[IA64] register memory ranges in a consistent manner
[linux-2.6] / arch / ia64 / mm / init.c
1 /*
2  * Initialize MMU support.
3  *
4  * Copyright (C) 1998-2003 Hewlett-Packard Co
5  *      David Mosberger-Tang <davidm@hpl.hp.com>
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9
10 #include <linux/bootmem.h>
11 #include <linux/efi.h>
12 #include <linux/elf.h>
13 #include <linux/mm.h>
14 #include <linux/mmzone.h>
15 #include <linux/module.h>
16 #include <linux/personality.h>
17 #include <linux/reboot.h>
18 #include <linux/slab.h>
19 #include <linux/swap.h>
20 #include <linux/proc_fs.h>
21 #include <linux/bitops.h>
22 #include <linux/kexec.h>
23
24 #include <asm/a.out.h>
25 #include <asm/dma.h>
26 #include <asm/ia32.h>
27 #include <asm/io.h>
28 #include <asm/machvec.h>
29 #include <asm/numa.h>
30 #include <asm/patch.h>
31 #include <asm/pgalloc.h>
32 #include <asm/sal.h>
33 #include <asm/sections.h>
34 #include <asm/system.h>
35 #include <asm/tlb.h>
36 #include <asm/uaccess.h>
37 #include <asm/unistd.h>
38 #include <asm/mca.h>
39
40 DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
41
42 DEFINE_PER_CPU(unsigned long *, __pgtable_quicklist);
43 DEFINE_PER_CPU(long, __pgtable_quicklist_size);
44
45 extern void ia64_tlb_init (void);
46
47 unsigned long MAX_DMA_ADDRESS = PAGE_OFFSET + 0x100000000UL;
48
49 #ifdef CONFIG_VIRTUAL_MEM_MAP
50 unsigned long vmalloc_end = VMALLOC_END_INIT;
51 EXPORT_SYMBOL(vmalloc_end);
52 struct page *vmem_map;
53 EXPORT_SYMBOL(vmem_map);
54 #endif
55
56 struct page *zero_page_memmap_ptr;      /* map entry for zero page */
57 EXPORT_SYMBOL(zero_page_memmap_ptr);
58
59 #define MIN_PGT_PAGES                   25UL
60 #define MAX_PGT_FREES_PER_PASS          16L
61 #define PGT_FRACTION_OF_NODE_MEM        16
62
63 static inline long
64 max_pgt_pages(void)
65 {
66         u64 node_free_pages, max_pgt_pages;
67
68 #ifndef CONFIG_NUMA
69         node_free_pages = nr_free_pages();
70 #else
71         node_free_pages = nr_free_pages_pgdat(NODE_DATA(numa_node_id()));
72 #endif
73         max_pgt_pages = node_free_pages / PGT_FRACTION_OF_NODE_MEM;
74         max_pgt_pages = max(max_pgt_pages, MIN_PGT_PAGES);
75         return max_pgt_pages;
76 }
77
78 static inline long
79 min_pages_to_free(void)
80 {
81         long pages_to_free;
82
83         pages_to_free = pgtable_quicklist_size - max_pgt_pages();
84         pages_to_free = min(pages_to_free, MAX_PGT_FREES_PER_PASS);
85         return pages_to_free;
86 }
87
88 void
89 check_pgt_cache(void)
90 {
91         long pages_to_free;
92
93         if (unlikely(pgtable_quicklist_size <= MIN_PGT_PAGES))
94                 return;
95
96         preempt_disable();
97         while (unlikely((pages_to_free = min_pages_to_free()) > 0)) {
98                 while (pages_to_free--) {
99                         free_page((unsigned long)pgtable_quicklist_alloc());
100                 }
101                 preempt_enable();
102                 preempt_disable();
103         }
104         preempt_enable();
105 }
106
107 void
108 lazy_mmu_prot_update (pte_t pte)
109 {
110         unsigned long addr;
111         struct page *page;
112         unsigned long order;
113
114         if (!pte_exec(pte))
115                 return;                         /* not an executable page... */
116
117         page = pte_page(pte);
118         addr = (unsigned long) page_address(page);
119
120         if (test_bit(PG_arch_1, &page->flags))
121                 return;                         /* i-cache is already coherent with d-cache */
122
123         if (PageCompound(page)) {
124                 order = (unsigned long) (page[1].lru.prev);
125                 flush_icache_range(addr, addr + (1UL << order << PAGE_SHIFT));
126         }
127         else
128                 flush_icache_range(addr, addr + PAGE_SIZE);
129         set_bit(PG_arch_1, &page->flags);       /* mark page as clean */
130 }
131
132 inline void
133 ia64_set_rbs_bot (void)
134 {
135         unsigned long stack_size = current->signal->rlim[RLIMIT_STACK].rlim_max & -16;
136
137         if (stack_size > MAX_USER_STACK_SIZE)
138                 stack_size = MAX_USER_STACK_SIZE;
139         current->thread.rbs_bot = STACK_TOP - stack_size;
140 }
141
142 /*
143  * This performs some platform-dependent address space initialization.
144  * On IA-64, we want to setup the VM area for the register backing
145  * store (which grows upwards) and install the gateway page which is
146  * used for signal trampolines, etc.
147  */
148 void
149 ia64_init_addr_space (void)
150 {
151         struct vm_area_struct *vma;
152
153         ia64_set_rbs_bot();
154
155         /*
156          * If we're out of memory and kmem_cache_alloc() returns NULL, we simply ignore
157          * the problem.  When the process attempts to write to the register backing store
158          * for the first time, it will get a SEGFAULT in this case.
159          */
160         vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
161         if (vma) {
162                 memset(vma, 0, sizeof(*vma));
163                 vma->vm_mm = current->mm;
164                 vma->vm_start = current->thread.rbs_bot & PAGE_MASK;
165                 vma->vm_end = vma->vm_start + PAGE_SIZE;
166                 vma->vm_page_prot = protection_map[VM_DATA_DEFAULT_FLAGS & 0x7];
167                 vma->vm_flags = VM_DATA_DEFAULT_FLAGS|VM_GROWSUP|VM_ACCOUNT;
168                 down_write(&current->mm->mmap_sem);
169                 if (insert_vm_struct(current->mm, vma)) {
170                         up_write(&current->mm->mmap_sem);
171                         kmem_cache_free(vm_area_cachep, vma);
172                         return;
173                 }
174                 up_write(&current->mm->mmap_sem);
175         }
176
177         /* map NaT-page at address zero to speed up speculative dereferencing of NULL: */
178         if (!(current->personality & MMAP_PAGE_ZERO)) {
179                 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
180                 if (vma) {
181                         memset(vma, 0, sizeof(*vma));
182                         vma->vm_mm = current->mm;
183                         vma->vm_end = PAGE_SIZE;
184                         vma->vm_page_prot = __pgprot(pgprot_val(PAGE_READONLY) | _PAGE_MA_NAT);
185                         vma->vm_flags = VM_READ | VM_MAYREAD | VM_IO | VM_RESERVED;
186                         down_write(&current->mm->mmap_sem);
187                         if (insert_vm_struct(current->mm, vma)) {
188                                 up_write(&current->mm->mmap_sem);
189                                 kmem_cache_free(vm_area_cachep, vma);
190                                 return;
191                         }
192                         up_write(&current->mm->mmap_sem);
193                 }
194         }
195 }
196
197 void
198 free_initmem (void)
199 {
200         unsigned long addr, eaddr;
201
202         addr = (unsigned long) ia64_imva(__init_begin);
203         eaddr = (unsigned long) ia64_imva(__init_end);
204         while (addr < eaddr) {
205                 ClearPageReserved(virt_to_page(addr));
206                 init_page_count(virt_to_page(addr));
207                 free_page(addr);
208                 ++totalram_pages;
209                 addr += PAGE_SIZE;
210         }
211         printk(KERN_INFO "Freeing unused kernel memory: %ldkB freed\n",
212                (__init_end - __init_begin) >> 10);
213 }
214
215 void __init
216 free_initrd_mem (unsigned long start, unsigned long end)
217 {
218         struct page *page;
219         /*
220          * EFI uses 4KB pages while the kernel can use 4KB or bigger.
221          * Thus EFI and the kernel may have different page sizes. It is
222          * therefore possible to have the initrd share the same page as
223          * the end of the kernel (given current setup).
224          *
225          * To avoid freeing/using the wrong page (kernel sized) we:
226          *      - align up the beginning of initrd
227          *      - align down the end of initrd
228          *
229          *  |             |
230          *  |=============| a000
231          *  |             |
232          *  |             |
233          *  |             | 9000
234          *  |/////////////|
235          *  |/////////////|
236          *  |=============| 8000
237          *  |///INITRD////|
238          *  |/////////////|
239          *  |/////////////| 7000
240          *  |             |
241          *  |KKKKKKKKKKKKK|
242          *  |=============| 6000
243          *  |KKKKKKKKKKKKK|
244          *  |KKKKKKKKKKKKK|
245          *  K=kernel using 8KB pages
246          *
247          * In this example, we must free page 8000 ONLY. So we must align up
248          * initrd_start and keep initrd_end as is.
249          */
250         start = PAGE_ALIGN(start);
251         end = end & PAGE_MASK;
252
253         if (start < end)
254                 printk(KERN_INFO "Freeing initrd memory: %ldkB freed\n", (end - start) >> 10);
255
256         for (; start < end; start += PAGE_SIZE) {
257                 if (!virt_addr_valid(start))
258                         continue;
259                 page = virt_to_page(start);
260                 ClearPageReserved(page);
261                 init_page_count(page);
262                 free_page(start);
263                 ++totalram_pages;
264         }
265 }
266
267 /*
268  * This installs a clean page in the kernel's page table.
269  */
270 static struct page * __init
271 put_kernel_page (struct page *page, unsigned long address, pgprot_t pgprot)
272 {
273         pgd_t *pgd;
274         pud_t *pud;
275         pmd_t *pmd;
276         pte_t *pte;
277
278         if (!PageReserved(page))
279                 printk(KERN_ERR "put_kernel_page: page at 0x%p not in reserved memory\n",
280                        page_address(page));
281
282         pgd = pgd_offset_k(address);            /* note: this is NOT pgd_offset()! */
283
284         {
285                 pud = pud_alloc(&init_mm, pgd, address);
286                 if (!pud)
287                         goto out;
288                 pmd = pmd_alloc(&init_mm, pud, address);
289                 if (!pmd)
290                         goto out;
291                 pte = pte_alloc_kernel(pmd, address);
292                 if (!pte)
293                         goto out;
294                 if (!pte_none(*pte))
295                         goto out;
296                 set_pte(pte, mk_pte(page, pgprot));
297         }
298   out:
299         /* no need for flush_tlb */
300         return page;
301 }
302
303 static void __init
304 setup_gate (void)
305 {
306         struct page *page;
307
308         /*
309          * Map the gate page twice: once read-only to export the ELF
310          * headers etc. and once execute-only page to enable
311          * privilege-promotion via "epc":
312          */
313         page = virt_to_page(ia64_imva(__start_gate_section));
314         put_kernel_page(page, GATE_ADDR, PAGE_READONLY);
315 #ifdef HAVE_BUGGY_SEGREL
316         page = virt_to_page(ia64_imva(__start_gate_section + PAGE_SIZE));
317         put_kernel_page(page, GATE_ADDR + PAGE_SIZE, PAGE_GATE);
318 #else
319         put_kernel_page(page, GATE_ADDR + PERCPU_PAGE_SIZE, PAGE_GATE);
320         /* Fill in the holes (if any) with read-only zero pages: */
321         {
322                 unsigned long addr;
323
324                 for (addr = GATE_ADDR + PAGE_SIZE;
325                      addr < GATE_ADDR + PERCPU_PAGE_SIZE;
326                      addr += PAGE_SIZE)
327                 {
328                         put_kernel_page(ZERO_PAGE(0), addr,
329                                         PAGE_READONLY);
330                         put_kernel_page(ZERO_PAGE(0), addr + PERCPU_PAGE_SIZE,
331                                         PAGE_READONLY);
332                 }
333         }
334 #endif
335         ia64_patch_gate();
336 }
337
338 void __devinit
339 ia64_mmu_init (void *my_cpu_data)
340 {
341         unsigned long psr, pta, impl_va_bits;
342         extern void __devinit tlb_init (void);
343
344 #ifdef CONFIG_DISABLE_VHPT
345 #       define VHPT_ENABLE_BIT  0
346 #else
347 #       define VHPT_ENABLE_BIT  1
348 #endif
349
350         /* Pin mapping for percpu area into TLB */
351         psr = ia64_clear_ic();
352         ia64_itr(0x2, IA64_TR_PERCPU_DATA, PERCPU_ADDR,
353                  pte_val(pfn_pte(__pa(my_cpu_data) >> PAGE_SHIFT, PAGE_KERNEL)),
354                  PERCPU_PAGE_SHIFT);
355
356         ia64_set_psr(psr);
357         ia64_srlz_i();
358
359         /*
360          * Check if the virtually mapped linear page table (VMLPT) overlaps with a mapped
361          * address space.  The IA-64 architecture guarantees that at least 50 bits of
362          * virtual address space are implemented but if we pick a large enough page size
363          * (e.g., 64KB), the mapped address space is big enough that it will overlap with
364          * VMLPT.  I assume that once we run on machines big enough to warrant 64KB pages,
365          * IMPL_VA_MSB will be significantly bigger, so this is unlikely to become a
366          * problem in practice.  Alternatively, we could truncate the top of the mapped
367          * address space to not permit mappings that would overlap with the VMLPT.
368          * --davidm 00/12/06
369          */
370 #       define pte_bits                 3
371 #       define mapped_space_bits        (3*(PAGE_SHIFT - pte_bits) + PAGE_SHIFT)
372         /*
373          * The virtual page table has to cover the entire implemented address space within
374          * a region even though not all of this space may be mappable.  The reason for
375          * this is that the Access bit and Dirty bit fault handlers perform
376          * non-speculative accesses to the virtual page table, so the address range of the
377          * virtual page table itself needs to be covered by virtual page table.
378          */
379 #       define vmlpt_bits               (impl_va_bits - PAGE_SHIFT + pte_bits)
380 #       define POW2(n)                  (1ULL << (n))
381
382         impl_va_bits = ffz(~(local_cpu_data->unimpl_va_mask | (7UL << 61)));
383
384         if (impl_va_bits < 51 || impl_va_bits > 61)
385                 panic("CPU has bogus IMPL_VA_MSB value of %lu!\n", impl_va_bits - 1);
386         /*
387          * mapped_space_bits - PAGE_SHIFT is the total number of ptes we need,
388          * which must fit into "vmlpt_bits - pte_bits" slots. Second half of
389          * the test makes sure that our mapped space doesn't overlap the
390          * unimplemented hole in the middle of the region.
391          */
392         if ((mapped_space_bits - PAGE_SHIFT > vmlpt_bits - pte_bits) ||
393             (mapped_space_bits > impl_va_bits - 1))
394                 panic("Cannot build a big enough virtual-linear page table"
395                       " to cover mapped address space.\n"
396                       " Try using a smaller page size.\n");
397
398
399         /* place the VMLPT at the end of each page-table mapped region: */
400         pta = POW2(61) - POW2(vmlpt_bits);
401
402         /*
403          * Set the (virtually mapped linear) page table address.  Bit
404          * 8 selects between the short and long format, bits 2-7 the
405          * size of the table, and bit 0 whether the VHPT walker is
406          * enabled.
407          */
408         ia64_set_pta(pta | (0 << 8) | (vmlpt_bits << 2) | VHPT_ENABLE_BIT);
409
410         ia64_tlb_init();
411
412 #ifdef  CONFIG_HUGETLB_PAGE
413         ia64_set_rr(HPAGE_REGION_BASE, HPAGE_SHIFT << 2);
414         ia64_srlz_d();
415 #endif
416 }
417
418 #ifdef CONFIG_VIRTUAL_MEM_MAP
419 int vmemmap_find_next_valid_pfn(int node, int i)
420 {
421         unsigned long end_address, hole_next_pfn;
422         unsigned long stop_address;
423         pg_data_t *pgdat = NODE_DATA(node);
424
425         end_address = (unsigned long) &vmem_map[pgdat->node_start_pfn + i];
426         end_address = PAGE_ALIGN(end_address);
427
428         stop_address = (unsigned long) &vmem_map[
429                 pgdat->node_start_pfn + pgdat->node_spanned_pages];
430
431         do {
432                 pgd_t *pgd;
433                 pud_t *pud;
434                 pmd_t *pmd;
435                 pte_t *pte;
436
437                 pgd = pgd_offset_k(end_address);
438                 if (pgd_none(*pgd)) {
439                         end_address += PGDIR_SIZE;
440                         continue;
441                 }
442
443                 pud = pud_offset(pgd, end_address);
444                 if (pud_none(*pud)) {
445                         end_address += PUD_SIZE;
446                         continue;
447                 }
448
449                 pmd = pmd_offset(pud, end_address);
450                 if (pmd_none(*pmd)) {
451                         end_address += PMD_SIZE;
452                         continue;
453                 }
454
455                 pte = pte_offset_kernel(pmd, end_address);
456 retry_pte:
457                 if (pte_none(*pte)) {
458                         end_address += PAGE_SIZE;
459                         pte++;
460                         if ((end_address < stop_address) &&
461                             (end_address != ALIGN(end_address, 1UL << PMD_SHIFT)))
462                                 goto retry_pte;
463                         continue;
464                 }
465                 /* Found next valid vmem_map page */
466                 break;
467         } while (end_address < stop_address);
468
469         end_address = min(end_address, stop_address);
470         end_address = end_address - (unsigned long) vmem_map + sizeof(struct page) - 1;
471         hole_next_pfn = end_address / sizeof(struct page);
472         return hole_next_pfn - pgdat->node_start_pfn;
473 }
474
475 int __init
476 create_mem_map_page_table (u64 start, u64 end, void *arg)
477 {
478         unsigned long address, start_page, end_page;
479         struct page *map_start, *map_end;
480         int node;
481         pgd_t *pgd;
482         pud_t *pud;
483         pmd_t *pmd;
484         pte_t *pte;
485
486         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
487         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
488
489         start_page = (unsigned long) map_start & PAGE_MASK;
490         end_page = PAGE_ALIGN((unsigned long) map_end);
491         node = paddr_to_nid(__pa(start));
492
493         for (address = start_page; address < end_page; address += PAGE_SIZE) {
494                 pgd = pgd_offset_k(address);
495                 if (pgd_none(*pgd))
496                         pgd_populate(&init_mm, pgd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
497                 pud = pud_offset(pgd, address);
498
499                 if (pud_none(*pud))
500                         pud_populate(&init_mm, pud, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
501                 pmd = pmd_offset(pud, address);
502
503                 if (pmd_none(*pmd))
504                         pmd_populate_kernel(&init_mm, pmd, alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE));
505                 pte = pte_offset_kernel(pmd, address);
506
507                 if (pte_none(*pte))
508                         set_pte(pte, pfn_pte(__pa(alloc_bootmem_pages_node(NODE_DATA(node), PAGE_SIZE)) >> PAGE_SHIFT,
509                                              PAGE_KERNEL));
510         }
511         return 0;
512 }
513
514 struct memmap_init_callback_data {
515         struct page *start;
516         struct page *end;
517         int nid;
518         unsigned long zone;
519 };
520
521 static int
522 virtual_memmap_init (u64 start, u64 end, void *arg)
523 {
524         struct memmap_init_callback_data *args;
525         struct page *map_start, *map_end;
526
527         args = (struct memmap_init_callback_data *) arg;
528         map_start = vmem_map + (__pa(start) >> PAGE_SHIFT);
529         map_end   = vmem_map + (__pa(end) >> PAGE_SHIFT);
530
531         if (map_start < args->start)
532                 map_start = args->start;
533         if (map_end > args->end)
534                 map_end = args->end;
535
536         /*
537          * We have to initialize "out of bounds" struct page elements that fit completely
538          * on the same pages that were allocated for the "in bounds" elements because they
539          * may be referenced later (and found to be "reserved").
540          */
541         map_start -= ((unsigned long) map_start & (PAGE_SIZE - 1)) / sizeof(struct page);
542         map_end += ((PAGE_ALIGN((unsigned long) map_end) - (unsigned long) map_end)
543                     / sizeof(struct page));
544
545         if (map_start < map_end)
546                 memmap_init_zone((unsigned long)(map_end - map_start),
547                                  args->nid, args->zone, page_to_pfn(map_start),
548                                  MEMMAP_EARLY);
549         return 0;
550 }
551
552 void
553 memmap_init (unsigned long size, int nid, unsigned long zone,
554              unsigned long start_pfn)
555 {
556         if (!vmem_map)
557                 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY);
558         else {
559                 struct page *start;
560                 struct memmap_init_callback_data args;
561
562                 start = pfn_to_page(start_pfn);
563                 args.start = start;
564                 args.end = start + size;
565                 args.nid = nid;
566                 args.zone = zone;
567
568                 efi_memmap_walk(virtual_memmap_init, &args);
569         }
570 }
571
572 int
573 ia64_pfn_valid (unsigned long pfn)
574 {
575         char byte;
576         struct page *pg = pfn_to_page(pfn);
577
578         return     (__get_user(byte, (char __user *) pg) == 0)
579                 && ((((u64)pg & PAGE_MASK) == (((u64)(pg + 1) - 1) & PAGE_MASK))
580                         || (__get_user(byte, (char __user *) (pg + 1) - 1) == 0));
581 }
582 EXPORT_SYMBOL(ia64_pfn_valid);
583
584 int __init
585 find_largest_hole (u64 start, u64 end, void *arg)
586 {
587         u64 *max_gap = arg;
588
589         static u64 last_end = PAGE_OFFSET;
590
591         /* NOTE: this algorithm assumes efi memmap table is ordered */
592
593         if (*max_gap < (start - last_end))
594                 *max_gap = start - last_end;
595         last_end = end;
596         return 0;
597 }
598
599 #endif /* CONFIG_VIRTUAL_MEM_MAP */
600
601 int __init
602 register_active_ranges(u64 start, u64 end, void *arg)
603 {
604         int nid = paddr_to_nid(__pa(start));
605
606         if (nid < 0)
607                 nid = 0;
608 #ifdef CONFIG_KEXEC
609         if (start > crashk_res.start && start < crashk_res.end)
610                 start = crashk_res.end;
611         if (end > crashk_res.start && end < crashk_res.end)
612                 end = crashk_res.start;
613 #endif
614
615         if (start < end)
616                 add_active_range(nid, __pa(start) >> PAGE_SHIFT,
617                         __pa(end) >> PAGE_SHIFT);
618         return 0;
619 }
620
621 static int __init
622 count_reserved_pages (u64 start, u64 end, void *arg)
623 {
624         unsigned long num_reserved = 0;
625         unsigned long *count = arg;
626
627         for (; start < end; start += PAGE_SIZE)
628                 if (PageReserved(virt_to_page(start)))
629                         ++num_reserved;
630         *count += num_reserved;
631         return 0;
632 }
633
634 /*
635  * Boot command-line option "nolwsys" can be used to disable the use of any light-weight
636  * system call handler.  When this option is in effect, all fsyscalls will end up bubbling
637  * down into the kernel and calling the normal (heavy-weight) syscall handler.  This is
638  * useful for performance testing, but conceivably could also come in handy for debugging
639  * purposes.
640  */
641
642 static int nolwsys __initdata;
643
644 static int __init
645 nolwsys_setup (char *s)
646 {
647         nolwsys = 1;
648         return 1;
649 }
650
651 __setup("nolwsys", nolwsys_setup);
652
653 void __init
654 mem_init (void)
655 {
656         long reserved_pages, codesize, datasize, initsize;
657         pg_data_t *pgdat;
658         int i;
659         static struct kcore_list kcore_mem, kcore_vmem, kcore_kernel;
660
661         BUG_ON(PTRS_PER_PGD * sizeof(pgd_t) != PAGE_SIZE);
662         BUG_ON(PTRS_PER_PMD * sizeof(pmd_t) != PAGE_SIZE);
663         BUG_ON(PTRS_PER_PTE * sizeof(pte_t) != PAGE_SIZE);
664
665 #ifdef CONFIG_PCI
666         /*
667          * This needs to be called _after_ the command line has been parsed but _before_
668          * any drivers that may need the PCI DMA interface are initialized or bootmem has
669          * been freed.
670          */
671         platform_dma_init();
672 #endif
673
674 #ifdef CONFIG_FLATMEM
675         if (!mem_map)
676                 BUG();
677         max_mapnr = max_low_pfn;
678 #endif
679
680         high_memory = __va(max_low_pfn * PAGE_SIZE);
681
682         kclist_add(&kcore_mem, __va(0), max_low_pfn * PAGE_SIZE);
683         kclist_add(&kcore_vmem, (void *)VMALLOC_START, VMALLOC_END-VMALLOC_START);
684         kclist_add(&kcore_kernel, _stext, _end - _stext);
685
686         for_each_online_pgdat(pgdat)
687                 if (pgdat->bdata->node_bootmem_map)
688                         totalram_pages += free_all_bootmem_node(pgdat);
689
690         reserved_pages = 0;
691         efi_memmap_walk(count_reserved_pages, &reserved_pages);
692
693         codesize =  (unsigned long) _etext - (unsigned long) _stext;
694         datasize =  (unsigned long) _edata - (unsigned long) _etext;
695         initsize =  (unsigned long) __init_end - (unsigned long) __init_begin;
696
697         printk(KERN_INFO "Memory: %luk/%luk available (%luk code, %luk reserved, "
698                "%luk data, %luk init)\n", (unsigned long) nr_free_pages() << (PAGE_SHIFT - 10),
699                num_physpages << (PAGE_SHIFT - 10), codesize >> 10,
700                reserved_pages << (PAGE_SHIFT - 10), datasize >> 10, initsize >> 10);
701
702
703         /*
704          * For fsyscall entrpoints with no light-weight handler, use the ordinary
705          * (heavy-weight) handler, but mark it by setting bit 0, so the fsyscall entry
706          * code can tell them apart.
707          */
708         for (i = 0; i < NR_syscalls; ++i) {
709                 extern unsigned long fsyscall_table[NR_syscalls];
710                 extern unsigned long sys_call_table[NR_syscalls];
711
712                 if (!fsyscall_table[i] || nolwsys)
713                         fsyscall_table[i] = sys_call_table[i] | 1;
714         }
715         setup_gate();
716
717 #ifdef CONFIG_IA32_SUPPORT
718         ia32_mem_init();
719 #endif
720 }
721
722 #ifdef CONFIG_MEMORY_HOTPLUG
723 void online_page(struct page *page)
724 {
725         ClearPageReserved(page);
726         init_page_count(page);
727         __free_page(page);
728         totalram_pages++;
729         num_physpages++;
730 }
731
732 int arch_add_memory(int nid, u64 start, u64 size)
733 {
734         pg_data_t *pgdat;
735         struct zone *zone;
736         unsigned long start_pfn = start >> PAGE_SHIFT;
737         unsigned long nr_pages = size >> PAGE_SHIFT;
738         int ret;
739
740         pgdat = NODE_DATA(nid);
741
742         zone = pgdat->node_zones + ZONE_NORMAL;
743         ret = __add_pages(zone, start_pfn, nr_pages);
744
745         if (ret)
746                 printk("%s: Problem encountered in __add_pages() as ret=%d\n",
747                        __FUNCTION__,  ret);
748
749         return ret;
750 }
751
752 int remove_memory(u64 start, u64 size)
753 {
754         return -EINVAL;
755 }
756 EXPORT_SYMBOL_GPL(remove_memory);
757 #endif