blocking(eb);
1807                         }
1808
1809                         ret = btrfs_cow_block(trans, root, eb, parent, slot,
1810                                               &eb, 0);
1811                         BUG_ON(ret);
1812
1813                         if (root->root_key.objectid ==
1814                             BTRFS_TREE_RELOC_OBJECTID) {
1815                                 if (!nodes[level - 1]) {
1816                                         nodes[level - 1] = eb->start;
1817                                         memcpy(&node_keys[level - 1], &key,
1818                                                sizeof(node_keys[0]));
1819                                 } else {
1820                                         WARN_ON(1);
1821                                 }
1822                         }
1823
1824                         btrfs_tree_unlock(parent);
1825                         free_extent_buffer(parent);
1826                         parent = eb;
1827                         continue;
1828                 }
1829
1830                 btrfs_set_node_blockptr(parent, slot, nodes[level - 1]);
1831                 btrfs_set_node_ptr_generation(parent, slot, trans->transid);
1832                 btrfs_mark_buffer_dirty(parent);
1833
1834                 ret = btrfs_inc_extent_ref(trans, root,
1835                                         nodes[level - 1],
1836                                         blocksize, parent->start,
1837                                         btrfs_header_owner(parent),
1838                                         btrfs_header_generation(parent),
1839                                         level - 1);
1840                 BUG_ON(ret);
1841
1842                 /*
1843                  * If the block was created in the running transaction,
1844                  * it's possible this is the last reference to it, so we
1845                  * should drop the subtree.
1846                  */
1847                 if (generation == trans->transid) {
1848                         ret = btrfs_drop_subtree(trans, root, eb, parent);
1849                         BUG_ON(ret);
1850                         btrfs_tree_unlock(eb);
1851                         free_extent_buffer(eb);
1852                 } else {
1853                         ret = btrfs_free_extent(trans, root, bytenr,
1854                                         blocksize, parent->start,
1855                                         btrfs_header_owner(parent),
1856                                         btrfs_header_generation(parent),
1857                                         level - 1, 1);
1858                         BUG_ON(ret);
1859                 }
1860                 break;
1861         }
1862         btrfs_tree_unlock(parent);
1863         free_extent_buffer(parent);
1864         return 0;
1865 }
1866
1867 /*
1868  * adjust the pointers going up the tree, starting at level
1869  * making sure the right key of each node is points to 'key'.
1870  * This is used after shifting pointers to the left, so it stops
1871  * fixing up pointers when a given leaf/node is not in slot 0 of the
1872  * higher levels
1873  *
1874  * If this fails to write a tree block, it returns -1, but continues
1875  * fixing up the blocks in ram so the tree is consistent.
1876  */
1877 static int fixup_low_keys(struct btrfs_trans_handle *trans,
1878                           struct btrfs_root *root, struct btrfs_path *path,
1879                           struct btrfs_disk_key *key, int level)
1880 {
1881         int i;
1882         int ret = 0;
1883         struct extent_buffer *t;
1884
1885         for (i = level; i < BTRFS_MAX_LEVEL; i++) {
1886                 int tslot = path->slots[i];
1887                 if (!path->nodes[i])
1888                         break;
1889                 t = path->nodes[i];
1890                 btrfs_set_node_key(t, key, tslot);
1891                 btrfs_mark_buffer_dirty(path->nodes[i]);
1892                 if (tslot != 0)
1893                         break;
1894         }
1895         return ret;
1896 }
1897
1898 /*
1899  * update item key.
1900  *
1901  * This function isn't completely safe. It's the caller's responsibility
1902  * that the new key won't break the order
1903  */
1904 int btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
1905                             struct btrfs_root *root, struct btrfs_path *path,
1906                             struct btrfs_key *new_key)
1907 {
1908         struct btrfs_disk_key disk_key;
1909         struct extent_buffer *eb;
1910         int slot;
1911
1912         eb = path->nodes[0];
1913         slot = path->slots[0];
1914         if (slot > 0) {
1915                 btrfs_item_key(eb, &disk_key, slot - 1);
1916                 if (comp_keys(&disk_key, new_key) >= 0)
1917                         return -1;
1918         }
1919         if (slot < btrfs_header_nritems(eb) - 1) {
1920                 btrfs_item_key(eb, &disk_key, slot + 1);
1921                 if (comp_keys(&disk_key, new_key) <= 0)
1922                         return -1;
1923         }
1924
1925         btrfs_cpu_key_to_disk(&disk_key, new_key);
1926         btrfs_set_item_key(eb, &disk_key, slot);
1927         btrfs_mark_buffer_dirty(eb);
1928         if (slot == 0)
1929                 fixup_low_keys(trans, root, path, &disk_key, 1);
1930         return 0;
1931 }
1932
1933 /*
1934  * try to push data from one node into the next node left in the
1935  * tree.
1936  *
1937  * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
1938  * error, and > 0 if there was no room in the left hand block.
1939  */
1940 static int push_node_left(struct btrfs_trans_handle *trans,
1941                           struct btrfs_root *root, struct extent_buffer *dst,
1942                           struct extent_buffer *src, int empty)
1943 {
1944         int push_items = 0;
1945         int src_nritems;
1946         int dst_nritems;
1947         int ret = 0;
1948
1949         src_nritems = btrfs_header_nritems(src);
1950         dst_nritems = btrfs_header_nritems(dst);
1951         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
1952         WARN_ON(btrfs_header_generation(src) != trans->transid);
1953         WARN_ON(btrfs_header_generation(dst) != trans->transid);
1954
1955         if (!empty && src_nritems <= 8)
1956                 return 1;
1957
1958         if (push_items <= 0)
1959                 return 1;
1960
1961         if (empty) {
1962                 push_items = min(src_nritems, push_items);
1963                 if (push_items < src_nritems) {
1964                         /* leave at least 8 pointers in the node if
1965                          * we aren't going to empty it
1966                          */
1967                         if (src_nritems - push_items < 8) {
1968                                 if (push_items <= 8)
1969                                         return 1;
1970                                 push_items -= 8;
1971                         }
1972                 }
1973         } else
1974                 push_items = min(src_nritems - 8, push_items);
1975
1976         copy_extent_buffer(dst, src,
1977                            btrfs_node_key_ptr_offset(dst_nritems),
1978                            btrfs_node_key_ptr_offset(0),
1979                            push_items * sizeof(struct btrfs_key_ptr));
1980
1981         if (push_items < src_nritems) {
1982                 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
1983                                       btrfs_node_key_ptr_offset(push_items),
1984                                       (src_nritems - push_items) *
1985                                       sizeof(struct btrfs_key_ptr));
1986         }
1987         btrfs_set_header_nritems(src, src_nritems - push_items);
1988         btrfs_set_header_nritems(dst, dst_nritems + push_items);
1989         btrfs_mark_buffer_dirty(src);
1990         btrfs_mark_buffer_dirty(dst);
1991
1992         ret = btrfs_update_ref(trans, root, src, dst, dst_nritems, push_items);
1993         BUG_ON(ret);
1994
1995         return ret;
1996 }
1997
1998 /*
1999  * try to push data from one node into the next node right in the
2000  * tree.
2001  *
2002  * returns 0 if some ptrs were pushed, < 0 if there was some horrible
2003  * error, and > 0 if there was no room in the right hand block.
2004  *
2005  * this will  only push up to 1/2 the contents of the left node over
2006  */
2007 static int balance_node_right(struct btrfs_trans_handle *trans,
2008                               struct btrfs_root *root,
2009                               struct extent_buffer *dst,
2010                               struct extent_buffer *src)
2011 {
2012         int push_items = 0;
2013         int max_push;
2014         int src_nritems;
2015         int dst_nritems;
2016         int ret = 0;
2017
2018         WARN_ON(btrfs_header_generation(src) != trans->transid);
2019         WARN_ON(btrfs_header_generation(dst) != trans->transid);
2020
2021         src_nritems = btrfs_header_nritems(src);
2022         dst_nritems = btrfs_header_nritems(dst);
2023         push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
2024         if (push_items <= 0)
2025                 return 1;
2026
2027         if (src_nritems < 4)
2028                 return 1;
2029
2030         max_push = src_nritems / 2 + 1;
2031         /* don't try to empty the node */
2032         if (max_push >= src_nritems)
2033                 return 1;
2034
2035         if (max_push < push_items)
2036                 push_items = max_push;
2037
2038         memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
2039                                       btrfs_node_key_ptr_offset(0),
2040                                       (dst_nritems) *
2041                                       sizeof(struct btrfs_key_ptr));
2042
2043         copy_extent_buffer(dst, src,
2044                            btrfs_node_key_ptr_offset(0),
2045                            btrfs_node_key_ptr_offset(src_nritems - push_items),
2046                            push_items * sizeof(struct btrfs_key_ptr));
2047
2048         btrfs_set_header_nritems(src, src_nritems - push_items);
2049         btrfs_set_header_nritems(dst, dst_nritems + push_items);
2050
2051         btrfs_mark_buffer_dirty(src);
2052         btrfs_mark_buffer_dirty(dst);
2053
2054         ret = btrfs_update_ref(trans, root, src, dst, 0, push_items);
2055         BUG_ON(ret);
2056
2057         return ret;
2058 }
2059
2060 /*
2061  * helper function to insert a new root level in the tree.
2062  * A new node is allocated, and a single item is inserted to
2063  * point to the existing root
2064  *
2065  * returns zero on success or < 0 on failure.
2066  */
2067 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
2068                            struct btrfs_root *root,
2069                            struct btrfs_path *path, int level)
2070 {
2071         u64 lower_gen;
2072         struct extent_buffer *lower;
2073         struct extent_buffer *c;
2074         struct extent_buffer *old;
2075         struct btrfs_disk_key lower_key;
2076         int ret;
2077
2078         BUG_ON(path->nodes[level]);
2079         BUG_ON(path->nodes[level-1] != root->node);
2080
2081         lower = path->nodes[level-1];
2082         if (level == 1)
2083                 btrfs_item_key(lower, &lower_key, 0);
2084         else
2085                 btrfs_node_key(lower, &lower_key, 0);
2086
2087         c = btrfs_alloc_free_block(trans, root, root->nodesize, 0,
2088                                    root->root_key.objectid, trans->transid,
2089                                    level, root->node->start, 0);
2090         if (IS_ERR(c))
2091                 return PTR_ERR(c);
2092
2093         memset_extent_buffer(c, 0, 0, root->nodesize);
2094         btrfs_set_header_nritems(c, 1);
2095         btrfs_set_header_level(c, level);
2096         btrfs_set_header_bytenr(c, c->start);
2097         btrfs_set_header_generation(c, trans->transid);
2098         btrfs_set_header_owner(c, root->root_key.objectid);
2099
2100         write_extent_buffer(c, root->fs_info->fsid,
2101                             (unsigned long)btrfs_header_fsid(c),
2102                             BTRFS_FSID_SIZE);
2103
2104         write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
2105                             (unsigned long)btrfs_header_chunk_tree_uuid(c),
2106                             BTRFS_UUID_SIZE);
2107
2108         btrfs_set_node_key(c, &lower_key, 0);
2109         btrfs_set_node_blockptr(c, 0, lower->start);
2110         lower_gen = btrfs_header_generation(lower);
2111         WARN_ON(lower_gen != trans->transid);
2112
2113         btrfs_set_node_ptr_generation(c, 0, lower_gen);
2114
2115         btrfs_mark_buffer_dirty(c);
2116
2117         spin_lock(&root->node_lock);
2118         old = root->node;
2119         root->node = c;
2120         spin_unlock(&root->node_lock);
2121
2122         ret = btrfs_update_extent_ref(trans, root, lower->start,
2123                                       lower->start, c->start,
2124                                       root->root_key.objectid,
2125                                       trans->transid, level - 1);
2126         BUG_ON(ret);
2127
2128         /* the super has an extra ref to root->node */
2129         free_extent_buffer(old);
2130
2131         add_root_to_dirty_list(root);
2132         extent_buffer_get(c);
2133         path->nodes[level] = c;
2134         path->locks[level] = 1;
2135         path->slots[level] = 0;
2136         return 0;
2137 }
2138
2139 /*
2140  * worker function to insert a single pointer in a node.
2141  * the node should have enough room for the pointer already
2142  *
2143  * slot and level indicate where you want the key to go, and
2144  * blocknr is the block the key points to.
2145  *
2146  * returns zero on success and < 0 on any error
2147  */
2148 static int insert_ptr(struct btrfs_trans_handle *trans, struct btrfs_root
2149                       *root, struct btrfs_path *path, struct btrfs_disk_key
2150                       *key, u64 bytenr, int slot, int level)
2151 {
2152         struct extent_buffer *lower;
2153         int nritems;
2154
2155         BUG_ON(!path->nodes[level]);
2156         lower = path->nodes[level];
2157         nritems = btrfs_header_nritems(lower);
2158         if (slot > nritems)
2159                 BUG();
2160         if (nritems == BTRFS_NODEPTRS_PER_BLOCK(root))
2161                 BUG();
2162         if (slot != nritems) {
2163                 memmove_extent_buffer(lower,
2164                               btrfs_node_key_ptr_offset(slot + 1),
2165                               btrfs_node_key_ptr_offset(slot),
2166                               (nritems - slot) * sizeof(struct btrfs_key_ptr));
2167         }
2168         btrfs_set_node_key(lower, key, slot);
2169         btrfs_set_node_blockptr(lower, slot, bytenr);
2170         WARN_ON(trans->transid == 0);
2171         btrfs_set_node_ptr_generation(lower, slot, trans->transid);
2172         btrfs_set_header_nritems(lower, nritems + 1);
2173         btrfs_mark_buffer_dirty(lower);
2174         return 0;
2175 }
2176
2177 /*
2178  * split the node at the specified level in path in two.
2179  * The path is corrected to point to the appropriate node after the split
2180  *
2181  * Before splitting this tries to make some room in the node by pushing
2182  * left and right, if either one works, it returns right away.
2183  *
2184  * returns 0 on success and < 0 on failure
2185  */
2186 static noinline int split_node(struct btrfs_trans_handle *trans,
2187                                struct btrfs_root *root,
2188                                struct btrfs_path *path, int level)
2189 {
2190         struct extent_buffer *c;
2191         struct extent_buffer *split;
2192         struct btrfs_disk_key disk_key;
2193         int mid;
2194         int ret;
2195         int wret;
2196         u32 c_nritems;
2197
2198         c = path->nodes[level];
2199         WARN_ON(btrfs_header_generation(c) != trans->transid);
2200         if (c == root->node) {
2201                 /* trying to split the root, lets make a new one */
2202                 ret = insert_new_root(trans, root, path, level + 1);
2203                 if (ret)
2204                         return ret;
2205         } else {
2206                 ret = push_nodes_for_insert(trans, root, path, level);
2207                 c = path->nodes[level];
2208                 if (!ret && btrfs_header_nritems(c) <
2209                     BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
2210                         return 0;
2211                 if (ret < 0)
2212                         return ret;
2213         }
2214
2215         c_nritems = btrfs_header_nritems(c);
2216
2217         split = btrfs_alloc_free_block(trans, root, root->nodesize,
2218                                         path->nodes[level + 1]->start,
2219                                         root->root_key.objectid,
2220                                         trans->transid, level, c->start, 0);
2221         if (IS_ERR(split))
2222                 return PTR_ERR(split);
2223
2224         btrfs_set_header_flags(split, btrfs_header_flags(c));
2225         btrfs_set_header_level(split, btrfs_header_level(c));
2226         btrfs_set_header_bytenr(split, split->start);
2227         btrfs_set_header_generation(split, trans->transid);
2228         btrfs_set_header_owner(split, root->root_key.objectid);
2229         btrfs_set_header_flags(split, 0);
2230         write_extent_buffer(split, root->fs_info->fsid,
2231                             (unsigned long)btrfs_header_fsid(split),
2232                             BTRFS_FSID_SIZE);
2233         write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
2234                             (unsigned long)btrfs_header_chunk_tree_uuid(split),
2235                             BTRFS_UUID_SIZE);
2236
2237         mid = (c_nritems + 1) / 2;
2238
2239         copy_extent_buffer(split, c,
2240                            btrfs_node_key_ptr_offset(0),
2241                            btrfs_node_key_ptr_offset(mid),
2242                            (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
2243         btrfs_set_header_nritems(split, c_nritems - mid);
2244         btrfs_set_header_nritems(c, mid);
2245         ret = 0;
2246
2247         btrfs_mark_buffer_dirty(c);
2248         btrfs_mark_buffer_dirty(split);
2249
2250         btrfs_node_key(split, &disk_key, 0);
2251         wret = insert_ptr(trans, root, path, &disk_key, split->start,
2252                           path->slots[level + 1] + 1,
2253                           level + 1);
2254         if (wret)
2255                 ret = wret;
2256
2257         ret = btrfs_update_ref(trans, root, c, split, 0, c_nritems - mid);
2258         BUG_ON(ret);
2259
2260         if (path->slots[level] >= mid) {
2261                 path->slots[level] -= mid;
2262                 btrfs_tree_unlock(c);
2263                 free_extent_buffer(c);
2264                 path->nodes[level] = split;
2265                 path->slots[level + 1] += 1;
2266         } else {
2267                 btrfs_tree_unlock(split);
2268                 free_extent_buffer(split);
2269         }
2270         return ret;
2271 }
2272
2273 /*
2274  * how many bytes are required to store the items in a leaf.  start
2275  * and nr indicate which items in the leaf to check.  This totals up the
2276  * space used both by the item structs and the item data
2277  */
2278 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
2279 {
2280         int data_len;
2281         int nritems = btrfs_header_nritems(l);
2282         int end = min(nritems, start + nr) - 1;
2283
2284         if (!nr)
2285                 return 0;
2286         data_len = btrfs_item_end_nr(l, start);
2287         data_len = data_len - btrfs_item_offset_nr(l, end);
2288         data_len += sizeof(struct btrfs_item) * nr;
2289         WARN_ON(data_len < 0);
2290         return data_len;
2291 }
2292
2293 /*
2294  * The space between the end of the leaf items and
2295  * the start of the leaf data.  IOW, how much room
2296  * the leaf has left for both items and data
2297  */
2298 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
2299                                    struct extent_buffer *leaf)
2300 {
2301         int nritems = btrfs_header_nritems(leaf);
2302         int ret;
2303         ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
2304         if (ret < 0) {
2305                 printk(KERN_CRIT "leaf free space ret %d, leaf data size %lu, "
2306                        "used %d nritems %d\n",
2307                        ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
2308                        leaf_space_used(leaf, 0, nritems), nritems);
2309         }
2310         return ret;
2311 }
2312
2313 /*
2314  * push some data in the path leaf to the right, trying to free up at
2315  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2316  *
2317  * returns 1 if the push failed because the other node didn't have enough
2318  * room, 0 if everything worked out and < 0 if there were major errors.
2319  */
2320 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
2321                            *root, struct btrfs_path *path, int data_size,
2322                            int empty)
2323 {
2324         struct extent_buffer *left = path->nodes[0];
2325         struct extent_buffer *right;
2326         struct extent_buffer *upper;
2327         struct btrfs_disk_key disk_key;
2328         int slot;
2329         u32 i;
2330         int free_space;
2331         int push_space = 0;
2332         int push_items = 0;
2333         struct btrfs_item *item;
2334         u32 left_nritems;
2335         u32 nr;
2336         u32 right_nritems;
2337         u32 data_end;
2338         u32 this_item_size;
2339         int ret;
2340
2341         slot = path->slots[1];
2342         if (!path->nodes[1])
2343                 return 1;
2344
2345         upper = path->nodes[1];
2346         if (slot >= btrfs_header_nritems(upper) - 1)
2347                 return 1;
2348
2349         WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2350
2351         right = read_node_slot(root, upper, slot + 1);
2352         btrfs_tree_lock(right);
2353         btrfs_set_lock_blocking(right);
2354
2355         free_space = btrfs_leaf_free_space(root, right);
2356         if (free_space < data_size)
2357                 goto out_unlock;
2358
2359         /* cow and double check */
2360         ret = btrfs_cow_block(trans, root, right, upper,
2361                               slot + 1, &right, 0);
2362         if (ret)
2363                 goto out_unlock;
2364
2365         free_space = btrfs_leaf_free_space(root, right);
2366         if (free_space < data_size)
2367                 goto out_unlock;
2368
2369         left_nritems = btrfs_header_nritems(left);
2370         if (left_nritems == 0)
2371                 goto out_unlock;
2372
2373         if (empty)
2374                 nr = 0;
2375         else
2376                 nr = 1;
2377
2378         if (path->slots[0] >= left_nritems)
2379                 push_space += data_size;
2380
2381         i = left_nritems - 1;
2382         while (i >= nr) {
2383                 item = btrfs_item_nr(left, i);
2384
2385                 if (!empty && push_items > 0) {
2386                         if (path->slots[0] > i)
2387                                 break;
2388                         if (path->slots[0] == i) {
2389                                 int space = btrfs_leaf_free_space(root, left);
2390                                 if (space + push_space * 2 > free_space)
2391                                         break;
2392                         }
2393                 }
2394
2395                 if (path->slots[0] == i)
2396                         push_space += data_size;
2397
2398                 if (!left->map_token) {
2399                         map_extent_buffer(left, (unsigned long)item,
2400                                         sizeof(struct btrfs_item),
2401                                         &left->map_token, &left->kaddr,
2402                                         &left->map_start, &left->map_len,
2403                                         KM_USER1);
2404                 }
2405
2406                 this_item_size = btrfs_item_size(left, item);
2407                 if (this_item_size + sizeof(*item) + push_space > free_space)
2408                         break;
2409
2410                 push_items++;
2411                 push_space += this_item_size + sizeof(*item);
2412                 if (i == 0)
2413                         break;
2414                 i--;
2415         }
2416         if (left->map_token) {
2417                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2418                 left->map_token = NULL;
2419         }
2420
2421         if (push_items == 0)
2422                 goto out_unlock;
2423
2424         if (!empty && push_items == left_nritems)
2425                 WARN_ON(1);
2426
2427         /* push left to right */
2428         right_nritems = btrfs_header_nritems(right);
2429
2430         push_space = btrfs_item_end_nr(left, left_nritems - push_items);
2431         push_space -= leaf_data_end(root, left);
2432
2433         /* make room in the right data area */
2434         data_end = leaf_data_end(root, right);
2435         memmove_extent_buffer(right,
2436                               btrfs_leaf_data(right) + data_end - push_space,
2437                               btrfs_leaf_data(right) + data_end,
2438                               BTRFS_LEAF_DATA_SIZE(root) - data_end);
2439
2440         /* copy from the left data area */
2441         copy_extent_buffer(right, left, btrfs_leaf_data(right) +
2442                      BTRFS_LEAF_DATA_SIZE(root) - push_space,
2443                      btrfs_leaf_data(left) + leaf_data_end(root, left),
2444                      push_space);
2445
2446         memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
2447                               btrfs_item_nr_offset(0),
2448                               right_nritems * sizeof(struct btrfs_item));
2449
2450         /* copy the items from left to right */
2451         copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
2452                    btrfs_item_nr_offset(left_nritems - push_items),
2453                    push_items * sizeof(struct btrfs_item));
2454
2455         /* update the item pointers */
2456         right_nritems += push_items;
2457         btrfs_set_header_nritems(right, right_nritems);
2458         push_space = BTRFS_LEAF_DATA_SIZE(root);
2459         for (i = 0; i < right_nritems; i++) {
2460                 item = btrfs_item_nr(right, i);
2461                 if (!right->map_token) {
2462                         map_extent_buffer(right, (unsigned long)item,
2463                                         sizeof(struct btrfs_item),
2464                                         &right->map_token, &right->kaddr,
2465                                         &right->map_start, &right->map_len,
2466                                         KM_USER1);
2467                 }
2468                 push_space -= btrfs_item_size(right, item);
2469                 btrfs_set_item_offset(right, item, push_space);
2470         }
2471
2472         if (right->map_token) {
2473                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2474                 right->map_token = NULL;
2475         }
2476         left_nritems -= push_items;
2477         btrfs_set_header_nritems(left, left_nritems);
2478
2479         if (left_nritems)
2480                 btrfs_mark_buffer_dirty(left);
2481         btrfs_mark_buffer_dirty(right);
2482
2483         ret = btrfs_update_ref(trans, root, left, right, 0, push_items);
2484         BUG_ON(ret);
2485
2486         btrfs_item_key(right, &disk_key, 0);
2487         btrfs_set_node_key(upper, &disk_key, slot + 1);
2488         btrfs_mark_buffer_dirty(upper);
2489
2490         /* then fixup the leaf pointer in the path */
2491         if (path->slots[0] >= left_nritems) {
2492                 path->slots[0] -= left_nritems;
2493                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2494                         clean_tree_block(trans, root, path->nodes[0]);
2495                 btrfs_tree_unlock(path->nodes[0]);
2496                 free_extent_buffer(path->nodes[0]);
2497                 path->nodes[0] = right;
2498                 path->slots[1] += 1;
2499         } else {
2500                 btrfs_tree_unlock(right);
2501                 free_extent_buffer(right);
2502         }
2503         return 0;
2504
2505 out_unlock:
2506         btrfs_tree_unlock(right);
2507         free_extent_buffer(right);
2508         return 1;
2509 }
2510
2511 /*
2512  * push some data in the path leaf to the left, trying to free up at
2513  * least data_size bytes.  returns zero if the push worked, nonzero otherwise
2514  */
2515 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
2516                           *root, struct btrfs_path *path, int data_size,
2517                           int empty)
2518 {
2519         struct btrfs_disk_key disk_key;
2520         struct extent_buffer *right = path->nodes[0];
2521         struct extent_buffer *left;
2522         int slot;
2523         int i;
2524         int free_space;
2525         int push_space = 0;
2526         int push_items = 0;
2527         struct btrfs_item *item;
2528         u32 old_left_nritems;
2529         u32 right_nritems;
2530         u32 nr;
2531         int ret = 0;
2532         int wret;
2533         u32 this_item_size;
2534         u32 old_left_item_size;
2535
2536         slot = path->slots[1];
2537         if (slot == 0)
2538                 return 1;
2539         if (!path->nodes[1])
2540                 return 1;
2541
2542         right_nritems = btrfs_header_nritems(right);
2543         if (right_nritems == 0)
2544                 return 1;
2545
2546         WARN_ON(!btrfs_tree_locked(path->nodes[1]));
2547
2548         left = read_node_slot(root, path->nodes[1], slot - 1);
2549         btrfs_tree_lock(left);
2550         btrfs_set_lock_blocking(left);
2551
2552         free_space = btrfs_leaf_free_space(root, left);
2553         if (free_space < data_size) {
2554                 ret = 1;
2555                 goto out;
2556         }
2557
2558         /* cow and double check */
2559         ret = btrfs_cow_block(trans, root, left,
2560                               path->nodes[1], slot - 1, &left, 0);
2561         if (ret) {
2562                 /* we hit -ENOSPC, but it isn't fatal here */
2563                 ret = 1;
2564                 goto out;
2565         }
2566
2567         free_space = btrfs_leaf_free_space(root, left);
2568         if (free_space < data_size) {
2569                 ret = 1;
2570                 goto out;
2571         }
2572
2573         if (empty)
2574                 nr = right_nritems;
2575         else
2576                 nr = right_nritems - 1;
2577
2578         for (i = 0; i < nr; i++) {
2579                 item = btrfs_item_nr(right, i);
2580                 if (!right->map_token) {
2581                         map_extent_buffer(right, (unsigned long)item,
2582                                         sizeof(struct btrfs_item),
2583                                         &right->map_token, &right->kaddr,
2584                                         &right->map_start, &right->map_len,
2585                                         KM_USER1);
2586                 }
2587
2588                 if (!empty && push_items > 0) {
2589                         if (path->slots[0] < i)
2590                                 break;
2591                         if (path->slots[0] == i) {
2592                                 int space = btrfs_leaf_free_space(root, right);
2593                                 if (space + push_space * 2 > free_space)
2594                                         break;
2595                         }
2596                 }
2597
2598                 if (path->slots[0] == i)
2599                         push_space += data_size;
2600
2601                 this_item_size = btrfs_item_size(right, item);
2602                 if (this_item_size + sizeof(*item) + push_space > free_space)
2603                         break;
2604
2605                 push_items++;
2606                 push_space += this_item_size + sizeof(*item);
2607         }
2608
2609         if (right->map_token) {
2610                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2611                 right->map_token = NULL;
2612         }
2613
2614         if (push_items == 0) {
2615                 ret = 1;
2616                 goto out;
2617         }
2618         if (!empty && push_items == btrfs_header_nritems(right))
2619                 WARN_ON(1);
2620
2621         /* push data from right to left */
2622         copy_extent_buffer(left, right,
2623                            btrfs_item_nr_offset(btrfs_header_nritems(left)),
2624                            btrfs_item_nr_offset(0),
2625                            push_items * sizeof(struct btrfs_item));
2626
2627         push_space = BTRFS_LEAF_DATA_SIZE(root) -
2628                      btrfs_item_offset_nr(right, push_items - 1);
2629
2630         copy_extent_buffer(left, right, btrfs_leaf_data(left) +
2631                      leaf_data_end(root, left) - push_space,
2632                      btrfs_leaf_data(right) +
2633                      btrfs_item_offset_nr(right, push_items - 1),
2634                      push_space);
2635         old_left_nritems = btrfs_header_nritems(left);
2636         BUG_ON(old_left_nritems <= 0);
2637
2638         old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
2639         for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
2640                 u32 ioff;
2641
2642                 item = btrfs_item_nr(left, i);
2643                 if (!left->map_token) {
2644                         map_extent_buffer(left, (unsigned long)item,
2645                                         sizeof(struct btrfs_item),
2646                                         &left->map_token, &left->kaddr,
2647                                         &left->map_start, &left->map_len,
2648                                         KM_USER1);
2649                 }
2650
2651                 ioff = btrfs_item_offset(left, item);
2652                 btrfs_set_item_offset(left, item,
2653                       ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size));
2654         }
2655         btrfs_set_header_nritems(left, old_left_nritems + push_items);
2656         if (left->map_token) {
2657                 unmap_extent_buffer(left, left->map_token, KM_USER1);
2658                 left->map_token = NULL;
2659         }
2660
2661         /* fixup right node */
2662         if (push_items > right_nritems) {
2663                 printk(KERN_CRIT "push items %d nr %u\n", push_items,
2664                        right_nritems);
2665                 WARN_ON(1);
2666         }
2667
2668         if (push_items < right_nritems) {
2669                 push_space = btrfs_item_offset_nr(right, push_items - 1) -
2670                                                   leaf_data_end(root, right);
2671                 memmove_extent_buffer(right, btrfs_leaf_data(right) +
2672                                       BTRFS_LEAF_DATA_SIZE(root) - push_space,
2673                                       btrfs_leaf_data(right) +
2674                                       leaf_data_end(root, right), push_space);
2675
2676                 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
2677                               btrfs_item_nr_offset(push_items),
2678                              (btrfs_header_nritems(right) - push_items) *
2679                              sizeof(struct btrfs_item));
2680         }
2681         right_nritems -= push_items;
2682         btrfs_set_header_nritems(right, right_nritems);
2683         push_space = BTRFS_LEAF_DATA_SIZE(root);
2684         for (i = 0; i < right_nritems; i++) {
2685                 item = btrfs_item_nr(right, i);
2686
2687                 if (!right->map_token) {
2688                         map_extent_buffer(right, (unsigned long)item,
2689                                         sizeof(struct btrfs_item),
2690                                         &right->map_token, &right->kaddr,
2691                                         &right->map_start, &right->map_len,
2692                                         KM_USER1);
2693                 }
2694
2695                 push_space = push_space - btrfs_item_size(right, item);
2696                 btrfs_set_item_offset(right, item, push_space);
2697         }
2698         if (right->map_token) {
2699                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2700                 right->map_token = NULL;
2701         }
2702
2703         btrfs_mark_buffer_dirty(left);
2704         if (right_nritems)
2705                 btrfs_mark_buffer_dirty(right);
2706
2707         ret = btrfs_update_ref(trans, root, right, left,
2708                                old_left_nritems, push_items);
2709         BUG_ON(ret);
2710
2711         btrfs_item_key(right, &disk_key, 0);
2712         wret = fixup_low_keys(trans, root, path, &disk_key, 1);
2713         if (wret)
2714                 ret = wret;
2715
2716         /* then fixup the leaf pointer in the path */
2717         if (path->slots[0] < push_items) {
2718                 path->slots[0] += old_left_nritems;
2719                 if (btrfs_header_nritems(path->nodes[0]) == 0)
2720                         clean_tree_block(trans, root, path->nodes[0]);
2721                 btrfs_tree_unlock(path->nodes[0]);
2722                 free_extent_buffer(path->nodes[0]);
2723                 path->nodes[0] = left;
2724                 path->slots[1] -= 1;
2725         } else {
2726                 btrfs_tree_unlock(left);
2727                 free_extent_buffer(left);
2728                 path->slots[0] -= push_items;
2729         }
2730         BUG_ON(path->slots[0] < 0);
2731         return ret;
2732 out:
2733         btrfs_tree_unlock(left);
2734         free_extent_buffer(left);
2735         return ret;
2736 }
2737
2738 /*
2739  * split the path's leaf in two, making sure there is at least data_size
2740  * available for the resulting leaf level of the path.
2741  *
2742  * returns 0 if all went well and < 0 on failure.
2743  */
2744 static noinline int split_leaf(struct btrfs_trans_handle *trans,
2745                                struct btrfs_root *root,
2746                                struct btrfs_key *ins_key,
2747                                struct btrfs_path *path, int data_size,
2748                                int extend)
2749 {
2750         struct extent_buffer *l;
2751         u32 nritems;
2752         int mid;
2753         int slot;
2754         struct extent_buffer *right;
2755         int data_copy_size;
2756         int rt_data_off;
2757         int i;
2758         int ret = 0;
2759         int wret;
2760         int double_split;
2761         int num_doubles = 0;
2762         struct btrfs_disk_key disk_key;
2763
2764         /* first try to make some room by pushing left and right */
2765         if (data_size && ins_key->type != BTRFS_DIR_ITEM_KEY) {
2766                 wret = push_leaf_right(trans, root, path, data_size, 0);
2767                 if (wret < 0)
2768                         return wret;
2769                 if (wret) {
2770                         wret = push_leaf_left(trans, root, path, data_size, 0);
2771                         if (wret < 0)
2772                                 return wret;
2773                 }
2774                 l = path->nodes[0];
2775
2776                 /* did the pushes work? */
2777                 if (btrfs_leaf_free_space(root, l) >= data_size)
2778                         return 0;
2779         }
2780
2781         if (!path->nodes[1]) {
2782                 ret = insert_new_root(trans, root, path, 1);
2783                 if (ret)
2784                         return ret;
2785         }
2786 again:
2787         double_split = 0;
2788         l = path->nodes[0];
2789         slot = path->slots[0];
2790         nritems = btrfs_header_nritems(l);
2791         mid = (nritems + 1) / 2;
2792
2793         right = btrfs_alloc_free_block(trans, root, root->leafsize,
2794                                         path->nodes[1]->start,
2795                                         root->root_key.objectid,
2796                                         trans->transid, 0, l->start, 0);
2797         if (IS_ERR(right)) {
2798                 BUG_ON(1);
2799                 return PTR_ERR(right);
2800         }
2801
2802         memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
2803         btrfs_set_header_bytenr(right, right->start);
2804         btrfs_set_header_generation(right, trans->transid);
2805         btrfs_set_header_owner(right, root->root_key.objectid);
2806         btrfs_set_header_level(right, 0);
2807         write_extent_buffer(right, root->fs_info->fsid,
2808                             (unsigned long)btrfs_header_fsid(right),
2809                             BTRFS_FSID_SIZE);
2810
2811         write_extent_buffer(right, root->fs_info->chunk_tree_uuid,
2812                             (unsigned long)btrfs_header_chunk_tree_uuid(right),
2813                             BTRFS_UUID_SIZE);
2814         if (mid <= slot) {
2815                 if (nritems == 1 ||
2816                     leaf_space_used(l, mid, nritems - mid) + data_size >
2817                         BTRFS_LEAF_DATA_SIZE(root)) {
2818                         if (slot >= nritems) {
2819                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2820                                 btrfs_set_header_nritems(right, 0);
2821                                 wret = insert_ptr(trans, root, path,
2822                                                   &disk_key, right->start,
2823                                                   path->slots[1] + 1, 1);
2824                                 if (wret)
2825                                         ret = wret;
2826
2827                                 btrfs_tree_unlock(path->nodes[0]);
2828                                 free_extent_buffer(path->nodes[0]);
2829                                 path->nodes[0] = right;
2830                                 path->slots[0] = 0;
2831                                 path->slots[1] += 1;
2832                                 btrfs_mark_buffer_dirty(right);
2833                                 return ret;
2834                         }
2835                         mid = slot;
2836                         if (mid != nritems &&
2837                             leaf_space_used(l, mid, nritems - mid) +
2838                             data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2839                                 double_split = 1;
2840                         }
2841                 }
2842         } else {
2843                 if (leaf_space_used(l, 0, mid) + data_size >
2844                         BTRFS_LEAF_DATA_SIZE(root)) {
2845                         if (!extend && data_size && slot == 0) {
2846                                 btrfs_cpu_key_to_disk(&disk_key, ins_key);
2847                                 btrfs_set_header_nritems(right, 0);
2848                                 wret = insert_ptr(trans, root, path,
2849                                                   &disk_key,
2850                                                   right->start,
2851                                                   path->slots[1], 1);
2852                                 if (wret)
2853                                         ret = wret;
2854                                 btrfs_tree_unlock(path->nodes[0]);
2855                                 free_extent_buffer(path->nodes[0]);
2856                                 path->nodes[0] = right;
2857                                 path->slots[0] = 0;
2858                                 if (path->slots[1] == 0) {
2859                                         wret = fixup_low_keys(trans, root,
2860                                                       path, &disk_key, 1);
2861                                         if (wret)
2862                                                 ret = wret;
2863                                 }
2864                                 btrfs_mark_buffer_dirty(right);
2865                                 return ret;
2866                         } else if ((extend || !data_size) && slot == 0) {
2867                                 mid = 1;
2868                         } else {
2869                                 mid = slot;
2870                                 if (mid != nritems &&
2871                                     leaf_space_used(l, mid, nritems - mid) +
2872                                     data_size > BTRFS_LEAF_DATA_SIZE(root)) {
2873                                         double_split = 1;
2874                                 }
2875                         }
2876                 }
2877         }
2878         nritems = nritems - mid;
2879         btrfs_set_header_nritems(right, nritems);
2880         data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
2881
2882         copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
2883                            btrfs_item_nr_offset(mid),
2884                            nritems * sizeof(struct btrfs_item));
2885
2886         copy_extent_buffer(right, l,
2887                      btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
2888                      data_copy_size, btrfs_leaf_data(l) +
2889                      leaf_data_end(root, l), data_copy_size);
2890
2891         rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
2892                       btrfs_item_end_nr(l, mid);
2893
2894         for (i = 0; i < nritems; i++) {
2895                 struct btrfs_item *item = btrfs_item_nr(right, i);
2896                 u32 ioff;
2897
2898                 if (!right->map_token) {
2899                         map_extent_buffer(right, (unsigned long)item,
2900                                         sizeof(struct btrfs_item),
2901                                         &right->map_token, &right->kaddr,
2902                                         &right->map_start, &right->map_len,
2903                                         KM_USER1);
2904                 }
2905
2906                 ioff = btrfs_item_offset(right, item);
2907                 btrfs_set_item_offset(right, item, ioff + rt_data_off);
2908         }
2909
2910         if (right->map_token) {
2911                 unmap_extent_buffer(right, right->map_token, KM_USER1);
2912                 right->map_token = NULL;
2913         }
2914
2915         btrfs_set_header_nritems(l, mid);
2916         ret = 0;
2917         btrfs_item_key(right, &disk_key, 0);
2918         wret = insert_ptr(trans, root, path, &disk_key, right->start,
2919                           path->slots[1] + 1, 1);
2920         if (wret)
2921                 ret = wret;
2922
2923         btrfs_mark_buffer_dirty(right);
2924         btrfs_mark_buffer_dirty(l);
2925         BUG_ON(path->slots[0] != slot);
2926
2927         ret = btrfs_update_ref(trans, root, l, right, 0, nritems);
2928         BUG_ON(ret);
2929
2930         if (mid <= slot) {
2931                 btrfs_tree_unlock(path->nodes[0]);
2932                 free_extent_buffer(path->nodes[0]);
2933                 path->nodes[0] = right;
2934                 path->slots[0] -= mid;
2935                 path->slots[1] += 1;
2936         } else {
2937                 btrfs_tree_unlock(right);
2938                 free_extent_buffer(right);
2939         }
2940
2941         BUG_ON(path->slots[0] < 0);
2942
2943         if (double_split) {
2944                 BUG_ON(num_doubles != 0);
2945                 num_doubles++;
2946                 goto again;
2947         }
2948         return ret;
2949 }
2950
2951 /*
2952  * This function splits a single item into two items,
2953  * giving 'new_key' to the new item and splitting the
2954  * old one at split_offset (from the start of the item).
2955  *
2956  * The path may be released by this operation.  After
2957  * the split, the path is pointing to the old item.  The
2958  * new item is going to be in the same node as the old one.
2959  *
2960  * Note, the item being split must be smaller enough to live alone on
2961  * a tree block with room for one extra struct btrfs_item
2962  *
2963  * This allows us to split the item in place, keeping a lock on the
2964  * leaf the entire time.
2965  */
2966 int btrfs_split_item(struct btrfs_trans_handle *trans,
2967                      struct btrfs_root *root,
2968                      struct btrfs_path *path,
2969                      struct btrfs_key *new_key,
2970                      unsigned long split_offset)
2971 {
2972         u32 item_size;
2973         struct extent_buffer *leaf;
2974         struct btrfs_key orig_key;
2975         struct btrfs_item *item;
2976         struct btrfs_item *new_item;
2977         int ret = 0;
2978         int slot;
2979         u32 nritems;
2980         u32 orig_offset;
2981         struct btrfs_disk_key disk_key;
2982         char *buf;
2983
2984         leaf = path->nodes[0];
2985         btrfs_item_key_to_cpu(leaf, &orig_key, path->slots[0]);
2986         if (btrfs_leaf_free_space(root, leaf) >= sizeof(struct btrfs_item))
2987                 goto split;
2988
2989         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2990         btrfs_release_path(root, path);
2991
2992         path->search_for_split = 1;
2993         path->keep_locks = 1;
2994
2995         ret = btrfs_search_slot(trans, root, &orig_key, path, 0, 1);
2996         path->search_for_split = 0;
2997
2998         /* if our item isn't there or got smaller, return now */
2999         if (ret != 0 || item_size != btrfs_item_size_nr(path->nodes[0],
3000                                                         path->slots[0])) {
3001                 path->keep_locks = 0;
3002                 return -EAGAIN;
3003         }
3004
3005         ret = split_leaf(trans, root, &orig_key, path,
3006                          sizeof(struct btrfs_item), 1);
3007         path->keep_locks = 0;
3008         BUG_ON(ret);
3009
3010         /*
3011          * make sure any changes to the path from split_leaf leave it
3012          * in a blocking state
3013          */
3014         btrfs_set_path_blocking(path);
3015
3016         leaf = path->nodes[0];
3017         BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
3018
3019 split:
3020         item = btrfs_item_nr(leaf, path->slots[0]);
3021         orig_offset = btrfs_item_offset(leaf, item);
3022         item_size = btrfs_item_size(leaf, item);
3023
3024
3025         buf = kmalloc(item_size, GFP_NOFS);
3026         read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
3027                             path->slots[0]), item_size);
3028         slot = path->slots[0] + 1;
3029         leaf = path->nodes[0];
3030
3031         nritems = btrfs_header_nritems(leaf);
3032
3033         if (slot != nritems) {
3034                 /* shift the items */
3035                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
3036                               btrfs_item_nr_offset(slot),
3037                               (nritems - slot) * sizeof(struct btrfs_item));
3038
3039         }
3040
3041         btrfs_cpu_key_to_disk(&disk_key, new_key);
3042         btrfs_set_item_key(leaf, &disk_key, slot);
3043
3044         new_item = btrfs_item_nr(leaf, slot);
3045
3046         btrfs_set_item_offset(leaf, new_item, orig_offset);
3047         btrfs_set_item_size(leaf, new_item, item_size - split_offset);
3048
3049         btrfs_set_item_offset(leaf, item,
3050                               orig_offset + item_size - split_offset);
3051         btrfs_set_item_size(leaf, item, split_offset);
3052
3053         btrfs_set_header_nritems(leaf, nritems + 1);
3054
3055         /* write the data for the start of the original item */
3056         write_extent_buffer(leaf, buf,
3057                             btrfs_item_ptr_offset(leaf, path->slots[0]),
3058                             split_offset);
3059
3060         /* write the data for the new item */
3061         write_extent_buffer(leaf, buf + split_offset,
3062                             btrfs_item_ptr_offset(leaf, slot),
3063                             item_size - split_offset);
3064         btrfs_mark_buffer_dirty(leaf);
3065
3066         ret = 0;
3067         if (btrfs_leaf_free_space(root, leaf) < 0) {
3068                 btrfs_print_leaf(root, leaf);
3069                 BUG();
3070         }
3071         kfree(buf);
3072         return ret;
3073 }
3074
3075 /*
3076  * make the item pointed to by the path smaller.  new_size indicates
3077  * how small to make it, and from_end tells us if we just chop bytes
3078  * off the end of the item or if we shift the item to chop bytes off
3079  * the front.
3080  */
3081 int btrfs_truncate_item(struct btrfs_trans_handle *trans,
3082                         struct btrfs_root *root,
3083                         struct btrfs_path *path,
3084                         u32 new_size, int from_end)
3085 {
3086         int ret = 0;
3087         int slot;
3088         int slot_orig;
3089         struct extent_buffer *leaf;
3090         struct btrfs_item *item;
3091         u32 nritems;
3092         unsigned int data_end;
3093         unsigned int old_data_start;
3094         unsigned int old_size;
3095         unsigned int size_diff;
3096         int i;
3097
3098         slot_orig = path->slots[0];
3099         leaf = path->nodes[0];
3100         slot = path->slots[0];
3101
3102         old_size = btrfs_item_size_nr(leaf, slot);
3103         if (old_size == new_size)
3104                 return 0;
3105
3106         nritems = btrfs_header_nritems(leaf);
3107         data_end = leaf_data_end(root, leaf);
3108
3109         old_data_start = btrfs_item_offset_nr(leaf, slot);
3110
3111         size_diff = old_size - new_size;
3112
3113         BUG_ON(slot < 0);
3114         BUG_ON(slot >= nritems);
3115
3116         /*
3117          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3118          */
3119         /* first correct the data pointers */
3120         for (i = slot; i < nritems; i++) {
3121                 u32 ioff;
3122                 item = btrfs_item_nr(leaf, i);
3123
3124                 if (!leaf->map_token) {
3125                         map_extent_buffer(leaf, (unsigned long)item,
3126                                         sizeof(struct btrfs_item),
3127                                         &leaf->map_token, &leaf->kaddr,
3128                                         &leaf->map_start, &leaf->map_len,
3129                                         KM_USER1);
3130                 }
3131
3132                 ioff = btrfs_item_offset(leaf, item);
3133                 btrfs_set_item_offset(leaf, item, ioff + size_diff);
3134         }
3135
3136         if (leaf->map_token) {
3137                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3138                 leaf->map_token = NULL;
3139         }
3140
3141         /* shift the data */
3142         if (from_end) {
3143                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3144                               data_end + size_diff, btrfs_leaf_data(leaf) +
3145                               data_end, old_data_start + new_size - data_end);
3146         } else {
3147                 struct btrfs_disk_key disk_key;
3148                 u64 offset;
3149
3150                 btrfs_item_key(leaf, &disk_key, slot);
3151
3152                 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
3153                         unsigned long ptr;
3154                         struct btrfs_file_extent_item *fi;
3155
3156                         fi = btrfs_item_ptr(leaf, slot,
3157                                             struct btrfs_file_extent_item);
3158                         fi = (struct btrfs_file_extent_item *)(
3159                              (unsigned long)fi - size_diff);
3160
3161                         if (btrfs_file_extent_type(leaf, fi) ==
3162                             BTRFS_FILE_EXTENT_INLINE) {
3163                                 ptr = btrfs_item_ptr_offset(leaf, slot);
3164                                 memmove_extent_buffer(leaf, ptr,
3165                                       (unsigned long)fi,
3166                                       offsetof(struct btrfs_file_extent_item,
3167                                                  disk_bytenr));
3168                         }
3169                 }
3170
3171                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3172                               data_end + size_diff, btrfs_leaf_data(leaf) +
3173                               data_end, old_data_start - data_end);
3174
3175                 offset = btrfs_disk_key_offset(&disk_key);
3176                 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
3177                 btrfs_set_item_key(leaf, &disk_key, slot);
3178                 if (slot == 0)
3179                         fixup_low_keys(trans, root, path, &disk_key, 1);
3180         }
3181
3182         item = btrfs_item_nr(leaf, slot);
3183         btrfs_set_item_size(leaf, item, new_size);
3184         btrfs_mark_buffer_dirty(leaf);
3185
3186         ret = 0;
3187         if (btrfs_leaf_free_space(root, leaf) < 0) {
3188                 btrfs_print_leaf(root, leaf);
3189                 BUG();
3190         }
3191         return ret;
3192 }
3193
3194 /*
3195  * make the item pointed to by the path bigger, data_size is the new size.
3196  */
3197 int btrfs_extend_item(struct btrfs_trans_handle *trans,
3198                       struct btrfs_root *root, struct btrfs_path *path,
3199                       u32 data_size)
3200 {
3201         int ret = 0;
3202         int slot;
3203         int slot_orig;
3204         struct extent_buffer *leaf;
3205         struct btrfs_item *item;
3206         u32 nritems;
3207         unsigned int data_end;
3208         unsigned int old_data;
3209         unsigned int old_size;
3210         int i;
3211
3212         slot_orig = path->slots[0];
3213         leaf = path->nodes[0];
3214
3215         nritems = btrfs_header_nritems(leaf);
3216         data_end = leaf_data_end(root, leaf);
3217
3218         if (btrfs_leaf_free_space(root, leaf) < data_size) {
3219                 btrfs_print_leaf(root, leaf);
3220                 BUG();
3221         }
3222         slot = path->slots[0];
3223         old_data = btrfs_item_end_nr(leaf, slot);
3224
3225         BUG_ON(slot < 0);
3226         if (slot >= nritems) {
3227                 btrfs_print_leaf(root, leaf);
3228                 printk(KERN_CRIT "slot %d too large, nritems %d\n",
3229                        slot, nritems);
3230                 BUG_ON(1);
3231         }
3232
3233         /*
3234          * item0..itemN ... dataN.offset..dataN.size .. data0.size
3235          */
3236         /* first correct the data pointers */
3237         for (i = slot; i < nritems; i++) {
3238                 u32 ioff;
3239                 item = btrfs_item_nr(leaf, i);
3240
3241                 if (!leaf->map_token) {
3242                         map_extent_buffer(leaf, (unsigned long)item,
3243                                         sizeof(struct btrfs_item),
3244                                         &leaf->map_token, &leaf->kaddr,
3245                                         &leaf->map_start, &leaf->map_len,
3246                                         KM_USER1);
3247                 }
3248                 ioff = btrfs_item_offset(leaf, item);
3249                 btrfs_set_item_offset(leaf, item, ioff - data_size);
3250         }
3251
3252         if (leaf->map_token) {
3253                 unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3254                 leaf->map_token = NULL;
3255         }
3256
3257         /* shift the data */
3258         memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3259                       data_end - data_size, btrfs_leaf_data(leaf) +
3260                       data_end, old_data - data_end);
3261
3262         data_end = old_data;
3263         old_size = btrfs_item_size_nr(leaf, slot);
3264         item = btrfs_item_nr(leaf, slot);
3265         btrfs_set_item_size(leaf, item, old_size + data_size);
3266         btrfs_mark_buffer_dirty(leaf);
3267
3268         ret = 0;
3269         if (btrfs_leaf_free_space(root, leaf) < 0) {
3270                 btrfs_print_leaf(root, leaf);
3271                 BUG();
3272         }
3273         return ret;
3274 }
3275
3276 /*
3277  * Given a key and some data, insert items into the tree.
3278  * This does all the path init required, making room in the tree if needed.
3279  * Returns the number of keys that were inserted.
3280  */
3281 int btrfs_insert_some_items(struct btrfs_trans_handle *trans,
3282                             struct btrfs_root *root,
3283                             struct btrfs_path *path,
3284                             struct btrfs_key *cpu_key, u32 *data_size,
3285                             int nr)
3286 {
3287         struct extent_buffer *leaf;
3288         struct btrfs_item *item;
3289         int ret = 0;
3290         int slot;
3291         int i;
3292         u32 nritems;
3293         u32 total_data = 0;
3294         u32 total_size = 0;
3295         unsigned int data_end;
3296         struct btrfs_disk_key disk_key;
3297         struct btrfs_key found_key;
3298
3299         for (i = 0; i < nr; i++) {
3300                 if (total_size + data_size[i] + sizeof(struct btrfs_item) >
3301                     BTRFS_LEAF_DATA_SIZE(root)) {
3302                         break;
3303                         nr = i;
3304                 }
3305                 total_data += data_size[i];
3306                 total_size += data_size[i] + sizeof(struct btrfs_item);
3307         }
3308         BUG_ON(nr == 0);
3309
3310         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3311         if (ret == 0)
3312                 return -EEXIST;
3313         if (ret < 0)
3314                 goto out;
3315
3316         leaf = path->nodes[0];
3317
3318         nritems = btrfs_header_nritems(leaf);
3319         data_end = leaf_data_end(root, leaf);
3320
3321         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3322                 for (i = nr; i >= 0; i--) {
3323                         total_data -= data_size[i];
3324                         total_size -= data_size[i] + sizeof(struct btrfs_item);
3325                         if (total_size < btrfs_leaf_free_space(root, leaf))
3326                                 break;
3327                 }
3328                 nr = i;
3329         }
3330
3331         slot = path->slots[0];
3332         BUG_ON(slot < 0);
3333
3334         if (slot != nritems) {
3335                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3336
3337                 item = btrfs_item_nr(leaf, slot);
3338                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
3339
3340                 /* figure out how many keys we can insert in here */
3341                 total_data = data_size[0];
3342                 for (i = 1; i < nr; i++) {
3343                         if (comp_cpu_keys(&found_key, cpu_key + i) <= 0)
3344                                 break;
3345                         total_data += data_size[i];
3346                 }
3347                 nr = i;
3348
3349                 if (old_data < data_end) {
3350                         btrfs_print_leaf(root, leaf);
3351                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3352                                slot, old_data, data_end);
3353                         BUG_ON(1);
3354                 }
3355                 /*
3356                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3357                  */
3358                 /* first correct the data pointers */
3359                 WARN_ON(leaf->map_token);
3360                 for (i = slot; i < nritems; i++) {
3361                         u32 ioff;
3362
3363                         item = btrfs_item_nr(leaf, i);
3364                         if (!leaf->map_token) {
3365                                 map_extent_buffer(leaf, (unsigned long)item,
3366                                         sizeof(struct btrfs_item),
3367                                         &leaf->map_token, &leaf->kaddr,
3368                                         &leaf->map_start, &leaf->map_len,
3369                                         KM_USER1);
3370                         }
3371
3372                         ioff = btrfs_item_offset(leaf, item);
3373                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3374                 }
3375                 if (leaf->map_token) {
3376                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3377                         leaf->map_token = NULL;
3378                 }
3379
3380                 /* shift the items */
3381                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3382                               btrfs_item_nr_offset(slot),
3383                               (nritems - slot) * sizeof(struct btrfs_item));
3384
3385                 /* shift the data */
3386                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3387                               data_end - total_data, btrfs_leaf_data(leaf) +
3388                               data_end, old_data - data_end);
3389                 data_end = old_data;
3390         } else {
3391                 /*
3392                  * this sucks but it has to be done, if we are inserting at
3393                  * the end of the leaf only insert 1 of the items, since we
3394                  * have no way of knowing whats on the next leaf and we'd have
3395                  * to drop our current locks to figure it out
3396                  */
3397                 nr = 1;
3398         }
3399
3400         /* setup the item for the new data */
3401         for (i = 0; i < nr; i++) {
3402                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3403                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3404                 item = btrfs_item_nr(leaf, slot + i);
3405                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3406                 data_end -= data_size[i];
3407                 btrfs_set_item_size(leaf, item, data_size[i]);
3408         }
3409         btrfs_set_header_nritems(leaf, nritems + nr);
3410         btrfs_mark_buffer_dirty(leaf);
3411
3412         ret = 0;
3413         if (slot == 0) {
3414                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3415                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3416         }
3417
3418         if (btrfs_leaf_free_space(root, leaf) < 0) {
3419                 btrfs_print_leaf(root, leaf);
3420                 BUG();
3421         }
3422 out:
3423         if (!ret)
3424                 ret = nr;
3425         return ret;
3426 }
3427
3428 /*
3429  * Given a key and some data, insert items into the tree.
3430  * This does all the path init required, making room in the tree if needed.
3431  */
3432 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
3433                             struct btrfs_root *root,
3434                             struct btrfs_path *path,
3435                             struct btrfs_key *cpu_key, u32 *data_size,
3436                             int nr)
3437 {
3438         struct extent_buffer *leaf;
3439         struct btrfs_item *item;
3440         int ret = 0;
3441         int slot;
3442         int slot_orig;
3443         int i;
3444         u32 nritems;
3445         u32 total_size = 0;
3446         u32 total_data = 0;
3447         unsigned int data_end;
3448         struct btrfs_disk_key disk_key;
3449
3450         for (i = 0; i < nr; i++)
3451                 total_data += data_size[i];
3452
3453         total_size = total_data + (nr * sizeof(struct btrfs_item));
3454         ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
3455         if (ret == 0)
3456                 return -EEXIST;
3457         if (ret < 0)
3458                 goto out;
3459
3460         slot_orig = path->slots[0];
3461         leaf = path->nodes[0];
3462
3463         nritems = btrfs_header_nritems(leaf);
3464         data_end = leaf_data_end(root, leaf);
3465
3466         if (btrfs_leaf_free_space(root, leaf) < total_size) {
3467                 btrfs_print_leaf(root, leaf);
3468                 printk(KERN_CRIT "not enough freespace need %u have %d\n",
3469                        total_size, btrfs_leaf_free_space(root, leaf));
3470                 BUG();
3471         }
3472
3473         slot = path->slots[0];
3474         BUG_ON(slot < 0);
3475
3476         if (slot != nritems) {
3477                 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
3478
3479                 if (old_data < data_end) {
3480                         btrfs_print_leaf(root, leaf);
3481                         printk(KERN_CRIT "slot %d old_data %d data_end %d\n",
3482                                slot, old_data, data_end);
3483                         BUG_ON(1);
3484                 }
3485                 /*
3486                  * item0..itemN ... dataN.offset..dataN.size .. data0.size
3487                  */
3488                 /* first correct the data pointers */
3489                 WARN_ON(leaf->map_token);
3490                 for (i = slot; i < nritems; i++) {
3491                         u32 ioff;
3492
3493                         item = btrfs_item_nr(leaf, i);
3494                         if (!leaf->map_token) {
3495                                 map_extent_buffer(leaf, (unsigned long)item,
3496                                         sizeof(struct btrfs_item),
3497                                         &leaf->map_token, &leaf->kaddr,
3498                                         &leaf->map_start, &leaf->map_len,
3499                                         KM_USER1);
3500                         }
3501
3502                         ioff = btrfs_item_offset(leaf, item);
3503                         btrfs_set_item_offset(leaf, item, ioff - total_data);
3504                 }
3505                 if (leaf->map_token) {
3506                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3507                         leaf->map_token = NULL;
3508                 }
3509
3510                 /* shift the items */
3511                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
3512                               btrfs_item_nr_offset(slot),
3513                               (nritems - slot) * sizeof(struct btrfs_item));
3514
3515                 /* shift the data */
3516                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3517                               data_end - total_data, btrfs_leaf_data(leaf) +
3518                               data_end, old_data - data_end);
3519                 data_end = old_data;
3520         }
3521
3522         /* setup the item for the new data */
3523         for (i = 0; i < nr; i++) {
3524                 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
3525                 btrfs_set_item_key(leaf, &disk_key, slot + i);
3526                 item = btrfs_item_nr(leaf, slot + i);
3527                 btrfs_set_item_offset(leaf, item, data_end - data_size[i]);
3528                 data_end -= data_size[i];
3529                 btrfs_set_item_size(leaf, item, data_size[i]);
3530         }
3531         btrfs_set_header_nritems(leaf, nritems + nr);
3532         btrfs_mark_buffer_dirty(leaf);
3533
3534         ret = 0;
3535         if (slot == 0) {
3536                 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
3537                 ret = fixup_low_keys(trans, root, path, &disk_key, 1);
3538         }
3539
3540         if (btrfs_leaf_free_space(root, leaf) < 0) {
3541                 btrfs_print_leaf(root, leaf);
3542                 BUG();
3543         }
3544 out:
3545         btrfs_unlock_up_safe(path, 1);
3546         return ret;
3547 }
3548
3549 /*
3550  * Given a key and some data, insert an item into the tree.
3551  * This does all the path init required, making room in the tree if needed.
3552  */
3553 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
3554                       *root, struct btrfs_key *cpu_key, void *data, u32
3555                       data_size)
3556 {
3557         int ret = 0;
3558         struct btrfs_path *path;
3559         struct extent_buffer *leaf;
3560         unsigned long ptr;
3561
3562         path = btrfs_alloc_path();
3563         BUG_ON(!path);
3564         ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
3565         if (!ret) {
3566                 leaf = path->nodes[0];
3567                 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3568                 write_extent_buffer(leaf, data, ptr, data_size);
3569                 btrfs_mark_buffer_dirty(leaf);
3570         }
3571         btrfs_free_path(path);
3572         return ret;
3573 }
3574
3575 /*
3576  * delete the pointer from a given node.
3577  *
3578  * the tree should have been previously balanced so the deletion does not
3579  * empty a node.
3580  */
3581 static int del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3582                    struct btrfs_path *path, int level, int slot)
3583 {
3584         struct extent_buffer *parent = path->nodes[level];
3585         u32 nritems;
3586         int ret = 0;
3587         int wret;
3588
3589         nritems = btrfs_header_nritems(parent);
3590         if (slot != nritems - 1) {
3591                 memmove_extent_buffer(parent,
3592                               btrfs_node_key_ptr_offset(slot),
3593                               btrfs_node_key_ptr_offset(slot + 1),
3594                               sizeof(struct btrfs_key_ptr) *
3595                               (nritems - slot - 1));
3596         }
3597         nritems--;
3598         btrfs_set_header_nritems(parent, nritems);
3599         if (nritems == 0 && parent == root->node) {
3600                 BUG_ON(btrfs_header_level(root->node) != 1);
3601                 /* just turn the root into a leaf and break */
3602                 btrfs_set_header_level(root->node, 0);
3603         } else if (slot == 0) {
3604                 struct btrfs_disk_key disk_key;
3605
3606                 btrfs_node_key(parent, &disk_key, 0);
3607                 wret = fixup_low_keys(trans, root, path, &disk_key, level + 1);
3608                 if (wret)
3609                         ret = wret;
3610         }
3611         btrfs_mark_buffer_dirty(parent);
3612         return ret;
3613 }
3614
3615 /*
3616  * a helper function to delete the leaf pointed to by path->slots[1] and
3617  * path->nodes[1].  bytenr is the node block pointer, but since the callers
3618  * already know it, it is faster to have them pass it down than to
3619  * read it out of the node again.
3620  *
3621  * This deletes the pointer in path->nodes[1] and frees the leaf
3622  * block extent.  zero is returned if it all worked out, < 0 otherwise.
3623  *
3624  * The path must have already been setup for deleting the leaf, including
3625  * all the proper balancing.  path->nodes[1] must be locked.
3626  */
3627 noinline int btrfs_del_leaf(struct btrfs_trans_handle *trans,
3628                             struct btrfs_root *root,
3629                             struct btrfs_path *path, u64 bytenr)
3630 {
3631         int ret;
3632         u64 root_gen = btrfs_header_generation(path->nodes[1]);
3633         u64 parent_start = path->nodes[1]->start;
3634         u64 parent_owner = btrfs_header_owner(path->nodes[1]);
3635
3636         ret = del_ptr(trans, root, path, 1, path->slots[1]);
3637         if (ret)
3638                 return ret;
3639
3640         /*
3641          * btrfs_free_extent is expensive, we want to make sure we
3642          * aren't holding any locks when we call it
3643          */
3644         btrfs_unlock_up_safe(path, 0);
3645
3646         ret = btrfs_free_extent(trans, root, bytenr,
3647                                 btrfs_level_size(root, 0),
3648                                 parent_start, parent_owner,
3649                                 root_gen, 0, 1);
3650         return ret;
3651 }
3652 /*
3653  * delete the item at the leaf level in path.  If that empties
3654  * the leaf, remove it from the tree
3655  */
3656 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3657                     struct btrfs_path *path, int slot, int nr)
3658 {
3659         struct extent_buffer *leaf;
3660         struct btrfs_item *item;
3661         int last_off;
3662         int dsize = 0;
3663         int ret = 0;
3664         int wret;
3665         int i;
3666         u32 nritems;
3667
3668         leaf = path->nodes[0];
3669         last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
3670
3671         for (i = 0; i < nr; i++)
3672                 dsize += btrfs_item_size_nr(leaf, slot + i);
3673
3674         nritems = btrfs_header_nritems(leaf);
3675
3676         if (slot + nr != nritems) {
3677                 int data_end = leaf_data_end(root, leaf);
3678
3679                 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
3680                               data_end + dsize,
3681                               btrfs_leaf_data(leaf) + data_end,
3682                               last_off - data_end);
3683
3684                 for (i = slot + nr; i < nritems; i++) {
3685                         u32 ioff;
3686
3687                         item = btrfs_item_nr(leaf, i);
3688                         if (!leaf->map_token) {
3689                                 map_extent_buffer(leaf, (unsigned long)item,
3690                                         sizeof(struct btrfs_item),
3691                                         &leaf->map_token, &leaf->kaddr,
3692                                         &leaf->map_start, &leaf->map_len,
3693                                         KM_USER1);
3694                         }
3695                         ioff = btrfs_item_offset(leaf, item);
3696                         btrfs_set_item_offset(leaf, item, ioff + dsize);
3697                 }
3698
3699                 if (leaf->map_token) {
3700                         unmap_extent_buffer(leaf, leaf->map_token, KM_USER1);
3701                         leaf->map_token = NULL;
3702                 }
3703
3704                 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
3705                               btrfs_item_nr_offset(slot + nr),
3706                               sizeof(struct btrfs_item) *
3707                               (nritems - slot - nr));
3708         }
3709         btrfs_set_header_nritems(leaf, nritems - nr);
3710         nritems -= nr;
3711
3712         /* delete the leaf if we've emptied it */
3713         if (nritems == 0) {
3714                 if (leaf == root->node) {
3715                         btrfs_set_header_level(leaf, 0);
3716                 } else {
3717                         ret = btrfs_del_leaf(trans, root, path, leaf->start);
3718                         BUG_ON(ret);
3719                 }
3720         } else {
3721                 int used = leaf_space_used(leaf, 0, nritems);
3722                 if (slot == 0) {
3723                         struct btrfs_disk_key disk_key;
3724
3725                         btrfs_item_key(leaf, &disk_key, 0);
3726                         wret = fixup_low_keys(trans, root, path,
3727                                               &disk_key, 1);
3728                         if (wret)
3729                                 ret = wret;
3730                 }
3731
3732                 /* delete the leaf if it is mostly empty */
3733                 if (used < BTRFS_LEAF_DATA_SIZE(root) / 4) {
3734                         /* push_leaf_left fixes the path.
3735                          * make sure the path still points to our leaf
3736                          * for possible call to del_ptr below
3737                          */
3738                         slot = path->slots[1];
3739                         extent_buffer_get(leaf);
3740
3741                         wret = push_leaf_left(trans, root, path, 1, 1);
3742                         if (wret < 0 && wret != -ENOSPC)
3743                                 ret = wret;
3744
3745                         if (path->nodes[0] == leaf &&
3746                             btrfs_header_nritems(leaf)) {
3747                                 wret = push_leaf_right(trans, root, path, 1, 1);
3748                                 if (wret < 0 && wret != -ENOSPC)
3749                                         ret = wret;
3750                         }
3751
3752                         if (btrfs_header_nritems(leaf) == 0) {
3753                                 path->slots[1] = slot;
3754                                 ret = btrfs_del_leaf(trans, root, path,
3755                                                      leaf->start);
3756                                 BUG_ON(ret);
3757                                 free_extent_buffer(leaf);
3758                         } else {
3759                                 /* if we're still in the path, make sure
3760                                  * we're dirty.  Otherwise, one of the
3761                                  * push_leaf functions must have already
3762                                  * dirtied this buffer
3763                                  */
3764                                 if (path->nodes[0] == leaf)
3765                                         btrfs_mark_buffer_dirty(leaf);
3766                                 free_extent_buffer(leaf);
3767                         }
3768                 } else {
3769                         btrfs_mark_buffer_dirty(leaf);
3770                 }
3771         }
3772         return ret;
3773 }
3774
3775 /*
3776  * search the tree again to find a leaf with lesser keys
3777  * returns 0 if it found something or 1 if there are no lesser leaves.
3778  * returns < 0 on io errors.
3779  *
3780  * This may release the path, and so you may lose any locks held at the
3781  * time you call it.
3782  */
3783 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
3784 {
3785         struct btrfs_key key;
3786         struct btrfs_disk_key found_key;
3787         int ret;
3788
3789         btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
3790
3791         if (key.offset > 0)
3792                 key.offset--;
3793         else if (key.type > 0)
3794                 key.type--;
3795         else if (key.objectid > 0)
3796                 key.objectid--;
3797         else
3798                 return 1;
3799
3800         btrfs_release_path(root, path);
3801         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3802         if (ret < 0)
3803                 return ret;
3804         btrfs_item_key(path->nodes[0], &found_key, 0);
3805         ret = comp_keys(&found_key, &key);
3806         if (ret < 0)
3807                 return 0;
3808         return 1;
3809 }
3810
3811 /*
3812  * A helper function to walk down the tree starting at min_key, and looking
3813  * for nodes or leaves that are either in cache or have a minimum
3814  * transaction id.  This is used by the btree defrag code, and tree logging
3815  *
3816  * This does not cow, but it does stuff the starting key it finds back
3817  * into min_key, so you can call btrfs_search_slot with cow=1 on the
3818  * key and get a writable path.
3819  *
3820  * This does lock as it descends, and path->keep_locks should be set
3821  * to 1 by the caller.
3822  *
3823  * This honors path->lowest_level to prevent descent past a given level
3824  * of the tree.
3825  *
3826  * min_trans indicates the oldest transaction that you are interested
3827  * in walking through.  Any nodes or leaves older than min_trans are
3828  * skipped over (without reading them).
3829  *
3830  * returns zero if something useful was found, < 0 on error and 1 if there
3831  * was nothing in the tree that matched the search criteria.
3832  */
3833 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
3834                          struct btrfs_key *max_key,
3835                          struct btrfs_path *path, int cache_only,
3836                          u64 min_trans)
3837 {
3838         struct extent_buffer *cur;
3839         struct btrfs_key found_key;
3840         int slot;
3841         int sret;
3842         u32 nritems;
3843         int level;
3844         int ret = 1;
3845
3846         WARN_ON(!path->keep_locks);
3847 again:
3848         cur = btrfs_lock_root_node(root);
3849         level = btrfs_header_level(cur);
3850         WARN_ON(path->nodes[level]);
3851         path->nodes[level] = cur;
3852         path->locks[level] = 1;
3853
3854         if (btrfs_header_generation(cur) < min_trans) {
3855                 ret = 1;
3856                 goto out;
3857         }
3858         while (1) {
3859                 nritems = btrfs_header_nritems(cur);
3860                 level = btrfs_header_level(cur);
3861                 sret = bin_search(cur, min_key, level, &slot);
3862
3863                 /* at the lowest level, we're done, setup the path and exit */
3864                 if (level == path->lowest_level) {
3865                         if (slot >= nritems)
3866                                 goto find_next_key;
3867                         ret = 0;
3868                         path->slots[level] = slot;
3869                         btrfs_item_key_to_cpu(cur, &found_key, slot);
3870                         goto out;
3871                 }
3872                 if (sret && slot > 0)
3873                         slot--;
3874                 /*
3875                  * check this node pointer against the cache_only and
3876                  * min_trans parameters.  If it isn't in cache or is too
3877                  * old, skip to the next one.
3878                  */
3879                 while (slot < nritems) {
3880                         u64 blockptr;
3881                         u64 gen;
3882                         struct extent_buffer *tmp;
3883                         struct btrfs_disk_key disk_key;
3884
3885                         blockptr = btrfs_node_blockptr(cur, slot);
3886                         gen = btrfs_node_ptr_generation(cur, slot);
3887                         if (gen < min_trans) {
3888                                 slot++;
3889                                 continue;
3890                         }
3891                         if (!cache_only)
3892                                 break;
3893
3894                         if (max_key) {
3895                                 btrfs_node_key(cur, &disk_key, slot);
3896                                 if (comp_keys(&disk_key, max_key) >= 0) {
3897                                         ret = 1;
3898                                         goto out;
3899                                 }
3900                         }
3901
3902                         tmp = btrfs_find_tree_block(root, blockptr,
3903                                             btrfs_level_size(root, level - 1));
3904
3905                         if (tmp && btrfs_buffer_uptodate(tmp, gen)) {
3906                                 free_extent_buffer(tmp);
3907                                 break;
3908                         }
3909                         if (tmp)
3910                                 free_extent_buffer(tmp);
3911                         slot++;
3912                 }
3913 find_next_key:
3914                 /*
3915                  * we didn't find a candidate key in this node, walk forward
3916                  * and find another one
3917                  */
3918                 if (slot >= nritems) {
3919                         path->slots[level] = slot;
3920                         btrfs_set_path_blocking(path);
3921                         sret = btrfs_find_next_key(root, path, min_key, level,
3922                                                   cache_only, min_trans);
3923                         if (sret == 0) {
3924                                 btrfs_release_path(root, path);
3925                                 goto again;
3926                         } else {
3927                                 btrfs_clear_path_blocking(path);
3928                                 goto out;
3929                         }
3930                 }
3931                 /* save our key for returning back */
3932                 btrfs_node_key_to_cpu(cur, &found_key, slot);
3933                 path->slots[level] = slot;
3934                 if (level == path->lowest_level) {
3935                         ret = 0;
3936                         unlock_up(path, level, 1);
3937                         goto out;
3938                 }
3939                 btrfs_set_path_blocking(path);
3940                 cur = read_node_slot(root, cur, slot);
3941
3942                 btrfs_tree_lock(cur);
3943
3944                 path->locks[level - 1] = 1;
3945                 path->nodes[level - 1] = cur;
3946                 unlock_up(path, level, 1);
3947                 btrfs_clear_path_blocking(path);
3948         }
3949 out:
3950         if (ret == 0)
3951                 memcpy(min_key, &found_key, sizeof(found_key));
3952         btrfs_set_path_blocking(path);
3953         return ret;
3954 }
3955
3956 /*
3957  * this is similar to btrfs_next_leaf, but does not try to preserve
3958  * and fixup the path.  It looks for and returns the next key in the
3959  * tree based on the current path and the cache_only and min_trans
3960  * parameters.
3961  *
3962  * 0 is returned if another key is found, < 0 if there are any errors
3963  * and 1 is returned if there are no higher keys in the tree
3964  *
3965  * path->keep_locks should be set to 1 on the search made before
3966  * calling this function.
3967  */
3968 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
3969                         struct btrfs_key *key, int lowest_level,
3970                         int cache_only, u64 min_trans)
3971 {
3972         int level = lowest_level;
3973         int slot;
3974         struct extent_buffer *c;
3975
3976         WARN_ON(!path->keep_locks);
3977         while (level < BTRFS_MAX_LEVEL) {
3978                 if (!path->nodes[level])
3979                         return 1;
3980
3981                 slot = path->slots[level] + 1;
3982                 c = path->nodes[level];
3983 next:
3984                 if (slot >= btrfs_header_nritems(c)) {
3985                         level++;
3986                         if (level == BTRFS_MAX_LEVEL)
3987                                 return 1;
3988                         continue;
3989                 }
3990                 if (level == 0)
3991                         btrfs_item_key_to_cpu(c, key, slot);
3992                 else {
3993                         u64 blockptr = btrfs_node_blockptr(c, slot);
3994                         u64 gen = btrfs_node_ptr_generation(c, slot);
3995
3996                         if (cache_only) {
3997                                 struct extent_buffer *cur;
3998                                 cur = btrfs_find_tree_block(root, blockptr,
3999                                             btrfs_level_size(root, level - 1));
4000                                 if (!cur || !btrfs_buffer_uptodate(cur, gen)) {
4001                                         slot++;
4002                                         if (cur)
4003                                                 free_extent_buffer(cur);
4004                                         goto next;
4005                                 }
4006                                 free_extent_buffer(cur);
4007                         }
4008                         if (gen < min_trans) {
4009                                 slot++;
4010                                 goto next;
4011                         }
4012                         btrfs_node_key_to_cpu(c, key, slot);
4013                 }
4014                 return 0;
4015         }
4016         return 1;
4017 }
4018
4019 /*
4020  * search the tree again to find a leaf with greater keys
4021  * returns 0 if it found something or 1 if there are no greater leaves.
4022  * returns < 0 on io errors.
4023  */
4024 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
4025 {
4026         int slot;
4027         int level = 1;
4028         struct extent_buffer *c;
4029         struct extent_buffer *next = NULL;
4030         struct btrfs_key key;
4031         u32 nritems;
4032         int ret;
4033
4034         nritems = btrfs_header_nritems(path->nodes[0]);
4035         if (nritems == 0)
4036                 return 1;
4037
4038         btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
4039
4040         btrfs_release_path(root, path);
4041         path->keep_locks = 1;
4042         ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4043         path->keep_locks = 0;
4044
4045         if (ret < 0)
4046                 return ret;
4047
4048         btrfs_set_path_blocking(path);
4049         nritems = btrfs_header_nritems(path->nodes[0]);
4050         /*
4051          * by releasing the path above we dropped all our locks.  A balance
4052          * could have added more items next to the key that used to be
4053          * at the very end of the block.  So, check again here and
4054          * advance the path if there are now more items available.
4055          */
4056         if (nritems > 0 && path->slots[0] < nritems - 1) {
4057                 path->slots[0]++;
4058                 goto done;
4059         }
4060
4061         while (level < BTRFS_MAX_LEVEL) {
4062                 if (!path->nodes[level])
4063                         return 1;
4064
4065                 slot = path->slots[level] + 1;
4066                 c = path->nodes[level];
4067                 if (slot >= btrfs_header_nritems(c)) {
4068                         level++;
4069                         if (level == BTRFS_MAX_LEVEL)
4070                                 return 1;
4071                         continue;
4072                 }
4073
4074                 if (next) {
4075                         btrfs_tree_unlock(next);
4076                         free_extent_buffer(next);
4077                 }
4078
4079                 /* the path was set to blocking above */
4080                 if (level == 1 && (path->locks[1] || path->skip_locking) &&
4081                     path->reada)
4082                         reada_for_search(root, path, level, slot, 0);
4083
4084                 next = read_node_slot(root, c, slot);
4085                 if (!path->skip_locking) {
4086                         WARN_ON(!btrfs_tree_locked(c));
4087                         btrfs_tree_lock(next);
4088                         btrfs_set_lock_blocking(next);
4089                 }
4090                 break;
4091         }
4092         path->slots[level] = slot;
4093         while (1) {
4094                 level--;
4095                 c = path->nodes[level];
4096                 if (path->locks[level])
4097                         btrfs_tree_unlock(c);
4098                 free_extent_buffer(c);
4099                 path->nodes[level] = next;
4100                 path->slots[level] = 0;
4101                 if (!path->skip_locking)
4102                         path->locks[level] = 1;
4103                 if (!level)
4104                         break;
4105
4106                 btrfs_set_path_blocking(path);
4107                 if (level == 1 && path->locks[1] && path->reada)
4108                         reada_for_search(root, path, level, slot, 0);
4109                 next = read_node_slot(root, next, 0);
4110                 if (!path->skip_locking) {
4111                         WARN_ON(!btrfs_tree_locked(path->nodes[level]));
4112                         btrfs_tree_lock(next);
4113                         btrfs_set_lock_blocking(next);
4114                 }
4115         }
4116 done:
4117         unlock_up(path, 0, 1);
4118         return 0;
4119 }
4120
4121 /*
4122  * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
4123  * searching until it gets past min_objectid or finds an item of 'type'
4124  *
4125  * returns 0 if something is found, 1 if nothing was found and < 0 on error
4126  */
4127 int btrfs_previous_item(struct btrfs_root *root,
4128                         struct btrfs_path *path, u64 min_objectid,
4129                         int type)
4130 {
4131         struct btrfs_key found_key;
4132         struct extent_buffer *leaf;
4133         u32 nritems;
4134         int ret;
4135
4136         while (1) {
4137                 if (path->slots[0] == 0) {
4138                         btrfs_set_path_blocking(path);
4139                         ret = btrfs_prev_leaf(root, path);
4140                         if (ret != 0)
4141                                 return ret;
4142                 } else {
4143                         path->slots[0]--;
4144                 }
4145                 leaf = path->nodes[0];
4146                 nritems = btrfs_header_nritems(leaf);
4147                 if (nritems == 0)
4148                         return 1;
4149                 if (path->slots[0] == nritems)
4150                         path->slots[0]--;
4151
4152                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4153                 if (found_key.type == type)
4154                         return 0;
4155                 if (found_key.objectid < min_objectid)
4156                         break;
4157                 if (found_key.objectid == min_objectid &&
4158                     found_key.type < type)
4159                         break;
4160         }
4161         return 1;
4162 }