ppp: Use skb_queue_walk() in ppp_mp_insert().
[linux-2.6] / drivers / net / tsi108_eth.c
1 /*******************************************************************************
2
3   Copyright(c) 2006 Tundra Semiconductor Corporation.
4
5   This program is free software; you can redistribute it and/or modify it
6   under the terms of the GNU General Public License as published by the Free
7   Software Foundation; either version 2 of the License, or (at your option)
8   any later version.
9
10   This program is distributed in the hope that it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc., 59
17   Temple Place - Suite 330, Boston, MA  02111-1307, USA.
18
19 *******************************************************************************/
20
21 /* This driver is based on the driver code originally developed
22  * for the Intel IOC80314 (ForestLake) Gigabit Ethernet by
23  * scott.wood@timesys.com  * Copyright (C) 2003 TimeSys Corporation
24  *
25  * Currently changes from original version are:
26  * - porting to Tsi108-based platform and kernel 2.6 (kong.lai@tundra.com)
27  * - modifications to handle two ports independently and support for
28  *   additional PHY devices (alexandre.bounine@tundra.com)
29  * - Get hardware information from platform device. (tie-fei.zang@freescale.com)
30  *
31  */
32
33 #include <linux/module.h>
34 #include <linux/types.h>
35 #include <linux/init.h>
36 #include <linux/net.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/ethtool.h>
40 #include <linux/skbuff.h>
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/delay.h>
44 #include <linux/crc32.h>
45 #include <linux/mii.h>
46 #include <linux/device.h>
47 #include <linux/pci.h>
48 #include <linux/rtnetlink.h>
49 #include <linux/timer.h>
50 #include <linux/platform_device.h>
51
52 #include <asm/system.h>
53 #include <asm/io.h>
54 #include <asm/tsi108.h>
55
56 #include "tsi108_eth.h"
57
58 #define MII_READ_DELAY 10000    /* max link wait time in msec */
59
60 #define TSI108_RXRING_LEN     256
61
62 /* NOTE: The driver currently does not support receiving packets
63  * larger than the buffer size, so don't decrease this (unless you
64  * want to add such support).
65  */
66 #define TSI108_RXBUF_SIZE     1536
67
68 #define TSI108_TXRING_LEN     256
69
70 #define TSI108_TX_INT_FREQ    64
71
72 /* Check the phy status every half a second. */
73 #define CHECK_PHY_INTERVAL (HZ/2)
74
75 static int tsi108_init_one(struct platform_device *pdev);
76 static int tsi108_ether_remove(struct platform_device *pdev);
77
78 struct tsi108_prv_data {
79         void  __iomem *regs;    /* Base of normal regs */
80         void  __iomem *phyregs; /* Base of register bank used for PHY access */
81
82         struct net_device *dev;
83         struct napi_struct napi;
84
85         unsigned int phy;               /* Index of PHY for this interface */
86         unsigned int irq_num;
87         unsigned int id;
88         unsigned int phy_type;
89
90         struct timer_list timer;/* Timer that triggers the check phy function */
91         unsigned int rxtail;    /* Next entry in rxring to read */
92         unsigned int rxhead;    /* Next entry in rxring to give a new buffer */
93         unsigned int rxfree;    /* Number of free, allocated RX buffers */
94
95         unsigned int rxpending; /* Non-zero if there are still descriptors
96                                  * to be processed from a previous descriptor
97                                  * interrupt condition that has been cleared */
98
99         unsigned int txtail;    /* Next TX descriptor to check status on */
100         unsigned int txhead;    /* Next TX descriptor to use */
101
102         /* Number of free TX descriptors.  This could be calculated from
103          * rxhead and rxtail if one descriptor were left unused to disambiguate
104          * full and empty conditions, but it's simpler to just keep track
105          * explicitly. */
106
107         unsigned int txfree;
108
109         unsigned int phy_ok;            /* The PHY is currently powered on. */
110
111         /* PHY status (duplex is 1 for half, 2 for full,
112          * so that the default 0 indicates that neither has
113          * yet been configured). */
114
115         unsigned int link_up;
116         unsigned int speed;
117         unsigned int duplex;
118
119         tx_desc *txring;
120         rx_desc *rxring;
121         struct sk_buff *txskbs[TSI108_TXRING_LEN];
122         struct sk_buff *rxskbs[TSI108_RXRING_LEN];
123
124         dma_addr_t txdma, rxdma;
125
126         /* txlock nests in misclock and phy_lock */
127
128         spinlock_t txlock, misclock;
129
130         /* stats is used to hold the upper bits of each hardware counter,
131          * and tmpstats is used to hold the full values for returning
132          * to the caller of get_stats().  They must be separate in case
133          * an overflow interrupt occurs before the stats are consumed.
134          */
135
136         struct net_device_stats stats;
137         struct net_device_stats tmpstats;
138
139         /* These stats are kept separate in hardware, thus require individual
140          * fields for handling carry.  They are combined in get_stats.
141          */
142
143         unsigned long rx_fcs;   /* Add to rx_frame_errors */
144         unsigned long rx_short_fcs;     /* Add to rx_frame_errors */
145         unsigned long rx_long_fcs;      /* Add to rx_frame_errors */
146         unsigned long rx_underruns;     /* Add to rx_length_errors */
147         unsigned long rx_overruns;      /* Add to rx_length_errors */
148
149         unsigned long tx_coll_abort;    /* Add to tx_aborted_errors/collisions */
150         unsigned long tx_pause_drop;    /* Add to tx_aborted_errors */
151
152         unsigned long mc_hash[16];
153         u32 msg_enable;                 /* debug message level */
154         struct mii_if_info mii_if;
155         unsigned int init_media;
156 };
157
158 /* Structure for a device driver */
159
160 static struct platform_driver tsi_eth_driver = {
161         .probe = tsi108_init_one,
162         .remove = tsi108_ether_remove,
163         .driver = {
164                 .name = "tsi-ethernet",
165                 .owner = THIS_MODULE,
166         },
167 };
168
169 static void tsi108_timed_checker(unsigned long dev_ptr);
170
171 static void dump_eth_one(struct net_device *dev)
172 {
173         struct tsi108_prv_data *data = netdev_priv(dev);
174
175         printk("Dumping %s...\n", dev->name);
176         printk("intstat %x intmask %x phy_ok %d"
177                " link %d speed %d duplex %d\n",
178                TSI_READ(TSI108_EC_INTSTAT),
179                TSI_READ(TSI108_EC_INTMASK), data->phy_ok,
180                data->link_up, data->speed, data->duplex);
181
182         printk("TX: head %d, tail %d, free %d, stat %x, estat %x, err %x\n",
183                data->txhead, data->txtail, data->txfree,
184                TSI_READ(TSI108_EC_TXSTAT),
185                TSI_READ(TSI108_EC_TXESTAT),
186                TSI_READ(TSI108_EC_TXERR));
187
188         printk("RX: head %d, tail %d, free %d, stat %x,"
189                " estat %x, err %x, pending %d\n\n",
190                data->rxhead, data->rxtail, data->rxfree,
191                TSI_READ(TSI108_EC_RXSTAT),
192                TSI_READ(TSI108_EC_RXESTAT),
193                TSI_READ(TSI108_EC_RXERR), data->rxpending);
194 }
195
196 /* Synchronization is needed between the thread and up/down events.
197  * Note that the PHY is accessed through the same registers for both
198  * interfaces, so this can't be made interface-specific.
199  */
200
201 static DEFINE_SPINLOCK(phy_lock);
202
203 static int tsi108_read_mii(struct tsi108_prv_data *data, int reg)
204 {
205         unsigned i;
206
207         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
208                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
209                                 (reg << TSI108_MAC_MII_ADDR_REG));
210         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, 0);
211         TSI_WRITE_PHY(TSI108_MAC_MII_CMD, TSI108_MAC_MII_CMD_READ);
212         for (i = 0; i < 100; i++) {
213                 if (!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
214                       (TSI108_MAC_MII_IND_NOTVALID | TSI108_MAC_MII_IND_BUSY)))
215                         break;
216                 udelay(10);
217         }
218
219         if (i == 100)
220                 return 0xffff;
221         else
222                 return (TSI_READ_PHY(TSI108_MAC_MII_DATAIN));
223 }
224
225 static void tsi108_write_mii(struct tsi108_prv_data *data,
226                                 int reg, u16 val)
227 {
228         unsigned i = 100;
229         TSI_WRITE_PHY(TSI108_MAC_MII_ADDR,
230                                 (data->phy << TSI108_MAC_MII_ADDR_PHY) |
231                                 (reg << TSI108_MAC_MII_ADDR_REG));
232         TSI_WRITE_PHY(TSI108_MAC_MII_DATAOUT, val);
233         while (i--) {
234                 if(!(TSI_READ_PHY(TSI108_MAC_MII_IND) &
235                         TSI108_MAC_MII_IND_BUSY))
236                         break;
237                 udelay(10);
238         }
239 }
240
241 static int tsi108_mdio_read(struct net_device *dev, int addr, int reg)
242 {
243         struct tsi108_prv_data *data = netdev_priv(dev);
244         return tsi108_read_mii(data, reg);
245 }
246
247 static void tsi108_mdio_write(struct net_device *dev, int addr, int reg, int val)
248 {
249         struct tsi108_prv_data *data = netdev_priv(dev);
250         tsi108_write_mii(data, reg, val);
251 }
252
253 static inline void tsi108_write_tbi(struct tsi108_prv_data *data,
254                                         int reg, u16 val)
255 {
256         unsigned i = 1000;
257         TSI_WRITE(TSI108_MAC_MII_ADDR,
258                              (0x1e << TSI108_MAC_MII_ADDR_PHY)
259                              | (reg << TSI108_MAC_MII_ADDR_REG));
260         TSI_WRITE(TSI108_MAC_MII_DATAOUT, val);
261         while(i--) {
262                 if(!(TSI_READ(TSI108_MAC_MII_IND) & TSI108_MAC_MII_IND_BUSY))
263                         return;
264                 udelay(10);
265         }
266         printk(KERN_ERR "%s function time out \n", __func__);
267 }
268
269 static int mii_speed(struct mii_if_info *mii)
270 {
271         int advert, lpa, val, media;
272         int lpa2 = 0;
273         int speed;
274
275         if (!mii_link_ok(mii))
276                 return 0;
277
278         val = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_BMSR);
279         if ((val & BMSR_ANEGCOMPLETE) == 0)
280                 return 0;
281
282         advert = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_ADVERTISE);
283         lpa = (*mii->mdio_read) (mii->dev, mii->phy_id, MII_LPA);
284         media = mii_nway_result(advert & lpa);
285
286         if (mii->supports_gmii)
287                 lpa2 = mii->mdio_read(mii->dev, mii->phy_id, MII_STAT1000);
288
289         speed = lpa2 & (LPA_1000FULL | LPA_1000HALF) ? 1000 :
290                         (media & (ADVERTISE_100FULL | ADVERTISE_100HALF) ? 100 : 10);
291         return speed;
292 }
293
294 static void tsi108_check_phy(struct net_device *dev)
295 {
296         struct tsi108_prv_data *data = netdev_priv(dev);
297         u32 mac_cfg2_reg, portctrl_reg;
298         u32 duplex;
299         u32 speed;
300         unsigned long flags;
301
302         spin_lock_irqsave(&phy_lock, flags);
303
304         if (!data->phy_ok)
305                 goto out;
306
307         duplex = mii_check_media(&data->mii_if, netif_msg_link(data), data->init_media);
308         data->init_media = 0;
309
310         if (netif_carrier_ok(dev)) {
311
312                 speed = mii_speed(&data->mii_if);
313
314                 if ((speed != data->speed) || duplex) {
315
316                         mac_cfg2_reg = TSI_READ(TSI108_MAC_CFG2);
317                         portctrl_reg = TSI_READ(TSI108_EC_PORTCTRL);
318
319                         mac_cfg2_reg &= ~TSI108_MAC_CFG2_IFACE_MASK;
320
321                         if (speed == 1000) {
322                                 mac_cfg2_reg |= TSI108_MAC_CFG2_GIG;
323                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_NOGIG;
324                         } else {
325                                 mac_cfg2_reg |= TSI108_MAC_CFG2_NOGIG;
326                                 portctrl_reg |= TSI108_EC_PORTCTRL_NOGIG;
327                         }
328
329                         data->speed = speed;
330
331                         if (data->mii_if.full_duplex) {
332                                 mac_cfg2_reg |= TSI108_MAC_CFG2_FULLDUPLEX;
333                                 portctrl_reg &= ~TSI108_EC_PORTCTRL_HALFDUPLEX;
334                                 data->duplex = 2;
335                         } else {
336                                 mac_cfg2_reg &= ~TSI108_MAC_CFG2_FULLDUPLEX;
337                                 portctrl_reg |= TSI108_EC_PORTCTRL_HALFDUPLEX;
338                                 data->duplex = 1;
339                         }
340
341                         TSI_WRITE(TSI108_MAC_CFG2, mac_cfg2_reg);
342                         TSI_WRITE(TSI108_EC_PORTCTRL, portctrl_reg);
343                 }
344
345                 if (data->link_up == 0) {
346                         /* The manual says it can take 3-4 usecs for the speed change
347                          * to take effect.
348                          */
349                         udelay(5);
350
351                         spin_lock(&data->txlock);
352                         if (is_valid_ether_addr(dev->dev_addr) && data->txfree)
353                                 netif_wake_queue(dev);
354
355                         data->link_up = 1;
356                         spin_unlock(&data->txlock);
357                 }
358         } else {
359                 if (data->link_up == 1) {
360                         netif_stop_queue(dev);
361                         data->link_up = 0;
362                         printk(KERN_NOTICE "%s : link is down\n", dev->name);
363                 }
364
365                 goto out;
366         }
367
368
369 out:
370         spin_unlock_irqrestore(&phy_lock, flags);
371 }
372
373 static inline void
374 tsi108_stat_carry_one(int carry, int carry_bit, int carry_shift,
375                       unsigned long *upper)
376 {
377         if (carry & carry_bit)
378                 *upper += carry_shift;
379 }
380
381 static void tsi108_stat_carry(struct net_device *dev)
382 {
383         struct tsi108_prv_data *data = netdev_priv(dev);
384         u32 carry1, carry2;
385
386         spin_lock_irq(&data->misclock);
387
388         carry1 = TSI_READ(TSI108_STAT_CARRY1);
389         carry2 = TSI_READ(TSI108_STAT_CARRY2);
390
391         TSI_WRITE(TSI108_STAT_CARRY1, carry1);
392         TSI_WRITE(TSI108_STAT_CARRY2, carry2);
393
394         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXBYTES,
395                               TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
396
397         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXPKTS,
398                               TSI108_STAT_RXPKTS_CARRY,
399                               &data->stats.rx_packets);
400
401         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFCS,
402                               TSI108_STAT_RXFCS_CARRY, &data->rx_fcs);
403
404         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXMCAST,
405                               TSI108_STAT_RXMCAST_CARRY,
406                               &data->stats.multicast);
407
408         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXALIGN,
409                               TSI108_STAT_RXALIGN_CARRY,
410                               &data->stats.rx_frame_errors);
411
412         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXLENGTH,
413                               TSI108_STAT_RXLENGTH_CARRY,
414                               &data->stats.rx_length_errors);
415
416         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXRUNT,
417                               TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
418
419         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJUMBO,
420                               TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
421
422         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXFRAG,
423                               TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
424
425         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXJABBER,
426                               TSI108_STAT_RXJABBER_CARRY, &data->rx_long_fcs);
427
428         tsi108_stat_carry_one(carry1, TSI108_STAT_CARRY1_RXDROP,
429                               TSI108_STAT_RXDROP_CARRY,
430                               &data->stats.rx_missed_errors);
431
432         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXBYTES,
433                               TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
434
435         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPKTS,
436                               TSI108_STAT_TXPKTS_CARRY,
437                               &data->stats.tx_packets);
438
439         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXDEF,
440                               TSI108_STAT_TXEXDEF_CARRY,
441                               &data->stats.tx_aborted_errors);
442
443         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXEXCOL,
444                               TSI108_STAT_TXEXCOL_CARRY, &data->tx_coll_abort);
445
446         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXTCOL,
447                               TSI108_STAT_TXTCOL_CARRY,
448                               &data->stats.collisions);
449
450         tsi108_stat_carry_one(carry2, TSI108_STAT_CARRY2_TXPAUSE,
451                               TSI108_STAT_TXPAUSEDROP_CARRY,
452                               &data->tx_pause_drop);
453
454         spin_unlock_irq(&data->misclock);
455 }
456
457 /* Read a stat counter atomically with respect to carries.
458  * data->misclock must be held.
459  */
460 static inline unsigned long
461 tsi108_read_stat(struct tsi108_prv_data * data, int reg, int carry_bit,
462                  int carry_shift, unsigned long *upper)
463 {
464         int carryreg;
465         unsigned long val;
466
467         if (reg < 0xb0)
468                 carryreg = TSI108_STAT_CARRY1;
469         else
470                 carryreg = TSI108_STAT_CARRY2;
471
472       again:
473         val = TSI_READ(reg) | *upper;
474
475         /* Check to see if it overflowed, but the interrupt hasn't
476          * been serviced yet.  If so, handle the carry here, and
477          * try again.
478          */
479
480         if (unlikely(TSI_READ(carryreg) & carry_bit)) {
481                 *upper += carry_shift;
482                 TSI_WRITE(carryreg, carry_bit);
483                 goto again;
484         }
485
486         return val;
487 }
488
489 static struct net_device_stats *tsi108_get_stats(struct net_device *dev)
490 {
491         unsigned long excol;
492
493         struct tsi108_prv_data *data = netdev_priv(dev);
494         spin_lock_irq(&data->misclock);
495
496         data->tmpstats.rx_packets =
497             tsi108_read_stat(data, TSI108_STAT_RXPKTS,
498                              TSI108_STAT_CARRY1_RXPKTS,
499                              TSI108_STAT_RXPKTS_CARRY, &data->stats.rx_packets);
500
501         data->tmpstats.tx_packets =
502             tsi108_read_stat(data, TSI108_STAT_TXPKTS,
503                              TSI108_STAT_CARRY2_TXPKTS,
504                              TSI108_STAT_TXPKTS_CARRY, &data->stats.tx_packets);
505
506         data->tmpstats.rx_bytes =
507             tsi108_read_stat(data, TSI108_STAT_RXBYTES,
508                              TSI108_STAT_CARRY1_RXBYTES,
509                              TSI108_STAT_RXBYTES_CARRY, &data->stats.rx_bytes);
510
511         data->tmpstats.tx_bytes =
512             tsi108_read_stat(data, TSI108_STAT_TXBYTES,
513                              TSI108_STAT_CARRY2_TXBYTES,
514                              TSI108_STAT_TXBYTES_CARRY, &data->stats.tx_bytes);
515
516         data->tmpstats.multicast =
517             tsi108_read_stat(data, TSI108_STAT_RXMCAST,
518                              TSI108_STAT_CARRY1_RXMCAST,
519                              TSI108_STAT_RXMCAST_CARRY, &data->stats.multicast);
520
521         excol = tsi108_read_stat(data, TSI108_STAT_TXEXCOL,
522                                  TSI108_STAT_CARRY2_TXEXCOL,
523                                  TSI108_STAT_TXEXCOL_CARRY,
524                                  &data->tx_coll_abort);
525
526         data->tmpstats.collisions =
527             tsi108_read_stat(data, TSI108_STAT_TXTCOL,
528                              TSI108_STAT_CARRY2_TXTCOL,
529                              TSI108_STAT_TXTCOL_CARRY, &data->stats.collisions);
530
531         data->tmpstats.collisions += excol;
532
533         data->tmpstats.rx_length_errors =
534             tsi108_read_stat(data, TSI108_STAT_RXLENGTH,
535                              TSI108_STAT_CARRY1_RXLENGTH,
536                              TSI108_STAT_RXLENGTH_CARRY,
537                              &data->stats.rx_length_errors);
538
539         data->tmpstats.rx_length_errors +=
540             tsi108_read_stat(data, TSI108_STAT_RXRUNT,
541                              TSI108_STAT_CARRY1_RXRUNT,
542                              TSI108_STAT_RXRUNT_CARRY, &data->rx_underruns);
543
544         data->tmpstats.rx_length_errors +=
545             tsi108_read_stat(data, TSI108_STAT_RXJUMBO,
546                              TSI108_STAT_CARRY1_RXJUMBO,
547                              TSI108_STAT_RXJUMBO_CARRY, &data->rx_overruns);
548
549         data->tmpstats.rx_frame_errors =
550             tsi108_read_stat(data, TSI108_STAT_RXALIGN,
551                              TSI108_STAT_CARRY1_RXALIGN,
552                              TSI108_STAT_RXALIGN_CARRY,
553                              &data->stats.rx_frame_errors);
554
555         data->tmpstats.rx_frame_errors +=
556             tsi108_read_stat(data, TSI108_STAT_RXFCS,
557                              TSI108_STAT_CARRY1_RXFCS, TSI108_STAT_RXFCS_CARRY,
558                              &data->rx_fcs);
559
560         data->tmpstats.rx_frame_errors +=
561             tsi108_read_stat(data, TSI108_STAT_RXFRAG,
562                              TSI108_STAT_CARRY1_RXFRAG,
563                              TSI108_STAT_RXFRAG_CARRY, &data->rx_short_fcs);
564
565         data->tmpstats.rx_missed_errors =
566             tsi108_read_stat(data, TSI108_STAT_RXDROP,
567                              TSI108_STAT_CARRY1_RXDROP,
568                              TSI108_STAT_RXDROP_CARRY,
569                              &data->stats.rx_missed_errors);
570
571         /* These three are maintained by software. */
572         data->tmpstats.rx_fifo_errors = data->stats.rx_fifo_errors;
573         data->tmpstats.rx_crc_errors = data->stats.rx_crc_errors;
574
575         data->tmpstats.tx_aborted_errors =
576             tsi108_read_stat(data, TSI108_STAT_TXEXDEF,
577                              TSI108_STAT_CARRY2_TXEXDEF,
578                              TSI108_STAT_TXEXDEF_CARRY,
579                              &data->stats.tx_aborted_errors);
580
581         data->tmpstats.tx_aborted_errors +=
582             tsi108_read_stat(data, TSI108_STAT_TXPAUSEDROP,
583                              TSI108_STAT_CARRY2_TXPAUSE,
584                              TSI108_STAT_TXPAUSEDROP_CARRY,
585                              &data->tx_pause_drop);
586
587         data->tmpstats.tx_aborted_errors += excol;
588
589         data->tmpstats.tx_errors = data->tmpstats.tx_aborted_errors;
590         data->tmpstats.rx_errors = data->tmpstats.rx_length_errors +
591             data->tmpstats.rx_crc_errors +
592             data->tmpstats.rx_frame_errors +
593             data->tmpstats.rx_fifo_errors + data->tmpstats.rx_missed_errors;
594
595         spin_unlock_irq(&data->misclock);
596         return &data->tmpstats;
597 }
598
599 static void tsi108_restart_rx(struct tsi108_prv_data * data, struct net_device *dev)
600 {
601         TSI_WRITE(TSI108_EC_RXQ_PTRHIGH,
602                              TSI108_EC_RXQ_PTRHIGH_VALID);
603
604         TSI_WRITE(TSI108_EC_RXCTRL, TSI108_EC_RXCTRL_GO
605                              | TSI108_EC_RXCTRL_QUEUE0);
606 }
607
608 static void tsi108_restart_tx(struct tsi108_prv_data * data)
609 {
610         TSI_WRITE(TSI108_EC_TXQ_PTRHIGH,
611                              TSI108_EC_TXQ_PTRHIGH_VALID);
612
613         TSI_WRITE(TSI108_EC_TXCTRL, TSI108_EC_TXCTRL_IDLEINT |
614                              TSI108_EC_TXCTRL_GO | TSI108_EC_TXCTRL_QUEUE0);
615 }
616
617 /* txlock must be held by caller, with IRQs disabled, and
618  * with permission to re-enable them when the lock is dropped.
619  */
620 static void tsi108_complete_tx(struct net_device *dev)
621 {
622         struct tsi108_prv_data *data = netdev_priv(dev);
623         int tx;
624         struct sk_buff *skb;
625         int release = 0;
626
627         while (!data->txfree || data->txhead != data->txtail) {
628                 tx = data->txtail;
629
630                 if (data->txring[tx].misc & TSI108_TX_OWN)
631                         break;
632
633                 skb = data->txskbs[tx];
634
635                 if (!(data->txring[tx].misc & TSI108_TX_OK))
636                         printk("%s: bad tx packet, misc %x\n",
637                                dev->name, data->txring[tx].misc);
638
639                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
640                 data->txfree++;
641
642                 if (data->txring[tx].misc & TSI108_TX_EOF) {
643                         dev_kfree_skb_any(skb);
644                         release++;
645                 }
646         }
647
648         if (release) {
649                 if (is_valid_ether_addr(dev->dev_addr) && data->link_up)
650                         netif_wake_queue(dev);
651         }
652 }
653
654 static int tsi108_send_packet(struct sk_buff * skb, struct net_device *dev)
655 {
656         struct tsi108_prv_data *data = netdev_priv(dev);
657         int frags = skb_shinfo(skb)->nr_frags + 1;
658         int i;
659
660         if (!data->phy_ok && net_ratelimit())
661                 printk(KERN_ERR "%s: Transmit while PHY is down!\n", dev->name);
662
663         if (!data->link_up) {
664                 printk(KERN_ERR "%s: Transmit while link is down!\n",
665                        dev->name);
666                 netif_stop_queue(dev);
667                 return NETDEV_TX_BUSY;
668         }
669
670         if (data->txfree < MAX_SKB_FRAGS + 1) {
671                 netif_stop_queue(dev);
672
673                 if (net_ratelimit())
674                         printk(KERN_ERR "%s: Transmit with full tx ring!\n",
675                                dev->name);
676                 return NETDEV_TX_BUSY;
677         }
678
679         if (data->txfree - frags < MAX_SKB_FRAGS + 1) {
680                 netif_stop_queue(dev);
681         }
682
683         spin_lock_irq(&data->txlock);
684
685         for (i = 0; i < frags; i++) {
686                 int misc = 0;
687                 int tx = data->txhead;
688
689                 /* This is done to mark every TSI108_TX_INT_FREQ tx buffers with
690                  * the interrupt bit.  TX descriptor-complete interrupts are
691                  * enabled when the queue fills up, and masked when there is
692                  * still free space.  This way, when saturating the outbound
693                  * link, the tx interrupts are kept to a reasonable level.
694                  * When the queue is not full, reclamation of skbs still occurs
695                  * as new packets are transmitted, or on a queue-empty
696                  * interrupt.
697                  */
698
699                 if ((tx % TSI108_TX_INT_FREQ == 0) &&
700                     ((TSI108_TXRING_LEN - data->txfree) >= TSI108_TX_INT_FREQ))
701                         misc = TSI108_TX_INT;
702
703                 data->txskbs[tx] = skb;
704
705                 if (i == 0) {
706                         data->txring[tx].buf0 = dma_map_single(NULL, skb->data,
707                                         skb->len - skb->data_len, DMA_TO_DEVICE);
708                         data->txring[tx].len = skb->len - skb->data_len;
709                         misc |= TSI108_TX_SOF;
710                 } else {
711                         skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
712
713                         data->txring[tx].buf0 =
714                             dma_map_page(NULL, frag->page, frag->page_offset,
715                                             frag->size, DMA_TO_DEVICE);
716                         data->txring[tx].len = frag->size;
717                 }
718
719                 if (i == frags - 1)
720                         misc |= TSI108_TX_EOF;
721
722                 if (netif_msg_pktdata(data)) {
723                         int i;
724                         printk("%s: Tx Frame contents (%d)\n", dev->name,
725                                skb->len);
726                         for (i = 0; i < skb->len; i++)
727                                 printk(" %2.2x", skb->data[i]);
728                         printk(".\n");
729                 }
730                 data->txring[tx].misc = misc | TSI108_TX_OWN;
731
732                 data->txhead = (data->txhead + 1) % TSI108_TXRING_LEN;
733                 data->txfree--;
734         }
735
736         tsi108_complete_tx(dev);
737
738         /* This must be done after the check for completed tx descriptors,
739          * so that the tail pointer is correct.
740          */
741
742         if (!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_QUEUE0))
743                 tsi108_restart_tx(data);
744
745         spin_unlock_irq(&data->txlock);
746         return NETDEV_TX_OK;
747 }
748
749 static int tsi108_complete_rx(struct net_device *dev, int budget)
750 {
751         struct tsi108_prv_data *data = netdev_priv(dev);
752         int done = 0;
753
754         while (data->rxfree && done != budget) {
755                 int rx = data->rxtail;
756                 struct sk_buff *skb;
757
758                 if (data->rxring[rx].misc & TSI108_RX_OWN)
759                         break;
760
761                 skb = data->rxskbs[rx];
762                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
763                 data->rxfree--;
764                 done++;
765
766                 if (data->rxring[rx].misc & TSI108_RX_BAD) {
767                         spin_lock_irq(&data->misclock);
768
769                         if (data->rxring[rx].misc & TSI108_RX_CRC)
770                                 data->stats.rx_crc_errors++;
771                         if (data->rxring[rx].misc & TSI108_RX_OVER)
772                                 data->stats.rx_fifo_errors++;
773
774                         spin_unlock_irq(&data->misclock);
775
776                         dev_kfree_skb_any(skb);
777                         continue;
778                 }
779                 if (netif_msg_pktdata(data)) {
780                         int i;
781                         printk("%s: Rx Frame contents (%d)\n",
782                                dev->name, data->rxring[rx].len);
783                         for (i = 0; i < data->rxring[rx].len; i++)
784                                 printk(" %2.2x", skb->data[i]);
785                         printk(".\n");
786                 }
787
788                 skb_put(skb, data->rxring[rx].len);
789                 skb->protocol = eth_type_trans(skb, dev);
790                 netif_receive_skb(skb);
791                 dev->last_rx = jiffies;
792         }
793
794         return done;
795 }
796
797 static int tsi108_refill_rx(struct net_device *dev, int budget)
798 {
799         struct tsi108_prv_data *data = netdev_priv(dev);
800         int done = 0;
801
802         while (data->rxfree != TSI108_RXRING_LEN && done != budget) {
803                 int rx = data->rxhead;
804                 struct sk_buff *skb;
805
806                 data->rxskbs[rx] = skb = netdev_alloc_skb(dev,
807                                                           TSI108_RXBUF_SIZE + 2);
808                 if (!skb)
809                         break;
810
811                 skb_reserve(skb, 2); /* Align the data on a 4-byte boundary. */
812
813                 data->rxring[rx].buf0 = dma_map_single(NULL, skb->data,
814                                                         TSI108_RX_SKB_SIZE,
815                                                         DMA_FROM_DEVICE);
816
817                 /* Sometimes the hardware sets blen to zero after packet
818                  * reception, even though the manual says that it's only ever
819                  * modified by the driver.
820                  */
821
822                 data->rxring[rx].blen = TSI108_RX_SKB_SIZE;
823                 data->rxring[rx].misc = TSI108_RX_OWN | TSI108_RX_INT;
824
825                 data->rxhead = (data->rxhead + 1) % TSI108_RXRING_LEN;
826                 data->rxfree++;
827                 done++;
828         }
829
830         if (done != 0 && !(TSI_READ(TSI108_EC_RXSTAT) &
831                            TSI108_EC_RXSTAT_QUEUE0))
832                 tsi108_restart_rx(data, dev);
833
834         return done;
835 }
836
837 static int tsi108_poll(struct napi_struct *napi, int budget)
838 {
839         struct tsi108_prv_data *data = container_of(napi, struct tsi108_prv_data, napi);
840         struct net_device *dev = data->dev;
841         u32 estat = TSI_READ(TSI108_EC_RXESTAT);
842         u32 intstat = TSI_READ(TSI108_EC_INTSTAT);
843         int num_received = 0, num_filled = 0;
844
845         intstat &= TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
846             TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR | TSI108_INT_RXWAIT;
847
848         TSI_WRITE(TSI108_EC_RXESTAT, estat);
849         TSI_WRITE(TSI108_EC_INTSTAT, intstat);
850
851         if (data->rxpending || (estat & TSI108_EC_RXESTAT_Q0_DESCINT))
852                 num_received = tsi108_complete_rx(dev, budget);
853
854         /* This should normally fill no more slots than the number of
855          * packets received in tsi108_complete_rx().  The exception
856          * is when we previously ran out of memory for RX SKBs.  In that
857          * case, it's helpful to obey the budget, not only so that the
858          * CPU isn't hogged, but so that memory (which may still be low)
859          * is not hogged by one device.
860          *
861          * A work unit is considered to be two SKBs to allow us to catch
862          * up when the ring has shrunk due to out-of-memory but we're
863          * still removing the full budget's worth of packets each time.
864          */
865
866         if (data->rxfree < TSI108_RXRING_LEN)
867                 num_filled = tsi108_refill_rx(dev, budget * 2);
868
869         if (intstat & TSI108_INT_RXERROR) {
870                 u32 err = TSI_READ(TSI108_EC_RXERR);
871                 TSI_WRITE(TSI108_EC_RXERR, err);
872
873                 if (err) {
874                         if (net_ratelimit())
875                                 printk(KERN_DEBUG "%s: RX error %x\n",
876                                        dev->name, err);
877
878                         if (!(TSI_READ(TSI108_EC_RXSTAT) &
879                               TSI108_EC_RXSTAT_QUEUE0))
880                                 tsi108_restart_rx(data, dev);
881                 }
882         }
883
884         if (intstat & TSI108_INT_RXOVERRUN) {
885                 spin_lock_irq(&data->misclock);
886                 data->stats.rx_fifo_errors++;
887                 spin_unlock_irq(&data->misclock);
888         }
889
890         if (num_received < budget) {
891                 data->rxpending = 0;
892                 netif_rx_complete(dev, napi);
893
894                 TSI_WRITE(TSI108_EC_INTMASK,
895                                      TSI_READ(TSI108_EC_INTMASK)
896                                      & ~(TSI108_INT_RXQUEUE0
897                                          | TSI108_INT_RXTHRESH |
898                                          TSI108_INT_RXOVERRUN |
899                                          TSI108_INT_RXERROR |
900                                          TSI108_INT_RXWAIT));
901         } else {
902                 data->rxpending = 1;
903         }
904
905         return num_received;
906 }
907
908 static void tsi108_rx_int(struct net_device *dev)
909 {
910         struct tsi108_prv_data *data = netdev_priv(dev);
911
912         /* A race could cause dev to already be scheduled, so it's not an
913          * error if that happens (and interrupts shouldn't be re-masked,
914          * because that can cause harmful races, if poll has already
915          * unmasked them but not cleared LINK_STATE_SCHED).
916          *
917          * This can happen if this code races with tsi108_poll(), which masks
918          * the interrupts after tsi108_irq_one() read the mask, but before
919          * netif_rx_schedule is called.  It could also happen due to calls
920          * from tsi108_check_rxring().
921          */
922
923         if (netif_rx_schedule_prep(dev, &data->napi)) {
924                 /* Mask, rather than ack, the receive interrupts.  The ack
925                  * will happen in tsi108_poll().
926                  */
927
928                 TSI_WRITE(TSI108_EC_INTMASK,
929                                      TSI_READ(TSI108_EC_INTMASK) |
930                                      TSI108_INT_RXQUEUE0
931                                      | TSI108_INT_RXTHRESH |
932                                      TSI108_INT_RXOVERRUN | TSI108_INT_RXERROR |
933                                      TSI108_INT_RXWAIT);
934                 __netif_rx_schedule(dev, &data->napi);
935         } else {
936                 if (!netif_running(dev)) {
937                         /* This can happen if an interrupt occurs while the
938                          * interface is being brought down, as the START
939                          * bit is cleared before the stop function is called.
940                          *
941                          * In this case, the interrupts must be masked, or
942                          * they will continue indefinitely.
943                          *
944                          * There's a race here if the interface is brought down
945                          * and then up in rapid succession, as the device could
946                          * be made running after the above check and before
947                          * the masking below.  This will only happen if the IRQ
948                          * thread has a lower priority than the task brining
949                          * up the interface.  Fixing this race would likely
950                          * require changes in generic code.
951                          */
952
953                         TSI_WRITE(TSI108_EC_INTMASK,
954                                              TSI_READ
955                                              (TSI108_EC_INTMASK) |
956                                              TSI108_INT_RXQUEUE0 |
957                                              TSI108_INT_RXTHRESH |
958                                              TSI108_INT_RXOVERRUN |
959                                              TSI108_INT_RXERROR |
960                                              TSI108_INT_RXWAIT);
961                 }
962         }
963 }
964
965 /* If the RX ring has run out of memory, try periodically
966  * to allocate some more, as otherwise poll would never
967  * get called (apart from the initial end-of-queue condition).
968  *
969  * This is called once per second (by default) from the thread.
970  */
971
972 static void tsi108_check_rxring(struct net_device *dev)
973 {
974         struct tsi108_prv_data *data = netdev_priv(dev);
975
976         /* A poll is scheduled, as opposed to caling tsi108_refill_rx
977          * directly, so as to keep the receive path single-threaded
978          * (and thus not needing a lock).
979          */
980
981         if (netif_running(dev) && data->rxfree < TSI108_RXRING_LEN / 4)
982                 tsi108_rx_int(dev);
983 }
984
985 static void tsi108_tx_int(struct net_device *dev)
986 {
987         struct tsi108_prv_data *data = netdev_priv(dev);
988         u32 estat = TSI_READ(TSI108_EC_TXESTAT);
989
990         TSI_WRITE(TSI108_EC_TXESTAT, estat);
991         TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_TXQUEUE0 |
992                              TSI108_INT_TXIDLE | TSI108_INT_TXERROR);
993         if (estat & TSI108_EC_TXESTAT_Q0_ERR) {
994                 u32 err = TSI_READ(TSI108_EC_TXERR);
995                 TSI_WRITE(TSI108_EC_TXERR, err);
996
997                 if (err && net_ratelimit())
998                         printk(KERN_ERR "%s: TX error %x\n", dev->name, err);
999         }
1000
1001         if (estat & (TSI108_EC_TXESTAT_Q0_DESCINT | TSI108_EC_TXESTAT_Q0_EOQ)) {
1002                 spin_lock(&data->txlock);
1003                 tsi108_complete_tx(dev);
1004                 spin_unlock(&data->txlock);
1005         }
1006 }
1007
1008
1009 static irqreturn_t tsi108_irq(int irq, void *dev_id)
1010 {
1011         struct net_device *dev = dev_id;
1012         struct tsi108_prv_data *data = netdev_priv(dev);
1013         u32 stat = TSI_READ(TSI108_EC_INTSTAT);
1014
1015         if (!(stat & TSI108_INT_ANY))
1016                 return IRQ_NONE;        /* Not our interrupt */
1017
1018         stat &= ~TSI_READ(TSI108_EC_INTMASK);
1019
1020         if (stat & (TSI108_INT_TXQUEUE0 | TSI108_INT_TXIDLE |
1021                     TSI108_INT_TXERROR))
1022                 tsi108_tx_int(dev);
1023         if (stat & (TSI108_INT_RXQUEUE0 | TSI108_INT_RXTHRESH |
1024                     TSI108_INT_RXWAIT | TSI108_INT_RXOVERRUN |
1025                     TSI108_INT_RXERROR))
1026                 tsi108_rx_int(dev);
1027
1028         if (stat & TSI108_INT_SFN) {
1029                 if (net_ratelimit())
1030                         printk(KERN_DEBUG "%s: SFN error\n", dev->name);
1031                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_SFN);
1032         }
1033
1034         if (stat & TSI108_INT_STATCARRY) {
1035                 tsi108_stat_carry(dev);
1036                 TSI_WRITE(TSI108_EC_INTSTAT, TSI108_INT_STATCARRY);
1037         }
1038
1039         return IRQ_HANDLED;
1040 }
1041
1042 static void tsi108_stop_ethernet(struct net_device *dev)
1043 {
1044         struct tsi108_prv_data *data = netdev_priv(dev);
1045         int i = 1000;
1046         /* Disable all TX and RX queues ... */
1047         TSI_WRITE(TSI108_EC_TXCTRL, 0);
1048         TSI_WRITE(TSI108_EC_RXCTRL, 0);
1049
1050         /* ...and wait for them to become idle */
1051         while(i--) {
1052                 if(!(TSI_READ(TSI108_EC_TXSTAT) & TSI108_EC_TXSTAT_ACTIVE))
1053                         break;
1054                 udelay(10);
1055         }
1056         i = 1000;
1057         while(i--){
1058                 if(!(TSI_READ(TSI108_EC_RXSTAT) & TSI108_EC_RXSTAT_ACTIVE))
1059                         return;
1060                 udelay(10);
1061         }
1062         printk(KERN_ERR "%s function time out \n", __func__);
1063 }
1064
1065 static void tsi108_reset_ether(struct tsi108_prv_data * data)
1066 {
1067         TSI_WRITE(TSI108_MAC_CFG1, TSI108_MAC_CFG1_SOFTRST);
1068         udelay(100);
1069         TSI_WRITE(TSI108_MAC_CFG1, 0);
1070
1071         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATRST);
1072         udelay(100);
1073         TSI_WRITE(TSI108_EC_PORTCTRL,
1074                              TSI_READ(TSI108_EC_PORTCTRL) &
1075                              ~TSI108_EC_PORTCTRL_STATRST);
1076
1077         TSI_WRITE(TSI108_EC_TXCFG, TSI108_EC_TXCFG_RST);
1078         udelay(100);
1079         TSI_WRITE(TSI108_EC_TXCFG,
1080                              TSI_READ(TSI108_EC_TXCFG) &
1081                              ~TSI108_EC_TXCFG_RST);
1082
1083         TSI_WRITE(TSI108_EC_RXCFG, TSI108_EC_RXCFG_RST);
1084         udelay(100);
1085         TSI_WRITE(TSI108_EC_RXCFG,
1086                              TSI_READ(TSI108_EC_RXCFG) &
1087                              ~TSI108_EC_RXCFG_RST);
1088
1089         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1090                              TSI_READ(TSI108_MAC_MII_MGMT_CFG) |
1091                              TSI108_MAC_MII_MGMT_RST);
1092         udelay(100);
1093         TSI_WRITE(TSI108_MAC_MII_MGMT_CFG,
1094                              (TSI_READ(TSI108_MAC_MII_MGMT_CFG) &
1095                              ~(TSI108_MAC_MII_MGMT_RST |
1096                                TSI108_MAC_MII_MGMT_CLK)) | 0x07);
1097 }
1098
1099 static int tsi108_get_mac(struct net_device *dev)
1100 {
1101         struct tsi108_prv_data *data = netdev_priv(dev);
1102         u32 word1 = TSI_READ(TSI108_MAC_ADDR1);
1103         u32 word2 = TSI_READ(TSI108_MAC_ADDR2);
1104
1105         /* Note that the octets are reversed from what the manual says,
1106          * producing an even weirder ordering...
1107          */
1108         if (word2 == 0 && word1 == 0) {
1109                 dev->dev_addr[0] = 0x00;
1110                 dev->dev_addr[1] = 0x06;
1111                 dev->dev_addr[2] = 0xd2;
1112                 dev->dev_addr[3] = 0x00;
1113                 dev->dev_addr[4] = 0x00;
1114                 if (0x8 == data->phy)
1115                         dev->dev_addr[5] = 0x01;
1116                 else
1117                         dev->dev_addr[5] = 0x02;
1118
1119                 word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1120
1121                 word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1122                     (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1123
1124                 TSI_WRITE(TSI108_MAC_ADDR1, word1);
1125                 TSI_WRITE(TSI108_MAC_ADDR2, word2);
1126         } else {
1127                 dev->dev_addr[0] = (word2 >> 16) & 0xff;
1128                 dev->dev_addr[1] = (word2 >> 24) & 0xff;
1129                 dev->dev_addr[2] = (word1 >> 0) & 0xff;
1130                 dev->dev_addr[3] = (word1 >> 8) & 0xff;
1131                 dev->dev_addr[4] = (word1 >> 16) & 0xff;
1132                 dev->dev_addr[5] = (word1 >> 24) & 0xff;
1133         }
1134
1135         if (!is_valid_ether_addr(dev->dev_addr)) {
1136                 printk("KERN_ERR: word1: %08x, word2: %08x\n", word1, word2);
1137                 return -EINVAL;
1138         }
1139
1140         return 0;
1141 }
1142
1143 static int tsi108_set_mac(struct net_device *dev, void *addr)
1144 {
1145         struct tsi108_prv_data *data = netdev_priv(dev);
1146         u32 word1, word2;
1147         int i;
1148
1149         if (!is_valid_ether_addr(addr))
1150                 return -EINVAL;
1151
1152         for (i = 0; i < 6; i++)
1153                 /* +2 is for the offset of the HW addr type */
1154                 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
1155
1156         word2 = (dev->dev_addr[0] << 16) | (dev->dev_addr[1] << 24);
1157
1158         word1 = (dev->dev_addr[2] << 0) | (dev->dev_addr[3] << 8) |
1159             (dev->dev_addr[4] << 16) | (dev->dev_addr[5] << 24);
1160
1161         spin_lock_irq(&data->misclock);
1162         TSI_WRITE(TSI108_MAC_ADDR1, word1);
1163         TSI_WRITE(TSI108_MAC_ADDR2, word2);
1164         spin_lock(&data->txlock);
1165
1166         if (data->txfree && data->link_up)
1167                 netif_wake_queue(dev);
1168
1169         spin_unlock(&data->txlock);
1170         spin_unlock_irq(&data->misclock);
1171         return 0;
1172 }
1173
1174 /* Protected by dev->xmit_lock. */
1175 static void tsi108_set_rx_mode(struct net_device *dev)
1176 {
1177         struct tsi108_prv_data *data = netdev_priv(dev);
1178         u32 rxcfg = TSI_READ(TSI108_EC_RXCFG);
1179
1180         if (dev->flags & IFF_PROMISC) {
1181                 rxcfg &= ~(TSI108_EC_RXCFG_UC_HASH | TSI108_EC_RXCFG_MC_HASH);
1182                 rxcfg |= TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE;
1183                 goto out;
1184         }
1185
1186         rxcfg &= ~(TSI108_EC_RXCFG_UFE | TSI108_EC_RXCFG_MFE);
1187
1188         if (dev->flags & IFF_ALLMULTI || dev->mc_count) {
1189                 int i;
1190                 struct dev_mc_list *mc = dev->mc_list;
1191                 rxcfg |= TSI108_EC_RXCFG_MFE | TSI108_EC_RXCFG_MC_HASH;
1192
1193                 memset(data->mc_hash, 0, sizeof(data->mc_hash));
1194
1195                 while (mc) {
1196                         u32 hash, crc;
1197
1198                         if (mc->dmi_addrlen == 6) {
1199                                 crc = ether_crc(6, mc->dmi_addr);
1200                                 hash = crc >> 23;
1201
1202                                 __set_bit(hash, &data->mc_hash[0]);
1203                         } else {
1204                                 printk(KERN_ERR
1205                                        "%s: got multicast address of length %d "
1206                                        "instead of 6.\n", dev->name,
1207                                        mc->dmi_addrlen);
1208                         }
1209
1210                         mc = mc->next;
1211                 }
1212
1213                 TSI_WRITE(TSI108_EC_HASHADDR,
1214                                      TSI108_EC_HASHADDR_AUTOINC |
1215                                      TSI108_EC_HASHADDR_MCAST);
1216
1217                 for (i = 0; i < 16; i++) {
1218                         /* The manual says that the hardware may drop
1219                          * back-to-back writes to the data register.
1220                          */
1221                         udelay(1);
1222                         TSI_WRITE(TSI108_EC_HASHDATA,
1223                                              data->mc_hash[i]);
1224                 }
1225         }
1226
1227       out:
1228         TSI_WRITE(TSI108_EC_RXCFG, rxcfg);
1229 }
1230
1231 static void tsi108_init_phy(struct net_device *dev)
1232 {
1233         struct tsi108_prv_data *data = netdev_priv(dev);
1234         u32 i = 0;
1235         u16 phyval = 0;
1236         unsigned long flags;
1237
1238         spin_lock_irqsave(&phy_lock, flags);
1239
1240         tsi108_write_mii(data, MII_BMCR, BMCR_RESET);
1241         while (i--){
1242                 if(!(tsi108_read_mii(data, MII_BMCR) & BMCR_RESET))
1243                         break;
1244                 udelay(10);
1245         }
1246         if (i == 0)
1247                 printk(KERN_ERR "%s function time out \n", __func__);
1248
1249         if (data->phy_type == TSI108_PHY_BCM54XX) {
1250                 tsi108_write_mii(data, 0x09, 0x0300);
1251                 tsi108_write_mii(data, 0x10, 0x1020);
1252                 tsi108_write_mii(data, 0x1c, 0x8c00);
1253         }
1254
1255         tsi108_write_mii(data,
1256                          MII_BMCR,
1257                          BMCR_ANENABLE | BMCR_ANRESTART);
1258         while (tsi108_read_mii(data, MII_BMCR) & BMCR_ANRESTART)
1259                 cpu_relax();
1260
1261         /* Set G/MII mode and receive clock select in TBI control #2.  The
1262          * second port won't work if this isn't done, even though we don't
1263          * use TBI mode.
1264          */
1265
1266         tsi108_write_tbi(data, 0x11, 0x30);
1267
1268         /* FIXME: It seems to take more than 2 back-to-back reads to the
1269          * PHY_STAT register before the link up status bit is set.
1270          */
1271
1272         data->link_up = 0;
1273
1274         while (!((phyval = tsi108_read_mii(data, MII_BMSR)) &
1275                  BMSR_LSTATUS)) {
1276                 if (i++ > (MII_READ_DELAY / 10)) {
1277                         break;
1278                 }
1279                 spin_unlock_irqrestore(&phy_lock, flags);
1280                 msleep(10);
1281                 spin_lock_irqsave(&phy_lock, flags);
1282         }
1283
1284         data->mii_if.supports_gmii = mii_check_gmii_support(&data->mii_if);
1285         printk(KERN_DEBUG "PHY_STAT reg contains %08x\n", phyval);
1286         data->phy_ok = 1;
1287         data->init_media = 1;
1288         spin_unlock_irqrestore(&phy_lock, flags);
1289 }
1290
1291 static void tsi108_kill_phy(struct net_device *dev)
1292 {
1293         struct tsi108_prv_data *data = netdev_priv(dev);
1294         unsigned long flags;
1295
1296         spin_lock_irqsave(&phy_lock, flags);
1297         tsi108_write_mii(data, MII_BMCR, BMCR_PDOWN);
1298         data->phy_ok = 0;
1299         spin_unlock_irqrestore(&phy_lock, flags);
1300 }
1301
1302 static int tsi108_open(struct net_device *dev)
1303 {
1304         int i;
1305         struct tsi108_prv_data *data = netdev_priv(dev);
1306         unsigned int rxring_size = TSI108_RXRING_LEN * sizeof(rx_desc);
1307         unsigned int txring_size = TSI108_TXRING_LEN * sizeof(tx_desc);
1308
1309         i = request_irq(data->irq_num, tsi108_irq, 0, dev->name, dev);
1310         if (i != 0) {
1311                 printk(KERN_ERR "tsi108_eth%d: Could not allocate IRQ%d.\n",
1312                        data->id, data->irq_num);
1313                 return i;
1314         } else {
1315                 dev->irq = data->irq_num;
1316                 printk(KERN_NOTICE
1317                        "tsi108_open : Port %d Assigned IRQ %d to %s\n",
1318                        data->id, dev->irq, dev->name);
1319         }
1320
1321         data->rxring = dma_alloc_coherent(NULL, rxring_size,
1322                         &data->rxdma, GFP_KERNEL);
1323
1324         if (!data->rxring) {
1325                 printk(KERN_DEBUG
1326                        "TSI108_ETH: failed to allocate memory for rxring!\n");
1327                 return -ENOMEM;
1328         } else {
1329                 memset(data->rxring, 0, rxring_size);
1330         }
1331
1332         data->txring = dma_alloc_coherent(NULL, txring_size,
1333                         &data->txdma, GFP_KERNEL);
1334
1335         if (!data->txring) {
1336                 printk(KERN_DEBUG
1337                        "TSI108_ETH: failed to allocate memory for txring!\n");
1338                 pci_free_consistent(0, rxring_size, data->rxring, data->rxdma);
1339                 return -ENOMEM;
1340         } else {
1341                 memset(data->txring, 0, txring_size);
1342         }
1343
1344         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1345                 data->rxring[i].next0 = data->rxdma + (i + 1) * sizeof(rx_desc);
1346                 data->rxring[i].blen = TSI108_RXBUF_SIZE;
1347                 data->rxring[i].vlan = 0;
1348         }
1349
1350         data->rxring[TSI108_RXRING_LEN - 1].next0 = data->rxdma;
1351
1352         data->rxtail = 0;
1353         data->rxhead = 0;
1354
1355         for (i = 0; i < TSI108_RXRING_LEN; i++) {
1356                 struct sk_buff *skb;
1357
1358                 skb = netdev_alloc_skb(dev, TSI108_RXBUF_SIZE + NET_IP_ALIGN);
1359                 if (!skb) {
1360                         /* Bah.  No memory for now, but maybe we'll get
1361                          * some more later.
1362                          * For now, we'll live with the smaller ring.
1363                          */
1364                         printk(KERN_WARNING
1365                                "%s: Could only allocate %d receive skb(s).\n",
1366                                dev->name, i);
1367                         data->rxhead = i;
1368                         break;
1369                 }
1370
1371                 data->rxskbs[i] = skb;
1372                 /* Align the payload on a 4-byte boundary */
1373                 skb_reserve(skb, 2);
1374                 data->rxskbs[i] = skb;
1375                 data->rxring[i].buf0 = virt_to_phys(data->rxskbs[i]->data);
1376                 data->rxring[i].misc = TSI108_RX_OWN | TSI108_RX_INT;
1377         }
1378
1379         data->rxfree = i;
1380         TSI_WRITE(TSI108_EC_RXQ_PTRLOW, data->rxdma);
1381
1382         for (i = 0; i < TSI108_TXRING_LEN; i++) {
1383                 data->txring[i].next0 = data->txdma + (i + 1) * sizeof(tx_desc);
1384                 data->txring[i].misc = 0;
1385         }
1386
1387         data->txring[TSI108_TXRING_LEN - 1].next0 = data->txdma;
1388         data->txtail = 0;
1389         data->txhead = 0;
1390         data->txfree = TSI108_TXRING_LEN;
1391         TSI_WRITE(TSI108_EC_TXQ_PTRLOW, data->txdma);
1392         tsi108_init_phy(dev);
1393
1394         napi_enable(&data->napi);
1395
1396         setup_timer(&data->timer, tsi108_timed_checker, (unsigned long)dev);
1397         mod_timer(&data->timer, jiffies + 1);
1398
1399         tsi108_restart_rx(data, dev);
1400
1401         TSI_WRITE(TSI108_EC_INTSTAT, ~0);
1402
1403         TSI_WRITE(TSI108_EC_INTMASK,
1404                              ~(TSI108_INT_TXQUEUE0 | TSI108_INT_RXERROR |
1405                                TSI108_INT_RXTHRESH | TSI108_INT_RXQUEUE0 |
1406                                TSI108_INT_RXOVERRUN | TSI108_INT_RXWAIT |
1407                                TSI108_INT_SFN | TSI108_INT_STATCARRY));
1408
1409         TSI_WRITE(TSI108_MAC_CFG1,
1410                              TSI108_MAC_CFG1_RXEN | TSI108_MAC_CFG1_TXEN);
1411         netif_start_queue(dev);
1412         return 0;
1413 }
1414
1415 static int tsi108_close(struct net_device *dev)
1416 {
1417         struct tsi108_prv_data *data = netdev_priv(dev);
1418
1419         netif_stop_queue(dev);
1420         napi_disable(&data->napi);
1421
1422         del_timer_sync(&data->timer);
1423
1424         tsi108_stop_ethernet(dev);
1425         tsi108_kill_phy(dev);
1426         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1427         TSI_WRITE(TSI108_MAC_CFG1, 0);
1428
1429         /* Check for any pending TX packets, and drop them. */
1430
1431         while (!data->txfree || data->txhead != data->txtail) {
1432                 int tx = data->txtail;
1433                 struct sk_buff *skb;
1434                 skb = data->txskbs[tx];
1435                 data->txtail = (data->txtail + 1) % TSI108_TXRING_LEN;
1436                 data->txfree++;
1437                 dev_kfree_skb(skb);
1438         }
1439
1440         free_irq(data->irq_num, dev);
1441
1442         /* Discard the RX ring. */
1443
1444         while (data->rxfree) {
1445                 int rx = data->rxtail;
1446                 struct sk_buff *skb;
1447
1448                 skb = data->rxskbs[rx];
1449                 data->rxtail = (data->rxtail + 1) % TSI108_RXRING_LEN;
1450                 data->rxfree--;
1451                 dev_kfree_skb(skb);
1452         }
1453
1454         dma_free_coherent(0,
1455                             TSI108_RXRING_LEN * sizeof(rx_desc),
1456                             data->rxring, data->rxdma);
1457         dma_free_coherent(0,
1458                             TSI108_TXRING_LEN * sizeof(tx_desc),
1459                             data->txring, data->txdma);
1460
1461         return 0;
1462 }
1463
1464 static void tsi108_init_mac(struct net_device *dev)
1465 {
1466         struct tsi108_prv_data *data = netdev_priv(dev);
1467
1468         TSI_WRITE(TSI108_MAC_CFG2, TSI108_MAC_CFG2_DFLT_PREAMBLE |
1469                              TSI108_MAC_CFG2_PADCRC);
1470
1471         TSI_WRITE(TSI108_EC_TXTHRESH,
1472                              (192 << TSI108_EC_TXTHRESH_STARTFILL) |
1473                              (192 << TSI108_EC_TXTHRESH_STOPFILL));
1474
1475         TSI_WRITE(TSI108_STAT_CARRYMASK1,
1476                              ~(TSI108_STAT_CARRY1_RXBYTES |
1477                                TSI108_STAT_CARRY1_RXPKTS |
1478                                TSI108_STAT_CARRY1_RXFCS |
1479                                TSI108_STAT_CARRY1_RXMCAST |
1480                                TSI108_STAT_CARRY1_RXALIGN |
1481                                TSI108_STAT_CARRY1_RXLENGTH |
1482                                TSI108_STAT_CARRY1_RXRUNT |
1483                                TSI108_STAT_CARRY1_RXJUMBO |
1484                                TSI108_STAT_CARRY1_RXFRAG |
1485                                TSI108_STAT_CARRY1_RXJABBER |
1486                                TSI108_STAT_CARRY1_RXDROP));
1487
1488         TSI_WRITE(TSI108_STAT_CARRYMASK2,
1489                              ~(TSI108_STAT_CARRY2_TXBYTES |
1490                                TSI108_STAT_CARRY2_TXPKTS |
1491                                TSI108_STAT_CARRY2_TXEXDEF |
1492                                TSI108_STAT_CARRY2_TXEXCOL |
1493                                TSI108_STAT_CARRY2_TXTCOL |
1494                                TSI108_STAT_CARRY2_TXPAUSE));
1495
1496         TSI_WRITE(TSI108_EC_PORTCTRL, TSI108_EC_PORTCTRL_STATEN);
1497         TSI_WRITE(TSI108_MAC_CFG1, 0);
1498
1499         TSI_WRITE(TSI108_EC_RXCFG,
1500                              TSI108_EC_RXCFG_SE | TSI108_EC_RXCFG_BFE);
1501
1502         TSI_WRITE(TSI108_EC_TXQ_CFG, TSI108_EC_TXQ_CFG_DESC_INT |
1503                              TSI108_EC_TXQ_CFG_EOQ_OWN_INT |
1504                              TSI108_EC_TXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1505                                                 TSI108_EC_TXQ_CFG_SFNPORT));
1506
1507         TSI_WRITE(TSI108_EC_RXQ_CFG, TSI108_EC_RXQ_CFG_DESC_INT |
1508                              TSI108_EC_RXQ_CFG_EOQ_OWN_INT |
1509                              TSI108_EC_RXQ_CFG_WSWP | (TSI108_PBM_PORT <<
1510                                                 TSI108_EC_RXQ_CFG_SFNPORT));
1511
1512         TSI_WRITE(TSI108_EC_TXQ_BUFCFG,
1513                              TSI108_EC_TXQ_BUFCFG_BURST256 |
1514                              TSI108_EC_TXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1515                                                 TSI108_EC_TXQ_BUFCFG_SFNPORT));
1516
1517         TSI_WRITE(TSI108_EC_RXQ_BUFCFG,
1518                              TSI108_EC_RXQ_BUFCFG_BURST256 |
1519                              TSI108_EC_RXQ_BUFCFG_BSWP | (TSI108_PBM_PORT <<
1520                                                 TSI108_EC_RXQ_BUFCFG_SFNPORT));
1521
1522         TSI_WRITE(TSI108_EC_INTMASK, ~0);
1523 }
1524
1525 static int tsi108_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1526 {
1527         struct tsi108_prv_data *data = netdev_priv(dev);
1528         unsigned long flags;
1529         int rc;
1530
1531         spin_lock_irqsave(&data->txlock, flags);
1532         rc = mii_ethtool_gset(&data->mii_if, cmd);
1533         spin_unlock_irqrestore(&data->txlock, flags);
1534
1535         return rc;
1536 }
1537
1538 static int tsi108_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1539 {
1540         struct tsi108_prv_data *data = netdev_priv(dev);
1541         unsigned long flags;
1542         int rc;
1543
1544         spin_lock_irqsave(&data->txlock, flags);
1545         rc = mii_ethtool_sset(&data->mii_if, cmd);
1546         spin_unlock_irqrestore(&data->txlock, flags);
1547
1548         return rc;
1549 }
1550
1551 static int tsi108_do_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1552 {
1553         struct tsi108_prv_data *data = netdev_priv(dev);
1554         if (!netif_running(dev))
1555                 return -EINVAL;
1556         return generic_mii_ioctl(&data->mii_if, if_mii(rq), cmd, NULL);
1557 }
1558
1559 static const struct ethtool_ops tsi108_ethtool_ops = {
1560         .get_link       = ethtool_op_get_link,
1561         .get_settings   = tsi108_get_settings,
1562         .set_settings   = tsi108_set_settings,
1563 };
1564
1565 static int
1566 tsi108_init_one(struct platform_device *pdev)
1567 {
1568         struct net_device *dev = NULL;
1569         struct tsi108_prv_data *data = NULL;
1570         hw_info *einfo;
1571         int err = 0;
1572         DECLARE_MAC_BUF(mac);
1573
1574         einfo = pdev->dev.platform_data;
1575
1576         if (NULL == einfo) {
1577                 printk(KERN_ERR "tsi-eth %d: Missing additional data!\n",
1578                        pdev->id);
1579                 return -ENODEV;
1580         }
1581
1582         /* Create an ethernet device instance */
1583
1584         dev = alloc_etherdev(sizeof(struct tsi108_prv_data));
1585         if (!dev) {
1586                 printk("tsi108_eth: Could not allocate a device structure\n");
1587                 return -ENOMEM;
1588         }
1589
1590         printk("tsi108_eth%d: probe...\n", pdev->id);
1591         data = netdev_priv(dev);
1592         data->dev = dev;
1593
1594         pr_debug("tsi108_eth%d:regs:phyresgs:phy:irq_num=0x%x:0x%x:0x%x:0x%x\n",
1595                         pdev->id, einfo->regs, einfo->phyregs,
1596                         einfo->phy, einfo->irq_num);
1597
1598         data->regs = ioremap(einfo->regs, 0x400);
1599         if (NULL == data->regs) {
1600                 err = -ENOMEM;
1601                 goto regs_fail;
1602         }
1603
1604         data->phyregs = ioremap(einfo->phyregs, 0x400);
1605         if (NULL == data->phyregs) {
1606                 err = -ENOMEM;
1607                 goto regs_fail;
1608         }
1609 /* MII setup */
1610         data->mii_if.dev = dev;
1611         data->mii_if.mdio_read = tsi108_mdio_read;
1612         data->mii_if.mdio_write = tsi108_mdio_write;
1613         data->mii_if.phy_id = einfo->phy;
1614         data->mii_if.phy_id_mask = 0x1f;
1615         data->mii_if.reg_num_mask = 0x1f;
1616
1617         data->phy = einfo->phy;
1618         data->phy_type = einfo->phy_type;
1619         data->irq_num = einfo->irq_num;
1620         data->id = pdev->id;
1621         dev->open = tsi108_open;
1622         dev->stop = tsi108_close;
1623         dev->hard_start_xmit = tsi108_send_packet;
1624         dev->set_mac_address = tsi108_set_mac;
1625         dev->set_multicast_list = tsi108_set_rx_mode;
1626         dev->get_stats = tsi108_get_stats;
1627         netif_napi_add(dev, &data->napi, tsi108_poll, 64);
1628         dev->do_ioctl = tsi108_do_ioctl;
1629         dev->ethtool_ops = &tsi108_ethtool_ops;
1630
1631         /* Apparently, the Linux networking code won't use scatter-gather
1632          * if the hardware doesn't do checksums.  However, it's faster
1633          * to checksum in place and use SG, as (among other reasons)
1634          * the cache won't be dirtied (which then has to be flushed
1635          * before DMA).  The checksumming is done by the driver (via
1636          * a new function skb_csum_dev() in net/core/skbuff.c).
1637          */
1638
1639         dev->features = NETIF_F_HIGHDMA;
1640
1641         spin_lock_init(&data->txlock);
1642         spin_lock_init(&data->misclock);
1643
1644         tsi108_reset_ether(data);
1645         tsi108_kill_phy(dev);
1646
1647         if ((err = tsi108_get_mac(dev)) != 0) {
1648                 printk(KERN_ERR "%s: Invalid MAC address.  Please correct.\n",
1649                        dev->name);
1650                 goto register_fail;
1651         }
1652
1653         tsi108_init_mac(dev);
1654         err = register_netdev(dev);
1655         if (err) {
1656                 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1657                                 dev->name);
1658                 goto register_fail;
1659         }
1660
1661         platform_set_drvdata(pdev, dev);
1662         printk(KERN_INFO "%s: Tsi108 Gigabit Ethernet, MAC: %s\n",
1663                dev->name, print_mac(mac, dev->dev_addr));
1664 #ifdef DEBUG
1665         data->msg_enable = DEBUG;
1666         dump_eth_one(dev);
1667 #endif
1668
1669         return 0;
1670
1671 register_fail:
1672         iounmap(data->regs);
1673         iounmap(data->phyregs);
1674
1675 regs_fail:
1676         free_netdev(dev);
1677         return err;
1678 }
1679
1680 /* There's no way to either get interrupts from the PHY when
1681  * something changes, or to have the Tsi108 automatically communicate
1682  * with the PHY to reconfigure itself.
1683  *
1684  * Thus, we have to do it using a timer.
1685  */
1686
1687 static void tsi108_timed_checker(unsigned long dev_ptr)
1688 {
1689         struct net_device *dev = (struct net_device *)dev_ptr;
1690         struct tsi108_prv_data *data = netdev_priv(dev);
1691
1692         tsi108_check_phy(dev);
1693         tsi108_check_rxring(dev);
1694         mod_timer(&data->timer, jiffies + CHECK_PHY_INTERVAL);
1695 }
1696
1697 static int tsi108_ether_init(void)
1698 {
1699         int ret;
1700         ret = platform_driver_register (&tsi_eth_driver);
1701         if (ret < 0){
1702                 printk("tsi108_ether_init: error initializing ethernet "
1703                        "device\n");
1704                 return ret;
1705         }
1706         return 0;
1707 }
1708
1709 static int tsi108_ether_remove(struct platform_device *pdev)
1710 {
1711         struct net_device *dev = platform_get_drvdata(pdev);
1712         struct tsi108_prv_data *priv = netdev_priv(dev);
1713
1714         unregister_netdev(dev);
1715         tsi108_stop_ethernet(dev);
1716         platform_set_drvdata(pdev, NULL);
1717         iounmap(priv->regs);
1718         iounmap(priv->phyregs);
1719         free_netdev(dev);
1720
1721         return 0;
1722 }
1723 static void tsi108_ether_exit(void)
1724 {
1725         platform_driver_unregister(&tsi_eth_driver);
1726 }
1727
1728 module_init(tsi108_ether_init);
1729 module_exit(tsi108_ether_exit);
1730
1731 MODULE_AUTHOR("Tundra Semiconductor Corporation");
1732 MODULE_DESCRIPTION("Tsi108 Gigabit Ethernet driver");
1733 MODULE_LICENSE("GPL");
1734 MODULE_ALIAS("platform:tsi-ethernet");