2 * Written by Pat Gaughen (gone@us.ibm.com) Mar 2002
6 #ifndef _ASM_X86_MMZONE_32_H
7 #define _ASM_X86_MMZONE_32_H
12 extern struct pglist_data *node_data[];
13 #define NODE_DATA(nid) (node_data[nid])
15 #include <asm/numaq.h>
16 /* summit or generic arch */
19 extern int get_memcfg_numa_flat(void);
21 * This allows any one NUMA architecture to be compiled
22 * for, and still fall back to the flat function if it
25 static inline void get_memcfg_numa(void)
28 if (get_memcfg_numaq())
30 if (get_memcfg_from_srat())
32 get_memcfg_numa_flat();
35 extern void resume_map_numa_kva(pgd_t *pgd);
37 #else /* !CONFIG_NUMA */
39 #define get_memcfg_numa get_memcfg_numa_flat
41 static inline void resume_map_numa_kva(pgd_t *pgd) {}
43 #endif /* CONFIG_NUMA */
45 #ifdef CONFIG_DISCONTIGMEM
48 * generic node memory support, the following assumptions apply:
50 * 1) memory comes in 64Mb contigious chunks which are either present or not
51 * 2) we will not have more than 64Gb in total
53 * for now assume that 64Gb is max amount of RAM for whole system
54 * 64Gb / 4096bytes/page = 16777216 pages
56 #define MAX_NR_PAGES 16777216
57 #define MAX_ELEMENTS 1024
58 #define PAGES_PER_ELEMENT (MAX_NR_PAGES/MAX_ELEMENTS)
60 extern s8 physnode_map[];
62 static inline int pfn_to_nid(unsigned long pfn)
65 return((int) physnode_map[(pfn) / PAGES_PER_ELEMENT]);
72 * Following are macros that each numa implmentation must define.
75 #define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn)
76 #define node_end_pfn(nid) \
78 pg_data_t *__pgdat = NODE_DATA(nid); \
79 __pgdat->node_start_pfn + __pgdat->node_spanned_pages; \
82 static inline int pfn_valid(int pfn)
84 int nid = pfn_to_nid(pfn);
87 return (pfn < node_end_pfn(nid));
91 #endif /* CONFIG_DISCONTIGMEM */
93 #ifdef CONFIG_NEED_MULTIPLE_NODES
96 * Following are macros that are specific to this numa platform.
98 #define reserve_bootmem(addr, size, flags) \
99 reserve_bootmem_node(NODE_DATA(0), (addr), (size), (flags))
100 #define alloc_bootmem(x) \
101 __alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS))
102 #define alloc_bootmem_nopanic(x) \
103 __alloc_bootmem_node_nopanic(NODE_DATA(0), (x), SMP_CACHE_BYTES, \
104 __pa(MAX_DMA_ADDRESS))
105 #define alloc_bootmem_low(x) \
106 __alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, 0)
107 #define alloc_bootmem_pages(x) \
108 __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, __pa(MAX_DMA_ADDRESS))
109 #define alloc_bootmem_pages_nopanic(x) \
110 __alloc_bootmem_node_nopanic(NODE_DATA(0), (x), PAGE_SIZE, \
111 __pa(MAX_DMA_ADDRESS))
112 #define alloc_bootmem_low_pages(x) \
113 __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, 0)
114 #define alloc_bootmem_node(pgdat, x) \
116 struct pglist_data __maybe_unused \
117 *__alloc_bootmem_node__pgdat = (pgdat); \
118 __alloc_bootmem_node(NODE_DATA(0), (x), SMP_CACHE_BYTES, \
119 __pa(MAX_DMA_ADDRESS)); \
121 #define alloc_bootmem_pages_node(pgdat, x) \
123 struct pglist_data __maybe_unused \
124 *__alloc_bootmem_node__pgdat = (pgdat); \
125 __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, \
126 __pa(MAX_DMA_ADDRESS)); \
128 #define alloc_bootmem_low_pages_node(pgdat, x) \
130 struct pglist_data __maybe_unused \
131 *__alloc_bootmem_node__pgdat = (pgdat); \
132 __alloc_bootmem_node(NODE_DATA(0), (x), PAGE_SIZE, 0); \
134 #endif /* CONFIG_NEED_MULTIPLE_NODES */
136 #endif /* _ASM_X86_MMZONE_32_H */