firewire: net: adjust net_device ops
[linux-2.6] / drivers / firewire / net.c
1 /*
2  * IPv4 over IEEE 1394, per RFC 2734
3  *
4  * Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
5  *
6  * based on eth1394 by Ben Collins et al
7  */
8
9 #include <linux/bug.h>
10 #include <linux/device.h>
11 #include <linux/ethtool.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/highmem.h>
15 #include <linux/in.h>
16 #include <linux/ip.h>
17 #include <linux/jiffies.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/module.h>
20 #include <linux/moduleparam.h>
21 #include <linux/mutex.h>
22 #include <linux/netdevice.h>
23 #include <linux/skbuff.h>
24 #include <linux/spinlock.h>
25
26 #include <asm/unaligned.h>
27 #include <net/arp.h>
28
29 #define FWNET_MAX_FRAGMENTS     25      /* arbitrary limit */
30 #define FWNET_ISO_PAGE_COUNT    (PAGE_SIZE < 16 * 1024 ? 4 : 2)
31
32 #define IEEE1394_BROADCAST_CHANNEL      31
33 #define IEEE1394_ALL_NODES              (0xffc0 | 0x003f)
34 #define IEEE1394_MAX_PAYLOAD_S100       512
35 #define FWNET_NO_FIFO_ADDR              (~0ULL)
36
37 #define IANA_SPECIFIER_ID               0x00005eU
38 #define RFC2734_SW_VERSION              0x000001U
39
40 #define IEEE1394_GASP_HDR_SIZE  8
41
42 #define RFC2374_UNFRAG_HDR_SIZE 4
43 #define RFC2374_FRAG_HDR_SIZE   8
44 #define RFC2374_FRAG_OVERHEAD   4
45
46 #define RFC2374_HDR_UNFRAG      0       /* unfragmented         */
47 #define RFC2374_HDR_FIRSTFRAG   1       /* first fragment       */
48 #define RFC2374_HDR_LASTFRAG    2       /* last fragment        */
49 #define RFC2374_HDR_INTFRAG     3       /* interior fragment    */
50
51 #define RFC2734_HW_ADDR_LEN     16
52
53 struct rfc2734_arp {
54         __be16 hw_type;         /* 0x0018       */
55         __be16 proto_type;      /* 0x0806       */
56         u8 hw_addr_len;         /* 16           */
57         u8 ip_addr_len;         /* 4            */
58         __be16 opcode;          /* ARP Opcode   */
59         /* Above is exactly the same format as struct arphdr */
60
61         __be64 s_uniq_id;       /* Sender's 64bit EUI                   */
62         u8 max_rec;             /* Sender's max packet size             */
63         u8 sspd;                /* Sender's max speed                   */
64         __be16 fifo_hi;         /* hi 16bits of sender's FIFO addr      */
65         __be32 fifo_lo;         /* lo 32bits of sender's FIFO addr      */
66         __be32 sip;             /* Sender's IP Address                  */
67         __be32 tip;             /* IP Address of requested hw addr      */
68 } __attribute__((packed));
69
70 /* This header format is specific to this driver implementation. */
71 #define FWNET_ALEN      8
72 #define FWNET_HLEN      10
73 struct fwnet_header {
74         u8 h_dest[FWNET_ALEN];  /* destination address */
75         __be16 h_proto;         /* packet type ID field */
76 } __attribute__((packed));
77
78 /* IPv4 and IPv6 encapsulation header */
79 struct rfc2734_header {
80         u32 w0;
81         u32 w1;
82 };
83
84 #define fwnet_get_hdr_lf(h)             (((h)->w0 & 0xc0000000) >> 30)
85 #define fwnet_get_hdr_ether_type(h)     (((h)->w0 & 0x0000ffff))
86 #define fwnet_get_hdr_dg_size(h)        (((h)->w0 & 0x0fff0000) >> 16)
87 #define fwnet_get_hdr_fg_off(h)         (((h)->w0 & 0x00000fff))
88 #define fwnet_get_hdr_dgl(h)            (((h)->w1 & 0xffff0000) >> 16)
89
90 #define fwnet_set_hdr_lf(lf)            ((lf)  << 30)
91 #define fwnet_set_hdr_ether_type(et)    (et)
92 #define fwnet_set_hdr_dg_size(dgs)      ((dgs) << 16)
93 #define fwnet_set_hdr_fg_off(fgo)       (fgo)
94
95 #define fwnet_set_hdr_dgl(dgl)          ((dgl) << 16)
96
97 static inline void fwnet_make_uf_hdr(struct rfc2734_header *hdr,
98                 unsigned ether_type)
99 {
100         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_UNFRAG)
101                   | fwnet_set_hdr_ether_type(ether_type);
102 }
103
104 static inline void fwnet_make_ff_hdr(struct rfc2734_header *hdr,
105                 unsigned ether_type, unsigned dg_size, unsigned dgl)
106 {
107         hdr->w0 = fwnet_set_hdr_lf(RFC2374_HDR_FIRSTFRAG)
108                   | fwnet_set_hdr_dg_size(dg_size)
109                   | fwnet_set_hdr_ether_type(ether_type);
110         hdr->w1 = fwnet_set_hdr_dgl(dgl);
111 }
112
113 static inline void fwnet_make_sf_hdr(struct rfc2734_header *hdr,
114                 unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl)
115 {
116         hdr->w0 = fwnet_set_hdr_lf(lf)
117                   | fwnet_set_hdr_dg_size(dg_size)
118                   | fwnet_set_hdr_fg_off(fg_off);
119         hdr->w1 = fwnet_set_hdr_dgl(dgl);
120 }
121
122 /* This list keeps track of what parts of the datagram have been filled in */
123 struct fwnet_fragment_info {
124         struct list_head fi_link;
125         u16 offset;
126         u16 len;
127 };
128
129 struct fwnet_partial_datagram {
130         struct list_head pd_link;
131         struct list_head fi_list;
132         struct sk_buff *skb;
133         /* FIXME Why not use skb->data? */
134         char *pbuf;
135         u16 datagram_label;
136         u16 ether_type;
137         u16 datagram_size;
138 };
139
140 static DEFINE_MUTEX(fwnet_device_mutex);
141 static LIST_HEAD(fwnet_device_list);
142
143 struct fwnet_device {
144         struct list_head dev_link;
145         spinlock_t lock;
146         enum {
147                 FWNET_BROADCAST_ERROR,
148                 FWNET_BROADCAST_RUNNING,
149                 FWNET_BROADCAST_STOPPED,
150         } broadcast_state;
151         struct fw_iso_context *broadcast_rcv_context;
152         struct fw_iso_buffer broadcast_rcv_buffer;
153         void **broadcast_rcv_buffer_ptrs;
154         unsigned broadcast_rcv_next_ptr;
155         unsigned num_broadcast_rcv_ptrs;
156         unsigned rcv_buffer_size;
157         /*
158          * This value is the maximum unfragmented datagram size that can be
159          * sent by the hardware.  It already has the GASP overhead and the
160          * unfragmented datagram header overhead calculated into it.
161          */
162         unsigned broadcast_xmt_max_payload;
163         u16 broadcast_xmt_datagramlabel;
164
165         /*
166          * The CSR address that remote nodes must send datagrams to for us to
167          * receive them.
168          */
169         struct fw_address_handler handler;
170         u64 local_fifo;
171
172         /* List of packets to be sent */
173         struct list_head packet_list;
174         /*
175          * List of packets that were broadcasted.  When we get an ISO interrupt
176          * one of them has been sent
177          */
178         struct list_head broadcasted_list;
179         /* List of packets that have been sent but not yet acked */
180         struct list_head sent_list;
181
182         struct list_head peer_list;
183         struct fw_card *card;
184         struct net_device *netdev;
185 };
186
187 struct fwnet_peer {
188         struct list_head peer_link;
189         struct fwnet_device *dev;
190         u64 guid;
191         u64 fifo;
192
193         /* guarded by dev->lock */
194         struct list_head pd_list; /* received partial datagrams */
195         unsigned pdg_size;        /* pd_list size */
196
197         u16 datagram_label;       /* outgoing datagram label */
198         unsigned max_payload;     /* includes RFC2374_FRAG_HDR_SIZE overhead */
199         int node_id;
200         int generation;
201         unsigned speed;
202 };
203
204 /* This is our task struct. It's used for the packet complete callback.  */
205 struct fwnet_packet_task {
206         /*
207          * ptask can actually be on dev->packet_list, dev->broadcasted_list,
208          * or dev->sent_list depending on its current state.
209          */
210         struct list_head pt_link;
211         struct fw_transaction transaction;
212         struct rfc2734_header hdr;
213         struct sk_buff *skb;
214         struct fwnet_device *dev;
215
216         int outstanding_pkts;
217         unsigned max_payload;
218         u64 fifo_addr;
219         u16 dest_node;
220         u8 generation;
221         u8 speed;
222 };
223
224 /*
225  * saddr == NULL means use device source address.
226  * daddr == NULL means leave destination address (eg unresolved arp).
227  */
228 static int fwnet_header_create(struct sk_buff *skb, struct net_device *net,
229                         unsigned short type, const void *daddr,
230                         const void *saddr, unsigned len)
231 {
232         struct fwnet_header *h;
233
234         h = (struct fwnet_header *)skb_push(skb, sizeof(*h));
235         put_unaligned_be16(type, &h->h_proto);
236
237         if (net->flags & (IFF_LOOPBACK | IFF_NOARP)) {
238                 memset(h->h_dest, 0, net->addr_len);
239
240                 return net->hard_header_len;
241         }
242
243         if (daddr) {
244                 memcpy(h->h_dest, daddr, net->addr_len);
245
246                 return net->hard_header_len;
247         }
248
249         return -net->hard_header_len;
250 }
251
252 static int fwnet_header_rebuild(struct sk_buff *skb)
253 {
254         struct fwnet_header *h = (struct fwnet_header *)skb->data;
255
256         if (get_unaligned_be16(&h->h_proto) == ETH_P_IP)
257                 return arp_find((unsigned char *)&h->h_dest, skb);
258
259         fw_notify("%s: unable to resolve type %04x addresses\n",
260                   skb->dev->name, be16_to_cpu(h->h_proto));
261         return 0;
262 }
263
264 static int fwnet_header_cache(const struct neighbour *neigh,
265                               struct hh_cache *hh)
266 {
267         struct net_device *net;
268         struct fwnet_header *h;
269
270         if (hh->hh_type == cpu_to_be16(ETH_P_802_3))
271                 return -1;
272         net = neigh->dev;
273         h = (struct fwnet_header *)((u8 *)hh->hh_data + 16 - sizeof(*h));
274         h->h_proto = hh->hh_type;
275         memcpy(h->h_dest, neigh->ha, net->addr_len);
276         hh->hh_len = FWNET_HLEN;
277
278         return 0;
279 }
280
281 /* Called by Address Resolution module to notify changes in address. */
282 static void fwnet_header_cache_update(struct hh_cache *hh,
283                 const struct net_device *net, const unsigned char *haddr)
284 {
285         memcpy((u8 *)hh->hh_data + 16 - FWNET_HLEN, haddr, net->addr_len);
286 }
287
288 static int fwnet_header_parse(const struct sk_buff *skb, unsigned char *haddr)
289 {
290         memcpy(haddr, skb->dev->dev_addr, FWNET_ALEN);
291
292         return FWNET_ALEN;
293 }
294
295 static const struct header_ops fwnet_header_ops = {
296         .create         = fwnet_header_create,
297         .rebuild        = fwnet_header_rebuild,
298         .cache          = fwnet_header_cache,
299         .cache_update   = fwnet_header_cache_update,
300         .parse          = fwnet_header_parse,
301 };
302
303 /* FIXME: is this correct for all cases? */
304 static bool fwnet_frag_overlap(struct fwnet_partial_datagram *pd,
305                                unsigned offset, unsigned len)
306 {
307         struct fwnet_fragment_info *fi;
308         unsigned end = offset + len;
309
310         list_for_each_entry(fi, &pd->fi_list, fi_link)
311                 if (offset < fi->offset + fi->len && end > fi->offset)
312                         return true;
313
314         return false;
315 }
316
317 /* Assumes that new fragment does not overlap any existing fragments */
318 static struct fwnet_fragment_info *fwnet_frag_new(
319         struct fwnet_partial_datagram *pd, unsigned offset, unsigned len)
320 {
321         struct fwnet_fragment_info *fi, *fi2, *new;
322         struct list_head *list;
323
324         list = &pd->fi_list;
325         list_for_each_entry(fi, &pd->fi_list, fi_link) {
326                 if (fi->offset + fi->len == offset) {
327                         /* The new fragment can be tacked on to the end */
328                         /* Did the new fragment plug a hole? */
329                         fi2 = list_entry(fi->fi_link.next,
330                                          struct fwnet_fragment_info, fi_link);
331                         if (fi->offset + fi->len == fi2->offset) {
332                                 /* glue fragments together */
333                                 fi->len += len + fi2->len;
334                                 list_del(&fi2->fi_link);
335                                 kfree(fi2);
336                         } else {
337                                 fi->len += len;
338                         }
339
340                         return fi;
341                 }
342                 if (offset + len == fi->offset) {
343                         /* The new fragment can be tacked on to the beginning */
344                         /* Did the new fragment plug a hole? */
345                         fi2 = list_entry(fi->fi_link.prev,
346                                          struct fwnet_fragment_info, fi_link);
347                         if (fi2->offset + fi2->len == fi->offset) {
348                                 /* glue fragments together */
349                                 fi2->len += fi->len + len;
350                                 list_del(&fi->fi_link);
351                                 kfree(fi);
352
353                                 return fi2;
354                         }
355                         fi->offset = offset;
356                         fi->len += len;
357
358                         return fi;
359                 }
360                 if (offset > fi->offset + fi->len) {
361                         list = &fi->fi_link;
362                         break;
363                 }
364                 if (offset + len < fi->offset) {
365                         list = fi->fi_link.prev;
366                         break;
367                 }
368         }
369
370         new = kmalloc(sizeof(*new), GFP_ATOMIC);
371         if (!new) {
372                 fw_error("out of memory\n");
373                 return NULL;
374         }
375
376         new->offset = offset;
377         new->len = len;
378         list_add(&new->fi_link, list);
379
380         return new;
381 }
382
383 static struct fwnet_partial_datagram *fwnet_pd_new(struct net_device *net,
384                 struct fwnet_peer *peer, u16 datagram_label, unsigned dg_size,
385                 void *frag_buf, unsigned frag_off, unsigned frag_len)
386 {
387         struct fwnet_partial_datagram *new;
388         struct fwnet_fragment_info *fi;
389
390         new = kmalloc(sizeof(*new), GFP_ATOMIC);
391         if (!new)
392                 goto fail;
393
394         INIT_LIST_HEAD(&new->fi_list);
395         fi = fwnet_frag_new(new, frag_off, frag_len);
396         if (fi == NULL)
397                 goto fail_w_new;
398
399         new->datagram_label = datagram_label;
400         new->datagram_size = dg_size;
401         new->skb = dev_alloc_skb(dg_size + net->hard_header_len + 15);
402         if (new->skb == NULL)
403                 goto fail_w_fi;
404
405         skb_reserve(new->skb, (net->hard_header_len + 15) & ~15);
406         new->pbuf = skb_put(new->skb, dg_size);
407         memcpy(new->pbuf + frag_off, frag_buf, frag_len);
408         list_add_tail(&new->pd_link, &peer->pd_list);
409
410         return new;
411
412 fail_w_fi:
413         kfree(fi);
414 fail_w_new:
415         kfree(new);
416 fail:
417         fw_error("out of memory\n");
418
419         return NULL;
420 }
421
422 static struct fwnet_partial_datagram *fwnet_pd_find(struct fwnet_peer *peer,
423                                                     u16 datagram_label)
424 {
425         struct fwnet_partial_datagram *pd;
426
427         list_for_each_entry(pd, &peer->pd_list, pd_link)
428                 if (pd->datagram_label == datagram_label)
429                         return pd;
430
431         return NULL;
432 }
433
434
435 static void fwnet_pd_delete(struct fwnet_partial_datagram *old)
436 {
437         struct fwnet_fragment_info *fi, *n;
438
439         list_for_each_entry_safe(fi, n, &old->fi_list, fi_link)
440                 kfree(fi);
441
442         list_del(&old->pd_link);
443         dev_kfree_skb_any(old->skb);
444         kfree(old);
445 }
446
447 static bool fwnet_pd_update(struct fwnet_peer *peer,
448                 struct fwnet_partial_datagram *pd, void *frag_buf,
449                 unsigned frag_off, unsigned frag_len)
450 {
451         if (fwnet_frag_new(pd, frag_off, frag_len) == NULL)
452                 return false;
453
454         memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
455
456         /*
457          * Move list entry to beginnig of list so that oldest partial
458          * datagrams percolate to the end of the list
459          */
460         list_move_tail(&pd->pd_link, &peer->pd_list);
461
462         return true;
463 }
464
465 static bool fwnet_pd_is_complete(struct fwnet_partial_datagram *pd)
466 {
467         struct fwnet_fragment_info *fi;
468
469         fi = list_entry(pd->fi_list.next, struct fwnet_fragment_info, fi_link);
470
471         return fi->len == pd->datagram_size;
472 }
473
474 /* caller must hold dev->lock */
475 static struct fwnet_peer *fwnet_peer_find_by_guid(struct fwnet_device *dev,
476                                                   u64 guid)
477 {
478         struct fwnet_peer *peer;
479
480         list_for_each_entry(peer, &dev->peer_list, peer_link)
481                 if (peer->guid == guid)
482                         return peer;
483
484         return NULL;
485 }
486
487 /* caller must hold dev->lock */
488 static struct fwnet_peer *fwnet_peer_find_by_node_id(struct fwnet_device *dev,
489                                                 int node_id, int generation)
490 {
491         struct fwnet_peer *peer;
492
493         list_for_each_entry(peer, &dev->peer_list, peer_link)
494                 if (peer->node_id    == node_id &&
495                     peer->generation == generation)
496                         return peer;
497
498         return NULL;
499 }
500
501 /* See IEEE 1394-2008 table 6-4, table 8-8, table 16-18. */
502 static unsigned fwnet_max_payload(unsigned max_rec, unsigned speed)
503 {
504         max_rec = min(max_rec, speed + 8);
505         max_rec = min(max_rec, 0xbU); /* <= 4096 */
506         if (max_rec < 8) {
507                 fw_notify("max_rec %x out of range\n", max_rec);
508                 max_rec = 8;
509         }
510
511         return (1 << (max_rec + 1)) - RFC2374_FRAG_HDR_SIZE;
512 }
513
514
515 static int fwnet_finish_incoming_packet(struct net_device *net,
516                                         struct sk_buff *skb, u16 source_node_id,
517                                         bool is_broadcast, u16 ether_type)
518 {
519         struct fwnet_device *dev;
520         static const __be64 broadcast_hw = cpu_to_be64(~0ULL);
521         int status;
522         __be64 guid;
523
524         dev = netdev_priv(net);
525         /* Write metadata, and then pass to the receive level */
526         skb->dev = net;
527         skb->ip_summed = CHECKSUM_UNNECESSARY;  /* don't check it */
528
529         /*
530          * Parse the encapsulation header. This actually does the job of
531          * converting to an ethernet frame header, as well as arp
532          * conversion if needed. ARP conversion is easier in this
533          * direction, since we are using ethernet as our backend.
534          */
535         /*
536          * If this is an ARP packet, convert it. First, we want to make
537          * use of some of the fields, since they tell us a little bit
538          * about the sending machine.
539          */
540         if (ether_type == ETH_P_ARP) {
541                 struct rfc2734_arp *arp1394;
542                 struct arphdr *arp;
543                 unsigned char *arp_ptr;
544                 u64 fifo_addr;
545                 u64 peer_guid;
546                 unsigned sspd;
547                 u16 max_payload;
548                 struct fwnet_peer *peer;
549                 unsigned long flags;
550
551                 arp1394   = (struct rfc2734_arp *)skb->data;
552                 arp       = (struct arphdr *)skb->data;
553                 arp_ptr   = (unsigned char *)(arp + 1);
554                 peer_guid = get_unaligned_be64(&arp1394->s_uniq_id);
555                 fifo_addr = (u64)get_unaligned_be16(&arp1394->fifo_hi) << 32
556                                 | get_unaligned_be32(&arp1394->fifo_lo);
557
558                 sspd = arp1394->sspd;
559                 /* Sanity check.  OS X 10.3 PPC reportedly sends 131. */
560                 if (sspd > SCODE_3200) {
561                         fw_notify("sspd %x out of range\n", sspd);
562                         sspd = SCODE_3200;
563                 }
564                 max_payload = fwnet_max_payload(arp1394->max_rec, sspd);
565
566                 spin_lock_irqsave(&dev->lock, flags);
567                 peer = fwnet_peer_find_by_guid(dev, peer_guid);
568                 if (peer) {
569                         peer->fifo = fifo_addr;
570
571                         if (peer->speed > sspd)
572                                 peer->speed = sspd;
573                         if (peer->max_payload > max_payload)
574                                 peer->max_payload = max_payload;
575                 }
576                 spin_unlock_irqrestore(&dev->lock, flags);
577
578                 if (!peer) {
579                         fw_notify("No peer for ARP packet from %016llx\n",
580                                   (unsigned long long)peer_guid);
581                         goto failed_proto;
582                 }
583
584                 /*
585                  * Now that we're done with the 1394 specific stuff, we'll
586                  * need to alter some of the data.  Believe it or not, all
587                  * that needs to be done is sender_IP_address needs to be
588                  * moved, the destination hardware address get stuffed
589                  * in and the hardware address length set to 8.
590                  *
591                  * IMPORTANT: The code below overwrites 1394 specific data
592                  * needed above so keep the munging of the data for the
593                  * higher level IP stack last.
594                  */
595
596                 arp->ar_hln = 8;
597                 /* skip over sender unique id */
598                 arp_ptr += arp->ar_hln;
599                 /* move sender IP addr */
600                 put_unaligned(arp1394->sip, (u32 *)arp_ptr);
601                 /* skip over sender IP addr */
602                 arp_ptr += arp->ar_pln;
603
604                 if (arp->ar_op == htons(ARPOP_REQUEST))
605                         memset(arp_ptr, 0, sizeof(u64));
606                 else
607                         memcpy(arp_ptr, net->dev_addr, sizeof(u64));
608         }
609
610         /* Now add the ethernet header. */
611         guid = cpu_to_be64(dev->card->guid);
612         if (dev_hard_header(skb, net, ether_type,
613                            is_broadcast ? &broadcast_hw : &guid,
614                            NULL, skb->len) >= 0) {
615                 struct fwnet_header *eth;
616                 u16 *rawp;
617                 __be16 protocol;
618
619                 skb_reset_mac_header(skb);
620                 skb_pull(skb, sizeof(*eth));
621                 eth = (struct fwnet_header *)skb_mac_header(skb);
622                 if (*eth->h_dest & 1) {
623                         if (memcmp(eth->h_dest, net->broadcast,
624                                    net->addr_len) == 0)
625                                 skb->pkt_type = PACKET_BROADCAST;
626 #if 0
627                         else
628                                 skb->pkt_type = PACKET_MULTICAST;
629 #endif
630                 } else {
631                         if (memcmp(eth->h_dest, net->dev_addr, net->addr_len))
632                                 skb->pkt_type = PACKET_OTHERHOST;
633                 }
634                 if (ntohs(eth->h_proto) >= 1536) {
635                         protocol = eth->h_proto;
636                 } else {
637                         rawp = (u16 *)skb->data;
638                         if (*rawp == 0xffff)
639                                 protocol = htons(ETH_P_802_3);
640                         else
641                                 protocol = htons(ETH_P_802_2);
642                 }
643                 skb->protocol = protocol;
644         }
645         status = netif_rx(skb);
646         if (status == NET_RX_DROP) {
647                 net->stats.rx_errors++;
648                 net->stats.rx_dropped++;
649         } else {
650                 net->stats.rx_packets++;
651                 net->stats.rx_bytes += skb->len;
652         }
653         if (netif_queue_stopped(net))
654                 netif_wake_queue(net);
655
656         return 0;
657
658  failed_proto:
659         net->stats.rx_errors++;
660         net->stats.rx_dropped++;
661
662         dev_kfree_skb_any(skb);
663         if (netif_queue_stopped(net))
664                 netif_wake_queue(net);
665
666         net->last_rx = jiffies;
667
668         return 0;
669 }
670
671 static int fwnet_incoming_packet(struct fwnet_device *dev, __be32 *buf, int len,
672                                  int source_node_id, int generation,
673                                  bool is_broadcast)
674 {
675         struct sk_buff *skb;
676         struct net_device *net = dev->netdev;
677         struct rfc2734_header hdr;
678         unsigned lf;
679         unsigned long flags;
680         struct fwnet_peer *peer;
681         struct fwnet_partial_datagram *pd;
682         int fg_off;
683         int dg_size;
684         u16 datagram_label;
685         int retval;
686         u16 ether_type;
687
688         hdr.w0 = be32_to_cpu(buf[0]);
689         lf = fwnet_get_hdr_lf(&hdr);
690         if (lf == RFC2374_HDR_UNFRAG) {
691                 /*
692                  * An unfragmented datagram has been received by the ieee1394
693                  * bus. Build an skbuff around it so we can pass it to the
694                  * high level network layer.
695                  */
696                 ether_type = fwnet_get_hdr_ether_type(&hdr);
697                 buf++;
698                 len -= RFC2374_UNFRAG_HDR_SIZE;
699
700                 skb = dev_alloc_skb(len + net->hard_header_len + 15);
701                 if (unlikely(!skb)) {
702                         fw_error("out of memory\n");
703                         net->stats.rx_dropped++;
704
705                         return -1;
706                 }
707                 skb_reserve(skb, (net->hard_header_len + 15) & ~15);
708                 memcpy(skb_put(skb, len), buf, len);
709
710                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
711                                                     is_broadcast, ether_type);
712         }
713         /* A datagram fragment has been received, now the fun begins. */
714         hdr.w1 = ntohl(buf[1]);
715         buf += 2;
716         len -= RFC2374_FRAG_HDR_SIZE;
717         if (lf == RFC2374_HDR_FIRSTFRAG) {
718                 ether_type = fwnet_get_hdr_ether_type(&hdr);
719                 fg_off = 0;
720         } else {
721                 ether_type = 0;
722                 fg_off = fwnet_get_hdr_fg_off(&hdr);
723         }
724         datagram_label = fwnet_get_hdr_dgl(&hdr);
725         dg_size = fwnet_get_hdr_dg_size(&hdr); /* ??? + 1 */
726
727         spin_lock_irqsave(&dev->lock, flags);
728
729         peer = fwnet_peer_find_by_node_id(dev, source_node_id, generation);
730         if (!peer)
731                 goto bad_proto;
732
733         pd = fwnet_pd_find(peer, datagram_label);
734         if (pd == NULL) {
735                 while (peer->pdg_size >= FWNET_MAX_FRAGMENTS) {
736                         /* remove the oldest */
737                         fwnet_pd_delete(list_first_entry(&peer->pd_list,
738                                 struct fwnet_partial_datagram, pd_link));
739                         peer->pdg_size--;
740                 }
741                 pd = fwnet_pd_new(net, peer, datagram_label,
742                                   dg_size, buf, fg_off, len);
743                 if (pd == NULL) {
744                         retval = -ENOMEM;
745                         goto bad_proto;
746                 }
747                 peer->pdg_size++;
748         } else {
749                 if (fwnet_frag_overlap(pd, fg_off, len) ||
750                     pd->datagram_size != dg_size) {
751                         /*
752                          * Differing datagram sizes or overlapping fragments,
753                          * discard old datagram and start a new one.
754                          */
755                         fwnet_pd_delete(pd);
756                         pd = fwnet_pd_new(net, peer, datagram_label,
757                                           dg_size, buf, fg_off, len);
758                         if (pd == NULL) {
759                                 retval = -ENOMEM;
760                                 peer->pdg_size--;
761                                 goto bad_proto;
762                         }
763                 } else {
764                         if (!fwnet_pd_update(peer, pd, buf, fg_off, len)) {
765                                 /*
766                                  * Couldn't save off fragment anyway
767                                  * so might as well obliterate the
768                                  * datagram now.
769                                  */
770                                 fwnet_pd_delete(pd);
771                                 peer->pdg_size--;
772                                 goto bad_proto;
773                         }
774                 }
775         } /* new datagram or add to existing one */
776
777         if (lf == RFC2374_HDR_FIRSTFRAG)
778                 pd->ether_type = ether_type;
779
780         if (fwnet_pd_is_complete(pd)) {
781                 ether_type = pd->ether_type;
782                 peer->pdg_size--;
783                 skb = skb_get(pd->skb);
784                 fwnet_pd_delete(pd);
785
786                 spin_unlock_irqrestore(&dev->lock, flags);
787
788                 return fwnet_finish_incoming_packet(net, skb, source_node_id,
789                                                     false, ether_type);
790         }
791         /*
792          * Datagram is not complete, we're done for the
793          * moment.
794          */
795         spin_unlock_irqrestore(&dev->lock, flags);
796
797         return 0;
798
799  bad_proto:
800         spin_unlock_irqrestore(&dev->lock, flags);
801
802         if (netif_queue_stopped(net))
803                 netif_wake_queue(net);
804
805         return 0;
806 }
807
808 static void fwnet_receive_packet(struct fw_card *card, struct fw_request *r,
809                 int tcode, int destination, int source, int generation,
810                 int speed, unsigned long long offset, void *payload,
811                 size_t length, void *callback_data)
812 {
813         struct fwnet_device *dev;
814         int status;
815
816         dev = callback_data;
817         if (tcode != TCODE_WRITE_BLOCK_REQUEST
818             || destination != card->node_id     /* <- FIXME */
819             || generation != card->generation   /* <- FIXME */
820             || offset != dev->handler.offset) {
821                 fw_send_response(card, r, RCODE_CONFLICT_ERROR);
822
823                 return;
824         }
825
826         status = fwnet_incoming_packet(dev, payload, length,
827                                        source, generation, false);
828         if (status != 0) {
829                 fw_error("Incoming packet failure\n");
830                 fw_send_response(card, r, RCODE_CONFLICT_ERROR);
831
832                 return;
833         }
834
835         fw_send_response(card, r, RCODE_COMPLETE);
836 }
837
838 static void fwnet_receive_broadcast(struct fw_iso_context *context,
839                 u32 cycle, size_t header_length, void *header, void *data)
840 {
841         struct fwnet_device *dev;
842         struct fw_iso_packet packet;
843         struct fw_card *card;
844         __be16 *hdr_ptr;
845         __be32 *buf_ptr;
846         int retval;
847         u32 length;
848         u16 source_node_id;
849         u32 specifier_id;
850         u32 ver;
851         unsigned long offset;
852         unsigned long flags;
853
854         dev = data;
855         card = dev->card;
856         hdr_ptr = header;
857         length = be16_to_cpup(hdr_ptr);
858
859         spin_lock_irqsave(&dev->lock, flags);
860
861         offset = dev->rcv_buffer_size * dev->broadcast_rcv_next_ptr;
862         buf_ptr = dev->broadcast_rcv_buffer_ptrs[dev->broadcast_rcv_next_ptr++];
863         if (dev->broadcast_rcv_next_ptr == dev->num_broadcast_rcv_ptrs)
864                 dev->broadcast_rcv_next_ptr = 0;
865
866         spin_unlock_irqrestore(&dev->lock, flags);
867
868         specifier_id =    (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
869                         | (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
870         ver = be32_to_cpu(buf_ptr[1]) & 0xffffff;
871         source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
872
873         if (specifier_id == IANA_SPECIFIER_ID && ver == RFC2734_SW_VERSION) {
874                 buf_ptr += 2;
875                 length -= IEEE1394_GASP_HDR_SIZE;
876                 fwnet_incoming_packet(dev, buf_ptr, length,
877                                       source_node_id, -1, true);
878         }
879
880         packet.payload_length = dev->rcv_buffer_size;
881         packet.interrupt = 1;
882         packet.skip = 0;
883         packet.tag = 3;
884         packet.sy = 0;
885         packet.header_length = IEEE1394_GASP_HDR_SIZE;
886
887         spin_lock_irqsave(&dev->lock, flags);
888
889         retval = fw_iso_context_queue(dev->broadcast_rcv_context, &packet,
890                                       &dev->broadcast_rcv_buffer, offset);
891
892         spin_unlock_irqrestore(&dev->lock, flags);
893
894         if (retval < 0)
895                 fw_error("requeue failed\n");
896 }
897
898 static struct kmem_cache *fwnet_packet_task_cache;
899
900 static int fwnet_send_packet(struct fwnet_packet_task *ptask);
901
902 static void fwnet_transmit_packet_done(struct fwnet_packet_task *ptask)
903 {
904         struct fwnet_device *dev;
905         unsigned long flags;
906
907         dev = ptask->dev;
908
909         spin_lock_irqsave(&dev->lock, flags);
910         list_del(&ptask->pt_link);
911         spin_unlock_irqrestore(&dev->lock, flags);
912
913         ptask->outstanding_pkts--; /* FIXME access inside lock */
914
915         if (ptask->outstanding_pkts > 0) {
916                 u16 dg_size;
917                 u16 fg_off;
918                 u16 datagram_label;
919                 u16 lf;
920                 struct sk_buff *skb;
921
922                 /* Update the ptask to point to the next fragment and send it */
923                 lf = fwnet_get_hdr_lf(&ptask->hdr);
924                 switch (lf) {
925                 case RFC2374_HDR_LASTFRAG:
926                 case RFC2374_HDR_UNFRAG:
927                 default:
928                         fw_error("Outstanding packet %x lf %x, header %x,%x\n",
929                                  ptask->outstanding_pkts, lf, ptask->hdr.w0,
930                                  ptask->hdr.w1);
931                         BUG();
932
933                 case RFC2374_HDR_FIRSTFRAG:
934                         /* Set frag type here for future interior fragments */
935                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
936                         fg_off = ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
937                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
938                         break;
939
940                 case RFC2374_HDR_INTFRAG:
941                         dg_size = fwnet_get_hdr_dg_size(&ptask->hdr);
942                         fg_off = fwnet_get_hdr_fg_off(&ptask->hdr)
943                                   + ptask->max_payload - RFC2374_FRAG_HDR_SIZE;
944                         datagram_label = fwnet_get_hdr_dgl(&ptask->hdr);
945                         break;
946                 }
947                 skb = ptask->skb;
948                 skb_pull(skb, ptask->max_payload);
949                 if (ptask->outstanding_pkts > 1) {
950                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_INTFRAG,
951                                           dg_size, fg_off, datagram_label);
952                 } else {
953                         fwnet_make_sf_hdr(&ptask->hdr, RFC2374_HDR_LASTFRAG,
954                                           dg_size, fg_off, datagram_label);
955                         ptask->max_payload = skb->len + RFC2374_FRAG_HDR_SIZE;
956                 }
957                 fwnet_send_packet(ptask);
958         } else {
959                 dev_kfree_skb_any(ptask->skb);
960                 kmem_cache_free(fwnet_packet_task_cache, ptask);
961         }
962 }
963
964 static void fwnet_write_complete(struct fw_card *card, int rcode,
965                                  void *payload, size_t length, void *data)
966 {
967         struct fwnet_packet_task *ptask;
968
969         ptask = data;
970
971         if (rcode == RCODE_COMPLETE)
972                 fwnet_transmit_packet_done(ptask);
973         else
974                 fw_error("fwnet_write_complete: failed: %x\n", rcode);
975                 /* ??? error recovery */
976 }
977
978 static int fwnet_send_packet(struct fwnet_packet_task *ptask)
979 {
980         struct fwnet_device *dev;
981         unsigned tx_len;
982         struct rfc2734_header *bufhdr;
983         unsigned long flags;
984
985         dev = ptask->dev;
986         tx_len = ptask->max_payload;
987         switch (fwnet_get_hdr_lf(&ptask->hdr)) {
988         case RFC2374_HDR_UNFRAG:
989                 bufhdr = (struct rfc2734_header *)
990                                 skb_push(ptask->skb, RFC2374_UNFRAG_HDR_SIZE);
991                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
992                 break;
993
994         case RFC2374_HDR_FIRSTFRAG:
995         case RFC2374_HDR_INTFRAG:
996         case RFC2374_HDR_LASTFRAG:
997                 bufhdr = (struct rfc2734_header *)
998                                 skb_push(ptask->skb, RFC2374_FRAG_HDR_SIZE);
999                 put_unaligned_be32(ptask->hdr.w0, &bufhdr->w0);
1000                 put_unaligned_be32(ptask->hdr.w1, &bufhdr->w1);
1001                 break;
1002
1003         default:
1004                 BUG();
1005         }
1006         if (ptask->dest_node == IEEE1394_ALL_NODES) {
1007                 u8 *p;
1008                 int generation;
1009                 int node_id;
1010
1011                 /* ptask->generation may not have been set yet */
1012                 generation = dev->card->generation;
1013                 smp_rmb();
1014                 node_id = dev->card->node_id;
1015
1016                 p = skb_push(ptask->skb, 8);
1017                 put_unaligned_be32(node_id << 16 | IANA_SPECIFIER_ID >> 8, p);
1018                 put_unaligned_be32((IANA_SPECIFIER_ID & 0xff) << 24
1019                                                 | RFC2734_SW_VERSION, &p[4]);
1020
1021                 /* We should not transmit if broadcast_channel.valid == 0. */
1022                 fw_send_request(dev->card, &ptask->transaction,
1023                                 TCODE_STREAM_DATA,
1024                                 fw_stream_packet_destination_id(3,
1025                                                 IEEE1394_BROADCAST_CHANNEL, 0),
1026                                 generation, SCODE_100, 0ULL, ptask->skb->data,
1027                                 tx_len + 8, fwnet_write_complete, ptask);
1028
1029                 /* FIXME race? */
1030                 spin_lock_irqsave(&dev->lock, flags);
1031                 list_add_tail(&ptask->pt_link, &dev->broadcasted_list);
1032                 spin_unlock_irqrestore(&dev->lock, flags);
1033
1034                 return 0;
1035         }
1036
1037         fw_send_request(dev->card, &ptask->transaction,
1038                         TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node,
1039                         ptask->generation, ptask->speed, ptask->fifo_addr,
1040                         ptask->skb->data, tx_len, fwnet_write_complete, ptask);
1041
1042         /* FIXME race? */
1043         spin_lock_irqsave(&dev->lock, flags);
1044         list_add_tail(&ptask->pt_link, &dev->sent_list);
1045         spin_unlock_irqrestore(&dev->lock, flags);
1046
1047         dev->netdev->trans_start = jiffies;
1048
1049         return 0;
1050 }
1051
1052 static int fwnet_broadcast_start(struct fwnet_device *dev)
1053 {
1054         struct fw_iso_context *context;
1055         int retval;
1056         unsigned num_packets;
1057         unsigned max_receive;
1058         struct fw_iso_packet packet;
1059         unsigned long offset;
1060         unsigned u;
1061
1062         if (dev->local_fifo == FWNET_NO_FIFO_ADDR) {
1063                 /* outside OHCI posted write area? */
1064                 static const struct fw_address_region region = {
1065                         .start = 0xffff00000000ULL,
1066                         .end   = CSR_REGISTER_BASE,
1067                 };
1068
1069                 dev->handler.length = 4096;
1070                 dev->handler.address_callback = fwnet_receive_packet;
1071                 dev->handler.callback_data = dev;
1072
1073                 retval = fw_core_add_address_handler(&dev->handler, &region);
1074                 if (retval < 0)
1075                         goto failed_initial;
1076
1077                 dev->local_fifo = dev->handler.offset;
1078         }
1079
1080         max_receive = 1U << (dev->card->max_receive + 1);
1081         num_packets = (FWNET_ISO_PAGE_COUNT * PAGE_SIZE) / max_receive;
1082
1083         if (!dev->broadcast_rcv_context) {
1084                 void **ptrptr;
1085
1086                 context = fw_iso_context_create(dev->card,
1087                     FW_ISO_CONTEXT_RECEIVE, IEEE1394_BROADCAST_CHANNEL,
1088                     dev->card->link_speed, 8, fwnet_receive_broadcast, dev);
1089                 if (IS_ERR(context)) {
1090                         retval = PTR_ERR(context);
1091                         goto failed_context_create;
1092                 }
1093
1094                 retval = fw_iso_buffer_init(&dev->broadcast_rcv_buffer,
1095                     dev->card, FWNET_ISO_PAGE_COUNT, DMA_FROM_DEVICE);
1096                 if (retval < 0)
1097                         goto failed_buffer_init;
1098
1099                 ptrptr = kmalloc(sizeof(void *) * num_packets, GFP_KERNEL);
1100                 if (!ptrptr) {
1101                         retval = -ENOMEM;
1102                         goto failed_ptrs_alloc;
1103                 }
1104
1105                 dev->broadcast_rcv_buffer_ptrs = ptrptr;
1106                 for (u = 0; u < FWNET_ISO_PAGE_COUNT; u++) {
1107                         void *ptr;
1108                         unsigned v;
1109
1110                         ptr = kmap(dev->broadcast_rcv_buffer.pages[u]);
1111                         for (v = 0; v < num_packets / FWNET_ISO_PAGE_COUNT; v++)
1112                                 *ptrptr++ = (void *)
1113                                                 ((char *)ptr + v * max_receive);
1114                 }
1115                 dev->broadcast_rcv_context = context;
1116         } else {
1117                 context = dev->broadcast_rcv_context;
1118         }
1119
1120         packet.payload_length = max_receive;
1121         packet.interrupt = 1;
1122         packet.skip = 0;
1123         packet.tag = 3;
1124         packet.sy = 0;
1125         packet.header_length = IEEE1394_GASP_HDR_SIZE;
1126         offset = 0;
1127
1128         for (u = 0; u < num_packets; u++) {
1129                 retval = fw_iso_context_queue(context, &packet,
1130                                 &dev->broadcast_rcv_buffer, offset);
1131                 if (retval < 0)
1132                         goto failed_rcv_queue;
1133
1134                 offset += max_receive;
1135         }
1136         dev->num_broadcast_rcv_ptrs = num_packets;
1137         dev->rcv_buffer_size = max_receive;
1138         dev->broadcast_rcv_next_ptr = 0U;
1139         retval = fw_iso_context_start(context, -1, 0,
1140                         FW_ISO_CONTEXT_MATCH_ALL_TAGS); /* ??? sync */
1141         if (retval < 0)
1142                 goto failed_rcv_queue;
1143
1144         /* FIXME: adjust it according to the min. speed of all known peers? */
1145         dev->broadcast_xmt_max_payload = IEEE1394_MAX_PAYLOAD_S100
1146                         - IEEE1394_GASP_HDR_SIZE - RFC2374_UNFRAG_HDR_SIZE;
1147         dev->broadcast_state = FWNET_BROADCAST_RUNNING;
1148
1149         return 0;
1150
1151  failed_rcv_queue:
1152         kfree(dev->broadcast_rcv_buffer_ptrs);
1153         dev->broadcast_rcv_buffer_ptrs = NULL;
1154  failed_ptrs_alloc:
1155         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer, dev->card);
1156  failed_buffer_init:
1157         fw_iso_context_destroy(context);
1158         dev->broadcast_rcv_context = NULL;
1159  failed_context_create:
1160         fw_core_remove_address_handler(&dev->handler);
1161  failed_initial:
1162         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1163
1164         return retval;
1165 }
1166
1167 /* ifup */
1168 static int fwnet_open(struct net_device *net)
1169 {
1170         struct fwnet_device *dev = netdev_priv(net);
1171         int ret;
1172
1173         if (dev->broadcast_state == FWNET_BROADCAST_ERROR) {
1174                 ret = fwnet_broadcast_start(dev);
1175                 if (ret)
1176                         return ret;
1177         }
1178         netif_start_queue(net);
1179
1180         return 0;
1181 }
1182
1183 /* ifdown */
1184 static int fwnet_stop(struct net_device *net)
1185 {
1186         netif_stop_queue(net);
1187
1188         /* Deallocate iso context for use by other applications? */
1189
1190         return 0;
1191 }
1192
1193 static int fwnet_tx(struct sk_buff *skb, struct net_device *net)
1194 {
1195         struct fwnet_header hdr_buf;
1196         struct fwnet_device *dev = netdev_priv(net);
1197         __be16 proto;
1198         u16 dest_node;
1199         unsigned max_payload;
1200         u16 dg_size;
1201         u16 *datagram_label_ptr;
1202         struct fwnet_packet_task *ptask;
1203         struct fwnet_peer *peer;
1204         unsigned long flags;
1205
1206         ptask = kmem_cache_alloc(fwnet_packet_task_cache, GFP_ATOMIC);
1207         if (ptask == NULL)
1208                 goto fail;
1209
1210         skb = skb_share_check(skb, GFP_ATOMIC);
1211         if (!skb)
1212                 goto fail;
1213
1214         /*
1215          * Make a copy of the driver-specific header.
1216          * We might need to rebuild the header on tx failure.
1217          */
1218         memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
1219         skb_pull(skb, sizeof(hdr_buf));
1220
1221         proto = hdr_buf.h_proto;
1222         dg_size = skb->len;
1223
1224         /* serialize access to peer, including peer->datagram_label */
1225         spin_lock_irqsave(&dev->lock, flags);
1226
1227         /*
1228          * Set the transmission type for the packet.  ARP packets and IP
1229          * broadcast packets are sent via GASP.
1230          */
1231         if (memcmp(hdr_buf.h_dest, net->broadcast, FWNET_ALEN) == 0
1232             || proto == htons(ETH_P_ARP)
1233             || (proto == htons(ETH_P_IP)
1234                 && IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)))) {
1235                 max_payload        = dev->broadcast_xmt_max_payload;
1236                 datagram_label_ptr = &dev->broadcast_xmt_datagramlabel;
1237
1238                 ptask->fifo_addr   = FWNET_NO_FIFO_ADDR;
1239                 ptask->generation  = 0;
1240                 ptask->dest_node   = IEEE1394_ALL_NODES;
1241                 ptask->speed       = SCODE_100;
1242         } else {
1243                 __be64 guid = get_unaligned((__be64 *)hdr_buf.h_dest);
1244                 u8 generation;
1245
1246                 peer = fwnet_peer_find_by_guid(dev, be64_to_cpu(guid));
1247                 if (!peer || peer->fifo == FWNET_NO_FIFO_ADDR)
1248                         goto fail_unlock;
1249
1250                 generation         = peer->generation;
1251                 dest_node          = peer->node_id;
1252                 max_payload        = peer->max_payload;
1253                 datagram_label_ptr = &peer->datagram_label;
1254
1255                 ptask->fifo_addr   = peer->fifo;
1256                 ptask->generation  = generation;
1257                 ptask->dest_node   = dest_node;
1258                 ptask->speed       = peer->speed;
1259         }
1260
1261         /* If this is an ARP packet, convert it */
1262         if (proto == htons(ETH_P_ARP)) {
1263                 struct arphdr *arp = (struct arphdr *)skb->data;
1264                 unsigned char *arp_ptr = (unsigned char *)(arp + 1);
1265                 struct rfc2734_arp *arp1394 = (struct rfc2734_arp *)skb->data;
1266                 __be32 ipaddr;
1267
1268                 ipaddr = get_unaligned((__be32 *)(arp_ptr + FWNET_ALEN));
1269
1270                 arp1394->hw_addr_len    = RFC2734_HW_ADDR_LEN;
1271                 arp1394->max_rec        = dev->card->max_receive;
1272                 arp1394->sspd           = dev->card->link_speed;
1273
1274                 put_unaligned_be16(dev->local_fifo >> 32,
1275                                    &arp1394->fifo_hi);
1276                 put_unaligned_be32(dev->local_fifo & 0xffffffff,
1277                                    &arp1394->fifo_lo);
1278                 put_unaligned(ipaddr, &arp1394->sip);
1279         }
1280
1281         ptask->hdr.w0 = 0;
1282         ptask->hdr.w1 = 0;
1283         ptask->skb = skb;
1284         ptask->dev = dev;
1285
1286         /* Does it all fit in one packet? */
1287         if (dg_size <= max_payload) {
1288                 fwnet_make_uf_hdr(&ptask->hdr, ntohs(proto));
1289                 ptask->outstanding_pkts = 1;
1290                 max_payload = dg_size + RFC2374_UNFRAG_HDR_SIZE;
1291         } else {
1292                 u16 datagram_label;
1293
1294                 max_payload -= RFC2374_FRAG_OVERHEAD;
1295                 datagram_label = (*datagram_label_ptr)++;
1296                 fwnet_make_ff_hdr(&ptask->hdr, ntohs(proto), dg_size,
1297                                   datagram_label);
1298                 ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
1299                 max_payload += RFC2374_FRAG_HDR_SIZE;
1300         }
1301
1302         spin_unlock_irqrestore(&dev->lock, flags);
1303
1304         ptask->max_payload = max_payload;
1305         fwnet_send_packet(ptask);
1306
1307         return NETDEV_TX_OK;
1308
1309  fail_unlock:
1310         spin_unlock_irqrestore(&dev->lock, flags);
1311  fail:
1312         if (ptask)
1313                 kmem_cache_free(fwnet_packet_task_cache, ptask);
1314
1315         if (skb != NULL)
1316                 dev_kfree_skb(skb);
1317
1318         net->stats.tx_dropped++;
1319         net->stats.tx_errors++;
1320
1321         /*
1322          * FIXME: According to a patch from 2003-02-26, "returning non-zero
1323          * causes serious problems" here, allegedly.  Before that patch,
1324          * -ERRNO was returned which is not appropriate under Linux 2.6.
1325          * Perhaps more needs to be done?  Stop the queue in serious
1326          * conditions and restart it elsewhere?
1327          */
1328         return NETDEV_TX_OK;
1329 }
1330
1331 static int fwnet_change_mtu(struct net_device *net, int new_mtu)
1332 {
1333         if (new_mtu < 68)
1334                 return -EINVAL;
1335
1336         net->mtu = new_mtu;
1337         return 0;
1338 }
1339
1340 static void fwnet_get_drvinfo(struct net_device *net,
1341                               struct ethtool_drvinfo *info)
1342 {
1343         strcpy(info->driver, KBUILD_MODNAME);
1344         strcpy(info->bus_info, "ieee1394");
1345 }
1346
1347 static struct ethtool_ops fwnet_ethtool_ops = {
1348         .get_drvinfo = fwnet_get_drvinfo,
1349 };
1350
1351 static const struct net_device_ops fwnet_netdev_ops = {
1352         .ndo_open       = fwnet_open,
1353         .ndo_stop       = fwnet_stop,
1354         .ndo_start_xmit = fwnet_tx,
1355         .ndo_change_mtu = fwnet_change_mtu,
1356 };
1357
1358 static void fwnet_init_dev(struct net_device *net)
1359 {
1360         net->header_ops         = &fwnet_header_ops;
1361         net->netdev_ops         = &fwnet_netdev_ops;
1362         net->watchdog_timeo     = 2 * HZ;
1363         net->flags              = IFF_BROADCAST | IFF_MULTICAST;
1364         net->features           = NETIF_F_HIGHDMA;
1365         net->addr_len           = FWNET_ALEN;
1366         net->hard_header_len    = FWNET_HLEN;
1367         net->type               = ARPHRD_IEEE1394;
1368         net->tx_queue_len       = 10;
1369         SET_ETHTOOL_OPS(net, &fwnet_ethtool_ops);
1370 }
1371
1372 /* caller must hold fwnet_device_mutex */
1373 static struct fwnet_device *fwnet_dev_find(struct fw_card *card)
1374 {
1375         struct fwnet_device *dev;
1376
1377         list_for_each_entry(dev, &fwnet_device_list, dev_link)
1378                 if (dev->card == card)
1379                         return dev;
1380
1381         return NULL;
1382 }
1383
1384 static int fwnet_add_peer(struct fwnet_device *dev,
1385                           struct fw_unit *unit, struct fw_device *device)
1386 {
1387         struct fwnet_peer *peer;
1388
1389         peer = kmalloc(sizeof(*peer), GFP_KERNEL);
1390         if (!peer)
1391                 return -ENOMEM;
1392
1393         unit->device.driver_data = peer;
1394         peer->dev = dev;
1395         peer->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1396         peer->fifo = FWNET_NO_FIFO_ADDR;
1397         INIT_LIST_HEAD(&peer->pd_list);
1398         peer->pdg_size = 0;
1399         peer->datagram_label = 0;
1400         peer->speed = device->max_speed;
1401         peer->max_payload = fwnet_max_payload(device->max_rec, peer->speed);
1402
1403         peer->generation = device->generation;
1404         smp_rmb();
1405         peer->node_id = device->node_id;
1406
1407         spin_lock_irq(&dev->lock);
1408         list_add_tail(&peer->peer_link, &dev->peer_list);
1409         spin_unlock_irq(&dev->lock);
1410
1411         return 0;
1412 }
1413
1414 static int fwnet_probe(struct device *_dev)
1415 {
1416         struct fw_unit *unit = fw_unit(_dev);
1417         struct fw_device *device = fw_parent_device(unit);
1418         struct fw_card *card = device->card;
1419         struct net_device *net;
1420         struct fwnet_device *dev;
1421         unsigned max_mtu;
1422         bool new_netdev;
1423         int ret;
1424
1425         mutex_lock(&fwnet_device_mutex);
1426
1427         dev = fwnet_dev_find(card);
1428         if (dev) {
1429                 new_netdev = false;
1430                 net = dev->netdev;
1431                 goto have_dev;
1432         }
1433
1434         new_netdev = true;
1435         net = alloc_netdev(sizeof(*dev), "firewire%d", fwnet_init_dev);
1436         if (net == NULL) {
1437                 ret = -ENOMEM;
1438                 goto out;
1439         }
1440
1441         SET_NETDEV_DEV(net, card->device);
1442         dev = netdev_priv(net);
1443
1444         spin_lock_init(&dev->lock);
1445         dev->broadcast_state = FWNET_BROADCAST_ERROR;
1446         dev->broadcast_rcv_context = NULL;
1447         dev->broadcast_xmt_max_payload = 0;
1448         dev->broadcast_xmt_datagramlabel = 0;
1449
1450         dev->local_fifo = FWNET_NO_FIFO_ADDR;
1451
1452         INIT_LIST_HEAD(&dev->packet_list);
1453         INIT_LIST_HEAD(&dev->broadcasted_list);
1454         INIT_LIST_HEAD(&dev->sent_list);
1455         INIT_LIST_HEAD(&dev->peer_list);
1456
1457         dev->card = card;
1458         dev->netdev = net;
1459
1460         /*
1461          * Use the RFC 2734 default 1500 octets or the maximum payload
1462          * as initial MTU
1463          */
1464         max_mtu = (1 << (card->max_receive + 1))
1465                   - sizeof(struct rfc2734_header) - IEEE1394_GASP_HDR_SIZE;
1466         net->mtu = min(1500U, max_mtu);
1467
1468         /* Set our hardware address while we're at it */
1469         put_unaligned_be64(card->guid, net->dev_addr);
1470         put_unaligned_be64(~0ULL, net->broadcast);
1471         ret = register_netdev(net);
1472         if (ret) {
1473                 fw_error("Cannot register the driver\n");
1474                 goto out;
1475         }
1476
1477         list_add_tail(&dev->dev_link, &fwnet_device_list);
1478         fw_notify("%s: IPv4 over FireWire on device %016llx\n",
1479                   net->name, (unsigned long long)card->guid);
1480  have_dev:
1481         ret = fwnet_add_peer(dev, unit, device);
1482         if (ret && new_netdev) {
1483                 unregister_netdev(net);
1484                 list_del(&dev->dev_link);
1485         }
1486  out:
1487         if (ret && new_netdev)
1488                 free_netdev(net);
1489
1490         mutex_unlock(&fwnet_device_mutex);
1491
1492         return ret;
1493 }
1494
1495 static void fwnet_remove_peer(struct fwnet_peer *peer)
1496 {
1497         struct fwnet_partial_datagram *pd, *pd_next;
1498
1499         spin_lock_irq(&peer->dev->lock);
1500         list_del(&peer->peer_link);
1501         spin_unlock_irq(&peer->dev->lock);
1502
1503         list_for_each_entry_safe(pd, pd_next, &peer->pd_list, pd_link)
1504                 fwnet_pd_delete(pd);
1505
1506         kfree(peer);
1507 }
1508
1509 static int fwnet_remove(struct device *_dev)
1510 {
1511         struct fwnet_peer *peer = _dev->driver_data;
1512         struct fwnet_device *dev = peer->dev;
1513         struct net_device *net;
1514         struct fwnet_packet_task *ptask, *pt_next;
1515
1516         mutex_lock(&fwnet_device_mutex);
1517
1518         fwnet_remove_peer(peer);
1519
1520         if (list_empty(&dev->peer_list)) {
1521                 net = dev->netdev;
1522                 unregister_netdev(net);
1523
1524                 if (dev->local_fifo != FWNET_NO_FIFO_ADDR)
1525                         fw_core_remove_address_handler(&dev->handler);
1526                 if (dev->broadcast_rcv_context) {
1527                         fw_iso_context_stop(dev->broadcast_rcv_context);
1528                         fw_iso_buffer_destroy(&dev->broadcast_rcv_buffer,
1529                                               dev->card);
1530                         fw_iso_context_destroy(dev->broadcast_rcv_context);
1531                 }
1532                 list_for_each_entry_safe(ptask, pt_next,
1533                                          &dev->packet_list, pt_link) {
1534                         dev_kfree_skb_any(ptask->skb);
1535                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1536                 }
1537                 list_for_each_entry_safe(ptask, pt_next,
1538                                          &dev->broadcasted_list, pt_link) {
1539                         dev_kfree_skb_any(ptask->skb);
1540                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1541                 }
1542                 list_for_each_entry_safe(ptask, pt_next,
1543                                          &dev->sent_list, pt_link) {
1544                         dev_kfree_skb_any(ptask->skb);
1545                         kmem_cache_free(fwnet_packet_task_cache, ptask);
1546                 }
1547                 free_netdev(net);
1548         }
1549
1550         mutex_unlock(&fwnet_device_mutex);
1551
1552         return 0;
1553 }
1554
1555 /*
1556  * FIXME abort partially sent fragmented datagrams,
1557  * discard partially received fragmented datagrams
1558  */
1559 static void fwnet_update(struct fw_unit *unit)
1560 {
1561         struct fw_device *device = fw_parent_device(unit);
1562         struct fwnet_peer *peer = unit->device.driver_data;
1563         int generation;
1564
1565         generation = device->generation;
1566
1567         spin_lock_irq(&peer->dev->lock);
1568         peer->node_id    = device->node_id;
1569         peer->generation = generation;
1570         spin_unlock_irq(&peer->dev->lock);
1571 }
1572
1573 static const struct ieee1394_device_id fwnet_id_table[] = {
1574         {
1575                 .match_flags  = IEEE1394_MATCH_SPECIFIER_ID |
1576                                 IEEE1394_MATCH_VERSION,
1577                 .specifier_id = IANA_SPECIFIER_ID,
1578                 .version      = RFC2734_SW_VERSION,
1579         },
1580         { }
1581 };
1582
1583 static struct fw_driver fwnet_driver = {
1584         .driver = {
1585                 .owner  = THIS_MODULE,
1586                 .name   = "net",
1587                 .bus    = &fw_bus_type,
1588                 .probe  = fwnet_probe,
1589                 .remove = fwnet_remove,
1590         },
1591         .update   = fwnet_update,
1592         .id_table = fwnet_id_table,
1593 };
1594
1595 static const u32 rfc2374_unit_directory_data[] = {
1596         0x00040000,     /* directory_length             */
1597         0x1200005e,     /* unit_specifier_id: IANA      */
1598         0x81000003,     /* textual descriptor offset    */
1599         0x13000001,     /* unit_sw_version: RFC 2734    */
1600         0x81000005,     /* textual descriptor offset    */
1601         0x00030000,     /* descriptor_length            */
1602         0x00000000,     /* text                         */
1603         0x00000000,     /* minimal ASCII, en            */
1604         0x49414e41,     /* I A N A                      */
1605         0x00030000,     /* descriptor_length            */
1606         0x00000000,     /* text                         */
1607         0x00000000,     /* minimal ASCII, en            */
1608         0x49507634,     /* I P v 4                      */
1609 };
1610
1611 static struct fw_descriptor rfc2374_unit_directory = {
1612         .length = ARRAY_SIZE(rfc2374_unit_directory_data),
1613         .key    = (CSR_DIRECTORY | CSR_UNIT) << 24,
1614         .data   = rfc2374_unit_directory_data
1615 };
1616
1617 static int __init fwnet_init(void)
1618 {
1619         int err;
1620
1621         err = fw_core_add_descriptor(&rfc2374_unit_directory);
1622         if (err)
1623                 return err;
1624
1625         fwnet_packet_task_cache = kmem_cache_create("packet_task",
1626                         sizeof(struct fwnet_packet_task), 0, 0, NULL);
1627         if (!fwnet_packet_task_cache) {
1628                 err = -ENOMEM;
1629                 goto out;
1630         }
1631
1632         err = driver_register(&fwnet_driver.driver);
1633         if (!err)
1634                 return 0;
1635
1636         kmem_cache_destroy(fwnet_packet_task_cache);
1637 out:
1638         fw_core_remove_descriptor(&rfc2374_unit_directory);
1639
1640         return err;
1641 }
1642 module_init(fwnet_init);
1643
1644 static void __exit fwnet_cleanup(void)
1645 {
1646         driver_unregister(&fwnet_driver.driver);
1647         kmem_cache_destroy(fwnet_packet_task_cache);
1648         fw_core_remove_descriptor(&rfc2374_unit_directory);
1649 }
1650 module_exit(fwnet_cleanup);
1651
1652 MODULE_AUTHOR("Jay Fenlason <fenlason@redhat.com>");
1653 MODULE_DESCRIPTION("IPv4 over IEEE1394 as per RFC 2734");
1654 MODULE_LICENSE("GPL");
1655 MODULE_DEVICE_TABLE(ieee1394, fwnet_id_table);