Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/drzeus/mmc
[linux-2.6] / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2  * spu_switch.c
3  *
4  * (C) Copyright IBM Corp. 2005
5  *
6  * Author: Mark Nutter <mnutter@us.ibm.com>
7  *
8  * Host-side part of SPU context switch sequence outlined in
9  * Synergistic Processor Element, Book IV.
10  *
11  * A fully premptive switch of an SPE is very expensive in terms
12  * of time and system resources.  SPE Book IV indicates that SPE
13  * allocation should follow a "serially reusable device" model,
14  * in which the SPE is assigned a task until it completes.  When
15  * this is not possible, this sequence may be used to premptively
16  * save, and then later (optionally) restore the context of a
17  * program executing on an SPE.
18  *
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2, or (at your option)
23  * any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  *
30  * You should have received a copy of the GNU General Public License
31  * along with this program; if not, write to the Free Software
32  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33  */
34
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/hardirq.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51
52 #include "spufs.h"
53
54 #include "spu_save_dump.h"
55 #include "spu_restore_dump.h"
56
57 #if 0
58 #define POLL_WHILE_TRUE(_c) {                           \
59     do {                                                \
60     } while (_c);                                       \
61   }
62 #else
63 #define RELAX_SPIN_COUNT                                1000
64 #define POLL_WHILE_TRUE(_c) {                           \
65     do {                                                \
66         int _i;                                         \
67         for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68             cpu_relax();                                \
69         }                                               \
70         if (unlikely(_c)) yield();                      \
71         else break;                                     \
72     } while (_c);                                       \
73   }
74 #endif                          /* debug */
75
76 #define POLL_WHILE_FALSE(_c)    POLL_WHILE_TRUE(!(_c))
77
78 static inline void acquire_spu_lock(struct spu *spu)
79 {
80         /* Save, Step 1:
81          * Restore, Step 1:
82          *    Acquire SPU-specific mutual exclusion lock.
83          *    TBD.
84          */
85 }
86
87 static inline void release_spu_lock(struct spu *spu)
88 {
89         /* Restore, Step 76:
90          *    Release SPU-specific mutual exclusion lock.
91          *    TBD.
92          */
93 }
94
95 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96 {
97         struct spu_problem __iomem *prob = spu->problem;
98         u32 isolate_state;
99
100         /* Save, Step 2:
101          * Save, Step 6:
102          *     If SPU_Status[E,L,IS] any field is '1', this
103          *     SPU is in isolate state and cannot be context
104          *     saved at this time.
105          */
106         isolate_state = SPU_STATUS_ISOLATED_STATE |
107             SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108         return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 }
110
111 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112 {
113         /* Save, Step 3:
114          * Restore, Step 2:
115          *     Save INT_Mask_class0 in CSA.
116          *     Write INT_MASK_class0 with value of 0.
117          *     Save INT_Mask_class1 in CSA.
118          *     Write INT_MASK_class1 with value of 0.
119          *     Save INT_Mask_class2 in CSA.
120          *     Write INT_MASK_class2 with value of 0.
121          *     Synchronize all three interrupts to be sure
122          *     we no longer execute a handler on another CPU.
123          */
124         spin_lock_irq(&spu->register_lock);
125         if (csa) {
126                 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127                 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128                 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129         }
130         spu_int_mask_set(spu, 0, 0ul);
131         spu_int_mask_set(spu, 1, 0ul);
132         spu_int_mask_set(spu, 2, 0ul);
133         eieio();
134         spin_unlock_irq(&spu->register_lock);
135         synchronize_irq(spu->irqs[0]);
136         synchronize_irq(spu->irqs[1]);
137         synchronize_irq(spu->irqs[2]);
138 }
139
140 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
141 {
142         /* Save, Step 4:
143          * Restore, Step 25.
144          *    Set a software watchdog timer, which specifies the
145          *    maximum allowable time for a context save sequence.
146          *
147          *    For present, this implementation will not set a global
148          *    watchdog timer, as virtualization & variable system load
149          *    may cause unpredictable execution times.
150          */
151 }
152
153 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
154 {
155         /* Save, Step 5:
156          * Restore, Step 3:
157          *     Inhibit user-space access (if provided) to this
158          *     SPU by unmapping the virtual pages assigned to
159          *     the SPU memory-mapped I/O (MMIO) for problem
160          *     state. TBD.
161          */
162 }
163
164 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
165 {
166         /* Save, Step 7:
167          * Restore, Step 5:
168          *     Set a software context switch pending flag.
169          */
170         set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
171         mb();
172 }
173
174 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
175 {
176         struct spu_priv2 __iomem *priv2 = spu->priv2;
177
178         /* Save, Step 8:
179          *     Suspend DMA and save MFC_CNTL.
180          */
181         switch (in_be64(&priv2->mfc_control_RW) &
182                MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
183         case MFC_CNTL_SUSPEND_IN_PROGRESS:
184                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
185                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
186                                  MFC_CNTL_SUSPEND_COMPLETE);
187                 /* fall through */
188         case MFC_CNTL_SUSPEND_COMPLETE:
189                 if (csa) {
190                         csa->priv2.mfc_control_RW =
191                                 MFC_CNTL_SUSPEND_MASK |
192                                 MFC_CNTL_SUSPEND_DMA_QUEUE;
193                 }
194                 break;
195         case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
196                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
197                 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
198                                   MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
199                                  MFC_CNTL_SUSPEND_COMPLETE);
200                 if (csa) {
201                         csa->priv2.mfc_control_RW = 0;
202                 }
203                 break;
204         }
205 }
206
207 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
208 {
209         struct spu_problem __iomem *prob = spu->problem;
210
211         /* Save, Step 9:
212          *     Save SPU_Runcntl in the CSA.  This value contains
213          *     the "Application Desired State".
214          */
215         csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
216 }
217
218 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
219 {
220         /* Save, Step 10:
221          *     Save MFC_SR1 in the CSA.
222          */
223         csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
224 }
225
226 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
227 {
228         struct spu_problem __iomem *prob = spu->problem;
229
230         /* Save, Step 11:
231          *     Read SPU_Status[R], and save to CSA.
232          */
233         if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
234                 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
235         } else {
236                 u32 stopped;
237
238                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
239                 eieio();
240                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
241                                 SPU_STATUS_RUNNING);
242                 stopped =
243                     SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
244                     SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
245                 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
246                         csa->prob.spu_status_R = SPU_STATUS_RUNNING;
247                 else
248                         csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
249         }
250 }
251
252 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
253 {
254         struct spu_priv2 __iomem *priv2 = spu->priv2;
255
256         /* Save, Step 12:
257          *     Read MFC_CNTL[Ds].  Update saved copy of
258          *     CSA.MFC_CNTL[Ds].
259          */
260         csa->priv2.mfc_control_RW |=
261                 in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING;
262 }
263
264 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
265 {
266         struct spu_priv2 __iomem *priv2 = spu->priv2;
267
268         /* Save, Step 13:
269          *     Write MFC_CNTL[Dh] set to a '1' to halt
270          *     the decrementer.
271          */
272         out_be64(&priv2->mfc_control_RW,
273                  MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
274         eieio();
275 }
276
277 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
278 {
279         /* Save, Step 14:
280          *    Read PPE Timebase High and Timebase low registers
281          *    and save in CSA.  TBD.
282          */
283         csa->suspend_time = get_cycles();
284 }
285
286 static inline void remove_other_spu_access(struct spu_state *csa,
287                                            struct spu *spu)
288 {
289         /* Save, Step 15:
290          *     Remove other SPU access to this SPU by unmapping
291          *     this SPU's pages from their address space.  TBD.
292          */
293 }
294
295 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
296 {
297         struct spu_problem __iomem *prob = spu->problem;
298
299         /* Save, Step 16:
300          * Restore, Step 11.
301          *     Write SPU_MSSync register. Poll SPU_MSSync[P]
302          *     for a value of 0.
303          */
304         out_be64(&prob->spc_mssync_RW, 1UL);
305         POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
306 }
307
308 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
309 {
310         /* Save, Step 17:
311          * Restore, Step 12.
312          * Restore, Step 48.
313          *     Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
314          *     Then issue a PPE sync instruction.
315          */
316         spu_tlb_invalidate(spu);
317         mb();
318 }
319
320 static inline void handle_pending_interrupts(struct spu_state *csa,
321                                              struct spu *spu)
322 {
323         /* Save, Step 18:
324          *     Handle any pending interrupts from this SPU
325          *     here.  This is OS or hypervisor specific.  One
326          *     option is to re-enable interrupts to handle any
327          *     pending interrupts, with the interrupt handlers
328          *     recognizing the software Context Switch Pending
329          *     flag, to ensure the SPU execution or MFC command
330          *     queue is not restarted.  TBD.
331          */
332 }
333
334 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
335 {
336         struct spu_priv2 __iomem *priv2 = spu->priv2;
337         int i;
338
339         /* Save, Step 19:
340          *     If MFC_Cntl[Se]=0 then save
341          *     MFC command queues.
342          */
343         if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
344                 for (i = 0; i < 8; i++) {
345                         csa->priv2.puq[i].mfc_cq_data0_RW =
346                             in_be64(&priv2->puq[i].mfc_cq_data0_RW);
347                         csa->priv2.puq[i].mfc_cq_data1_RW =
348                             in_be64(&priv2->puq[i].mfc_cq_data1_RW);
349                         csa->priv2.puq[i].mfc_cq_data2_RW =
350                             in_be64(&priv2->puq[i].mfc_cq_data2_RW);
351                         csa->priv2.puq[i].mfc_cq_data3_RW =
352                             in_be64(&priv2->puq[i].mfc_cq_data3_RW);
353                 }
354                 for (i = 0; i < 16; i++) {
355                         csa->priv2.spuq[i].mfc_cq_data0_RW =
356                             in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
357                         csa->priv2.spuq[i].mfc_cq_data1_RW =
358                             in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
359                         csa->priv2.spuq[i].mfc_cq_data2_RW =
360                             in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
361                         csa->priv2.spuq[i].mfc_cq_data3_RW =
362                             in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
363                 }
364         }
365 }
366
367 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
368 {
369         struct spu_problem __iomem *prob = spu->problem;
370
371         /* Save, Step 20:
372          *     Save the PPU_QueryMask register
373          *     in the CSA.
374          */
375         csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
376 }
377
378 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
379 {
380         struct spu_problem __iomem *prob = spu->problem;
381
382         /* Save, Step 21:
383          *     Save the PPU_QueryType register
384          *     in the CSA.
385          */
386         csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
387 }
388
389 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
390 {
391         struct spu_problem __iomem *prob = spu->problem;
392
393         /* Save the Prxy_TagStatus register in the CSA.
394          *
395          * It is unnecessary to restore dma_tagstatus_R, however,
396          * dma_tagstatus_R in the CSA is accessed via backing_ops, so
397          * we must save it.
398          */
399         csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
400 }
401
402 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
403 {
404         struct spu_priv2 __iomem *priv2 = spu->priv2;
405
406         /* Save, Step 22:
407          *     Save the MFC_CSR_TSQ register
408          *     in the LSCSA.
409          */
410         csa->priv2.spu_tag_status_query_RW =
411             in_be64(&priv2->spu_tag_status_query_RW);
412 }
413
414 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
415 {
416         struct spu_priv2 __iomem *priv2 = spu->priv2;
417
418         /* Save, Step 23:
419          *     Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
420          *     registers in the CSA.
421          */
422         csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
423         csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
424 }
425
426 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
427 {
428         struct spu_priv2 __iomem *priv2 = spu->priv2;
429
430         /* Save, Step 24:
431          *     Save the MFC_CSR_ATO register in
432          *     the CSA.
433          */
434         csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
435 }
436
437 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
438 {
439         /* Save, Step 25:
440          *     Save the MFC_TCLASS_ID register in
441          *     the CSA.
442          */
443         csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
444 }
445
446 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
447 {
448         /* Save, Step 26:
449          * Restore, Step 23.
450          *     Write the MFC_TCLASS_ID register with
451          *     the value 0x10000000.
452          */
453         spu_mfc_tclass_id_set(spu, 0x10000000);
454         eieio();
455 }
456
457 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
458 {
459         struct spu_priv2 __iomem *priv2 = spu->priv2;
460
461         /* Save, Step 27:
462          * Restore, Step 14.
463          *     Write MFC_CNTL[Pc]=1 (purge queue).
464          */
465         out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
466         eieio();
467 }
468
469 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
470 {
471         struct spu_priv2 __iomem *priv2 = spu->priv2;
472
473         /* Save, Step 28:
474          *     Poll MFC_CNTL[Ps] until value '11' is read
475          *     (purge complete).
476          */
477         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
478                          MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
479                          MFC_CNTL_PURGE_DMA_COMPLETE);
480 }
481
482 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
483 {
484         /* Save, Step 30:
485          * Restore, Step 18:
486          *     Write MFC_SR1 with MFC_SR1[D=0,S=1] and
487          *     MFC_SR1[TL,R,Pr,T] set correctly for the
488          *     OS specific environment.
489          *
490          *     Implementation note: The SPU-side code
491          *     for save/restore is privileged, so the
492          *     MFC_SR1[Pr] bit is not set.
493          *
494          */
495         spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
496                               MFC_STATE1_RELOCATE_MASK |
497                               MFC_STATE1_BUS_TLBIE_MASK));
498 }
499
500 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
501 {
502         struct spu_problem __iomem *prob = spu->problem;
503
504         /* Save, Step 31:
505          *     Save SPU_NPC in the CSA.
506          */
507         csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
508 }
509
510 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
511 {
512         struct spu_priv2 __iomem *priv2 = spu->priv2;
513
514         /* Save, Step 32:
515          *     Save SPU_PrivCntl in the CSA.
516          */
517         csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
518 }
519
520 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
521 {
522         struct spu_priv2 __iomem *priv2 = spu->priv2;
523
524         /* Save, Step 33:
525          * Restore, Step 16:
526          *     Write SPU_PrivCntl[S,Le,A] fields reset to 0.
527          */
528         out_be64(&priv2->spu_privcntl_RW, 0UL);
529         eieio();
530 }
531
532 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
533 {
534         struct spu_priv2 __iomem *priv2 = spu->priv2;
535
536         /* Save, Step 34:
537          *     Save SPU_LSLR in the CSA.
538          */
539         csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
540 }
541
542 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
543 {
544         struct spu_priv2 __iomem *priv2 = spu->priv2;
545
546         /* Save, Step 35:
547          * Restore, Step 17.
548          *     Reset SPU_LSLR.
549          */
550         out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
551         eieio();
552 }
553
554 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
555 {
556         struct spu_priv2 __iomem *priv2 = spu->priv2;
557
558         /* Save, Step 36:
559          *     Save SPU_Cfg in the CSA.
560          */
561         csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
562 }
563
564 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
565 {
566         /* Save, Step 37:
567          *     Save PM_Trace_Tag_Wait_Mask in the CSA.
568          *     Not performed by this implementation.
569          */
570 }
571
572 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
573 {
574         /* Save, Step 38:
575          *     Save RA_GROUP_ID register and the
576          *     RA_ENABLE reigster in the CSA.
577          */
578         csa->priv1.resource_allocation_groupID_RW =
579                 spu_resource_allocation_groupID_get(spu);
580         csa->priv1.resource_allocation_enable_RW =
581                 spu_resource_allocation_enable_get(spu);
582 }
583
584 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
585 {
586         struct spu_problem __iomem *prob = spu->problem;
587
588         /* Save, Step 39:
589          *     Save MB_Stat register in the CSA.
590          */
591         csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
592 }
593
594 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
595 {
596         struct spu_problem __iomem *prob = spu->problem;
597
598         /* Save, Step 40:
599          *     Save the PPU_MB register in the CSA.
600          */
601         csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
602 }
603
604 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
605 {
606         struct spu_priv2 __iomem *priv2 = spu->priv2;
607
608         /* Save, Step 41:
609          *     Save the PPUINT_MB register in the CSA.
610          */
611         csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
612 }
613
614 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
615 {
616         struct spu_priv2 __iomem *priv2 = spu->priv2;
617         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
618         int i;
619
620         /* Save, Step 42:
621          */
622
623         /* Save CH 1, without channel count */
624         out_be64(&priv2->spu_chnlcntptr_RW, 1);
625         csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
626
627         /* Save the following CH: [0,3,4,24,25,27] */
628         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
629                 idx = ch_indices[i];
630                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
631                 eieio();
632                 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
633                 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
634                 out_be64(&priv2->spu_chnldata_RW, 0UL);
635                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
636                 eieio();
637         }
638 }
639
640 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
641 {
642         struct spu_priv2 __iomem *priv2 = spu->priv2;
643         int i;
644
645         /* Save, Step 43:
646          *     Save SPU Read Mailbox Channel.
647          */
648         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
649         eieio();
650         csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
651         for (i = 0; i < 4; i++) {
652                 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
653         }
654         out_be64(&priv2->spu_chnlcnt_RW, 0UL);
655         eieio();
656 }
657
658 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
659 {
660         struct spu_priv2 __iomem *priv2 = spu->priv2;
661
662         /* Save, Step 44:
663          *     Save MFC_CMD Channel.
664          */
665         out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
666         eieio();
667         csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
668         eieio();
669 }
670
671 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
672 {
673         struct spu_priv2 __iomem *priv2 = spu->priv2;
674         u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
675         u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
676         u64 idx;
677         int i;
678
679         /* Save, Step 45:
680          *     Reset the following CH: [21, 23, 28, 30]
681          */
682         for (i = 0; i < 4; i++) {
683                 idx = ch_indices[i];
684                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
685                 eieio();
686                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
687                 eieio();
688         }
689 }
690
691 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
692 {
693         struct spu_priv2 __iomem *priv2 = spu->priv2;
694
695         /* Save, Step 46:
696          * Restore, Step 25.
697          *     Write MFC_CNTL[Sc]=0 (resume queue processing).
698          */
699         out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
700 }
701
702 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
703                 unsigned int *code, int code_size)
704 {
705         /* Save, Step 47:
706          * Restore, Step 30.
707          *     If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
708          *     register, then initialize SLB_VSID and SLB_ESID
709          *     to provide access to SPU context save code and
710          *     LSCSA.
711          *
712          *     This implementation places both the context
713          *     switch code and LSCSA in kernel address space.
714          *
715          *     Further this implementation assumes that the
716          *     MFC_SR1[R]=1 (in other words, assume that
717          *     translation is desired by OS environment).
718          */
719         spu_invalidate_slbs(spu);
720         spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
721 }
722
723 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
724 {
725         /* Save, Step 48:
726          * Restore, Step 23.
727          *     Change the software context switch pending flag
728          *     to context switch active.
729          *
730          *     This implementation does not uses a switch active flag.
731          */
732         clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
733         mb();
734 }
735
736 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
737 {
738         unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
739             CLASS1_ENABLE_STORAGE_FAULT_INTR;
740
741         /* Save, Step 49:
742          * Restore, Step 22:
743          *     Reset and then enable interrupts, as
744          *     needed by OS.
745          *
746          *     This implementation enables only class1
747          *     (translation) interrupts.
748          */
749         spin_lock_irq(&spu->register_lock);
750         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
751         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
752         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
753         spu_int_mask_set(spu, 0, 0ul);
754         spu_int_mask_set(spu, 1, class1_mask);
755         spu_int_mask_set(spu, 2, 0ul);
756         spin_unlock_irq(&spu->register_lock);
757 }
758
759 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
760                                unsigned int ls_offset, unsigned int size,
761                                unsigned int tag, unsigned int rclass,
762                                unsigned int cmd)
763 {
764         struct spu_problem __iomem *prob = spu->problem;
765         union mfc_tag_size_class_cmd command;
766         unsigned int transfer_size;
767         volatile unsigned int status = 0x0;
768
769         while (size > 0) {
770                 transfer_size =
771                     (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
772                 command.u.mfc_size = transfer_size;
773                 command.u.mfc_tag = tag;
774                 command.u.mfc_rclassid = rclass;
775                 command.u.mfc_cmd = cmd;
776                 do {
777                         out_be32(&prob->mfc_lsa_W, ls_offset);
778                         out_be64(&prob->mfc_ea_W, ea);
779                         out_be64(&prob->mfc_union_W.all64, command.all64);
780                         status =
781                             in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
782                         if (unlikely(status & 0x2)) {
783                                 cpu_relax();
784                         }
785                 } while (status & 0x3);
786                 size -= transfer_size;
787                 ea += transfer_size;
788                 ls_offset += transfer_size;
789         }
790         return 0;
791 }
792
793 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
794 {
795         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
796         unsigned int ls_offset = 0x0;
797         unsigned int size = 16384;
798         unsigned int tag = 0;
799         unsigned int rclass = 0;
800         unsigned int cmd = MFC_PUT_CMD;
801
802         /* Save, Step 50:
803          *     Issue a DMA command to copy the first 16K bytes
804          *     of local storage to the CSA.
805          */
806         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
807 }
808
809 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
810 {
811         struct spu_problem __iomem *prob = spu->problem;
812
813         /* Save, Step 51:
814          * Restore, Step 31.
815          *     Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
816          *     point address of context save code in local
817          *     storage.
818          *
819          *     This implementation uses SPU-side save/restore
820          *     programs with entry points at LSA of 0.
821          */
822         out_be32(&prob->spu_npc_RW, 0);
823         eieio();
824 }
825
826 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
827 {
828         struct spu_problem __iomem *prob = spu->problem;
829         union {
830                 u64 ull;
831                 u32 ui[2];
832         } addr64;
833
834         /* Save, Step 52:
835          * Restore, Step 32:
836          *    Write SPU_Sig_Notify_1 register with upper 32-bits
837          *    of the CSA.LSCSA effective address.
838          */
839         addr64.ull = (u64) csa->lscsa;
840         out_be32(&prob->signal_notify1, addr64.ui[0]);
841         eieio();
842 }
843
844 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
845 {
846         struct spu_problem __iomem *prob = spu->problem;
847         union {
848                 u64 ull;
849                 u32 ui[2];
850         } addr64;
851
852         /* Save, Step 53:
853          * Restore, Step 33:
854          *    Write SPU_Sig_Notify_2 register with lower 32-bits
855          *    of the CSA.LSCSA effective address.
856          */
857         addr64.ull = (u64) csa->lscsa;
858         out_be32(&prob->signal_notify2, addr64.ui[1]);
859         eieio();
860 }
861
862 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
863 {
864         unsigned long addr = (unsigned long)&spu_save_code[0];
865         unsigned int ls_offset = 0x0;
866         unsigned int size = sizeof(spu_save_code);
867         unsigned int tag = 0;
868         unsigned int rclass = 0;
869         unsigned int cmd = MFC_GETFS_CMD;
870
871         /* Save, Step 54:
872          *     Issue a DMA command to copy context save code
873          *     to local storage and start SPU.
874          */
875         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
876 }
877
878 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
879 {
880         struct spu_problem __iomem *prob = spu->problem;
881
882         /* Save, Step 55:
883          * Restore, Step 38.
884          *     Write PPU_QueryMask=1 (enable Tag Group 0)
885          *     and issue eieio instruction.
886          */
887         out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
888         eieio();
889 }
890
891 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
892 {
893         struct spu_problem __iomem *prob = spu->problem;
894         u32 mask = MFC_TAGID_TO_TAGMASK(0);
895         unsigned long flags;
896
897         /* Save, Step 56:
898          * Restore, Step 39.
899          * Restore, Step 39.
900          * Restore, Step 46.
901          *     Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
902          *     or write PPU_QueryType[TS]=01 and wait for Tag Group
903          *     Complete Interrupt.  Write INT_Stat_Class0 or
904          *     INT_Stat_Class2 with value of 'handled'.
905          */
906         POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
907
908         local_irq_save(flags);
909         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
910         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
911         local_irq_restore(flags);
912 }
913
914 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
915 {
916         struct spu_problem __iomem *prob = spu->problem;
917         unsigned long flags;
918
919         /* Save, Step 57:
920          * Restore, Step 40.
921          *     Poll until SPU_Status[R]=0 or wait for SPU Class 0
922          *     or SPU Class 2 interrupt.  Write INT_Stat_class0
923          *     or INT_Stat_class2 with value of handled.
924          */
925         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
926
927         local_irq_save(flags);
928         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
929         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
930         local_irq_restore(flags);
931 }
932
933 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
934 {
935         struct spu_problem __iomem *prob = spu->problem;
936         u32 complete;
937
938         /* Save, Step 54:
939          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
940          *     context save succeeded, otherwise context save
941          *     failed.
942          */
943         complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
944                     SPU_STATUS_STOPPED_BY_STOP);
945         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
946 }
947
948 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
949 {
950         /* Restore, Step 4:
951          *    If required, notify the "using application" that
952          *    the SPU task has been terminated.  TBD.
953          */
954 }
955
956 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
957                 struct spu *spu)
958 {
959         struct spu_priv2 __iomem *priv2 = spu->priv2;
960
961         /* Restore, Step 7:
962          *     Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
963          *     the queue and halt the decrementer.
964          */
965         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
966                  MFC_CNTL_DECREMENTER_HALTED);
967         eieio();
968 }
969
970 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
971                                              struct spu *spu)
972 {
973         struct spu_priv2 __iomem *priv2 = spu->priv2;
974
975         /* Restore, Step 8:
976          * Restore, Step 47.
977          *     Poll MFC_CNTL[Ss] until 11 is returned.
978          */
979         POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
980                          MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
981                          MFC_CNTL_SUSPEND_COMPLETE);
982 }
983
984 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
985 {
986         struct spu_problem __iomem *prob = spu->problem;
987
988         /* Restore, Step 9:
989          *    If SPU_Status[R]=1, stop SPU execution
990          *    and wait for stop to complete.
991          *
992          *    Returns       1 if SPU_Status[R]=1 on entry.
993          *                  0 otherwise
994          */
995         if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
996                 if (in_be32(&prob->spu_status_R) &
997                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
998                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
999                                         SPU_STATUS_RUNNING);
1000                 }
1001                 if ((in_be32(&prob->spu_status_R) &
1002                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1003                     || (in_be32(&prob->spu_status_R) &
1004                         SPU_STATUS_ISOLATED_STATE)) {
1005                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1006                         eieio();
1007                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1008                                         SPU_STATUS_RUNNING);
1009                         out_be32(&prob->spu_runcntl_RW, 0x2);
1010                         eieio();
1011                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1012                                         SPU_STATUS_RUNNING);
1013                 }
1014                 if (in_be32(&prob->spu_status_R) &
1015                     SPU_STATUS_WAITING_FOR_CHANNEL) {
1016                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1017                         eieio();
1018                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1019                                         SPU_STATUS_RUNNING);
1020                 }
1021                 return 1;
1022         }
1023         return 0;
1024 }
1025
1026 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1027 {
1028         struct spu_problem __iomem *prob = spu->problem;
1029
1030         /* Restore, Step 10:
1031          *    If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1032          *    release SPU from isolate state.
1033          */
1034         if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1035                 if (in_be32(&prob->spu_status_R) &
1036                     SPU_STATUS_ISOLATED_EXIT_STATUS) {
1037                         spu_mfc_sr1_set(spu,
1038                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1039                         eieio();
1040                         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1041                         eieio();
1042                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1043                                         SPU_STATUS_RUNNING);
1044                 }
1045                 if ((in_be32(&prob->spu_status_R) &
1046                      SPU_STATUS_ISOLATED_LOAD_STATUS)
1047                     || (in_be32(&prob->spu_status_R) &
1048                         SPU_STATUS_ISOLATED_STATE)) {
1049                         spu_mfc_sr1_set(spu,
1050                                         MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1051                         eieio();
1052                         out_be32(&prob->spu_runcntl_RW, 0x2);
1053                         eieio();
1054                         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1055                                         SPU_STATUS_RUNNING);
1056                 }
1057         }
1058 }
1059
1060 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1061 {
1062         struct spu_priv2 __iomem *priv2 = spu->priv2;
1063         u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1064         u64 idx;
1065         int i;
1066
1067         /* Restore, Step 20:
1068          */
1069
1070         /* Reset CH 1 */
1071         out_be64(&priv2->spu_chnlcntptr_RW, 1);
1072         out_be64(&priv2->spu_chnldata_RW, 0UL);
1073
1074         /* Reset the following CH: [0,3,4,24,25,27] */
1075         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1076                 idx = ch_indices[i];
1077                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1078                 eieio();
1079                 out_be64(&priv2->spu_chnldata_RW, 0UL);
1080                 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1081                 eieio();
1082         }
1083 }
1084
1085 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1086 {
1087         struct spu_priv2 __iomem *priv2 = spu->priv2;
1088         u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1089         u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1090         u64 idx;
1091         int i;
1092
1093         /* Restore, Step 21:
1094          *     Reset the following CH: [21, 23, 28, 29, 30]
1095          */
1096         for (i = 0; i < 5; i++) {
1097                 idx = ch_indices[i];
1098                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1099                 eieio();
1100                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1101                 eieio();
1102         }
1103 }
1104
1105 static inline void setup_spu_status_part1(struct spu_state *csa,
1106                                           struct spu *spu)
1107 {
1108         u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1109         u32 status_I = SPU_STATUS_INVALID_INSTR;
1110         u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1111         u32 status_S = SPU_STATUS_SINGLE_STEP;
1112         u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1113         u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1114         u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1115         u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1116         u32 status_code;
1117
1118         /* Restore, Step 27:
1119          *     If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1120          *     instruction sequence to the end of the SPU based restore
1121          *     code (after the "context restored" stop and signal) to
1122          *     restore the correct SPU status.
1123          *
1124          *     NOTE: Rather than modifying the SPU executable, we
1125          *     instead add a new 'stopped_status' field to the
1126          *     LSCSA.  The SPU-side restore reads this field and
1127          *     takes the appropriate action when exiting.
1128          */
1129
1130         status_code =
1131             (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1132         if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1133
1134                 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1135                  * by Stop and Signal instruction, followed by 'br -4'.
1136                  *
1137                  */
1138                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1139                 csa->lscsa->stopped_status.slot[1] = status_code;
1140
1141         } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1142
1143                 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1144                  * by Stop and Signal instruction, followed by
1145                  * 'br -4'.
1146                  */
1147                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1148                 csa->lscsa->stopped_status.slot[1] = status_code;
1149
1150         } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1151
1152                 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1153                  * followed by 'br -4'.
1154                  */
1155                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1156                 csa->lscsa->stopped_status.slot[1] = status_code;
1157
1158         } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1159
1160                 /* SPU_Status[S,I]=1 - Illegal instruction followed
1161                  * by 'br -4'.
1162                  */
1163                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1164                 csa->lscsa->stopped_status.slot[1] = status_code;
1165
1166         } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1167
1168                 /* SPU_Status[P]=1 - Stop and Signal instruction
1169                  * followed by 'br -4'.
1170                  */
1171                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1172                 csa->lscsa->stopped_status.slot[1] = status_code;
1173
1174         } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1175
1176                 /* SPU_Status[H]=1 - Halt Conditional, followed
1177                  * by 'br -4'.
1178                  */
1179                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1180
1181         } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1182
1183                 /* SPU_Status[S]=1 - Two nop instructions.
1184                  */
1185                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1186
1187         } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1188
1189                 /* SPU_Status[I]=1 - Illegal instruction followed
1190                  * by 'br -4'.
1191                  */
1192                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1193
1194         }
1195 }
1196
1197 static inline void setup_spu_status_part2(struct spu_state *csa,
1198                                           struct spu *spu)
1199 {
1200         u32 mask;
1201
1202         /* Restore, Step 28:
1203          *     If the CSA.SPU_Status[I,S,H,P,R]=0 then
1204          *     add a 'br *' instruction to the end of
1205          *     the SPU based restore code.
1206          *
1207          *     NOTE: Rather than modifying the SPU executable, we
1208          *     instead add a new 'stopped_status' field to the
1209          *     LSCSA.  The SPU-side restore reads this field and
1210          *     takes the appropriate action when exiting.
1211          */
1212         mask = SPU_STATUS_INVALID_INSTR |
1213             SPU_STATUS_SINGLE_STEP |
1214             SPU_STATUS_STOPPED_BY_HALT |
1215             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1216         if (!(csa->prob.spu_status_R & mask)) {
1217                 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1218         }
1219 }
1220
1221 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1222 {
1223         /* Restore, Step 29:
1224          *     Restore RA_GROUP_ID register and the
1225          *     RA_ENABLE reigster from the CSA.
1226          */
1227         spu_resource_allocation_groupID_set(spu,
1228                         csa->priv1.resource_allocation_groupID_RW);
1229         spu_resource_allocation_enable_set(spu,
1230                         csa->priv1.resource_allocation_enable_RW);
1231 }
1232
1233 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1234 {
1235         unsigned long addr = (unsigned long)&spu_restore_code[0];
1236         unsigned int ls_offset = 0x0;
1237         unsigned int size = sizeof(spu_restore_code);
1238         unsigned int tag = 0;
1239         unsigned int rclass = 0;
1240         unsigned int cmd = MFC_GETFS_CMD;
1241
1242         /* Restore, Step 37:
1243          *     Issue MFC DMA command to copy context
1244          *     restore code to local storage.
1245          */
1246         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1247 }
1248
1249 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1250 {
1251         /* Restore, Step 34:
1252          *     If CSA.MFC_CNTL[Ds]=1 (decrementer was
1253          *     running) then adjust decrementer, set
1254          *     decrementer running status in LSCSA,
1255          *     and set decrementer "wrapped" status
1256          *     in LSCSA.
1257          */
1258         if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1259                 cycles_t resume_time = get_cycles();
1260                 cycles_t delta_time = resume_time - csa->suspend_time;
1261
1262                 csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1263                 if (csa->lscsa->decr.slot[0] < delta_time) {
1264                         csa->lscsa->decr_status.slot[0] |=
1265                                  SPU_DECR_STATUS_WRAPPED;
1266                 }
1267
1268                 csa->lscsa->decr.slot[0] -= delta_time;
1269         } else {
1270                 csa->lscsa->decr_status.slot[0] = 0;
1271         }
1272 }
1273
1274 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1275 {
1276         /* Restore, Step 35:
1277          *     Copy the CSA.PU_MB data into the LSCSA.
1278          */
1279         csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1280 }
1281
1282 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1283 {
1284         /* Restore, Step 36:
1285          *     Copy the CSA.PUINT_MB data into the LSCSA.
1286          */
1287         csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1288 }
1289
1290 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1291 {
1292         struct spu_problem __iomem *prob = spu->problem;
1293         u32 complete;
1294
1295         /* Restore, Step 40:
1296          *     If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1297          *     context restore succeeded, otherwise context restore
1298          *     failed.
1299          */
1300         complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1301                     SPU_STATUS_STOPPED_BY_STOP);
1302         return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1303 }
1304
1305 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1306 {
1307         struct spu_priv2 __iomem *priv2 = spu->priv2;
1308
1309         /* Restore, Step 41:
1310          *     Restore SPU_PrivCntl from the CSA.
1311          */
1312         out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1313         eieio();
1314 }
1315
1316 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1317 {
1318         struct spu_problem __iomem *prob = spu->problem;
1319         u32 mask;
1320
1321         /* Restore, Step 42:
1322          *     If any CSA.SPU_Status[I,S,H,P]=1, then
1323          *     restore the error or single step state.
1324          */
1325         mask = SPU_STATUS_INVALID_INSTR |
1326             SPU_STATUS_SINGLE_STEP |
1327             SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1328         if (csa->prob.spu_status_R & mask) {
1329                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1330                 eieio();
1331                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1332                                 SPU_STATUS_RUNNING);
1333         }
1334 }
1335
1336 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1337 {
1338         struct spu_problem __iomem *prob = spu->problem;
1339         u32 mask;
1340
1341         /* Restore, Step 43:
1342          *     If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1343          *     SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1344          *     then write '00' to SPU_RunCntl[R0R1] and wait
1345          *     for SPU_Status[R]=0.
1346          */
1347         mask = SPU_STATUS_INVALID_INSTR |
1348             SPU_STATUS_SINGLE_STEP |
1349             SPU_STATUS_STOPPED_BY_HALT |
1350             SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1351         if (!(csa->prob.spu_status_R & mask)) {
1352                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1353                 eieio();
1354                 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1355                                  SPU_STATUS_RUNNING);
1356                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1357                 eieio();
1358                 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1359                                 SPU_STATUS_RUNNING);
1360         }
1361 }
1362
1363 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1364 {
1365         unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1366         unsigned int ls_offset = 0x0;
1367         unsigned int size = 16384;
1368         unsigned int tag = 0;
1369         unsigned int rclass = 0;
1370         unsigned int cmd = MFC_GET_CMD;
1371
1372         /* Restore, Step 44:
1373          *     Issue a DMA command to restore the first
1374          *     16kb of local storage from CSA.
1375          */
1376         send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1377 }
1378
1379 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1380 {
1381         struct spu_priv2 __iomem *priv2 = spu->priv2;
1382
1383         /* Restore, Step 47.
1384          *     Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1385          *     the queue.
1386          */
1387         out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1388         eieio();
1389 }
1390
1391 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1392 {
1393         /* Restore, Step 49:
1394          *     Write INT_MASK_class0 with value of 0.
1395          *     Write INT_MASK_class1 with value of 0.
1396          *     Write INT_MASK_class2 with value of 0.
1397          *     Write INT_STAT_class0 with value of -1.
1398          *     Write INT_STAT_class1 with value of -1.
1399          *     Write INT_STAT_class2 with value of -1.
1400          */
1401         spin_lock_irq(&spu->register_lock);
1402         spu_int_mask_set(spu, 0, 0ul);
1403         spu_int_mask_set(spu, 1, 0ul);
1404         spu_int_mask_set(spu, 2, 0ul);
1405         spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1406         spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1407         spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1408         spin_unlock_irq(&spu->register_lock);
1409 }
1410
1411 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1412 {
1413         struct spu_priv2 __iomem *priv2 = spu->priv2;
1414         int i;
1415
1416         /* Restore, Step 50:
1417          *     If MFC_Cntl[Se]!=0 then restore
1418          *     MFC command queues.
1419          */
1420         if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1421                 for (i = 0; i < 8; i++) {
1422                         out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1423                                  csa->priv2.puq[i].mfc_cq_data0_RW);
1424                         out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1425                                  csa->priv2.puq[i].mfc_cq_data1_RW);
1426                         out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1427                                  csa->priv2.puq[i].mfc_cq_data2_RW);
1428                         out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1429                                  csa->priv2.puq[i].mfc_cq_data3_RW);
1430                 }
1431                 for (i = 0; i < 16; i++) {
1432                         out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1433                                  csa->priv2.spuq[i].mfc_cq_data0_RW);
1434                         out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1435                                  csa->priv2.spuq[i].mfc_cq_data1_RW);
1436                         out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1437                                  csa->priv2.spuq[i].mfc_cq_data2_RW);
1438                         out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1439                                  csa->priv2.spuq[i].mfc_cq_data3_RW);
1440                 }
1441         }
1442         eieio();
1443 }
1444
1445 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1446 {
1447         struct spu_problem __iomem *prob = spu->problem;
1448
1449         /* Restore, Step 51:
1450          *     Restore the PPU_QueryMask register from CSA.
1451          */
1452         out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1453         eieio();
1454 }
1455
1456 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1457 {
1458         struct spu_problem __iomem *prob = spu->problem;
1459
1460         /* Restore, Step 52:
1461          *     Restore the PPU_QueryType register from CSA.
1462          */
1463         out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1464         eieio();
1465 }
1466
1467 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1468 {
1469         struct spu_priv2 __iomem *priv2 = spu->priv2;
1470
1471         /* Restore, Step 53:
1472          *     Restore the MFC_CSR_TSQ register from CSA.
1473          */
1474         out_be64(&priv2->spu_tag_status_query_RW,
1475                  csa->priv2.spu_tag_status_query_RW);
1476         eieio();
1477 }
1478
1479 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1480 {
1481         struct spu_priv2 __iomem *priv2 = spu->priv2;
1482
1483         /* Restore, Step 54:
1484          *     Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1485          *     registers from CSA.
1486          */
1487         out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1488         out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1489         eieio();
1490 }
1491
1492 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1493 {
1494         struct spu_priv2 __iomem *priv2 = spu->priv2;
1495
1496         /* Restore, Step 55:
1497          *     Restore the MFC_CSR_ATO register from CSA.
1498          */
1499         out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1500 }
1501
1502 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1503 {
1504         /* Restore, Step 56:
1505          *     Restore the MFC_TCLASS_ID register from CSA.
1506          */
1507         spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1508         eieio();
1509 }
1510
1511 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1512 {
1513         u64 ch0_cnt, ch0_data;
1514         u64 ch1_data;
1515
1516         /* Restore, Step 57:
1517          *    Set the Lock Line Reservation Lost Event by:
1518          *      1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1519          *      2. If CSA.SPU_Channel_0_Count=0 and
1520          *         CSA.SPU_Wr_Event_Mask[Lr]=1 and
1521          *         CSA.SPU_Event_Status[Lr]=0 then set
1522          *         CSA.SPU_Event_Status_Count=1.
1523          */
1524         ch0_cnt = csa->spu_chnlcnt_RW[0];
1525         ch0_data = csa->spu_chnldata_RW[0];
1526         ch1_data = csa->spu_chnldata_RW[1];
1527         csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1528         if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1529             (ch1_data & MFC_LLR_LOST_EVENT)) {
1530                 csa->spu_chnlcnt_RW[0] = 1;
1531         }
1532 }
1533
1534 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1535 {
1536         /* Restore, Step 58:
1537          *     If the status of the CSA software decrementer
1538          *     "wrapped" flag is set, OR in a '1' to
1539          *     CSA.SPU_Event_Status[Tm].
1540          */
1541         if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1542                 return;
1543
1544         if ((csa->spu_chnlcnt_RW[0] == 0) &&
1545             (csa->spu_chnldata_RW[1] & 0x20) &&
1546             !(csa->spu_chnldata_RW[0] & 0x20))
1547                 csa->spu_chnlcnt_RW[0] = 1;
1548
1549         csa->spu_chnldata_RW[0] |= 0x20;
1550 }
1551
1552 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1553 {
1554         struct spu_priv2 __iomem *priv2 = spu->priv2;
1555         u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1556         int i;
1557
1558         /* Restore, Step 59:
1559          *      Restore the following CH: [0,3,4,24,25,27]
1560          */
1561         for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1562                 idx = ch_indices[i];
1563                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1564                 eieio();
1565                 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1566                 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1567                 eieio();
1568         }
1569 }
1570
1571 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1572 {
1573         struct spu_priv2 __iomem *priv2 = spu->priv2;
1574         u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1575         u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1576         u64 idx;
1577         int i;
1578
1579         /* Restore, Step 60:
1580          *     Restore the following CH: [9,21,23].
1581          */
1582         ch_counts[0] = 1UL;
1583         ch_counts[1] = csa->spu_chnlcnt_RW[21];
1584         ch_counts[2] = 1UL;
1585         for (i = 0; i < 3; i++) {
1586                 idx = ch_indices[i];
1587                 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1588                 eieio();
1589                 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1590                 eieio();
1591         }
1592 }
1593
1594 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1595 {
1596         struct spu_priv2 __iomem *priv2 = spu->priv2;
1597
1598         /* Restore, Step 61:
1599          *     Restore the SPU_LSLR register from CSA.
1600          */
1601         out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1602         eieio();
1603 }
1604
1605 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1606 {
1607         struct spu_priv2 __iomem *priv2 = spu->priv2;
1608
1609         /* Restore, Step 62:
1610          *     Restore the SPU_Cfg register from CSA.
1611          */
1612         out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1613         eieio();
1614 }
1615
1616 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1617 {
1618         /* Restore, Step 63:
1619          *     Restore PM_Trace_Tag_Wait_Mask from CSA.
1620          *     Not performed by this implementation.
1621          */
1622 }
1623
1624 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1625 {
1626         struct spu_problem __iomem *prob = spu->problem;
1627
1628         /* Restore, Step 64:
1629          *     Restore SPU_NPC from CSA.
1630          */
1631         out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1632         eieio();
1633 }
1634
1635 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1636 {
1637         struct spu_priv2 __iomem *priv2 = spu->priv2;
1638         int i;
1639
1640         /* Restore, Step 65:
1641          *     Restore MFC_RdSPU_MB from CSA.
1642          */
1643         out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1644         eieio();
1645         out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1646         for (i = 0; i < 4; i++) {
1647                 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1648         }
1649         eieio();
1650 }
1651
1652 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1653 {
1654         struct spu_problem __iomem *prob = spu->problem;
1655         u32 dummy = 0;
1656
1657         /* Restore, Step 66:
1658          *     If CSA.MB_Stat[P]=0 (mailbox empty) then
1659          *     read from the PPU_MB register.
1660          */
1661         if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1662                 dummy = in_be32(&prob->pu_mb_R);
1663                 eieio();
1664         }
1665 }
1666
1667 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1668 {
1669         struct spu_priv2 __iomem *priv2 = spu->priv2;
1670         u64 dummy = 0UL;
1671
1672         /* Restore, Step 66:
1673          *     If CSA.MB_Stat[I]=0 (mailbox empty) then
1674          *     read from the PPUINT_MB register.
1675          */
1676         if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1677                 dummy = in_be64(&priv2->puint_mb_R);
1678                 eieio();
1679                 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1680                 eieio();
1681         }
1682 }
1683
1684 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1685 {
1686         /* Restore, Step 69:
1687          *     Restore the MFC_SR1 register from CSA.
1688          */
1689         spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1690         eieio();
1691 }
1692
1693 static inline void restore_other_spu_access(struct spu_state *csa,
1694                                             struct spu *spu)
1695 {
1696         /* Restore, Step 70:
1697          *     Restore other SPU mappings to this SPU. TBD.
1698          */
1699 }
1700
1701 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1702 {
1703         struct spu_problem __iomem *prob = spu->problem;
1704
1705         /* Restore, Step 71:
1706          *     If CSA.SPU_Status[R]=1 then write
1707          *     SPU_RunCntl[R0R1]='01'.
1708          */
1709         if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1710                 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1711                 eieio();
1712         }
1713 }
1714
1715 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1716 {
1717         struct spu_priv2 __iomem *priv2 = spu->priv2;
1718
1719         /* Restore, Step 72:
1720          *    Restore the MFC_CNTL register for the CSA.
1721          */
1722         out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1723         eieio();
1724         /*
1725          * FIXME: this is to restart a DMA that we were processing
1726          *        before the save. better remember the fault information
1727          *        in the csa instead.
1728          */
1729         if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1730                 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1731                 eieio();
1732         }
1733 }
1734
1735 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1736 {
1737         /* Restore, Step 73:
1738          *     Enable user-space access (if provided) to this
1739          *     SPU by mapping the virtual pages assigned to
1740          *     the SPU memory-mapped I/O (MMIO) for problem
1741          *     state. TBD.
1742          */
1743 }
1744
1745 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1746 {
1747         /* Restore, Step 74:
1748          *     Reset the "context switch active" flag.
1749          *     Not performed by this implementation.
1750          */
1751 }
1752
1753 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1754 {
1755         /* Restore, Step 75:
1756          *     Re-enable SPU interrupts.
1757          */
1758         spin_lock_irq(&spu->register_lock);
1759         spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1760         spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1761         spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1762         spin_unlock_irq(&spu->register_lock);
1763 }
1764
1765 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1766 {
1767         /*
1768          * Combined steps 2-18 of SPU context save sequence, which
1769          * quiesce the SPU state (disable SPU execution, MFC command
1770          * queues, decrementer, SPU interrupts, etc.).
1771          *
1772          * Returns      0 on success.
1773          *              2 if failed step 2.
1774          *              6 if failed step 6.
1775          */
1776
1777         if (check_spu_isolate(prev, spu)) {     /* Step 2. */
1778                 return 2;
1779         }
1780         disable_interrupts(prev, spu);          /* Step 3. */
1781         set_watchdog_timer(prev, spu);          /* Step 4. */
1782         inhibit_user_access(prev, spu);         /* Step 5. */
1783         if (check_spu_isolate(prev, spu)) {     /* Step 6. */
1784                 return 6;
1785         }
1786         set_switch_pending(prev, spu);          /* Step 7. */
1787         save_mfc_cntl(prev, spu);               /* Step 8. */
1788         save_spu_runcntl(prev, spu);            /* Step 9. */
1789         save_mfc_sr1(prev, spu);                /* Step 10. */
1790         save_spu_status(prev, spu);             /* Step 11. */
1791         save_mfc_decr(prev, spu);               /* Step 12. */
1792         halt_mfc_decr(prev, spu);               /* Step 13. */
1793         save_timebase(prev, spu);               /* Step 14. */
1794         remove_other_spu_access(prev, spu);     /* Step 15. */
1795         do_mfc_mssync(prev, spu);               /* Step 16. */
1796         issue_mfc_tlbie(prev, spu);             /* Step 17. */
1797         handle_pending_interrupts(prev, spu);   /* Step 18. */
1798
1799         return 0;
1800 }
1801
1802 static void save_csa(struct spu_state *prev, struct spu *spu)
1803 {
1804         /*
1805          * Combine steps 19-44 of SPU context save sequence, which
1806          * save regions of the privileged & problem state areas.
1807          */
1808
1809         save_mfc_queues(prev, spu);     /* Step 19. */
1810         save_ppu_querymask(prev, spu);  /* Step 20. */
1811         save_ppu_querytype(prev, spu);  /* Step 21. */
1812         save_ppu_tagstatus(prev, spu);  /* NEW.     */
1813         save_mfc_csr_tsq(prev, spu);    /* Step 22. */
1814         save_mfc_csr_cmd(prev, spu);    /* Step 23. */
1815         save_mfc_csr_ato(prev, spu);    /* Step 24. */
1816         save_mfc_tclass_id(prev, spu);  /* Step 25. */
1817         set_mfc_tclass_id(prev, spu);   /* Step 26. */
1818         save_mfc_cmd(prev, spu);        /* Step 26a - moved from 44. */
1819         purge_mfc_queue(prev, spu);     /* Step 27. */
1820         wait_purge_complete(prev, spu); /* Step 28. */
1821         setup_mfc_sr1(prev, spu);       /* Step 30. */
1822         save_spu_npc(prev, spu);        /* Step 31. */
1823         save_spu_privcntl(prev, spu);   /* Step 32. */
1824         reset_spu_privcntl(prev, spu);  /* Step 33. */
1825         save_spu_lslr(prev, spu);       /* Step 34. */
1826         reset_spu_lslr(prev, spu);      /* Step 35. */
1827         save_spu_cfg(prev, spu);        /* Step 36. */
1828         save_pm_trace(prev, spu);       /* Step 37. */
1829         save_mfc_rag(prev, spu);        /* Step 38. */
1830         save_ppu_mb_stat(prev, spu);    /* Step 39. */
1831         save_ppu_mb(prev, spu);         /* Step 40. */
1832         save_ppuint_mb(prev, spu);      /* Step 41. */
1833         save_ch_part1(prev, spu);       /* Step 42. */
1834         save_spu_mb(prev, spu);         /* Step 43. */
1835         reset_ch(prev, spu);            /* Step 45. */
1836 }
1837
1838 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1839 {
1840         /*
1841          * Perform steps 46-57 of SPU context save sequence,
1842          * which save regions of the local store and register
1843          * file.
1844          */
1845
1846         resume_mfc_queue(prev, spu);    /* Step 46. */
1847         /* Step 47. */
1848         setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1849         set_switch_active(prev, spu);   /* Step 48. */
1850         enable_interrupts(prev, spu);   /* Step 49. */
1851         save_ls_16kb(prev, spu);        /* Step 50. */
1852         set_spu_npc(prev, spu);         /* Step 51. */
1853         set_signot1(prev, spu);         /* Step 52. */
1854         set_signot2(prev, spu);         /* Step 53. */
1855         send_save_code(prev, spu);      /* Step 54. */
1856         set_ppu_querymask(prev, spu);   /* Step 55. */
1857         wait_tag_complete(prev, spu);   /* Step 56. */
1858         wait_spu_stopped(prev, spu);    /* Step 57. */
1859 }
1860
1861 static void force_spu_isolate_exit(struct spu *spu)
1862 {
1863         struct spu_problem __iomem *prob = spu->problem;
1864         struct spu_priv2 __iomem *priv2 = spu->priv2;
1865
1866         /* Stop SPE execution and wait for completion. */
1867         out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1868         iobarrier_rw();
1869         POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1870
1871         /* Restart SPE master runcntl. */
1872         spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1873         iobarrier_w();
1874
1875         /* Initiate isolate exit request and wait for completion. */
1876         out_be64(&priv2->spu_privcntl_RW, 4LL);
1877         iobarrier_w();
1878         out_be32(&prob->spu_runcntl_RW, 2);
1879         iobarrier_rw();
1880         POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1881                                 & SPU_STATUS_STOPPED_BY_STOP));
1882
1883         /* Reset load request to normal. */
1884         out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1885         iobarrier_w();
1886 }
1887
1888 /**
1889  * stop_spu_isolate
1890  *      Check SPU run-control state and force isolated
1891  *      exit function as necessary.
1892  */
1893 static void stop_spu_isolate(struct spu *spu)
1894 {
1895         struct spu_problem __iomem *prob = spu->problem;
1896
1897         if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1898                 /* The SPU is in isolated state; the only way
1899                  * to get it out is to perform an isolated
1900                  * exit (clean) operation.
1901                  */
1902                 force_spu_isolate_exit(spu);
1903         }
1904 }
1905
1906 static void harvest(struct spu_state *prev, struct spu *spu)
1907 {
1908         /*
1909          * Perform steps 2-25 of SPU context restore sequence,
1910          * which resets an SPU either after a failed save, or
1911          * when using SPU for first time.
1912          */
1913
1914         disable_interrupts(prev, spu);          /* Step 2.  */
1915         inhibit_user_access(prev, spu);         /* Step 3.  */
1916         terminate_spu_app(prev, spu);           /* Step 4.  */
1917         set_switch_pending(prev, spu);          /* Step 5.  */
1918         stop_spu_isolate(spu);                  /* NEW.     */
1919         remove_other_spu_access(prev, spu);     /* Step 6.  */
1920         suspend_mfc_and_halt_decr(prev, spu);   /* Step 7.  */
1921         wait_suspend_mfc_complete(prev, spu);   /* Step 8.  */
1922         if (!suspend_spe(prev, spu))            /* Step 9.  */
1923                 clear_spu_status(prev, spu);    /* Step 10. */
1924         do_mfc_mssync(prev, spu);               /* Step 11. */
1925         issue_mfc_tlbie(prev, spu);             /* Step 12. */
1926         handle_pending_interrupts(prev, spu);   /* Step 13. */
1927         purge_mfc_queue(prev, spu);             /* Step 14. */
1928         wait_purge_complete(prev, spu);         /* Step 15. */
1929         reset_spu_privcntl(prev, spu);          /* Step 16. */
1930         reset_spu_lslr(prev, spu);              /* Step 17. */
1931         setup_mfc_sr1(prev, spu);               /* Step 18. */
1932         spu_invalidate_slbs(spu);               /* Step 19. */
1933         reset_ch_part1(prev, spu);              /* Step 20. */
1934         reset_ch_part2(prev, spu);              /* Step 21. */
1935         enable_interrupts(prev, spu);           /* Step 22. */
1936         set_switch_active(prev, spu);           /* Step 23. */
1937         set_mfc_tclass_id(prev, spu);           /* Step 24. */
1938         resume_mfc_queue(prev, spu);            /* Step 25. */
1939 }
1940
1941 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1942 {
1943         /*
1944          * Perform steps 26-40 of SPU context restore sequence,
1945          * which restores regions of the local store and register
1946          * file.
1947          */
1948
1949         set_watchdog_timer(next, spu);          /* Step 26. */
1950         setup_spu_status_part1(next, spu);      /* Step 27. */
1951         setup_spu_status_part2(next, spu);      /* Step 28. */
1952         restore_mfc_rag(next, spu);             /* Step 29. */
1953         /* Step 30. */
1954         setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1955         set_spu_npc(next, spu);                 /* Step 31. */
1956         set_signot1(next, spu);                 /* Step 32. */
1957         set_signot2(next, spu);                 /* Step 33. */
1958         setup_decr(next, spu);                  /* Step 34. */
1959         setup_ppu_mb(next, spu);                /* Step 35. */
1960         setup_ppuint_mb(next, spu);             /* Step 36. */
1961         send_restore_code(next, spu);           /* Step 37. */
1962         set_ppu_querymask(next, spu);           /* Step 38. */
1963         wait_tag_complete(next, spu);           /* Step 39. */
1964         wait_spu_stopped(next, spu);            /* Step 40. */
1965 }
1966
1967 static void restore_csa(struct spu_state *next, struct spu *spu)
1968 {
1969         /*
1970          * Combine steps 41-76 of SPU context restore sequence, which
1971          * restore regions of the privileged & problem state areas.
1972          */
1973
1974         restore_spu_privcntl(next, spu);        /* Step 41. */
1975         restore_status_part1(next, spu);        /* Step 42. */
1976         restore_status_part2(next, spu);        /* Step 43. */
1977         restore_ls_16kb(next, spu);             /* Step 44. */
1978         wait_tag_complete(next, spu);           /* Step 45. */
1979         suspend_mfc(next, spu);                 /* Step 46. */
1980         wait_suspend_mfc_complete(next, spu);   /* Step 47. */
1981         issue_mfc_tlbie(next, spu);             /* Step 48. */
1982         clear_interrupts(next, spu);            /* Step 49. */
1983         restore_mfc_queues(next, spu);          /* Step 50. */
1984         restore_ppu_querymask(next, spu);       /* Step 51. */
1985         restore_ppu_querytype(next, spu);       /* Step 52. */
1986         restore_mfc_csr_tsq(next, spu);         /* Step 53. */
1987         restore_mfc_csr_cmd(next, spu);         /* Step 54. */
1988         restore_mfc_csr_ato(next, spu);         /* Step 55. */
1989         restore_mfc_tclass_id(next, spu);       /* Step 56. */
1990         set_llr_event(next, spu);               /* Step 57. */
1991         restore_decr_wrapped(next, spu);        /* Step 58. */
1992         restore_ch_part1(next, spu);            /* Step 59. */
1993         restore_ch_part2(next, spu);            /* Step 60. */
1994         restore_spu_lslr(next, spu);            /* Step 61. */
1995         restore_spu_cfg(next, spu);             /* Step 62. */
1996         restore_pm_trace(next, spu);            /* Step 63. */
1997         restore_spu_npc(next, spu);             /* Step 64. */
1998         restore_spu_mb(next, spu);              /* Step 65. */
1999         check_ppu_mb_stat(next, spu);           /* Step 66. */
2000         check_ppuint_mb_stat(next, spu);        /* Step 67. */
2001         spu_invalidate_slbs(spu);               /* Modified Step 68. */
2002         restore_mfc_sr1(next, spu);             /* Step 69. */
2003         restore_other_spu_access(next, spu);    /* Step 70. */
2004         restore_spu_runcntl(next, spu);         /* Step 71. */
2005         restore_mfc_cntl(next, spu);            /* Step 72. */
2006         enable_user_access(next, spu);          /* Step 73. */
2007         reset_switch_active(next, spu);         /* Step 74. */
2008         reenable_interrupts(next, spu);         /* Step 75. */
2009 }
2010
2011 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2012 {
2013         int rc;
2014
2015         /*
2016          * SPU context save can be broken into three phases:
2017          *
2018          *     (a) quiesce [steps 2-16].
2019          *     (b) save of CSA, performed by PPE [steps 17-42]
2020          *     (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2021          *
2022          * Returns      0 on success.
2023          *              2,6 if failed to quiece SPU
2024          *              53 if SPU-side of save failed.
2025          */
2026
2027         rc = quiece_spu(prev, spu);             /* Steps 2-16. */
2028         switch (rc) {
2029         default:
2030         case 2:
2031         case 6:
2032                 harvest(prev, spu);
2033                 return rc;
2034                 break;
2035         case 0:
2036                 break;
2037         }
2038         save_csa(prev, spu);                    /* Steps 17-43. */
2039         save_lscsa(prev, spu);                  /* Steps 44-53. */
2040         return check_save_status(prev, spu);    /* Step 54.     */
2041 }
2042
2043 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2044 {
2045         int rc;
2046
2047         /*
2048          * SPU context restore can be broken into three phases:
2049          *
2050          *    (a) harvest (or reset) SPU [steps 2-24].
2051          *    (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2052          *    (c) restore CSA [steps 41-76], performed by PPE.
2053          *
2054          * The 'harvest' step is not performed here, but rather
2055          * as needed below.
2056          */
2057
2058         restore_lscsa(next, spu);               /* Steps 24-39. */
2059         rc = check_restore_status(next, spu);   /* Step 40.     */
2060         switch (rc) {
2061         default:
2062                 /* Failed. Return now. */
2063                 return rc;
2064                 break;
2065         case 0:
2066                 /* Fall through to next step. */
2067                 break;
2068         }
2069         restore_csa(next, spu);
2070
2071         return 0;
2072 }
2073
2074 /**
2075  * spu_save - SPU context save, with locking.
2076  * @prev: pointer to SPU context save area, to be saved.
2077  * @spu: pointer to SPU iomem structure.
2078  *
2079  * Acquire locks, perform the save operation then return.
2080  */
2081 int spu_save(struct spu_state *prev, struct spu *spu)
2082 {
2083         int rc;
2084
2085         acquire_spu_lock(spu);          /* Step 1.     */
2086         rc = __do_spu_save(prev, spu);  /* Steps 2-53. */
2087         release_spu_lock(spu);
2088         if (rc != 0 && rc != 2 && rc != 6) {
2089                 panic("%s failed on SPU[%d], rc=%d.\n",
2090                       __func__, spu->number, rc);
2091         }
2092         return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(spu_save);
2095
2096 /**
2097  * spu_restore - SPU context restore, with harvest and locking.
2098  * @new: pointer to SPU context save area, to be restored.
2099  * @spu: pointer to SPU iomem structure.
2100  *
2101  * Perform harvest + restore, as we may not be coming
2102  * from a previous successful save operation, and the
2103  * hardware state is unknown.
2104  */
2105 int spu_restore(struct spu_state *new, struct spu *spu)
2106 {
2107         int rc;
2108
2109         acquire_spu_lock(spu);
2110         harvest(NULL, spu);
2111         spu->slb_replace = 0;
2112         rc = __do_spu_restore(new, spu);
2113         release_spu_lock(spu);
2114         if (rc) {
2115                 panic("%s failed on SPU[%d] rc=%d.\n",
2116                        __func__, spu->number, rc);
2117         }
2118         return rc;
2119 }
2120 EXPORT_SYMBOL_GPL(spu_restore);
2121
2122 static void init_prob(struct spu_state *csa)
2123 {
2124         csa->spu_chnlcnt_RW[9] = 1;
2125         csa->spu_chnlcnt_RW[21] = 16;
2126         csa->spu_chnlcnt_RW[23] = 1;
2127         csa->spu_chnlcnt_RW[28] = 1;
2128         csa->spu_chnlcnt_RW[30] = 1;
2129         csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2130         csa->prob.mb_stat_R = 0x000400;
2131 }
2132
2133 static void init_priv1(struct spu_state *csa)
2134 {
2135         /* Enable decode, relocate, tlbie response, master runcntl. */
2136         csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2137             MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2138             MFC_STATE1_PROBLEM_STATE_MASK |
2139             MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2140
2141         /* Enable OS-specific set of interrupts. */
2142         csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2143             CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2144             CLASS0_ENABLE_SPU_ERROR_INTR;
2145         csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2146             CLASS1_ENABLE_STORAGE_FAULT_INTR;
2147         csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2148             CLASS2_ENABLE_SPU_HALT_INTR |
2149             CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2150 }
2151
2152 static void init_priv2(struct spu_state *csa)
2153 {
2154         csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2155         csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2156             MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2157             MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2158 }
2159
2160 /**
2161  * spu_alloc_csa - allocate and initialize an SPU context save area.
2162  *
2163  * Allocate and initialize the contents of an SPU context save area.
2164  * This includes enabling address translation, interrupt masks, etc.,
2165  * as appropriate for the given OS environment.
2166  *
2167  * Note that storage for the 'lscsa' is allocated separately,
2168  * as it is by far the largest of the context save regions,
2169  * and may need to be pinned or otherwise specially aligned.
2170  */
2171 int spu_init_csa(struct spu_state *csa)
2172 {
2173         int rc;
2174
2175         if (!csa)
2176                 return -EINVAL;
2177         memset(csa, 0, sizeof(struct spu_state));
2178
2179         rc = spu_alloc_lscsa(csa);
2180         if (rc)
2181                 return rc;
2182
2183         spin_lock_init(&csa->register_lock);
2184
2185         init_prob(csa);
2186         init_priv1(csa);
2187         init_priv2(csa);
2188
2189         return 0;
2190 }
2191
2192 void spu_fini_csa(struct spu_state *csa)
2193 {
2194         spu_free_lscsa(csa);
2195 }