4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/config.h>
22 #include <linux/kernel.h>
23 #include <linux/syscalls.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/smp_lock.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/module.h>
34 #include <linux/writeback.h>
35 #include <linux/hash.h>
36 #include <linux/suspend.h>
37 #include <linux/buffer_head.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 static void invalidate_bh_lrus(void);
48 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
51 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
53 bh->b_end_io = handler;
54 bh->b_private = private;
57 static int sync_buffer(void *word)
59 struct block_device *bd;
60 struct buffer_head *bh
61 = container_of(word, struct buffer_head, b_state);
66 blk_run_address_space(bd->bd_inode->i_mapping);
71 void fastcall __lock_buffer(struct buffer_head *bh)
73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 TASK_UNINTERRUPTIBLE);
76 EXPORT_SYMBOL(__lock_buffer);
78 void fastcall unlock_buffer(struct buffer_head *bh)
80 clear_buffer_locked(bh);
81 smp_mb__after_clear_bit();
82 wake_up_bit(&bh->b_state, BH_Lock);
86 * Block until a buffer comes unlocked. This doesn't stop it
87 * from becoming locked again - you have to lock it yourself
88 * if you want to preserve its state.
90 void __wait_on_buffer(struct buffer_head * bh)
92 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
96 __clear_page_buffers(struct page *page)
98 ClearPagePrivate(page);
99 set_page_private(page, 0);
100 page_cache_release(page);
103 static void buffer_io_error(struct buffer_head *bh)
105 char b[BDEVNAME_SIZE];
107 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 bdevname(bh->b_bdev, b),
109 (unsigned long long)bh->b_blocknr);
113 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
114 * unlock the buffer. This is what ll_rw_block uses too.
116 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
119 set_buffer_uptodate(bh);
121 /* This happens, due to failed READA attempts. */
122 clear_buffer_uptodate(bh);
128 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
130 char b[BDEVNAME_SIZE];
133 set_buffer_uptodate(bh);
135 if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
137 printk(KERN_WARNING "lost page write due to "
139 bdevname(bh->b_bdev, b));
141 set_buffer_write_io_error(bh);
142 clear_buffer_uptodate(bh);
149 * Write out and wait upon all the dirty data associated with a block
150 * device via its mapping. Does not take the superblock lock.
152 int sync_blockdev(struct block_device *bdev)
157 ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
160 EXPORT_SYMBOL(sync_blockdev);
163 * Write out and wait upon all dirty data associated with this
164 * superblock. Filesystem data as well as the underlying block
165 * device. Takes the superblock lock.
167 int fsync_super(struct super_block *sb)
169 sync_inodes_sb(sb, 0);
172 if (sb->s_dirt && sb->s_op->write_super)
173 sb->s_op->write_super(sb);
175 if (sb->s_op->sync_fs)
176 sb->s_op->sync_fs(sb, 1);
177 sync_blockdev(sb->s_bdev);
178 sync_inodes_sb(sb, 1);
180 return sync_blockdev(sb->s_bdev);
184 * Write out and wait upon all dirty data associated with this
185 * device. Filesystem data as well as the underlying block
186 * device. Takes the superblock lock.
188 int fsync_bdev(struct block_device *bdev)
190 struct super_block *sb = get_super(bdev);
192 int res = fsync_super(sb);
196 return sync_blockdev(bdev);
200 * freeze_bdev -- lock a filesystem and force it into a consistent state
201 * @bdev: blockdevice to lock
203 * This takes the block device bd_mount_sem to make sure no new mounts
204 * happen on bdev until thaw_bdev() is called.
205 * If a superblock is found on this device, we take the s_umount semaphore
206 * on it to make sure nobody unmounts until the snapshot creation is done.
208 struct super_block *freeze_bdev(struct block_device *bdev)
210 struct super_block *sb;
212 down(&bdev->bd_mount_sem);
213 sb = get_super(bdev);
214 if (sb && !(sb->s_flags & MS_RDONLY)) {
215 sb->s_frozen = SB_FREEZE_WRITE;
218 sync_inodes_sb(sb, 0);
222 if (sb->s_dirt && sb->s_op->write_super)
223 sb->s_op->write_super(sb);
226 if (sb->s_op->sync_fs)
227 sb->s_op->sync_fs(sb, 1);
229 sync_blockdev(sb->s_bdev);
230 sync_inodes_sb(sb, 1);
232 sb->s_frozen = SB_FREEZE_TRANS;
235 sync_blockdev(sb->s_bdev);
237 if (sb->s_op->write_super_lockfs)
238 sb->s_op->write_super_lockfs(sb);
242 return sb; /* thaw_bdev releases s->s_umount and bd_mount_sem */
244 EXPORT_SYMBOL(freeze_bdev);
247 * thaw_bdev -- unlock filesystem
248 * @bdev: blockdevice to unlock
249 * @sb: associated superblock
251 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
253 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
256 BUG_ON(sb->s_bdev != bdev);
258 if (sb->s_op->unlockfs)
259 sb->s_op->unlockfs(sb);
260 sb->s_frozen = SB_UNFROZEN;
262 wake_up(&sb->s_wait_unfrozen);
266 up(&bdev->bd_mount_sem);
268 EXPORT_SYMBOL(thaw_bdev);
271 * sync everything. Start out by waking pdflush, because that writes back
272 * all queues in parallel.
274 static void do_sync(unsigned long wait)
277 sync_inodes(0); /* All mappings, inodes and their blockdevs */
279 sync_supers(); /* Write the superblocks */
280 sync_filesystems(0); /* Start syncing the filesystems */
281 sync_filesystems(wait); /* Waitingly sync the filesystems */
282 sync_inodes(wait); /* Mappings, inodes and blockdevs, again. */
284 printk("Emergency Sync complete\n");
285 if (unlikely(laptop_mode))
286 laptop_sync_completion();
289 asmlinkage long sys_sync(void)
295 void emergency_sync(void)
297 pdflush_operation(do_sync, 0);
301 * Generic function to fsync a file.
303 * filp may be NULL if called via the msync of a vma.
306 int file_fsync(struct file *filp, struct dentry *dentry, int datasync)
308 struct inode * inode = dentry->d_inode;
309 struct super_block * sb;
312 /* sync the inode to buffers */
313 ret = write_inode_now(inode, 0);
315 /* sync the superblock to buffers */
318 if (sb->s_op->write_super)
319 sb->s_op->write_super(sb);
322 /* .. finally sync the buffers to disk */
323 err = sync_blockdev(sb->s_bdev);
329 static long do_fsync(unsigned int fd, int datasync)
332 struct address_space *mapping;
341 if (!file->f_op || !file->f_op->fsync) {
342 /* Why? We can still call filemap_fdatawrite */
346 mapping = file->f_mapping;
348 current->flags |= PF_SYNCWRITE;
349 ret = filemap_fdatawrite(mapping);
352 * We need to protect against concurrent writers,
353 * which could cause livelocks in fsync_buffers_list
355 down(&mapping->host->i_sem);
356 err = file->f_op->fsync(file, file->f_dentry, datasync);
359 up(&mapping->host->i_sem);
360 err = filemap_fdatawait(mapping);
363 current->flags &= ~PF_SYNCWRITE;
371 asmlinkage long sys_fsync(unsigned int fd)
373 return do_fsync(fd, 0);
376 asmlinkage long sys_fdatasync(unsigned int fd)
378 return do_fsync(fd, 1);
382 * Various filesystems appear to want __find_get_block to be non-blocking.
383 * But it's the page lock which protects the buffers. To get around this,
384 * we get exclusion from try_to_free_buffers with the blockdev mapping's
387 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
388 * may be quite high. This code could TryLock the page, and if that
389 * succeeds, there is no need to take private_lock. (But if
390 * private_lock is contended then so is mapping->tree_lock).
392 static struct buffer_head *
393 __find_get_block_slow(struct block_device *bdev, sector_t block)
395 struct inode *bd_inode = bdev->bd_inode;
396 struct address_space *bd_mapping = bd_inode->i_mapping;
397 struct buffer_head *ret = NULL;
399 struct buffer_head *bh;
400 struct buffer_head *head;
404 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
405 page = find_get_page(bd_mapping, index);
409 spin_lock(&bd_mapping->private_lock);
410 if (!page_has_buffers(page))
412 head = page_buffers(page);
415 if (bh->b_blocknr == block) {
420 if (!buffer_mapped(bh))
422 bh = bh->b_this_page;
423 } while (bh != head);
425 /* we might be here because some of the buffers on this page are
426 * not mapped. This is due to various races between
427 * file io on the block device and getblk. It gets dealt with
428 * elsewhere, don't buffer_error if we had some unmapped buffers
431 printk("__find_get_block_slow() failed. "
432 "block=%llu, b_blocknr=%llu\n",
433 (unsigned long long)block, (unsigned long long)bh->b_blocknr);
434 printk("b_state=0x%08lx, b_size=%u\n", bh->b_state, bh->b_size);
435 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
438 spin_unlock(&bd_mapping->private_lock);
439 page_cache_release(page);
444 /* If invalidate_buffers() will trash dirty buffers, it means some kind
445 of fs corruption is going on. Trashing dirty data always imply losing
446 information that was supposed to be just stored on the physical layer
449 Thus invalidate_buffers in general usage is not allwowed to trash
450 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
451 be preserved. These buffers are simply skipped.
453 We also skip buffers which are still in use. For example this can
454 happen if a userspace program is reading the block device.
456 NOTE: In the case where the user removed a removable-media-disk even if
457 there's still dirty data not synced on disk (due a bug in the device driver
458 or due an error of the user), by not destroying the dirty buffers we could
459 generate corruption also on the next media inserted, thus a parameter is
460 necessary to handle this case in the most safe way possible (trying
461 to not corrupt also the new disk inserted with the data belonging to
462 the old now corrupted disk). Also for the ramdisk the natural thing
463 to do in order to release the ramdisk memory is to destroy dirty buffers.
465 These are two special cases. Normal usage imply the device driver
466 to issue a sync on the device (without waiting I/O completion) and
467 then an invalidate_buffers call that doesn't trash dirty buffers.
469 For handling cache coherency with the blkdev pagecache the 'update' case
470 is been introduced. It is needed to re-read from disk any pinned
471 buffer. NOTE: re-reading from disk is destructive so we can do it only
472 when we assume nobody is changing the buffercache under our I/O and when
473 we think the disk contains more recent information than the buffercache.
474 The update == 1 pass marks the buffers we need to update, the update == 2
475 pass does the actual I/O. */
476 void invalidate_bdev(struct block_device *bdev, int destroy_dirty_buffers)
478 invalidate_bh_lrus();
480 * FIXME: what about destroy_dirty_buffers?
481 * We really want to use invalidate_inode_pages2() for
482 * that, but not until that's cleaned up.
484 invalidate_inode_pages(bdev->bd_inode->i_mapping);
488 * Kick pdflush then try to free up some ZONE_NORMAL memory.
490 static void free_more_memory(void)
495 wakeup_pdflush(1024);
498 for_each_pgdat(pgdat) {
499 zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
501 try_to_free_pages(zones, GFP_NOFS);
506 * I/O completion handler for block_read_full_page() - pages
507 * which come unlocked at the end of I/O.
509 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
512 struct buffer_head *first;
513 struct buffer_head *tmp;
515 int page_uptodate = 1;
517 BUG_ON(!buffer_async_read(bh));
521 set_buffer_uptodate(bh);
523 clear_buffer_uptodate(bh);
524 if (printk_ratelimit())
530 * Be _very_ careful from here on. Bad things can happen if
531 * two buffer heads end IO at almost the same time and both
532 * decide that the page is now completely done.
534 first = page_buffers(page);
535 local_irq_save(flags);
536 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
537 clear_buffer_async_read(bh);
541 if (!buffer_uptodate(tmp))
543 if (buffer_async_read(tmp)) {
544 BUG_ON(!buffer_locked(tmp));
547 tmp = tmp->b_this_page;
549 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
550 local_irq_restore(flags);
553 * If none of the buffers had errors and they are all
554 * uptodate then we can set the page uptodate.
556 if (page_uptodate && !PageError(page))
557 SetPageUptodate(page);
562 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
563 local_irq_restore(flags);
568 * Completion handler for block_write_full_page() - pages which are unlocked
569 * during I/O, and which have PageWriteback cleared upon I/O completion.
571 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
573 char b[BDEVNAME_SIZE];
575 struct buffer_head *first;
576 struct buffer_head *tmp;
579 BUG_ON(!buffer_async_write(bh));
583 set_buffer_uptodate(bh);
585 if (printk_ratelimit()) {
587 printk(KERN_WARNING "lost page write due to "
589 bdevname(bh->b_bdev, b));
591 set_bit(AS_EIO, &page->mapping->flags);
592 clear_buffer_uptodate(bh);
596 first = page_buffers(page);
597 local_irq_save(flags);
598 bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
600 clear_buffer_async_write(bh);
602 tmp = bh->b_this_page;
604 if (buffer_async_write(tmp)) {
605 BUG_ON(!buffer_locked(tmp));
608 tmp = tmp->b_this_page;
610 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
611 local_irq_restore(flags);
612 end_page_writeback(page);
616 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
617 local_irq_restore(flags);
622 * If a page's buffers are under async readin (end_buffer_async_read
623 * completion) then there is a possibility that another thread of
624 * control could lock one of the buffers after it has completed
625 * but while some of the other buffers have not completed. This
626 * locked buffer would confuse end_buffer_async_read() into not unlocking
627 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
628 * that this buffer is not under async I/O.
630 * The page comes unlocked when it has no locked buffer_async buffers
633 * PageLocked prevents anyone starting new async I/O reads any of
636 * PageWriteback is used to prevent simultaneous writeout of the same
639 * PageLocked prevents anyone from starting writeback of a page which is
640 * under read I/O (PageWriteback is only ever set against a locked page).
642 static void mark_buffer_async_read(struct buffer_head *bh)
644 bh->b_end_io = end_buffer_async_read;
645 set_buffer_async_read(bh);
648 void mark_buffer_async_write(struct buffer_head *bh)
650 bh->b_end_io = end_buffer_async_write;
651 set_buffer_async_write(bh);
653 EXPORT_SYMBOL(mark_buffer_async_write);
657 * fs/buffer.c contains helper functions for buffer-backed address space's
658 * fsync functions. A common requirement for buffer-based filesystems is
659 * that certain data from the backing blockdev needs to be written out for
660 * a successful fsync(). For example, ext2 indirect blocks need to be
661 * written back and waited upon before fsync() returns.
663 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
664 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
665 * management of a list of dependent buffers at ->i_mapping->private_list.
667 * Locking is a little subtle: try_to_free_buffers() will remove buffers
668 * from their controlling inode's queue when they are being freed. But
669 * try_to_free_buffers() will be operating against the *blockdev* mapping
670 * at the time, not against the S_ISREG file which depends on those buffers.
671 * So the locking for private_list is via the private_lock in the address_space
672 * which backs the buffers. Which is different from the address_space
673 * against which the buffers are listed. So for a particular address_space,
674 * mapping->private_lock does *not* protect mapping->private_list! In fact,
675 * mapping->private_list will always be protected by the backing blockdev's
678 * Which introduces a requirement: all buffers on an address_space's
679 * ->private_list must be from the same address_space: the blockdev's.
681 * address_spaces which do not place buffers at ->private_list via these
682 * utility functions are free to use private_lock and private_list for
683 * whatever they want. The only requirement is that list_empty(private_list)
684 * be true at clear_inode() time.
686 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
687 * filesystems should do that. invalidate_inode_buffers() should just go
688 * BUG_ON(!list_empty).
690 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
691 * take an address_space, not an inode. And it should be called
692 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
695 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
696 * list if it is already on a list. Because if the buffer is on a list,
697 * it *must* already be on the right one. If not, the filesystem is being
698 * silly. This will save a ton of locking. But first we have to ensure
699 * that buffers are taken *off* the old inode's list when they are freed
700 * (presumably in truncate). That requires careful auditing of all
701 * filesystems (do it inside bforget()). It could also be done by bringing
706 * The buffer's backing address_space's private_lock must be held
708 static inline void __remove_assoc_queue(struct buffer_head *bh)
710 list_del_init(&bh->b_assoc_buffers);
713 int inode_has_buffers(struct inode *inode)
715 return !list_empty(&inode->i_data.private_list);
719 * osync is designed to support O_SYNC io. It waits synchronously for
720 * all already-submitted IO to complete, but does not queue any new
721 * writes to the disk.
723 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
724 * you dirty the buffers, and then use osync_inode_buffers to wait for
725 * completion. Any other dirty buffers which are not yet queued for
726 * write will not be flushed to disk by the osync.
728 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
730 struct buffer_head *bh;
736 list_for_each_prev(p, list) {
738 if (buffer_locked(bh)) {
742 if (!buffer_uptodate(bh))
754 * sync_mapping_buffers - write out and wait upon a mapping's "associated"
756 * @mapping: the mapping which wants those buffers written
758 * Starts I/O against the buffers at mapping->private_list, and waits upon
761 * Basically, this is a convenience function for fsync().
762 * @mapping is a file or directory which needs those buffers to be written for
763 * a successful fsync().
765 int sync_mapping_buffers(struct address_space *mapping)
767 struct address_space *buffer_mapping = mapping->assoc_mapping;
769 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
772 return fsync_buffers_list(&buffer_mapping->private_lock,
773 &mapping->private_list);
775 EXPORT_SYMBOL(sync_mapping_buffers);
778 * Called when we've recently written block `bblock', and it is known that
779 * `bblock' was for a buffer_boundary() buffer. This means that the block at
780 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
781 * dirty, schedule it for IO. So that indirects merge nicely with their data.
783 void write_boundary_block(struct block_device *bdev,
784 sector_t bblock, unsigned blocksize)
786 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
788 if (buffer_dirty(bh))
789 ll_rw_block(WRITE, 1, &bh);
794 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
796 struct address_space *mapping = inode->i_mapping;
797 struct address_space *buffer_mapping = bh->b_page->mapping;
799 mark_buffer_dirty(bh);
800 if (!mapping->assoc_mapping) {
801 mapping->assoc_mapping = buffer_mapping;
803 if (mapping->assoc_mapping != buffer_mapping)
806 if (list_empty(&bh->b_assoc_buffers)) {
807 spin_lock(&buffer_mapping->private_lock);
808 list_move_tail(&bh->b_assoc_buffers,
809 &mapping->private_list);
810 spin_unlock(&buffer_mapping->private_lock);
813 EXPORT_SYMBOL(mark_buffer_dirty_inode);
816 * Add a page to the dirty page list.
818 * It is a sad fact of life that this function is called from several places
819 * deeply under spinlocking. It may not sleep.
821 * If the page has buffers, the uptodate buffers are set dirty, to preserve
822 * dirty-state coherency between the page and the buffers. It the page does
823 * not have buffers then when they are later attached they will all be set
826 * The buffers are dirtied before the page is dirtied. There's a small race
827 * window in which a writepage caller may see the page cleanness but not the
828 * buffer dirtiness. That's fine. If this code were to set the page dirty
829 * before the buffers, a concurrent writepage caller could clear the page dirty
830 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
831 * page on the dirty page list.
833 * We use private_lock to lock against try_to_free_buffers while using the
834 * page's buffer list. Also use this to protect against clean buffers being
835 * added to the page after it was set dirty.
837 * FIXME: may need to call ->reservepage here as well. That's rather up to the
838 * address_space though.
840 int __set_page_dirty_buffers(struct page *page)
842 struct address_space * const mapping = page->mapping;
844 spin_lock(&mapping->private_lock);
845 if (page_has_buffers(page)) {
846 struct buffer_head *head = page_buffers(page);
847 struct buffer_head *bh = head;
850 set_buffer_dirty(bh);
851 bh = bh->b_this_page;
852 } while (bh != head);
854 spin_unlock(&mapping->private_lock);
856 if (!TestSetPageDirty(page)) {
857 write_lock_irq(&mapping->tree_lock);
858 if (page->mapping) { /* Race with truncate? */
859 if (mapping_cap_account_dirty(mapping))
860 inc_page_state(nr_dirty);
861 radix_tree_tag_set(&mapping->page_tree,
863 PAGECACHE_TAG_DIRTY);
865 write_unlock_irq(&mapping->tree_lock);
866 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
871 EXPORT_SYMBOL(__set_page_dirty_buffers);
874 * Write out and wait upon a list of buffers.
876 * We have conflicting pressures: we want to make sure that all
877 * initially dirty buffers get waited on, but that any subsequently
878 * dirtied buffers don't. After all, we don't want fsync to last
879 * forever if somebody is actively writing to the file.
881 * Do this in two main stages: first we copy dirty buffers to a
882 * temporary inode list, queueing the writes as we go. Then we clean
883 * up, waiting for those writes to complete.
885 * During this second stage, any subsequent updates to the file may end
886 * up refiling the buffer on the original inode's dirty list again, so
887 * there is a chance we will end up with a buffer queued for write but
888 * not yet completed on that list. So, as a final cleanup we go through
889 * the osync code to catch these locked, dirty buffers without requeuing
890 * any newly dirty buffers for write.
892 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
894 struct buffer_head *bh;
895 struct list_head tmp;
898 INIT_LIST_HEAD(&tmp);
901 while (!list_empty(list)) {
902 bh = BH_ENTRY(list->next);
903 list_del_init(&bh->b_assoc_buffers);
904 if (buffer_dirty(bh) || buffer_locked(bh)) {
905 list_add(&bh->b_assoc_buffers, &tmp);
906 if (buffer_dirty(bh)) {
910 * Ensure any pending I/O completes so that
911 * ll_rw_block() actually writes the current
912 * contents - it is a noop if I/O is still in
913 * flight on potentially older contents.
915 ll_rw_block(SWRITE, 1, &bh);
922 while (!list_empty(&tmp)) {
923 bh = BH_ENTRY(tmp.prev);
924 __remove_assoc_queue(bh);
928 if (!buffer_uptodate(bh))
935 err2 = osync_buffers_list(lock, list);
943 * Invalidate any and all dirty buffers on a given inode. We are
944 * probably unmounting the fs, but that doesn't mean we have already
945 * done a sync(). Just drop the buffers from the inode list.
947 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
948 * assumes that all the buffers are against the blockdev. Not true
951 void invalidate_inode_buffers(struct inode *inode)
953 if (inode_has_buffers(inode)) {
954 struct address_space *mapping = &inode->i_data;
955 struct list_head *list = &mapping->private_list;
956 struct address_space *buffer_mapping = mapping->assoc_mapping;
958 spin_lock(&buffer_mapping->private_lock);
959 while (!list_empty(list))
960 __remove_assoc_queue(BH_ENTRY(list->next));
961 spin_unlock(&buffer_mapping->private_lock);
966 * Remove any clean buffers from the inode's buffer list. This is called
967 * when we're trying to free the inode itself. Those buffers can pin it.
969 * Returns true if all buffers were removed.
971 int remove_inode_buffers(struct inode *inode)
975 if (inode_has_buffers(inode)) {
976 struct address_space *mapping = &inode->i_data;
977 struct list_head *list = &mapping->private_list;
978 struct address_space *buffer_mapping = mapping->assoc_mapping;
980 spin_lock(&buffer_mapping->private_lock);
981 while (!list_empty(list)) {
982 struct buffer_head *bh = BH_ENTRY(list->next);
983 if (buffer_dirty(bh)) {
987 __remove_assoc_queue(bh);
989 spin_unlock(&buffer_mapping->private_lock);
995 * Create the appropriate buffers when given a page for data area and
996 * the size of each buffer.. Use the bh->b_this_page linked list to
997 * follow the buffers created. Return NULL if unable to create more
1000 * The retry flag is used to differentiate async IO (paging, swapping)
1001 * which may not fail from ordinary buffer allocations.
1003 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
1006 struct buffer_head *bh, *head;
1012 while ((offset -= size) >= 0) {
1013 bh = alloc_buffer_head(GFP_NOFS);
1018 bh->b_this_page = head;
1023 atomic_set(&bh->b_count, 0);
1026 /* Link the buffer to its page */
1027 set_bh_page(bh, page, offset);
1029 bh->b_end_io = NULL;
1033 * In case anything failed, we just free everything we got.
1039 head = head->b_this_page;
1040 free_buffer_head(bh);
1045 * Return failure for non-async IO requests. Async IO requests
1046 * are not allowed to fail, so we have to wait until buffer heads
1047 * become available. But we don't want tasks sleeping with
1048 * partially complete buffers, so all were released above.
1053 /* We're _really_ low on memory. Now we just
1054 * wait for old buffer heads to become free due to
1055 * finishing IO. Since this is an async request and
1056 * the reserve list is empty, we're sure there are
1057 * async buffer heads in use.
1062 EXPORT_SYMBOL_GPL(alloc_page_buffers);
1065 link_dev_buffers(struct page *page, struct buffer_head *head)
1067 struct buffer_head *bh, *tail;
1072 bh = bh->b_this_page;
1074 tail->b_this_page = head;
1075 attach_page_buffers(page, head);
1079 * Initialise the state of a blockdev page's buffers.
1082 init_page_buffers(struct page *page, struct block_device *bdev,
1083 sector_t block, int size)
1085 struct buffer_head *head = page_buffers(page);
1086 struct buffer_head *bh = head;
1087 int uptodate = PageUptodate(page);
1090 if (!buffer_mapped(bh)) {
1091 init_buffer(bh, NULL, NULL);
1093 bh->b_blocknr = block;
1095 set_buffer_uptodate(bh);
1096 set_buffer_mapped(bh);
1099 bh = bh->b_this_page;
1100 } while (bh != head);
1104 * Create the page-cache page that contains the requested block.
1106 * This is user purely for blockdev mappings.
1108 static struct page *
1109 grow_dev_page(struct block_device *bdev, sector_t block,
1110 pgoff_t index, int size)
1112 struct inode *inode = bdev->bd_inode;
1114 struct buffer_head *bh;
1116 page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
1120 if (!PageLocked(page))
1123 if (page_has_buffers(page)) {
1124 bh = page_buffers(page);
1125 if (bh->b_size == size) {
1126 init_page_buffers(page, bdev, block, size);
1129 if (!try_to_free_buffers(page))
1134 * Allocate some buffers for this page
1136 bh = alloc_page_buffers(page, size, 0);
1141 * Link the page to the buffers and initialise them. Take the
1142 * lock to be atomic wrt __find_get_block(), which does not
1143 * run under the page lock.
1145 spin_lock(&inode->i_mapping->private_lock);
1146 link_dev_buffers(page, bh);
1147 init_page_buffers(page, bdev, block, size);
1148 spin_unlock(&inode->i_mapping->private_lock);
1154 page_cache_release(page);
1159 * Create buffers for the specified block device block's page. If
1160 * that page was dirty, the buffers are set dirty also.
1162 * Except that's a bug. Attaching dirty buffers to a dirty
1163 * blockdev's page can result in filesystem corruption, because
1164 * some of those buffers may be aliases of filesystem data.
1165 * grow_dev_page() will go BUG() if this happens.
1168 grow_buffers(struct block_device *bdev, sector_t block, int size)
1177 } while ((size << sizebits) < PAGE_SIZE);
1179 index = block >> sizebits;
1180 block = index << sizebits;
1182 /* Create a page with the proper size buffers.. */
1183 page = grow_dev_page(bdev, block, index, size);
1187 page_cache_release(page);
1191 static struct buffer_head *
1192 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1194 /* Size must be multiple of hard sectorsize */
1195 if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1196 (size < 512 || size > PAGE_SIZE))) {
1197 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1199 printk(KERN_ERR "hardsect size: %d\n",
1200 bdev_hardsect_size(bdev));
1207 struct buffer_head * bh;
1209 bh = __find_get_block(bdev, block, size);
1213 if (!grow_buffers(bdev, block, size))
1219 * The relationship between dirty buffers and dirty pages:
1221 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1222 * the page is tagged dirty in its radix tree.
1224 * At all times, the dirtiness of the buffers represents the dirtiness of
1225 * subsections of the page. If the page has buffers, the page dirty bit is
1226 * merely a hint about the true dirty state.
1228 * When a page is set dirty in its entirety, all its buffers are marked dirty
1229 * (if the page has buffers).
1231 * When a buffer is marked dirty, its page is dirtied, but the page's other
1234 * Also. When blockdev buffers are explicitly read with bread(), they
1235 * individually become uptodate. But their backing page remains not
1236 * uptodate - even if all of its buffers are uptodate. A subsequent
1237 * block_read_full_page() against that page will discover all the uptodate
1238 * buffers, will set the page uptodate and will perform no I/O.
1242 * mark_buffer_dirty - mark a buffer_head as needing writeout
1243 * @bh: the buffer_head to mark dirty
1245 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1246 * backing page dirty, then tag the page as dirty in its address_space's radix
1247 * tree and then attach the address_space's inode to its superblock's dirty
1250 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1251 * mapping->tree_lock and the global inode_lock.
1253 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1255 if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1256 __set_page_dirty_nobuffers(bh->b_page);
1260 * Decrement a buffer_head's reference count. If all buffers against a page
1261 * have zero reference count, are clean and unlocked, and if the page is clean
1262 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1263 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1264 * a page but it ends up not being freed, and buffers may later be reattached).
1266 void __brelse(struct buffer_head * buf)
1268 if (atomic_read(&buf->b_count)) {
1272 printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1277 * bforget() is like brelse(), except it discards any
1278 * potentially dirty data.
1280 void __bforget(struct buffer_head *bh)
1282 clear_buffer_dirty(bh);
1283 if (!list_empty(&bh->b_assoc_buffers)) {
1284 struct address_space *buffer_mapping = bh->b_page->mapping;
1286 spin_lock(&buffer_mapping->private_lock);
1287 list_del_init(&bh->b_assoc_buffers);
1288 spin_unlock(&buffer_mapping->private_lock);
1293 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1296 if (buffer_uptodate(bh)) {
1301 bh->b_end_io = end_buffer_read_sync;
1302 submit_bh(READ, bh);
1304 if (buffer_uptodate(bh))
1312 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1313 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1314 * refcount elevated by one when they're in an LRU. A buffer can only appear
1315 * once in a particular CPU's LRU. A single buffer can be present in multiple
1316 * CPU's LRUs at the same time.
1318 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1319 * sb_find_get_block().
1321 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1322 * a local interrupt disable for that.
1325 #define BH_LRU_SIZE 8
1328 struct buffer_head *bhs[BH_LRU_SIZE];
1331 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1334 #define bh_lru_lock() local_irq_disable()
1335 #define bh_lru_unlock() local_irq_enable()
1337 #define bh_lru_lock() preempt_disable()
1338 #define bh_lru_unlock() preempt_enable()
1341 static inline void check_irqs_on(void)
1343 #ifdef irqs_disabled
1344 BUG_ON(irqs_disabled());
1349 * The LRU management algorithm is dopey-but-simple. Sorry.
1351 static void bh_lru_install(struct buffer_head *bh)
1353 struct buffer_head *evictee = NULL;
1358 lru = &__get_cpu_var(bh_lrus);
1359 if (lru->bhs[0] != bh) {
1360 struct buffer_head *bhs[BH_LRU_SIZE];
1366 for (in = 0; in < BH_LRU_SIZE; in++) {
1367 struct buffer_head *bh2 = lru->bhs[in];
1372 if (out >= BH_LRU_SIZE) {
1373 BUG_ON(evictee != NULL);
1380 while (out < BH_LRU_SIZE)
1382 memcpy(lru->bhs, bhs, sizeof(bhs));
1391 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1393 static inline struct buffer_head *
1394 lookup_bh_lru(struct block_device *bdev, sector_t block, int size)
1396 struct buffer_head *ret = NULL;
1402 lru = &__get_cpu_var(bh_lrus);
1403 for (i = 0; i < BH_LRU_SIZE; i++) {
1404 struct buffer_head *bh = lru->bhs[i];
1406 if (bh && bh->b_bdev == bdev &&
1407 bh->b_blocknr == block && bh->b_size == size) {
1410 lru->bhs[i] = lru->bhs[i - 1];
1425 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1426 * it in the LRU and mark it as accessed. If it is not present then return
1429 struct buffer_head *
1430 __find_get_block(struct block_device *bdev, sector_t block, int size)
1432 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1435 bh = __find_get_block_slow(bdev, block);
1443 EXPORT_SYMBOL(__find_get_block);
1446 * __getblk will locate (and, if necessary, create) the buffer_head
1447 * which corresponds to the passed block_device, block and size. The
1448 * returned buffer has its reference count incremented.
1450 * __getblk() cannot fail - it just keeps trying. If you pass it an
1451 * illegal block number, __getblk() will happily return a buffer_head
1452 * which represents the non-existent block. Very weird.
1454 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1455 * attempt is failing. FIXME, perhaps?
1457 struct buffer_head *
1458 __getblk(struct block_device *bdev, sector_t block, int size)
1460 struct buffer_head *bh = __find_get_block(bdev, block, size);
1464 bh = __getblk_slow(bdev, block, size);
1467 EXPORT_SYMBOL(__getblk);
1470 * Do async read-ahead on a buffer..
1472 void __breadahead(struct block_device *bdev, sector_t block, int size)
1474 struct buffer_head *bh = __getblk(bdev, block, size);
1476 ll_rw_block(READA, 1, &bh);
1480 EXPORT_SYMBOL(__breadahead);
1483 * __bread() - reads a specified block and returns the bh
1484 * @bdev: the block_device to read from
1485 * @block: number of block
1486 * @size: size (in bytes) to read
1488 * Reads a specified block, and returns buffer head that contains it.
1489 * It returns NULL if the block was unreadable.
1491 struct buffer_head *
1492 __bread(struct block_device *bdev, sector_t block, int size)
1494 struct buffer_head *bh = __getblk(bdev, block, size);
1496 if (likely(bh) && !buffer_uptodate(bh))
1497 bh = __bread_slow(bh);
1500 EXPORT_SYMBOL(__bread);
1503 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1504 * This doesn't race because it runs in each cpu either in irq
1505 * or with preempt disabled.
1507 static void invalidate_bh_lru(void *arg)
1509 struct bh_lru *b = &get_cpu_var(bh_lrus);
1512 for (i = 0; i < BH_LRU_SIZE; i++) {
1516 put_cpu_var(bh_lrus);
1519 static void invalidate_bh_lrus(void)
1521 on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1524 void set_bh_page(struct buffer_head *bh,
1525 struct page *page, unsigned long offset)
1528 if (offset >= PAGE_SIZE)
1530 if (PageHighMem(page))
1532 * This catches illegal uses and preserves the offset:
1534 bh->b_data = (char *)(0 + offset);
1536 bh->b_data = page_address(page) + offset;
1538 EXPORT_SYMBOL(set_bh_page);
1541 * Called when truncating a buffer on a page completely.
1543 static inline void discard_buffer(struct buffer_head * bh)
1546 clear_buffer_dirty(bh);
1548 clear_buffer_mapped(bh);
1549 clear_buffer_req(bh);
1550 clear_buffer_new(bh);
1551 clear_buffer_delay(bh);
1556 * try_to_release_page() - release old fs-specific metadata on a page
1558 * @page: the page which the kernel is trying to free
1559 * @gfp_mask: memory allocation flags (and I/O mode)
1561 * The address_space is to try to release any data against the page
1562 * (presumably at page->private). If the release was successful, return `1'.
1563 * Otherwise return zero.
1565 * The @gfp_mask argument specifies whether I/O may be performed to release
1566 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
1568 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
1570 int try_to_release_page(struct page *page, gfp_t gfp_mask)
1572 struct address_space * const mapping = page->mapping;
1574 BUG_ON(!PageLocked(page));
1575 if (PageWriteback(page))
1578 if (mapping && mapping->a_ops->releasepage)
1579 return mapping->a_ops->releasepage(page, gfp_mask);
1580 return try_to_free_buffers(page);
1582 EXPORT_SYMBOL(try_to_release_page);
1585 * block_invalidatepage - invalidate part of all of a buffer-backed page
1587 * @page: the page which is affected
1588 * @offset: the index of the truncation point
1590 * block_invalidatepage() is called when all or part of the page has become
1591 * invalidatedby a truncate operation.
1593 * block_invalidatepage() does not have to release all buffers, but it must
1594 * ensure that no dirty buffer is left outside @offset and that no I/O
1595 * is underway against any of the blocks which are outside the truncation
1596 * point. Because the caller is about to free (and possibly reuse) those
1599 int block_invalidatepage(struct page *page, unsigned long offset)
1601 struct buffer_head *head, *bh, *next;
1602 unsigned int curr_off = 0;
1605 BUG_ON(!PageLocked(page));
1606 if (!page_has_buffers(page))
1609 head = page_buffers(page);
1612 unsigned int next_off = curr_off + bh->b_size;
1613 next = bh->b_this_page;
1616 * is this block fully invalidated?
1618 if (offset <= curr_off)
1620 curr_off = next_off;
1622 } while (bh != head);
1625 * We release buffers only if the entire page is being invalidated.
1626 * The get_block cached value has been unconditionally invalidated,
1627 * so real IO is not possible anymore.
1630 ret = try_to_release_page(page, 0);
1634 EXPORT_SYMBOL(block_invalidatepage);
1636 int do_invalidatepage(struct page *page, unsigned long offset)
1638 int (*invalidatepage)(struct page *, unsigned long);
1639 invalidatepage = page->mapping->a_ops->invalidatepage;
1640 if (invalidatepage == NULL)
1641 invalidatepage = block_invalidatepage;
1642 return (*invalidatepage)(page, offset);
1646 * We attach and possibly dirty the buffers atomically wrt
1647 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1648 * is already excluded via the page lock.
1650 void create_empty_buffers(struct page *page,
1651 unsigned long blocksize, unsigned long b_state)
1653 struct buffer_head *bh, *head, *tail;
1655 head = alloc_page_buffers(page, blocksize, 1);
1658 bh->b_state |= b_state;
1660 bh = bh->b_this_page;
1662 tail->b_this_page = head;
1664 spin_lock(&page->mapping->private_lock);
1665 if (PageUptodate(page) || PageDirty(page)) {
1668 if (PageDirty(page))
1669 set_buffer_dirty(bh);
1670 if (PageUptodate(page))
1671 set_buffer_uptodate(bh);
1672 bh = bh->b_this_page;
1673 } while (bh != head);
1675 attach_page_buffers(page, head);
1676 spin_unlock(&page->mapping->private_lock);
1678 EXPORT_SYMBOL(create_empty_buffers);
1681 * We are taking a block for data and we don't want any output from any
1682 * buffer-cache aliases starting from return from that function and
1683 * until the moment when something will explicitly mark the buffer
1684 * dirty (hopefully that will not happen until we will free that block ;-)
1685 * We don't even need to mark it not-uptodate - nobody can expect
1686 * anything from a newly allocated buffer anyway. We used to used
1687 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1688 * don't want to mark the alias unmapped, for example - it would confuse
1689 * anyone who might pick it with bread() afterwards...
1691 * Also.. Note that bforget() doesn't lock the buffer. So there can
1692 * be writeout I/O going on against recently-freed buffers. We don't
1693 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1694 * only if we really need to. That happens here.
1696 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1698 struct buffer_head *old_bh;
1702 old_bh = __find_get_block_slow(bdev, block);
1704 clear_buffer_dirty(old_bh);
1705 wait_on_buffer(old_bh);
1706 clear_buffer_req(old_bh);
1710 EXPORT_SYMBOL(unmap_underlying_metadata);
1713 * NOTE! All mapped/uptodate combinations are valid:
1715 * Mapped Uptodate Meaning
1717 * No No "unknown" - must do get_block()
1718 * No Yes "hole" - zero-filled
1719 * Yes No "allocated" - allocated on disk, not read in
1720 * Yes Yes "valid" - allocated and up-to-date in memory.
1722 * "Dirty" is valid only with the last case (mapped+uptodate).
1726 * While block_write_full_page is writing back the dirty buffers under
1727 * the page lock, whoever dirtied the buffers may decide to clean them
1728 * again at any time. We handle that by only looking at the buffer
1729 * state inside lock_buffer().
1731 * If block_write_full_page() is called for regular writeback
1732 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1733 * locked buffer. This only can happen if someone has written the buffer
1734 * directly, with submit_bh(). At the address_space level PageWriteback
1735 * prevents this contention from occurring.
1737 static int __block_write_full_page(struct inode *inode, struct page *page,
1738 get_block_t *get_block, struct writeback_control *wbc)
1742 sector_t last_block;
1743 struct buffer_head *bh, *head;
1744 int nr_underway = 0;
1746 BUG_ON(!PageLocked(page));
1748 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1750 if (!page_has_buffers(page)) {
1751 create_empty_buffers(page, 1 << inode->i_blkbits,
1752 (1 << BH_Dirty)|(1 << BH_Uptodate));
1756 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1757 * here, and the (potentially unmapped) buffers may become dirty at
1758 * any time. If a buffer becomes dirty here after we've inspected it
1759 * then we just miss that fact, and the page stays dirty.
1761 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1762 * handle that here by just cleaning them.
1765 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1766 head = page_buffers(page);
1770 * Get all the dirty buffers mapped to disk addresses and
1771 * handle any aliases from the underlying blockdev's mapping.
1774 if (block > last_block) {
1776 * mapped buffers outside i_size will occur, because
1777 * this page can be outside i_size when there is a
1778 * truncate in progress.
1781 * The buffer was zeroed by block_write_full_page()
1783 clear_buffer_dirty(bh);
1784 set_buffer_uptodate(bh);
1785 } else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1786 err = get_block(inode, block, bh, 1);
1789 if (buffer_new(bh)) {
1790 /* blockdev mappings never come here */
1791 clear_buffer_new(bh);
1792 unmap_underlying_metadata(bh->b_bdev,
1796 bh = bh->b_this_page;
1798 } while (bh != head);
1801 if (!buffer_mapped(bh))
1804 * If it's a fully non-blocking write attempt and we cannot
1805 * lock the buffer then redirty the page. Note that this can
1806 * potentially cause a busy-wait loop from pdflush and kswapd
1807 * activity, but those code paths have their own higher-level
1810 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1812 } else if (test_set_buffer_locked(bh)) {
1813 redirty_page_for_writepage(wbc, page);
1816 if (test_clear_buffer_dirty(bh)) {
1817 mark_buffer_async_write(bh);
1821 } while ((bh = bh->b_this_page) != head);
1824 * The page and its buffers are protected by PageWriteback(), so we can
1825 * drop the bh refcounts early.
1827 BUG_ON(PageWriteback(page));
1828 set_page_writeback(page);
1831 struct buffer_head *next = bh->b_this_page;
1832 if (buffer_async_write(bh)) {
1833 submit_bh(WRITE, bh);
1837 } while (bh != head);
1842 if (nr_underway == 0) {
1844 * The page was marked dirty, but the buffers were
1845 * clean. Someone wrote them back by hand with
1846 * ll_rw_block/submit_bh. A rare case.
1850 if (!buffer_uptodate(bh)) {
1854 bh = bh->b_this_page;
1855 } while (bh != head);
1857 SetPageUptodate(page);
1858 end_page_writeback(page);
1860 * The page and buffer_heads can be released at any time from
1863 wbc->pages_skipped++; /* We didn't write this page */
1869 * ENOSPC, or some other error. We may already have added some
1870 * blocks to the file, so we need to write these out to avoid
1871 * exposing stale data.
1872 * The page is currently locked and not marked for writeback
1875 /* Recovery: lock and submit the mapped buffers */
1877 if (buffer_mapped(bh) && buffer_dirty(bh)) {
1879 mark_buffer_async_write(bh);
1882 * The buffer may have been set dirty during
1883 * attachment to a dirty page.
1885 clear_buffer_dirty(bh);
1887 } while ((bh = bh->b_this_page) != head);
1889 BUG_ON(PageWriteback(page));
1890 set_page_writeback(page);
1893 struct buffer_head *next = bh->b_this_page;
1894 if (buffer_async_write(bh)) {
1895 clear_buffer_dirty(bh);
1896 submit_bh(WRITE, bh);
1900 } while (bh != head);
1904 static int __block_prepare_write(struct inode *inode, struct page *page,
1905 unsigned from, unsigned to, get_block_t *get_block)
1907 unsigned block_start, block_end;
1910 unsigned blocksize, bbits;
1911 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1913 BUG_ON(!PageLocked(page));
1914 BUG_ON(from > PAGE_CACHE_SIZE);
1915 BUG_ON(to > PAGE_CACHE_SIZE);
1918 blocksize = 1 << inode->i_blkbits;
1919 if (!page_has_buffers(page))
1920 create_empty_buffers(page, blocksize, 0);
1921 head = page_buffers(page);
1923 bbits = inode->i_blkbits;
1924 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1926 for(bh = head, block_start = 0; bh != head || !block_start;
1927 block++, block_start=block_end, bh = bh->b_this_page) {
1928 block_end = block_start + blocksize;
1929 if (block_end <= from || block_start >= to) {
1930 if (PageUptodate(page)) {
1931 if (!buffer_uptodate(bh))
1932 set_buffer_uptodate(bh);
1937 clear_buffer_new(bh);
1938 if (!buffer_mapped(bh)) {
1939 err = get_block(inode, block, bh, 1);
1942 if (buffer_new(bh)) {
1943 unmap_underlying_metadata(bh->b_bdev,
1945 if (PageUptodate(page)) {
1946 set_buffer_uptodate(bh);
1949 if (block_end > to || block_start < from) {
1952 kaddr = kmap_atomic(page, KM_USER0);
1956 if (block_start < from)
1957 memset(kaddr+block_start,
1958 0, from-block_start);
1959 flush_dcache_page(page);
1960 kunmap_atomic(kaddr, KM_USER0);
1965 if (PageUptodate(page)) {
1966 if (!buffer_uptodate(bh))
1967 set_buffer_uptodate(bh);
1970 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1971 (block_start < from || block_end > to)) {
1972 ll_rw_block(READ, 1, &bh);
1977 * If we issued read requests - let them complete.
1979 while(wait_bh > wait) {
1980 wait_on_buffer(*--wait_bh);
1981 if (!buffer_uptodate(*wait_bh))
1988 clear_buffer_new(bh);
1989 } while ((bh = bh->b_this_page) != head);
1994 * Zero out any newly allocated blocks to avoid exposing stale
1995 * data. If BH_New is set, we know that the block was newly
1996 * allocated in the above loop.
2001 block_end = block_start+blocksize;
2002 if (block_end <= from)
2004 if (block_start >= to)
2006 if (buffer_new(bh)) {
2009 clear_buffer_new(bh);
2010 kaddr = kmap_atomic(page, KM_USER0);
2011 memset(kaddr+block_start, 0, bh->b_size);
2012 kunmap_atomic(kaddr, KM_USER0);
2013 set_buffer_uptodate(bh);
2014 mark_buffer_dirty(bh);
2017 block_start = block_end;
2018 bh = bh->b_this_page;
2019 } while (bh != head);
2023 static int __block_commit_write(struct inode *inode, struct page *page,
2024 unsigned from, unsigned to)
2026 unsigned block_start, block_end;
2029 struct buffer_head *bh, *head;
2031 blocksize = 1 << inode->i_blkbits;
2033 for(bh = head = page_buffers(page), block_start = 0;
2034 bh != head || !block_start;
2035 block_start=block_end, bh = bh->b_this_page) {
2036 block_end = block_start + blocksize;
2037 if (block_end <= from || block_start >= to) {
2038 if (!buffer_uptodate(bh))
2041 set_buffer_uptodate(bh);
2042 mark_buffer_dirty(bh);
2047 * If this is a partial write which happened to make all buffers
2048 * uptodate then we can optimize away a bogus readpage() for
2049 * the next read(). Here we 'discover' whether the page went
2050 * uptodate as a result of this (potentially partial) write.
2053 SetPageUptodate(page);
2058 * Generic "read page" function for block devices that have the normal
2059 * get_block functionality. This is most of the block device filesystems.
2060 * Reads the page asynchronously --- the unlock_buffer() and
2061 * set/clear_buffer_uptodate() functions propagate buffer state into the
2062 * page struct once IO has completed.
2064 int block_read_full_page(struct page *page, get_block_t *get_block)
2066 struct inode *inode = page->mapping->host;
2067 sector_t iblock, lblock;
2068 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2069 unsigned int blocksize;
2071 int fully_mapped = 1;
2073 BUG_ON(!PageLocked(page));
2074 blocksize = 1 << inode->i_blkbits;
2075 if (!page_has_buffers(page))
2076 create_empty_buffers(page, blocksize, 0);
2077 head = page_buffers(page);
2079 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2080 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2086 if (buffer_uptodate(bh))
2089 if (!buffer_mapped(bh)) {
2093 if (iblock < lblock) {
2094 err = get_block(inode, iblock, bh, 0);
2098 if (!buffer_mapped(bh)) {
2099 void *kaddr = kmap_atomic(page, KM_USER0);
2100 memset(kaddr + i * blocksize, 0, blocksize);
2101 flush_dcache_page(page);
2102 kunmap_atomic(kaddr, KM_USER0);
2104 set_buffer_uptodate(bh);
2108 * get_block() might have updated the buffer
2111 if (buffer_uptodate(bh))
2115 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2118 SetPageMappedToDisk(page);
2122 * All buffers are uptodate - we can set the page uptodate
2123 * as well. But not if get_block() returned an error.
2125 if (!PageError(page))
2126 SetPageUptodate(page);
2131 /* Stage two: lock the buffers */
2132 for (i = 0; i < nr; i++) {
2135 mark_buffer_async_read(bh);
2139 * Stage 3: start the IO. Check for uptodateness
2140 * inside the buffer lock in case another process reading
2141 * the underlying blockdev brought it uptodate (the sct fix).
2143 for (i = 0; i < nr; i++) {
2145 if (buffer_uptodate(bh))
2146 end_buffer_async_read(bh, 1);
2148 submit_bh(READ, bh);
2153 /* utility function for filesystems that need to do work on expanding
2154 * truncates. Uses prepare/commit_write to allow the filesystem to
2155 * deal with the hole.
2157 static int __generic_cont_expand(struct inode *inode, loff_t size,
2158 pgoff_t index, unsigned int offset)
2160 struct address_space *mapping = inode->i_mapping;
2162 unsigned long limit;
2166 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2167 if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2168 send_sig(SIGXFSZ, current, 0);
2171 if (size > inode->i_sb->s_maxbytes)
2175 page = grab_cache_page(mapping, index);
2178 err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2181 * ->prepare_write() may have instantiated a few blocks
2182 * outside i_size. Trim these off again.
2185 page_cache_release(page);
2186 vmtruncate(inode, inode->i_size);
2190 err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2193 page_cache_release(page);
2200 int generic_cont_expand(struct inode *inode, loff_t size)
2203 unsigned int offset;
2205 offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2207 /* ugh. in prepare/commit_write, if from==to==start of block, we
2208 ** skip the prepare. make sure we never send an offset for the start
2211 if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2212 /* caller must handle this extra byte. */
2215 index = size >> PAGE_CACHE_SHIFT;
2217 return __generic_cont_expand(inode, size, index, offset);
2220 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2222 loff_t pos = size - 1;
2223 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2224 unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2226 /* prepare/commit_write can handle even if from==to==start of block. */
2227 return __generic_cont_expand(inode, size, index, offset);
2231 * For moronic filesystems that do not allow holes in file.
2232 * We may have to extend the file.
2235 int cont_prepare_write(struct page *page, unsigned offset,
2236 unsigned to, get_block_t *get_block, loff_t *bytes)
2238 struct address_space *mapping = page->mapping;
2239 struct inode *inode = mapping->host;
2240 struct page *new_page;
2244 unsigned blocksize = 1 << inode->i_blkbits;
2247 while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2249 new_page = grab_cache_page(mapping, pgpos);
2252 /* we might sleep */
2253 if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2254 unlock_page(new_page);
2255 page_cache_release(new_page);
2258 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2259 if (zerofrom & (blocksize-1)) {
2260 *bytes |= (blocksize-1);
2263 status = __block_prepare_write(inode, new_page, zerofrom,
2264 PAGE_CACHE_SIZE, get_block);
2267 kaddr = kmap_atomic(new_page, KM_USER0);
2268 memset(kaddr+zerofrom, 0, PAGE_CACHE_SIZE-zerofrom);
2269 flush_dcache_page(new_page);
2270 kunmap_atomic(kaddr, KM_USER0);
2271 generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2272 unlock_page(new_page);
2273 page_cache_release(new_page);
2276 if (page->index < pgpos) {
2277 /* completely inside the area */
2280 /* page covers the boundary, find the boundary offset */
2281 zerofrom = *bytes & ~PAGE_CACHE_MASK;
2283 /* if we will expand the thing last block will be filled */
2284 if (to > zerofrom && (zerofrom & (blocksize-1))) {
2285 *bytes |= (blocksize-1);
2289 /* starting below the boundary? Nothing to zero out */
2290 if (offset <= zerofrom)
2293 status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2296 if (zerofrom < offset) {
2297 kaddr = kmap_atomic(page, KM_USER0);
2298 memset(kaddr+zerofrom, 0, offset-zerofrom);
2299 flush_dcache_page(page);
2300 kunmap_atomic(kaddr, KM_USER0);
2301 __block_commit_write(inode, page, zerofrom, offset);
2305 ClearPageUptodate(page);
2309 ClearPageUptodate(new_page);
2310 unlock_page(new_page);
2311 page_cache_release(new_page);
2316 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2317 get_block_t *get_block)
2319 struct inode *inode = page->mapping->host;
2320 int err = __block_prepare_write(inode, page, from, to, get_block);
2322 ClearPageUptodate(page);
2326 int block_commit_write(struct page *page, unsigned from, unsigned to)
2328 struct inode *inode = page->mapping->host;
2329 __block_commit_write(inode,page,from,to);
2333 int generic_commit_write(struct file *file, struct page *page,
2334 unsigned from, unsigned to)
2336 struct inode *inode = page->mapping->host;
2337 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2338 __block_commit_write(inode,page,from,to);
2340 * No need to use i_size_read() here, the i_size
2341 * cannot change under us because we hold i_sem.
2343 if (pos > inode->i_size) {
2344 i_size_write(inode, pos);
2345 mark_inode_dirty(inode);
2352 * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2353 * immediately, while under the page lock. So it needs a special end_io
2354 * handler which does not touch the bh after unlocking it.
2356 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
2357 * a race there is benign: unlock_buffer() only use the bh's address for
2358 * hashing after unlocking the buffer, so it doesn't actually touch the bh
2361 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2364 set_buffer_uptodate(bh);
2366 /* This happens, due to failed READA attempts. */
2367 clear_buffer_uptodate(bh);
2373 * On entry, the page is fully not uptodate.
2374 * On exit the page is fully uptodate in the areas outside (from,to)
2376 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2377 get_block_t *get_block)
2379 struct inode *inode = page->mapping->host;
2380 const unsigned blkbits = inode->i_blkbits;
2381 const unsigned blocksize = 1 << blkbits;
2382 struct buffer_head map_bh;
2383 struct buffer_head *read_bh[MAX_BUF_PER_PAGE];
2384 unsigned block_in_page;
2385 unsigned block_start;
2386 sector_t block_in_file;
2391 int is_mapped_to_disk = 1;
2394 if (PageMappedToDisk(page))
2397 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2398 map_bh.b_page = page;
2401 * We loop across all blocks in the page, whether or not they are
2402 * part of the affected region. This is so we can discover if the
2403 * page is fully mapped-to-disk.
2405 for (block_start = 0, block_in_page = 0;
2406 block_start < PAGE_CACHE_SIZE;
2407 block_in_page++, block_start += blocksize) {
2408 unsigned block_end = block_start + blocksize;
2413 if (block_start >= to)
2415 ret = get_block(inode, block_in_file + block_in_page,
2419 if (!buffer_mapped(&map_bh))
2420 is_mapped_to_disk = 0;
2421 if (buffer_new(&map_bh))
2422 unmap_underlying_metadata(map_bh.b_bdev,
2424 if (PageUptodate(page))
2426 if (buffer_new(&map_bh) || !buffer_mapped(&map_bh)) {
2427 kaddr = kmap_atomic(page, KM_USER0);
2428 if (block_start < from) {
2429 memset(kaddr+block_start, 0, from-block_start);
2432 if (block_end > to) {
2433 memset(kaddr + to, 0, block_end - to);
2436 flush_dcache_page(page);
2437 kunmap_atomic(kaddr, KM_USER0);
2440 if (buffer_uptodate(&map_bh))
2441 continue; /* reiserfs does this */
2442 if (block_start < from || block_end > to) {
2443 struct buffer_head *bh = alloc_buffer_head(GFP_NOFS);
2449 bh->b_state = map_bh.b_state;
2450 atomic_set(&bh->b_count, 0);
2451 bh->b_this_page = NULL;
2453 bh->b_blocknr = map_bh.b_blocknr;
2454 bh->b_size = blocksize;
2455 bh->b_data = (char *)(long)block_start;
2456 bh->b_bdev = map_bh.b_bdev;
2457 bh->b_private = NULL;
2458 read_bh[nr_reads++] = bh;
2463 struct buffer_head *bh;
2466 * The page is locked, so these buffers are protected from
2467 * any VM or truncate activity. Hence we don't need to care
2468 * for the buffer_head refcounts.
2470 for (i = 0; i < nr_reads; i++) {
2473 bh->b_end_io = end_buffer_read_nobh;
2474 submit_bh(READ, bh);
2476 for (i = 0; i < nr_reads; i++) {
2479 if (!buffer_uptodate(bh))
2481 free_buffer_head(bh);
2488 if (is_mapped_to_disk)
2489 SetPageMappedToDisk(page);
2490 SetPageUptodate(page);
2493 * Setting the page dirty here isn't necessary for the prepare_write
2494 * function - commit_write will do that. But if/when this function is
2495 * used within the pagefault handler to ensure that all mmapped pages
2496 * have backing space in the filesystem, we will need to dirty the page
2497 * if its contents were altered.
2500 set_page_dirty(page);
2505 for (i = 0; i < nr_reads; i++) {
2507 free_buffer_head(read_bh[i]);
2511 * Error recovery is pretty slack. Clear the page and mark it dirty
2512 * so we'll later zero out any blocks which _were_ allocated.
2514 kaddr = kmap_atomic(page, KM_USER0);
2515 memset(kaddr, 0, PAGE_CACHE_SIZE);
2516 kunmap_atomic(kaddr, KM_USER0);
2517 SetPageUptodate(page);
2518 set_page_dirty(page);
2521 EXPORT_SYMBOL(nobh_prepare_write);
2523 int nobh_commit_write(struct file *file, struct page *page,
2524 unsigned from, unsigned to)
2526 struct inode *inode = page->mapping->host;
2527 loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2529 set_page_dirty(page);
2530 if (pos > inode->i_size) {
2531 i_size_write(inode, pos);
2532 mark_inode_dirty(inode);
2536 EXPORT_SYMBOL(nobh_commit_write);
2539 * nobh_writepage() - based on block_full_write_page() except
2540 * that it tries to operate without attaching bufferheads to
2543 int nobh_writepage(struct page *page, get_block_t *get_block,
2544 struct writeback_control *wbc)
2546 struct inode * const inode = page->mapping->host;
2547 loff_t i_size = i_size_read(inode);
2548 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2553 /* Is the page fully inside i_size? */
2554 if (page->index < end_index)
2557 /* Is the page fully outside i_size? (truncate in progress) */
2558 offset = i_size & (PAGE_CACHE_SIZE-1);
2559 if (page->index >= end_index+1 || !offset) {
2561 * The page may have dirty, unmapped buffers. For example,
2562 * they may have been added in ext3_writepage(). Make them
2563 * freeable here, so the page does not leak.
2566 /* Not really sure about this - do we need this ? */
2567 if (page->mapping->a_ops->invalidatepage)
2568 page->mapping->a_ops->invalidatepage(page, offset);
2571 return 0; /* don't care */
2575 * The page straddles i_size. It must be zeroed out on each and every
2576 * writepage invocation because it may be mmapped. "A file is mapped
2577 * in multiples of the page size. For a file that is not a multiple of
2578 * the page size, the remaining memory is zeroed when mapped, and
2579 * writes to that region are not written out to the file."
2581 kaddr = kmap_atomic(page, KM_USER0);
2582 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2583 flush_dcache_page(page);
2584 kunmap_atomic(kaddr, KM_USER0);
2586 ret = mpage_writepage(page, get_block, wbc);
2588 ret = __block_write_full_page(inode, page, get_block, wbc);
2591 EXPORT_SYMBOL(nobh_writepage);
2594 * This function assumes that ->prepare_write() uses nobh_prepare_write().
2596 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2598 struct inode *inode = mapping->host;
2599 unsigned blocksize = 1 << inode->i_blkbits;
2600 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2601 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2604 struct address_space_operations *a_ops = mapping->a_ops;
2608 if ((offset & (blocksize - 1)) == 0)
2612 page = grab_cache_page(mapping, index);
2616 to = (offset + blocksize) & ~(blocksize - 1);
2617 ret = a_ops->prepare_write(NULL, page, offset, to);
2619 kaddr = kmap_atomic(page, KM_USER0);
2620 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2621 flush_dcache_page(page);
2622 kunmap_atomic(kaddr, KM_USER0);
2623 set_page_dirty(page);
2626 page_cache_release(page);
2630 EXPORT_SYMBOL(nobh_truncate_page);
2632 int block_truncate_page(struct address_space *mapping,
2633 loff_t from, get_block_t *get_block)
2635 pgoff_t index = from >> PAGE_CACHE_SHIFT;
2636 unsigned offset = from & (PAGE_CACHE_SIZE-1);
2639 unsigned length, pos;
2640 struct inode *inode = mapping->host;
2642 struct buffer_head *bh;
2646 blocksize = 1 << inode->i_blkbits;
2647 length = offset & (blocksize - 1);
2649 /* Block boundary? Nothing to do */
2653 length = blocksize - length;
2654 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2656 page = grab_cache_page(mapping, index);
2661 if (!page_has_buffers(page))
2662 create_empty_buffers(page, blocksize, 0);
2664 /* Find the buffer that contains "offset" */
2665 bh = page_buffers(page);
2667 while (offset >= pos) {
2668 bh = bh->b_this_page;
2674 if (!buffer_mapped(bh)) {
2675 err = get_block(inode, iblock, bh, 0);
2678 /* unmapped? It's a hole - nothing to do */
2679 if (!buffer_mapped(bh))
2683 /* Ok, it's mapped. Make sure it's up-to-date */
2684 if (PageUptodate(page))
2685 set_buffer_uptodate(bh);
2687 if (!buffer_uptodate(bh) && !buffer_delay(bh)) {
2689 ll_rw_block(READ, 1, &bh);
2691 /* Uhhuh. Read error. Complain and punt. */
2692 if (!buffer_uptodate(bh))
2696 kaddr = kmap_atomic(page, KM_USER0);
2697 memset(kaddr + offset, 0, length);
2698 flush_dcache_page(page);
2699 kunmap_atomic(kaddr, KM_USER0);
2701 mark_buffer_dirty(bh);
2706 page_cache_release(page);
2712 * The generic ->writepage function for buffer-backed address_spaces
2714 int block_write_full_page(struct page *page, get_block_t *get_block,
2715 struct writeback_control *wbc)
2717 struct inode * const inode = page->mapping->host;
2718 loff_t i_size = i_size_read(inode);
2719 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2723 /* Is the page fully inside i_size? */
2724 if (page->index < end_index)
2725 return __block_write_full_page(inode, page, get_block, wbc);
2727 /* Is the page fully outside i_size? (truncate in progress) */
2728 offset = i_size & (PAGE_CACHE_SIZE-1);
2729 if (page->index >= end_index+1 || !offset) {
2731 * The page may have dirty, unmapped buffers. For example,
2732 * they may have been added in ext3_writepage(). Make them
2733 * freeable here, so the page does not leak.
2735 do_invalidatepage(page, 0);
2737 return 0; /* don't care */
2741 * The page straddles i_size. It must be zeroed out on each and every
2742 * writepage invokation because it may be mmapped. "A file is mapped
2743 * in multiples of the page size. For a file that is not a multiple of
2744 * the page size, the remaining memory is zeroed when mapped, and
2745 * writes to that region are not written out to the file."
2747 kaddr = kmap_atomic(page, KM_USER0);
2748 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
2749 flush_dcache_page(page);
2750 kunmap_atomic(kaddr, KM_USER0);
2751 return __block_write_full_page(inode, page, get_block, wbc);
2754 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2755 get_block_t *get_block)
2757 struct buffer_head tmp;
2758 struct inode *inode = mapping->host;
2761 get_block(inode, block, &tmp, 0);
2762 return tmp.b_blocknr;
2765 static int end_bio_bh_io_sync(struct bio *bio, unsigned int bytes_done, int err)
2767 struct buffer_head *bh = bio->bi_private;
2772 if (err == -EOPNOTSUPP) {
2773 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2774 set_bit(BH_Eopnotsupp, &bh->b_state);
2777 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2782 int submit_bh(int rw, struct buffer_head * bh)
2787 BUG_ON(!buffer_locked(bh));
2788 BUG_ON(!buffer_mapped(bh));
2789 BUG_ON(!bh->b_end_io);
2791 if (buffer_ordered(bh) && (rw == WRITE))
2795 * Only clear out a write error when rewriting, should this
2796 * include WRITE_SYNC as well?
2798 if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2799 clear_buffer_write_io_error(bh);
2802 * from here on down, it's all bio -- do the initial mapping,
2803 * submit_bio -> generic_make_request may further map this bio around
2805 bio = bio_alloc(GFP_NOIO, 1);
2807 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2808 bio->bi_bdev = bh->b_bdev;
2809 bio->bi_io_vec[0].bv_page = bh->b_page;
2810 bio->bi_io_vec[0].bv_len = bh->b_size;
2811 bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2815 bio->bi_size = bh->b_size;
2817 bio->bi_end_io = end_bio_bh_io_sync;
2818 bio->bi_private = bh;
2821 submit_bio(rw, bio);
2823 if (bio_flagged(bio, BIO_EOPNOTSUPP))
2831 * ll_rw_block: low-level access to block devices (DEPRECATED)
2832 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2833 * @nr: number of &struct buffer_heads in the array
2834 * @bhs: array of pointers to &struct buffer_head
2836 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2837 * requests an I/O operation on them, either a %READ or a %WRITE. The third
2838 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2839 * are sent to disk. The fourth %READA option is described in the documentation
2840 * for generic_make_request() which ll_rw_block() calls.
2842 * This function drops any buffer that it cannot get a lock on (with the
2843 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2844 * clean when doing a write request, and any buffer that appears to be
2845 * up-to-date when doing read request. Further it marks as clean buffers that
2846 * are processed for writing (the buffer cache won't assume that they are
2847 * actually clean until the buffer gets unlocked).
2849 * ll_rw_block sets b_end_io to simple completion handler that marks
2850 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2853 * All of the buffers must be for the same device, and must also be a
2854 * multiple of the current approved size for the device.
2856 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2860 for (i = 0; i < nr; i++) {
2861 struct buffer_head *bh = bhs[i];
2865 else if (test_set_buffer_locked(bh))
2869 if (rw == WRITE || rw == SWRITE) {
2870 if (test_clear_buffer_dirty(bh)) {
2871 bh->b_end_io = end_buffer_write_sync;
2872 submit_bh(WRITE, bh);
2876 if (!buffer_uptodate(bh)) {
2877 bh->b_end_io = end_buffer_read_sync;
2888 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2889 * and then start new I/O and then wait upon it. The caller must have a ref on
2892 int sync_dirty_buffer(struct buffer_head *bh)
2896 WARN_ON(atomic_read(&bh->b_count) < 1);
2898 if (test_clear_buffer_dirty(bh)) {
2900 bh->b_end_io = end_buffer_write_sync;
2901 ret = submit_bh(WRITE, bh);
2903 if (buffer_eopnotsupp(bh)) {
2904 clear_buffer_eopnotsupp(bh);
2907 if (!ret && !buffer_uptodate(bh))
2916 * try_to_free_buffers() checks if all the buffers on this particular page
2917 * are unused, and releases them if so.
2919 * Exclusion against try_to_free_buffers may be obtained by either
2920 * locking the page or by holding its mapping's private_lock.
2922 * If the page is dirty but all the buffers are clean then we need to
2923 * be sure to mark the page clean as well. This is because the page
2924 * may be against a block device, and a later reattachment of buffers
2925 * to a dirty page will set *all* buffers dirty. Which would corrupt
2926 * filesystem data on the same device.
2928 * The same applies to regular filesystem pages: if all the buffers are
2929 * clean then we set the page clean and proceed. To do that, we require
2930 * total exclusion from __set_page_dirty_buffers(). That is obtained with
2933 * try_to_free_buffers() is non-blocking.
2935 static inline int buffer_busy(struct buffer_head *bh)
2937 return atomic_read(&bh->b_count) |
2938 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2942 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2944 struct buffer_head *head = page_buffers(page);
2945 struct buffer_head *bh;
2949 if (buffer_write_io_error(bh) && page->mapping)
2950 set_bit(AS_EIO, &page->mapping->flags);
2951 if (buffer_busy(bh))
2953 bh = bh->b_this_page;
2954 } while (bh != head);
2957 struct buffer_head *next = bh->b_this_page;
2959 if (!list_empty(&bh->b_assoc_buffers))
2960 __remove_assoc_queue(bh);
2962 } while (bh != head);
2963 *buffers_to_free = head;
2964 __clear_page_buffers(page);
2970 int try_to_free_buffers(struct page *page)
2972 struct address_space * const mapping = page->mapping;
2973 struct buffer_head *buffers_to_free = NULL;
2976 BUG_ON(!PageLocked(page));
2977 if (PageWriteback(page))
2980 if (mapping == NULL) { /* can this still happen? */
2981 ret = drop_buffers(page, &buffers_to_free);
2985 spin_lock(&mapping->private_lock);
2986 ret = drop_buffers(page, &buffers_to_free);
2989 * If the filesystem writes its buffers by hand (eg ext3)
2990 * then we can have clean buffers against a dirty page. We
2991 * clean the page here; otherwise later reattachment of buffers
2992 * could encounter a non-uptodate page, which is unresolvable.
2993 * This only applies in the rare case where try_to_free_buffers
2994 * succeeds but the page is not freed.
2996 clear_page_dirty(page);
2998 spin_unlock(&mapping->private_lock);
3000 if (buffers_to_free) {
3001 struct buffer_head *bh = buffers_to_free;
3004 struct buffer_head *next = bh->b_this_page;
3005 free_buffer_head(bh);
3007 } while (bh != buffers_to_free);
3011 EXPORT_SYMBOL(try_to_free_buffers);
3013 int block_sync_page(struct page *page)
3015 struct address_space *mapping;
3018 mapping = page_mapping(page);
3020 blk_run_backing_dev(mapping->backing_dev_info, page);
3025 * There are no bdflush tunables left. But distributions are
3026 * still running obsolete flush daemons, so we terminate them here.
3028 * Use of bdflush() is deprecated and will be removed in a future kernel.
3029 * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3031 asmlinkage long sys_bdflush(int func, long data)
3033 static int msg_count;
3035 if (!capable(CAP_SYS_ADMIN))
3038 if (msg_count < 5) {
3041 "warning: process `%s' used the obsolete bdflush"
3042 " system call\n", current->comm);
3043 printk(KERN_INFO "Fix your initscripts?\n");
3052 * Buffer-head allocation
3054 static kmem_cache_t *bh_cachep;
3057 * Once the number of bh's in the machine exceeds this level, we start
3058 * stripping them in writeback.
3060 static int max_buffer_heads;
3062 int buffer_heads_over_limit;
3064 struct bh_accounting {
3065 int nr; /* Number of live bh's */
3066 int ratelimit; /* Limit cacheline bouncing */
3069 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3071 static void recalc_bh_state(void)
3076 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3078 __get_cpu_var(bh_accounting).ratelimit = 0;
3080 tot += per_cpu(bh_accounting, i).nr;
3081 buffer_heads_over_limit = (tot > max_buffer_heads);
3084 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3086 struct buffer_head *ret = kmem_cache_alloc(bh_cachep, gfp_flags);
3088 get_cpu_var(bh_accounting).nr++;
3090 put_cpu_var(bh_accounting);
3094 EXPORT_SYMBOL(alloc_buffer_head);
3096 void free_buffer_head(struct buffer_head *bh)
3098 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3099 kmem_cache_free(bh_cachep, bh);
3100 get_cpu_var(bh_accounting).nr--;
3102 put_cpu_var(bh_accounting);
3104 EXPORT_SYMBOL(free_buffer_head);
3107 init_buffer_head(void *data, kmem_cache_t *cachep, unsigned long flags)
3109 if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) ==
3110 SLAB_CTOR_CONSTRUCTOR) {
3111 struct buffer_head * bh = (struct buffer_head *)data;
3113 memset(bh, 0, sizeof(*bh));
3114 INIT_LIST_HEAD(&bh->b_assoc_buffers);
3118 #ifdef CONFIG_HOTPLUG_CPU
3119 static void buffer_exit_cpu(int cpu)
3122 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3124 for (i = 0; i < BH_LRU_SIZE; i++) {
3130 static int buffer_cpu_notify(struct notifier_block *self,
3131 unsigned long action, void *hcpu)
3133 if (action == CPU_DEAD)
3134 buffer_exit_cpu((unsigned long)hcpu);
3137 #endif /* CONFIG_HOTPLUG_CPU */
3139 void __init buffer_init(void)
3143 bh_cachep = kmem_cache_create("buffer_head",
3144 sizeof(struct buffer_head), 0,
3145 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC, init_buffer_head, NULL);
3148 * Limit the bh occupancy to 10% of ZONE_NORMAL
3150 nrpages = (nr_free_buffer_pages() * 10) / 100;
3151 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3152 hotcpu_notifier(buffer_cpu_notify, 0);
3155 EXPORT_SYMBOL(__bforget);
3156 EXPORT_SYMBOL(__brelse);
3157 EXPORT_SYMBOL(__wait_on_buffer);
3158 EXPORT_SYMBOL(block_commit_write);
3159 EXPORT_SYMBOL(block_prepare_write);
3160 EXPORT_SYMBOL(block_read_full_page);
3161 EXPORT_SYMBOL(block_sync_page);
3162 EXPORT_SYMBOL(block_truncate_page);
3163 EXPORT_SYMBOL(block_write_full_page);
3164 EXPORT_SYMBOL(cont_prepare_write);
3165 EXPORT_SYMBOL(end_buffer_async_write);
3166 EXPORT_SYMBOL(end_buffer_read_sync);
3167 EXPORT_SYMBOL(end_buffer_write_sync);
3168 EXPORT_SYMBOL(file_fsync);
3169 EXPORT_SYMBOL(fsync_bdev);
3170 EXPORT_SYMBOL(generic_block_bmap);
3171 EXPORT_SYMBOL(generic_commit_write);
3172 EXPORT_SYMBOL(generic_cont_expand);
3173 EXPORT_SYMBOL(generic_cont_expand_simple);
3174 EXPORT_SYMBOL(init_buffer);
3175 EXPORT_SYMBOL(invalidate_bdev);
3176 EXPORT_SYMBOL(ll_rw_block);
3177 EXPORT_SYMBOL(mark_buffer_dirty);
3178 EXPORT_SYMBOL(submit_bh);
3179 EXPORT_SYMBOL(sync_dirty_buffer);
3180 EXPORT_SYMBOL(unlock_buffer);