2 * linux/kernel/irq/handle.c
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006, Thomas Gleixner, Russell King
7 * This file contains the core interrupt handling code.
9 * Detailed information is available in Documentation/DocBook/genericirq
13 #include <linux/irq.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/rculist.h>
19 #include <linux/hash.h>
21 #include "internals.h"
24 * lockdep: we want to handle all irq_desc locks as a single lock-class:
26 struct lock_class_key irq_desc_lock_class;
29 * handle_bad_irq - handle spurious and unhandled irqs
30 * @irq: the interrupt number
31 * @desc: description of the interrupt
33 * Handles spurious and unhandled IRQ's. It also prints a debugmessage.
35 void handle_bad_irq(unsigned int irq, struct irq_desc *desc)
37 print_irq_desc(irq, desc);
38 kstat_incr_irqs_this_cpu(irq, desc);
43 * Linux has a controller-independent interrupt architecture.
44 * Every controller has a 'controller-template', that is used
45 * by the main code to do the right thing. Each driver-visible
46 * interrupt source is transparently wired to the appropriate
47 * controller. Thus drivers need not be aware of the
48 * interrupt-controller.
50 * The code is designed to be easily extended with new/different
51 * interrupt controllers, without having to do assembly magic or
52 * having to touch the generic code.
54 * Controller mappings for all interrupt sources:
56 int nr_irqs = NR_IRQS;
57 EXPORT_SYMBOL_GPL(nr_irqs);
59 #ifdef CONFIG_SPARSE_IRQ
60 static struct irq_desc irq_desc_init = {
62 .status = IRQ_DISABLED,
64 .handle_irq = handle_bad_irq,
66 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
68 .affinity = CPU_MASK_ALL
72 void init_kstat_irqs(struct irq_desc *desc, int cpu, int nr)
78 /* Compute how many bytes we need per irq and allocate them */
79 bytes = nr * sizeof(unsigned int);
81 node = cpu_to_node(cpu);
82 ptr = kzalloc_node(bytes, GFP_ATOMIC, node);
83 printk(KERN_DEBUG " alloc kstat_irqs on cpu %d node %d\n", cpu, node);
86 desc->kstat_irqs = (unsigned int *)ptr;
89 int __weak arch_init_chip_data(struct irq_desc *desc, int cpu)
94 static void init_one_irq_desc(int irq, struct irq_desc *desc, int cpu)
96 memcpy(desc, &irq_desc_init, sizeof(struct irq_desc));
98 spin_lock_init(&desc->lock);
103 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
104 init_kstat_irqs(desc, cpu, nr_cpu_ids);
105 if (!desc->kstat_irqs) {
106 printk(KERN_ERR "can not alloc kstat_irqs\n");
109 arch_init_chip_data(desc, cpu);
113 * Protect the sparse_irqs:
115 DEFINE_SPINLOCK(sparse_irq_lock);
117 struct irq_desc *irq_desc_ptrs[NR_IRQS] __read_mostly;
119 static struct irq_desc irq_desc_legacy[NR_IRQS_LEGACY] __cacheline_aligned_in_smp = {
120 [0 ... NR_IRQS_LEGACY-1] = {
122 .status = IRQ_DISABLED,
123 .chip = &no_irq_chip,
124 .handle_irq = handle_bad_irq,
126 .lock = __SPIN_LOCK_UNLOCKED(irq_desc_init.lock),
128 .affinity = CPU_MASK_ALL
133 /* FIXME: use bootmem alloc ...*/
134 static unsigned int kstat_irqs_legacy[NR_IRQS_LEGACY][NR_CPUS];
136 int __init early_irq_init(void)
138 struct irq_desc *desc;
142 desc = irq_desc_legacy;
143 legacy_count = ARRAY_SIZE(irq_desc_legacy);
145 for (i = 0; i < legacy_count; i++) {
147 desc[i].kstat_irqs = kstat_irqs_legacy[i];
149 irq_desc_ptrs[i] = desc + i;
152 for (i = legacy_count; i < NR_IRQS; i++)
153 irq_desc_ptrs[i] = NULL;
155 return arch_early_irq_init();
158 struct irq_desc *irq_to_desc(unsigned int irq)
160 return (irq < NR_IRQS) ? irq_desc_ptrs[irq] : NULL;
163 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
165 struct irq_desc *desc;
169 if (irq >= NR_IRQS) {
170 printk(KERN_WARNING "irq >= NR_IRQS in irq_to_desc_alloc: %d %d\n",
176 desc = irq_desc_ptrs[irq];
180 spin_lock_irqsave(&sparse_irq_lock, flags);
182 /* We have to check it to avoid races with another CPU */
183 desc = irq_desc_ptrs[irq];
187 node = cpu_to_node(cpu);
188 desc = kzalloc_node(sizeof(*desc), GFP_ATOMIC, node);
189 printk(KERN_DEBUG " alloc irq_desc for %d on cpu %d node %d\n",
192 printk(KERN_ERR "can not alloc irq_desc\n");
195 init_one_irq_desc(irq, desc, cpu);
197 irq_desc_ptrs[irq] = desc;
200 spin_unlock_irqrestore(&sparse_irq_lock, flags);
205 #else /* !CONFIG_SPARSE_IRQ */
207 struct irq_desc irq_desc[NR_IRQS] __cacheline_aligned_in_smp = {
208 [0 ... NR_IRQS-1] = {
209 .status = IRQ_DISABLED,
210 .chip = &no_irq_chip,
211 .handle_irq = handle_bad_irq,
213 .lock = __SPIN_LOCK_UNLOCKED(irq_desc->lock),
215 .affinity = CPU_MASK_ALL
220 struct irq_desc *irq_to_desc(unsigned int irq)
222 return (irq < NR_IRQS) ? irq_desc + irq : NULL;
225 struct irq_desc *irq_to_desc_alloc_cpu(unsigned int irq, int cpu)
227 return irq_to_desc(irq);
229 #endif /* !CONFIG_SPARSE_IRQ */
232 * What should we do if we get a hw irq event on an illegal vector?
233 * Each architecture has to answer this themself.
235 static void ack_bad(unsigned int irq)
237 struct irq_desc *desc = irq_to_desc(irq);
239 print_irq_desc(irq, desc);
246 static void noop(unsigned int irq)
250 static unsigned int noop_ret(unsigned int irq)
256 * Generic no controller implementation
258 struct irq_chip no_irq_chip = {
269 * Generic dummy implementation which can be used for
270 * real dumb interrupt sources
272 struct irq_chip dummy_irq_chip = {
285 * Special, empty irq handler:
287 irqreturn_t no_action(int cpl, void *dev_id)
293 * handle_IRQ_event - irq action chain handler
294 * @irq: the interrupt number
295 * @action: the interrupt action chain for this irq
297 * Handles the action chain of an irq event
299 irqreturn_t handle_IRQ_event(unsigned int irq, struct irqaction *action)
301 irqreturn_t ret, retval = IRQ_NONE;
302 unsigned int status = 0;
304 if (!(action->flags & IRQF_DISABLED))
305 local_irq_enable_in_hardirq();
308 ret = action->handler(irq, action->dev_id);
309 if (ret == IRQ_HANDLED)
310 status |= action->flags;
312 action = action->next;
315 if (status & IRQF_SAMPLE_RANDOM)
316 add_interrupt_randomness(irq);
322 #ifndef CONFIG_GENERIC_HARDIRQS_NO__DO_IRQ
324 * __do_IRQ - original all in one highlevel IRQ handler
325 * @irq: the interrupt number
327 * __do_IRQ handles all normal device IRQ's (the special
328 * SMP cross-CPU interrupts have their own specific
331 * This is the original x86 implementation which is used for every
334 unsigned int __do_IRQ(unsigned int irq)
336 struct irq_desc *desc = irq_to_desc(irq);
337 struct irqaction *action;
340 kstat_incr_irqs_this_cpu(irq, desc);
342 if (CHECK_IRQ_PER_CPU(desc->status)) {
343 irqreturn_t action_ret;
346 * No locking required for CPU-local interrupts:
348 if (desc->chip->ack) {
349 desc->chip->ack(irq);
351 desc = irq_remap_to_desc(irq, desc);
353 if (likely(!(desc->status & IRQ_DISABLED))) {
354 action_ret = handle_IRQ_event(irq, desc->action);
356 note_interrupt(irq, desc, action_ret);
358 desc->chip->end(irq);
362 spin_lock(&desc->lock);
363 if (desc->chip->ack) {
364 desc->chip->ack(irq);
365 desc = irq_remap_to_desc(irq, desc);
368 * REPLAY is when Linux resends an IRQ that was dropped earlier
369 * WAITING is used by probe to mark irqs that are being tested
371 status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
372 status |= IRQ_PENDING; /* we _want_ to handle it */
375 * If the IRQ is disabled for whatever reason, we cannot
376 * use the action we have.
379 if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
380 action = desc->action;
381 status &= ~IRQ_PENDING; /* we commit to handling */
382 status |= IRQ_INPROGRESS; /* we are handling it */
384 desc->status = status;
387 * If there is no IRQ handler or it was disabled, exit early.
388 * Since we set PENDING, if another processor is handling
389 * a different instance of this same irq, the other processor
390 * will take care of it.
392 if (unlikely(!action))
396 * Edge triggered interrupts need to remember
398 * This applies to any hw interrupts that allow a second
399 * instance of the same irq to arrive while we are in do_IRQ
400 * or in the handler. But the code here only handles the _second_
401 * instance of the irq, not the third or fourth. So it is mostly
402 * useful for irq hardware that does not mask cleanly in an
406 irqreturn_t action_ret;
408 spin_unlock(&desc->lock);
410 action_ret = handle_IRQ_event(irq, action);
412 note_interrupt(irq, desc, action_ret);
414 spin_lock(&desc->lock);
415 if (likely(!(desc->status & IRQ_PENDING)))
417 desc->status &= ~IRQ_PENDING;
419 desc->status &= ~IRQ_INPROGRESS;
423 * The ->end() handler has to deal with interrupts which got
424 * disabled while the handler was running.
426 desc->chip->end(irq);
427 spin_unlock(&desc->lock);
433 void early_init_irq_lock_class(void)
435 struct irq_desc *desc;
438 for_each_irq_desc(i, desc) {
439 lockdep_set_class(&desc->lock, &irq_desc_lock_class);
443 #ifdef CONFIG_SPARSE_IRQ
444 unsigned int kstat_irqs_cpu(unsigned int irq, int cpu)
446 struct irq_desc *desc = irq_to_desc(irq);
447 return desc ? desc->kstat_irqs[cpu] : 0;
450 EXPORT_SYMBOL(kstat_irqs_cpu);