3 * Purpose: Generic MCA handling layer
5 * Updated for latest kernel
6 * Copyright (C) 2003 Hewlett-Packard Co
7 * David Mosberger-Tang <davidm@hpl.hp.com>
9 * Copyright (C) 2002 Dell Inc.
10 * Copyright (C) Matt Domsch (Matt_Domsch@dell.com)
12 * Copyright (C) 2002 Intel
13 * Copyright (C) Jenna Hall (jenna.s.hall@intel.com)
15 * Copyright (C) 2001 Intel
16 * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com)
18 * Copyright (C) 2000 Intel
19 * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com)
21 * Copyright (C) 1999, 2004 Silicon Graphics, Inc.
22 * Copyright (C) Vijay Chander(vijay@engr.sgi.com)
24 * 03/04/15 D. Mosberger Added INIT backtrace support.
25 * 02/03/25 M. Domsch GUID cleanups
27 * 02/01/04 J. Hall Aligned MCA stack to 16 bytes, added platform vs. CPU
28 * error flag, set SAL default return values, changed
29 * error record structure to linked list, added init call
30 * to sal_get_state_info_size().
32 * 01/01/03 F. Lewis Added setup of CMCI and CPEI IRQs, logging of corrected
33 * platform errors, completed code for logging of
34 * corrected & uncorrected machine check errors, and
35 * updated for conformance with Nov. 2000 revision of the
37 * 00/03/29 C. Fleckenstein Fixed PAL/SAL update issues, began MCA bug fixes, logging issues,
38 * added min save state dump, added INIT handler.
40 * 2003-12-08 Keith Owens <kaos@sgi.com>
41 * smp_call_function() must not be called from interrupt context (can
42 * deadlock on tasklist_lock). Use keventd to call smp_call_function().
44 * 2004-02-01 Keith Owens <kaos@sgi.com>
45 * Avoid deadlock when using printk() for MCA and INIT records.
46 * Delete all record printing code, moved to salinfo_decode in user space.
47 * Mark variables and functions static where possible.
48 * Delete dead variables and functions.
49 * Reorder to remove the need for forward declarations and to consolidate
52 * 2005-08-12 Keith Owens <kaos@sgi.com>
53 * Convert MCA/INIT handlers to use per event stacks and SAL/OS state.
55 * 2005-10-07 Keith Owens <kaos@sgi.com>
56 * Add notify_die() hooks.
58 #include <linux/config.h>
59 #include <linux/types.h>
60 #include <linux/init.h>
61 #include <linux/sched.h>
62 #include <linux/interrupt.h>
63 #include <linux/irq.h>
64 #include <linux/smp_lock.h>
65 #include <linux/bootmem.h>
66 #include <linux/acpi.h>
67 #include <linux/timer.h>
68 #include <linux/module.h>
69 #include <linux/kernel.h>
70 #include <linux/smp.h>
71 #include <linux/workqueue.h>
73 #include <asm/delay.h>
74 #include <asm/kdebug.h>
75 #include <asm/machvec.h>
76 #include <asm/meminit.h>
78 #include <asm/ptrace.h>
79 #include <asm/system.h>
84 #include <asm/hw_irq.h>
88 #if defined(IA64_MCA_DEBUG_INFO)
89 # define IA64_MCA_DEBUG(fmt...) printk(fmt)
91 # define IA64_MCA_DEBUG(fmt...)
94 /* Used by mca_asm.S */
95 u32 ia64_mca_serialize;
96 DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */
97 DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */
98 DEFINE_PER_CPU(u64, ia64_mca_pal_pte); /* PTE to map PAL code */
99 DEFINE_PER_CPU(u64, ia64_mca_pal_base); /* vaddr PAL code granule */
101 unsigned long __per_cpu_mca[NR_CPUS];
104 extern void ia64_os_init_dispatch_monarch (void);
105 extern void ia64_os_init_dispatch_slave (void);
107 static int monarch_cpu = -1;
109 static ia64_mc_info_t ia64_mc_info;
111 #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */
112 #define MIN_CPE_POLL_INTERVAL (2*60*HZ) /* 2 minutes */
113 #define CMC_POLL_INTERVAL (1*60*HZ) /* 1 minute */
114 #define CPE_HISTORY_LENGTH 5
115 #define CMC_HISTORY_LENGTH 5
117 static struct timer_list cpe_poll_timer;
118 static struct timer_list cmc_poll_timer;
120 * This variable tells whether we are currently in polling mode.
121 * Start with this in the wrong state so we won't play w/ timers
122 * before the system is ready.
124 static int cmc_polling_enabled = 1;
127 * Clearing this variable prevents CPE polling from getting activated
128 * in mca_late_init. Use it if your system doesn't provide a CPEI,
129 * but encounters problems retrieving CPE logs. This should only be
130 * necessary for debugging.
132 static int cpe_poll_enabled = 1;
134 extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe);
140 ia64_mca_spin(const char *func)
142 printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func);
147 * IA64_MCA log support
149 #define IA64_MAX_LOGS 2 /* Double-buffering for nested MCAs */
150 #define IA64_MAX_LOG_TYPES 4 /* MCA, INIT, CMC, CPE */
152 typedef struct ia64_state_log_s
156 unsigned long isl_count;
157 ia64_err_rec_t *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */
160 static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES];
162 #define IA64_LOG_ALLOCATE(it, size) \
163 {ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \
164 (ia64_err_rec_t *)alloc_bootmem(size); \
165 ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \
166 (ia64_err_rec_t *)alloc_bootmem(size);}
167 #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock)
168 #define IA64_LOG_LOCK(it) spin_lock_irqsave(&ia64_state_log[it].isl_lock, s)
169 #define IA64_LOG_UNLOCK(it) spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s)
170 #define IA64_LOG_NEXT_INDEX(it) ia64_state_log[it].isl_index
171 #define IA64_LOG_CURR_INDEX(it) 1 - ia64_state_log[it].isl_index
172 #define IA64_LOG_INDEX_INC(it) \
173 {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \
174 ia64_state_log[it].isl_count++;}
175 #define IA64_LOG_INDEX_DEC(it) \
176 ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index
177 #define IA64_LOG_NEXT_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)]))
178 #define IA64_LOG_CURR_BUFFER(it) (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)]))
179 #define IA64_LOG_COUNT(it) ia64_state_log[it].isl_count
183 * Reset the OS ia64 log buffer
184 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
188 ia64_log_init(int sal_info_type)
192 IA64_LOG_NEXT_INDEX(sal_info_type) = 0;
193 IA64_LOG_LOCK_INIT(sal_info_type);
195 // SAL will tell us the maximum size of any error record of this type
196 max_size = ia64_sal_get_state_info_size(sal_info_type);
198 /* alloc_bootmem() doesn't like zero-sized allocations! */
201 // set up OS data structures to hold error info
202 IA64_LOG_ALLOCATE(sal_info_type, max_size);
203 memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size);
204 memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size);
210 * Get the current MCA log from SAL and copy it into the OS log buffer.
212 * Inputs : info_type (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE})
213 * irq_safe whether you can use printk at this point
214 * Outputs : size (total record length)
215 * *buffer (ptr to error record)
219 ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe)
221 sal_log_record_header_t *log_buffer;
225 IA64_LOG_LOCK(sal_info_type);
227 /* Get the process state information */
228 log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type);
230 total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer);
233 IA64_LOG_INDEX_INC(sal_info_type);
234 IA64_LOG_UNLOCK(sal_info_type);
236 IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. "
237 "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len);
239 *buffer = (u8 *) log_buffer;
242 IA64_LOG_UNLOCK(sal_info_type);
248 * ia64_mca_log_sal_error_record
250 * This function retrieves a specified error record type from SAL
251 * and wakes up any processes waiting for error records.
253 * Inputs : sal_info_type (Type of error record MCA/CMC/CPE)
254 * FIXME: remove MCA and irq_safe.
257 ia64_mca_log_sal_error_record(int sal_info_type)
260 sal_log_record_header_t *rh;
262 int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA;
263 #ifdef IA64_MCA_DEBUG_INFO
264 static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" };
267 size = ia64_log_get(sal_info_type, &buffer, irq_safe);
271 salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe);
274 IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n",
276 sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN");
278 /* Clear logs from corrected errors in case there's no user-level logger */
279 rh = (sal_log_record_header_t *)buffer;
280 if (rh->severity == sal_log_severity_corrected)
281 ia64_sal_clear_state_info(sal_info_type);
287 int ia64_cpe_irq = -1;
290 ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs)
292 static unsigned long cpe_history[CPE_HISTORY_LENGTH];
294 static DEFINE_SPINLOCK(cpe_history_lock);
296 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
297 __FUNCTION__, cpe_irq, smp_processor_id());
299 /* SAL spec states this should run w/ interrupts enabled */
302 /* Get the CPE error record and log it */
303 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE);
305 spin_lock(&cpe_history_lock);
306 if (!cpe_poll_enabled && cpe_vector >= 0) {
308 int i, count = 1; /* we know 1 happened now */
309 unsigned long now = jiffies;
311 for (i = 0; i < CPE_HISTORY_LENGTH; i++) {
312 if (now - cpe_history[i] <= HZ)
316 IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH);
317 if (count >= CPE_HISTORY_LENGTH) {
319 cpe_poll_enabled = 1;
320 spin_unlock(&cpe_history_lock);
321 disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR));
324 * Corrected errors will still be corrected, but
325 * make sure there's a log somewhere that indicates
326 * something is generating more than we can handle.
328 printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n");
330 mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL);
332 /* lock already released, get out now */
335 cpe_history[index++] = now;
336 if (index == CPE_HISTORY_LENGTH)
340 spin_unlock(&cpe_history_lock);
344 #endif /* CONFIG_ACPI */
348 * ia64_mca_register_cpev
350 * Register the corrected platform error vector with SAL.
353 * cpev Corrected Platform Error Vector number
359 ia64_mca_register_cpev (int cpev)
361 /* Register the CPE interrupt vector with SAL */
362 struct ia64_sal_retval isrv;
364 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0);
366 printk(KERN_ERR "Failed to register Corrected Platform "
367 "Error interrupt vector with SAL (status %ld)\n", isrv.status);
371 IA64_MCA_DEBUG("%s: corrected platform error "
372 "vector %#x registered\n", __FUNCTION__, cpev);
374 #endif /* CONFIG_ACPI */
377 * ia64_mca_cmc_vector_setup
379 * Setup the corrected machine check vector register in the processor.
380 * (The interrupt is masked on boot. ia64_mca_late_init unmask this.)
381 * This function is invoked on a per-processor basis.
390 ia64_mca_cmc_vector_setup (void)
394 cmcv.cmcv_regval = 0;
395 cmcv.cmcv_mask = 1; /* Mask/disable interrupt at first */
396 cmcv.cmcv_vector = IA64_CMC_VECTOR;
397 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
399 IA64_MCA_DEBUG("%s: CPU %d corrected "
400 "machine check vector %#x registered.\n",
401 __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR);
403 IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n",
404 __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV));
408 * ia64_mca_cmc_vector_disable
410 * Mask the corrected machine check vector register in the processor.
411 * This function is invoked on a per-processor basis.
420 ia64_mca_cmc_vector_disable (void *dummy)
424 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
426 cmcv.cmcv_mask = 1; /* Mask/disable interrupt */
427 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
429 IA64_MCA_DEBUG("%s: CPU %d corrected "
430 "machine check vector %#x disabled.\n",
431 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
435 * ia64_mca_cmc_vector_enable
437 * Unmask the corrected machine check vector register in the processor.
438 * This function is invoked on a per-processor basis.
447 ia64_mca_cmc_vector_enable (void *dummy)
451 cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV);
453 cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */
454 ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval);
456 IA64_MCA_DEBUG("%s: CPU %d corrected "
457 "machine check vector %#x enabled.\n",
458 __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector);
462 * ia64_mca_cmc_vector_disable_keventd
464 * Called via keventd (smp_call_function() is not safe in interrupt context) to
465 * disable the cmc interrupt vector.
468 ia64_mca_cmc_vector_disable_keventd(void *unused)
470 on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0);
474 * ia64_mca_cmc_vector_enable_keventd
476 * Called via keventd (smp_call_function() is not safe in interrupt context) to
477 * enable the cmc interrupt vector.
480 ia64_mca_cmc_vector_enable_keventd(void *unused)
482 on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0);
488 * Send an inter-cpu interrupt to wake-up a particular cpu
489 * and mark that cpu to be out of rendez.
495 ia64_mca_wakeup(int cpu)
497 platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0);
498 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
503 * ia64_mca_wakeup_all
505 * Wakeup all the cpus which have rendez'ed previously.
511 ia64_mca_wakeup_all(void)
515 /* Clear the Rendez checkin flag for all cpus */
516 for_each_online_cpu(cpu) {
517 if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE)
518 ia64_mca_wakeup(cpu);
524 * ia64_mca_rendez_interrupt_handler
526 * This is handler used to put slave processors into spinloop
527 * while the monarch processor does the mca handling and later
528 * wake each slave up once the monarch is done.
534 ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs)
537 int cpu = smp_processor_id();
539 /* Mask all interrupts */
540 local_irq_save(flags);
541 if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, 0, 0, 0)
543 ia64_mca_spin(__FUNCTION__);
545 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE;
546 /* Register with the SAL monarch that the slave has
549 ia64_sal_mc_rendez();
551 if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, 0, 0, 0)
553 ia64_mca_spin(__FUNCTION__);
555 /* Wait for the monarch cpu to exit. */
556 while (monarch_cpu != -1)
557 cpu_relax(); /* spin until monarch leaves */
559 if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, 0, 0, 0)
561 ia64_mca_spin(__FUNCTION__);
563 /* Enable all interrupts */
564 local_irq_restore(flags);
569 * ia64_mca_wakeup_int_handler
571 * The interrupt handler for processing the inter-cpu interrupt to the
572 * slave cpu which was spinning in the rendez loop.
573 * Since this spinning is done by turning off the interrupts and
574 * polling on the wakeup-interrupt bit in the IRR, there is
575 * nothing useful to be done in the handler.
577 * Inputs : wakeup_irq (Wakeup-interrupt bit)
578 * arg (Interrupt handler specific argument)
579 * ptregs (Exception frame at the time of the interrupt)
584 ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs)
589 /* Function pointer for extra MCA recovery */
590 int (*ia64_mca_ucmc_extension)
591 (void*,struct ia64_sal_os_state*)
595 ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *))
597 if (ia64_mca_ucmc_extension)
600 ia64_mca_ucmc_extension = fn;
605 ia64_unreg_MCA_extension(void)
607 if (ia64_mca_ucmc_extension)
608 ia64_mca_ucmc_extension = NULL;
611 EXPORT_SYMBOL(ia64_reg_MCA_extension);
612 EXPORT_SYMBOL(ia64_unreg_MCA_extension);
616 copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat)
618 u64 fslot, tslot, nat;
620 fslot = ((unsigned long)fr >> 3) & 63;
621 tslot = ((unsigned long)tr >> 3) & 63;
622 *tnat &= ~(1UL << tslot);
623 nat = (fnat >> fslot) & 1;
624 *tnat |= (nat << tslot);
627 /* Change the comm field on the MCA/INT task to include the pid that
628 * was interrupted, it makes for easier debugging. If that pid was 0
629 * (swapper or nested MCA/INIT) then use the start of the previous comm
630 * field suffixed with its cpu.
634 ia64_mca_modify_comm(const task_t *previous_current)
636 char *p, comm[sizeof(current->comm)];
637 if (previous_current->pid)
638 snprintf(comm, sizeof(comm), "%s %d",
639 current->comm, previous_current->pid);
642 if ((p = strchr(previous_current->comm, ' ')))
643 l = p - previous_current->comm;
645 l = strlen(previous_current->comm);
646 snprintf(comm, sizeof(comm), "%s %*s %d",
647 current->comm, l, previous_current->comm,
648 task_thread_info(previous_current)->cpu);
650 memcpy(current->comm, comm, sizeof(current->comm));
653 /* On entry to this routine, we are running on the per cpu stack, see
654 * mca_asm.h. The original stack has not been touched by this event. Some of
655 * the original stack's registers will be in the RBS on this stack. This stack
656 * also contains a partial pt_regs and switch_stack, the rest of the data is in
659 * The first thing to do is modify the original stack to look like a blocked
660 * task so we can run backtrace on the original task. Also mark the per cpu
661 * stack as current to ensure that we use the correct task state, it also means
662 * that we can do backtrace on the MCA/INIT handler code itself.
666 ia64_mca_modify_original_stack(struct pt_regs *regs,
667 const struct switch_stack *sw,
668 struct ia64_sal_os_state *sos,
673 extern char ia64_leave_kernel[]; /* Need asm address, not function descriptor */
674 const pal_min_state_area_t *ms = sos->pal_min_state;
675 task_t *previous_current;
676 struct pt_regs *old_regs;
677 struct switch_stack *old_sw;
678 unsigned size = sizeof(struct pt_regs) +
679 sizeof(struct switch_stack) + 16;
680 u64 *old_bspstore, *old_bsp;
681 u64 *new_bspstore, *new_bsp;
682 u64 old_unat, old_rnat, new_rnat, nat;
683 u64 slots, loadrs = regs->loadrs;
684 u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1];
685 u64 ar_bspstore = regs->ar_bspstore;
686 u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16);
689 int cpu = smp_processor_id();
691 previous_current = curr_task(cpu);
692 set_curr_task(cpu, current);
693 if ((p = strchr(current->comm, ' ')))
696 /* Best effort attempt to cope with MCA/INIT delivered while in
699 regs->cr_ipsr = ms->pmsa_ipsr;
700 if (ia64_psr(regs)->dt == 0) {
712 if (ia64_psr(regs)->rt == 0) {
725 /* mca_asm.S ia64_old_stack() cannot assume that the dirty registers
726 * have been copied to the old stack, the old stack may fail the
727 * validation tests below. So ia64_old_stack() must restore the dirty
728 * registers from the new stack. The old and new bspstore probably
729 * have different alignments, so loadrs calculated on the old bsp
730 * cannot be used to restore from the new bsp. Calculate a suitable
731 * loadrs for the new stack and save it in the new pt_regs, where
732 * ia64_old_stack() can get it.
734 old_bspstore = (u64 *)ar_bspstore;
735 old_bsp = (u64 *)ar_bsp;
736 slots = ia64_rse_num_regs(old_bspstore, old_bsp);
737 new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET);
738 new_bsp = ia64_rse_skip_regs(new_bspstore, slots);
739 regs->loadrs = (new_bsp - new_bspstore) * 8 << 16;
741 /* Verify the previous stack state before we change it */
742 if (user_mode(regs)) {
743 msg = "occurred in user space";
744 /* previous_current is guaranteed to be valid when the task was
745 * in user space, so ...
747 ia64_mca_modify_comm(previous_current);
750 if (r13 != sos->prev_IA64_KR_CURRENT) {
751 msg = "inconsistent previous current and r13";
754 if ((r12 - r13) >= KERNEL_STACK_SIZE) {
755 msg = "inconsistent r12 and r13";
758 if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) {
759 msg = "inconsistent ar.bspstore and r13";
764 msg = "old_bspstore is in the wrong region";
767 if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) {
768 msg = "inconsistent ar.bsp and r13";
771 size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8;
772 if (ar_bspstore + size > r12) {
773 msg = "no room for blocked state";
777 ia64_mca_modify_comm(previous_current);
779 /* Make the original task look blocked. First stack a struct pt_regs,
780 * describing the state at the time of interrupt. mca_asm.S built a
781 * partial pt_regs, copy it and fill in the blanks using minstate.
783 p = (char *)r12 - sizeof(*regs);
784 old_regs = (struct pt_regs *)p;
785 memcpy(old_regs, regs, sizeof(*regs));
786 /* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use
787 * pmsa_{xip,xpsr,xfs}
789 if (ia64_psr(regs)->ic) {
790 old_regs->cr_iip = ms->pmsa_iip;
791 old_regs->cr_ipsr = ms->pmsa_ipsr;
792 old_regs->cr_ifs = ms->pmsa_ifs;
794 old_regs->cr_iip = ms->pmsa_xip;
795 old_regs->cr_ipsr = ms->pmsa_xpsr;
796 old_regs->cr_ifs = ms->pmsa_xfs;
798 old_regs->pr = ms->pmsa_pr;
799 old_regs->b0 = ms->pmsa_br0;
800 old_regs->loadrs = loadrs;
801 old_regs->ar_rsc = ms->pmsa_rsc;
802 old_unat = old_regs->ar_unat;
803 copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat);
804 copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat);
805 copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat);
806 copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat);
807 copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat);
808 copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat);
809 copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat);
810 copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat);
811 copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat);
812 copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat);
813 copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat);
814 if (ia64_psr(old_regs)->bn)
815 bank = ms->pmsa_bank1_gr;
817 bank = ms->pmsa_bank0_gr;
818 copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat);
819 copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat);
820 copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat);
821 copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat);
822 copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat);
823 copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat);
824 copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat);
825 copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat);
826 copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat);
827 copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat);
828 copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat);
829 copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat);
830 copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat);
831 copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat);
832 copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat);
833 copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat);
835 /* Next stack a struct switch_stack. mca_asm.S built a partial
836 * switch_stack, copy it and fill in the blanks using pt_regs and
839 * In the synthesized switch_stack, b0 points to ia64_leave_kernel,
840 * ar.pfs is set to 0.
842 * unwind.c::unw_unwind() does special processing for interrupt frames.
843 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate
844 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs. Not
845 * that this is documented, of course. Set PRED_NON_SYSCALL in the
846 * switch_stack on the original stack so it will unwind correctly when
847 * unwind.c reads pt_regs.
849 * thread.ksp is updated to point to the synthesized switch_stack.
851 p -= sizeof(struct switch_stack);
852 old_sw = (struct switch_stack *)p;
853 memcpy(old_sw, sw, sizeof(*sw));
854 old_sw->caller_unat = old_unat;
855 old_sw->ar_fpsr = old_regs->ar_fpsr;
856 copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat);
857 copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat);
858 copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat);
859 copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat);
860 old_sw->b0 = (u64)ia64_leave_kernel;
861 old_sw->b1 = ms->pmsa_br1;
863 old_sw->ar_unat = old_unat;
864 old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL);
865 previous_current->thread.ksp = (u64)p - 16;
867 /* Finally copy the original stack's registers back to its RBS.
868 * Registers from ar.bspstore through ar.bsp at the time of the event
869 * are in the current RBS, copy them back to the original stack. The
870 * copy must be done register by register because the original bspstore
871 * and the current one have different alignments, so the saved RNAT
872 * data occurs at different places.
874 * mca_asm does cover, so the old_bsp already includes all registers at
875 * the time of MCA/INIT. It also does flushrs, so all registers before
876 * this function have been written to backing store on the MCA/INIT
879 new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore));
880 old_rnat = regs->ar_rnat;
882 if (ia64_rse_is_rnat_slot(new_bspstore)) {
883 new_rnat = ia64_get_rnat(new_bspstore++);
885 if (ia64_rse_is_rnat_slot(old_bspstore)) {
886 *old_bspstore++ = old_rnat;
889 nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL;
890 old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore));
891 old_rnat |= (nat << ia64_rse_slot_num(old_bspstore));
892 *old_bspstore++ = *new_bspstore++;
894 old_sw->ar_bspstore = (unsigned long)old_bspstore;
895 old_sw->ar_rnat = old_rnat;
897 sos->prev_task = previous_current;
898 return previous_current;
901 printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n",
902 smp_processor_id(), type, msg);
903 return previous_current;
906 /* The monarch/slave interaction is based on monarch_cpu and requires that all
907 * slaves have entered rendezvous before the monarch leaves. If any cpu has
908 * not entered rendezvous yet then wait a bit. The assumption is that any
909 * slave that has not rendezvoused after a reasonable time is never going to do
910 * so. In this context, slave includes cpus that respond to the MCA rendezvous
911 * interrupt, as well as cpus that receive the INIT slave event.
915 ia64_wait_for_slaves(int monarch)
917 int c, wait = 0, missing = 0;
918 for_each_online_cpu(c) {
921 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
922 udelay(1000); /* short wait first */
929 for_each_online_cpu(c) {
932 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) {
933 udelay(5*1000000); /* wait 5 seconds for slaves (arbitrary) */
934 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
941 printk(KERN_INFO "OS MCA slave did not rendezvous on cpu");
942 for_each_online_cpu(c) {
945 if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE)
952 printk(KERN_INFO "All OS MCA slaves have reached rendezvous\n");
959 * This is uncorrectable machine check handler called from OS_MCA
960 * dispatch code which is in turn called from SAL_CHECK().
961 * This is the place where the core of OS MCA handling is done.
962 * Right now the logs are extracted and displayed in a well-defined
963 * format. This handler code is supposed to be run only on the
964 * monarch processor. Once the monarch is done with MCA handling
965 * further MCA logging is enabled by clearing logs.
966 * Monarch also has the duty of sending wakeup-IPIs to pull the
967 * slave processors out of rendezvous spinloop.
970 ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw,
971 struct ia64_sal_os_state *sos)
973 pal_processor_state_info_t *psp = (pal_processor_state_info_t *)
974 &sos->proc_state_param;
975 int recover, cpu = smp_processor_id();
976 task_t *previous_current;
978 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
979 console_loglevel = 15; /* make sure printks make it to console */
980 printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n",
981 sos->proc_state_param, cpu, sos->monarch);
983 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA");
985 if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, 0, 0, 0)
987 ia64_mca_spin(__FUNCTION__);
988 ia64_wait_for_slaves(cpu);
990 /* Wakeup all the processors which are spinning in the rendezvous loop.
991 * They will leave SAL, then spin in the OS with interrupts disabled
992 * until this monarch cpu leaves the MCA handler. That gets control
993 * back to the OS so we can backtrace the other cpus, backtrace when
994 * spinning in SAL does not work.
996 ia64_mca_wakeup_all();
997 if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, 0, 0, 0)
999 ia64_mca_spin(__FUNCTION__);
1001 /* Get the MCA error record and log it */
1002 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA);
1004 /* TLB error is only exist in this SAL error record */
1005 recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc))
1006 /* other error recovery */
1007 || (ia64_mca_ucmc_extension
1008 && ia64_mca_ucmc_extension(
1009 IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA),
1013 sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA);
1014 rh->severity = sal_log_severity_corrected;
1015 ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA);
1016 sos->os_status = IA64_MCA_CORRECTED;
1018 if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, 0, 0, recover)
1020 ia64_mca_spin(__FUNCTION__);
1022 set_curr_task(cpu, previous_current);
1026 static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL);
1027 static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL);
1030 * ia64_mca_cmc_int_handler
1032 * This is corrected machine check interrupt handler.
1033 * Right now the logs are extracted and displayed in a well-defined
1038 * client data arg ptr
1039 * saved registers ptr
1045 ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs)
1047 static unsigned long cmc_history[CMC_HISTORY_LENGTH];
1049 static DEFINE_SPINLOCK(cmc_history_lock);
1051 IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n",
1052 __FUNCTION__, cmc_irq, smp_processor_id());
1054 /* SAL spec states this should run w/ interrupts enabled */
1057 /* Get the CMC error record and log it */
1058 ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC);
1060 spin_lock(&cmc_history_lock);
1061 if (!cmc_polling_enabled) {
1062 int i, count = 1; /* we know 1 happened now */
1063 unsigned long now = jiffies;
1065 for (i = 0; i < CMC_HISTORY_LENGTH; i++) {
1066 if (now - cmc_history[i] <= HZ)
1070 IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH);
1071 if (count >= CMC_HISTORY_LENGTH) {
1073 cmc_polling_enabled = 1;
1074 spin_unlock(&cmc_history_lock);
1075 /* If we're being hit with CMC interrupts, we won't
1076 * ever execute the schedule_work() below. Need to
1077 * disable CMC interrupts on this processor now.
1079 ia64_mca_cmc_vector_disable(NULL);
1080 schedule_work(&cmc_disable_work);
1083 * Corrected errors will still be corrected, but
1084 * make sure there's a log somewhere that indicates
1085 * something is generating more than we can handle.
1087 printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n");
1089 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1091 /* lock already released, get out now */
1094 cmc_history[index++] = now;
1095 if (index == CMC_HISTORY_LENGTH)
1099 spin_unlock(&cmc_history_lock);
1104 * ia64_mca_cmc_int_caller
1106 * Triggered by sw interrupt from CMC polling routine. Calls
1107 * real interrupt handler and either triggers a sw interrupt
1108 * on the next cpu or does cleanup at the end.
1112 * client data arg ptr
1113 * saved registers ptr
1118 ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs)
1120 static int start_count = -1;
1123 cpuid = smp_processor_id();
1125 /* If first cpu, update count */
1126 if (start_count == -1)
1127 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC);
1129 ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs);
1131 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1133 if (cpuid < NR_CPUS) {
1134 platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1136 /* If no log record, switch out of polling mode */
1137 if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) {
1139 printk(KERN_WARNING "Returning to interrupt driven CMC handler\n");
1140 schedule_work(&cmc_enable_work);
1141 cmc_polling_enabled = 0;
1145 mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL);
1157 * Poll for Corrected Machine Checks (CMCs)
1159 * Inputs : dummy(unused)
1164 ia64_mca_cmc_poll (unsigned long dummy)
1166 /* Trigger a CMC interrupt cascade */
1167 platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0);
1171 * ia64_mca_cpe_int_caller
1173 * Triggered by sw interrupt from CPE polling routine. Calls
1174 * real interrupt handler and either triggers a sw interrupt
1175 * on the next cpu or does cleanup at the end.
1179 * client data arg ptr
1180 * saved registers ptr
1187 ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs)
1189 static int start_count = -1;
1190 static int poll_time = MIN_CPE_POLL_INTERVAL;
1193 cpuid = smp_processor_id();
1195 /* If first cpu, update count */
1196 if (start_count == -1)
1197 start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE);
1199 ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs);
1201 for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++);
1203 if (cpuid < NR_CPUS) {
1204 platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1207 * If a log was recorded, increase our polling frequency,
1208 * otherwise, backoff or return to interrupt mode.
1210 if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) {
1211 poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2);
1212 } else if (cpe_vector < 0) {
1213 poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2);
1215 poll_time = MIN_CPE_POLL_INTERVAL;
1217 printk(KERN_WARNING "Returning to interrupt driven CPE handler\n");
1218 enable_irq(local_vector_to_irq(IA64_CPE_VECTOR));
1219 cpe_poll_enabled = 0;
1222 if (cpe_poll_enabled)
1223 mod_timer(&cpe_poll_timer, jiffies + poll_time);
1233 * Poll for Corrected Platform Errors (CPEs), trigger interrupt
1234 * on first cpu, from there it will trickle through all the cpus.
1236 * Inputs : dummy(unused)
1241 ia64_mca_cpe_poll (unsigned long dummy)
1243 /* Trigger a CPE interrupt cascade */
1244 platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0);
1247 #endif /* CONFIG_ACPI */
1250 default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data)
1253 struct task_struct *g, *t;
1254 if (val != DIE_INIT_MONARCH_PROCESS)
1256 printk(KERN_ERR "Processes interrupted by INIT -");
1257 for_each_online_cpu(c) {
1258 struct ia64_sal_os_state *s;
1259 t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET);
1260 s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET);
1264 printk(" %d", g->pid);
1266 printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g);
1270 if (read_trylock(&tasklist_lock)) {
1271 do_each_thread (g, t) {
1272 printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm);
1273 show_stack(t, NULL);
1274 } while_each_thread (g, t);
1275 read_unlock(&tasklist_lock);
1281 * C portion of the OS INIT handler
1283 * Called from ia64_os_init_dispatch
1285 * Inputs: pointer to pt_regs where processor info was saved. SAL/OS state for
1286 * this event. This code is used for both monarch and slave INIT events, see
1289 * All INIT events switch to the INIT stack and change the previous process to
1290 * blocked status. If one of the INIT events is the monarch then we are
1291 * probably processing the nmi button/command. Use the monarch cpu to dump all
1292 * the processes. The slave INIT events all spin until the monarch cpu
1293 * returns. We can also get INIT slave events for MCA, in which case the MCA
1294 * process is the monarch.
1298 ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw,
1299 struct ia64_sal_os_state *sos)
1301 static atomic_t slaves;
1302 static atomic_t monarchs;
1303 task_t *previous_current;
1304 int cpu = smp_processor_id();
1306 oops_in_progress = 1; /* FIXME: make printk NMI/MCA/INIT safe */
1307 console_loglevel = 15; /* make sure printks make it to console */
1309 printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n",
1310 sos->proc_state_param, cpu, sos->monarch);
1311 salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0);
1313 previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT");
1314 sos->os_status = IA64_INIT_RESUME;
1316 /* FIXME: Workaround for broken proms that drive all INIT events as
1317 * slaves. The last slave that enters is promoted to be a monarch.
1318 * Remove this code in September 2006, that gives platforms a year to
1319 * fix their proms and get their customers updated.
1321 if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) {
1322 printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n",
1324 atomic_dec(&slaves);
1328 /* FIXME: Workaround for broken proms that drive all INIT events as
1329 * monarchs. Second and subsequent monarchs are demoted to slaves.
1330 * Remove this code in September 2006, that gives platforms a year to
1331 * fix their proms and get their customers updated.
1333 if (sos->monarch && atomic_add_return(1, &monarchs) > 1) {
1334 printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n",
1336 atomic_dec(&monarchs);
1340 if (!sos->monarch) {
1341 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT;
1342 while (monarch_cpu == -1)
1343 cpu_relax(); /* spin until monarch enters */
1344 if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, 0, 0, 0)
1346 ia64_mca_spin(__FUNCTION__);
1347 if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, 0, 0, 0)
1349 ia64_mca_spin(__FUNCTION__);
1350 while (monarch_cpu != -1)
1351 cpu_relax(); /* spin until monarch leaves */
1352 if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, 0, 0, 0)
1354 ia64_mca_spin(__FUNCTION__);
1355 printk("Slave on cpu %d returning to normal service.\n", cpu);
1356 set_curr_task(cpu, previous_current);
1357 ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1358 atomic_dec(&slaves);
1363 if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, 0, 0, 0)
1365 ia64_mca_spin(__FUNCTION__);
1368 * Wait for a bit. On some machines (e.g., HP's zx2000 and zx6000, INIT can be
1369 * generated via the BMC's command-line interface, but since the console is on the
1370 * same serial line, the user will need some time to switch out of the BMC before
1373 printk("Delaying for 5 seconds...\n");
1375 ia64_wait_for_slaves(cpu);
1376 /* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through
1377 * to default_monarch_init_process() above and just print all the
1380 if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, 0, 0, 0)
1382 ia64_mca_spin(__FUNCTION__);
1383 if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, 0, 0, 0)
1385 ia64_mca_spin(__FUNCTION__);
1386 printk("\nINIT dump complete. Monarch on cpu %d returning to normal service.\n", cpu);
1387 atomic_dec(&monarchs);
1388 set_curr_task(cpu, previous_current);
1394 ia64_mca_disable_cpe_polling(char *str)
1396 cpe_poll_enabled = 0;
1400 __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling);
1402 static struct irqaction cmci_irqaction = {
1403 .handler = ia64_mca_cmc_int_handler,
1404 .flags = SA_INTERRUPT,
1408 static struct irqaction cmcp_irqaction = {
1409 .handler = ia64_mca_cmc_int_caller,
1410 .flags = SA_INTERRUPT,
1414 static struct irqaction mca_rdzv_irqaction = {
1415 .handler = ia64_mca_rendez_int_handler,
1416 .flags = SA_INTERRUPT,
1420 static struct irqaction mca_wkup_irqaction = {
1421 .handler = ia64_mca_wakeup_int_handler,
1422 .flags = SA_INTERRUPT,
1427 static struct irqaction mca_cpe_irqaction = {
1428 .handler = ia64_mca_cpe_int_handler,
1429 .flags = SA_INTERRUPT,
1433 static struct irqaction mca_cpep_irqaction = {
1434 .handler = ia64_mca_cpe_int_caller,
1435 .flags = SA_INTERRUPT,
1438 #endif /* CONFIG_ACPI */
1440 /* Minimal format of the MCA/INIT stacks. The pseudo processes that run on
1441 * these stacks can never sleep, they cannot return from the kernel to user
1442 * space, they do not appear in a normal ps listing. So there is no need to
1443 * format most of the fields.
1447 format_mca_init_stack(void *mca_data, unsigned long offset,
1448 const char *type, int cpu)
1450 struct task_struct *p = (struct task_struct *)((char *)mca_data + offset);
1451 struct thread_info *ti;
1452 memset(p, 0, KERNEL_STACK_SIZE);
1453 ti = task_thread_info(p);
1454 ti->flags = _TIF_MCA_INIT;
1455 ti->preempt_count = 1;
1458 p->thread_info = ti;
1459 p->state = TASK_UNINTERRUPTIBLE;
1460 __set_bit(cpu, &p->cpus_allowed);
1461 INIT_LIST_HEAD(&p->tasks);
1462 p->parent = p->real_parent = p->group_leader = p;
1463 INIT_LIST_HEAD(&p->children);
1464 INIT_LIST_HEAD(&p->sibling);
1465 strncpy(p->comm, type, sizeof(p->comm)-1);
1468 /* Do per-CPU MCA-related initialization. */
1471 ia64_mca_cpu_init(void *cpu_data)
1474 static int first_time = 1;
1481 mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu)
1482 * NR_CPUS + KERNEL_STACK_SIZE);
1483 mca_data = (void *)(((unsigned long)mca_data +
1484 KERNEL_STACK_SIZE - 1) &
1485 (-KERNEL_STACK_SIZE));
1486 for (cpu = 0; cpu < NR_CPUS; cpu++) {
1487 format_mca_init_stack(mca_data,
1488 offsetof(struct ia64_mca_cpu, mca_stack),
1490 format_mca_init_stack(mca_data,
1491 offsetof(struct ia64_mca_cpu, init_stack),
1493 __per_cpu_mca[cpu] = __pa(mca_data);
1494 mca_data += sizeof(struct ia64_mca_cpu);
1499 * The MCA info structure was allocated earlier and its
1500 * physical address saved in __per_cpu_mca[cpu]. Copy that
1501 * address * to ia64_mca_data so we can access it as a per-CPU
1504 __get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()];
1507 * Stash away a copy of the PTE needed to map the per-CPU page.
1508 * We may need it during MCA recovery.
1510 __get_cpu_var(ia64_mca_per_cpu_pte) =
1511 pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL));
1514 * Also, stash away a copy of the PAL address and the PTE
1517 pal_vaddr = efi_get_pal_addr();
1520 __get_cpu_var(ia64_mca_pal_base) =
1521 GRANULEROUNDDOWN((unsigned long) pal_vaddr);
1522 __get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr),
1529 * Do all the system level mca specific initialization.
1531 * 1. Register spinloop and wakeup request interrupt vectors
1533 * 2. Register OS_MCA handler entry point
1535 * 3. Register OS_INIT handler entry point
1537 * 4. Initialize MCA/CMC/INIT related log buffers maintained by the OS.
1539 * Note that this initialization is done very early before some kernel
1540 * services are available.
1549 ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch;
1550 ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave;
1551 ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch;
1554 struct ia64_sal_retval isrv;
1555 u64 timeout = IA64_MCA_RENDEZ_TIMEOUT; /* platform specific */
1556 static struct notifier_block default_init_monarch_nb = {
1557 .notifier_call = default_monarch_init_process,
1558 .priority = 0/* we need to notified last */
1561 IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__);
1563 /* Clear the Rendez checkin flag for all cpus */
1564 for(i = 0 ; i < NR_CPUS; i++)
1565 ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE;
1568 * Register the rendezvous spinloop and wakeup mechanism with SAL
1571 /* Register the rendezvous interrupt vector with SAL */
1573 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT,
1574 SAL_MC_PARAM_MECHANISM_INT,
1575 IA64_MCA_RENDEZ_VECTOR,
1577 SAL_MC_PARAM_RZ_ALWAYS);
1582 printk(KERN_INFO "Increasing MCA rendezvous timeout from "
1583 "%ld to %ld milliseconds\n", timeout, isrv.v0);
1587 printk(KERN_ERR "Failed to register rendezvous interrupt "
1588 "with SAL (status %ld)\n", rc);
1592 /* Register the wakeup interrupt vector with SAL */
1593 isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP,
1594 SAL_MC_PARAM_MECHANISM_INT,
1595 IA64_MCA_WAKEUP_VECTOR,
1599 printk(KERN_ERR "Failed to register wakeup interrupt with SAL "
1600 "(status %ld)\n", rc);
1604 IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__);
1606 ia64_mc_info.imi_mca_handler = ia64_tpa(mca_hldlr_ptr->fp);
1608 * XXX - disable SAL checksum by setting size to 0; should be
1609 * ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch);
1611 ia64_mc_info.imi_mca_handler_size = 0;
1613 /* Register the os mca handler with SAL */
1614 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA,
1615 ia64_mc_info.imi_mca_handler,
1616 ia64_tpa(mca_hldlr_ptr->gp),
1617 ia64_mc_info.imi_mca_handler_size,
1620 printk(KERN_ERR "Failed to register OS MCA handler with SAL "
1621 "(status %ld)\n", rc);
1625 IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__,
1626 ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp));
1629 * XXX - disable SAL checksum by setting size to 0, should be
1630 * size of the actual init handler in mca_asm.S.
1632 ia64_mc_info.imi_monarch_init_handler = ia64_tpa(init_hldlr_ptr_monarch->fp);
1633 ia64_mc_info.imi_monarch_init_handler_size = 0;
1634 ia64_mc_info.imi_slave_init_handler = ia64_tpa(init_hldlr_ptr_slave->fp);
1635 ia64_mc_info.imi_slave_init_handler_size = 0;
1637 IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__,
1638 ia64_mc_info.imi_monarch_init_handler);
1640 /* Register the os init handler with SAL */
1641 if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT,
1642 ia64_mc_info.imi_monarch_init_handler,
1643 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1644 ia64_mc_info.imi_monarch_init_handler_size,
1645 ia64_mc_info.imi_slave_init_handler,
1646 ia64_tpa(ia64_getreg(_IA64_REG_GP)),
1647 ia64_mc_info.imi_slave_init_handler_size)))
1649 printk(KERN_ERR "Failed to register m/s INIT handlers with SAL "
1650 "(status %ld)\n", rc);
1653 if (register_die_notifier(&default_init_monarch_nb)) {
1654 printk(KERN_ERR "Failed to register default monarch INIT process\n");
1658 IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__);
1661 * Configure the CMCI/P vector and handler. Interrupts for CMC are
1662 * per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c).
1664 register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction);
1665 register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction);
1666 ia64_mca_cmc_vector_setup(); /* Setup vector on BSP */
1668 /* Setup the MCA rendezvous interrupt vector */
1669 register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction);
1671 /* Setup the MCA wakeup interrupt vector */
1672 register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction);
1675 /* Setup the CPEI/P handler */
1676 register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction);
1679 /* Initialize the areas set aside by the OS to buffer the
1680 * platform/processor error states for MCA/INIT/CMC
1683 ia64_log_init(SAL_INFO_TYPE_MCA);
1684 ia64_log_init(SAL_INFO_TYPE_INIT);
1685 ia64_log_init(SAL_INFO_TYPE_CMC);
1686 ia64_log_init(SAL_INFO_TYPE_CPE);
1689 printk(KERN_INFO "MCA related initialization done\n");
1693 * ia64_mca_late_init
1695 * Opportunity to setup things that require initialization later
1696 * than ia64_mca_init. Setup a timer to poll for CPEs if the
1697 * platform doesn't support an interrupt driven mechanism.
1703 ia64_mca_late_init(void)
1708 /* Setup the CMCI/P vector and handler */
1709 init_timer(&cmc_poll_timer);
1710 cmc_poll_timer.function = ia64_mca_cmc_poll;
1712 /* Unmask/enable the vector */
1713 cmc_polling_enabled = 0;
1714 schedule_work(&cmc_enable_work);
1716 IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__);
1719 /* Setup the CPEI/P vector and handler */
1720 cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI);
1721 init_timer(&cpe_poll_timer);
1722 cpe_poll_timer.function = ia64_mca_cpe_poll;
1728 if (cpe_vector >= 0) {
1729 /* If platform supports CPEI, enable the irq. */
1730 cpe_poll_enabled = 0;
1731 for (irq = 0; irq < NR_IRQS; ++irq)
1732 if (irq_to_vector(irq) == cpe_vector) {
1733 desc = irq_descp(irq);
1734 desc->status |= IRQ_PER_CPU;
1735 setup_irq(irq, &mca_cpe_irqaction);
1738 ia64_mca_register_cpev(cpe_vector);
1739 IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__);
1741 /* If platform doesn't support CPEI, get the timer going. */
1742 if (cpe_poll_enabled) {
1743 ia64_mca_cpe_poll(0UL);
1744 IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__);
1753 device_initcall(ia64_mca_late_init);